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EXISTENCE THEOREMS FOR A CRYSTAL SURFACE MODEL INVOLVING

THE P-LAPLACE OPERATOR

XIANGSHENG XU

Abstract. The manufacturing of crystal films lies at the heart of modern nanotechnology. How to
accurately predict the motion of a crystal surface is of fundamental importance. Many continuum
models have been developed for this purpose, including a number of PDE models, which are often
obtained as the continuum limit of a family of kinetic Monte Carlo models of crystal surface relax-
ation that includes both the solid-on-solid and discrete Gaussian models. In this paper we offer an
analytical perspective into some of these models. To be specific, we study the existence of a weak

solution to the boundary value problem for the equation −∆e−div(|∇u|p−2∇u) + au = f , where
p > 1, a > 0 are given numbers and f is a given function. This problem is derived from a crystal
surface model proposed by J.L. Marzuola and J. Weare (2013 Physical Review, E 88, 032403). The
mathematical challenge is due to the fact that the principal term in our equation is an exponential
function of a p-Laplacian. Existence of a suitably-defined weak solution is established under the
assumptions that p ∈ (1, 2], N ≤ 4, and f ∈ W 1,p. Our investigations reveal that the key to our
existence assertion is how to control the set where −div

(

|∇u|p−2∇u
)

is ±∞.

1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Given that p > 1, a > 0, and a

function f = f(x), we consider the boundary value problem

−∆e−∆pu + au = f in Ω,(1.1)

∇u · ν = ∇e−∆pu · ν = 0 on ∂Ω,(1.2)

where ∆p is the p-Laplacian, i.e., ∆pu = div
(

|∇u|p−2∇u
)

, and ν is the unit outward normal to ∂Ω.
Our interest in the problem originates in the mathematical description of the evolution of a

crystal surface. The surface of a crystal below the roughing temperature consists of steps and
terraces. According to the Burton, Cabrera and Frank (BCF) model [3], atoms detach from the
steps, diffuse across terraces, and reattach at new locations, inducing an overall evolution of the
crystal surface. At the nanoscale, the motion of steps is described by large systems of ordinary
differential equations for step positions ([1], [7]). At the macro-scale, this description is often
reduced conveniently to nonlinear PDEs for macroscopic variables such as the surface height and
slope profiles (see [14, 7] and the references therein).

To see the connection between our problem (1.1)-(1.2) and certain existing continuum models,
we first observe from the conservation of mass that the dynamic equation for the surface height
profile u(t, x) of a solid film is governed by

(1.3) ∂tu+ divJ = 0,

where J is the adatom flux. By Fick’s law [22], J can be written as

J = −M(∇u)∇ρs.
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Here M(∇u) is the mobility and ρs is the local equilibrium density of adatoms. On account of the
Gibbs-Thomson relation [16, 27, 22], which is connected to the theory of molecular capillarity, the
corresponding local equilibrium density of adatoms is determined by

ρs = ρ0e
µ
kT ,

where µ is the chemical potential, ρ0 is a constant reference density, T is the temperature, and k
is the Boltzmann constant. Denote by Ω the “step locations area” of interest. Then we can take
the general surface energy G(u) to be

G(u) =
1

p

∫

Ω
|∇u|pdx, p ≥ 1.(1.4)

The justification for this, as observed in [23], is that it can retain many of the interesting features of
the microscopic system that are lost in the more standard scaling regime. The chemical potential
µ is defined as the change per atom in the surface energy. That is,

(1.5) µ =
δG

δu
= −∆pu.

After incorporating those physical parameters into the scaling of the time and/or spatial variables
[8, 19], we can rewrite the evolution equation for u as

(1.6) ∂tu = div
(

M(∇u)∇e δG
δu

)

.

In the diffusion-limited (DL) regime, where the dynamics is dominated by the diffusion across the
terraces and M ≡ 1 the above equations reduces to

(1.7) ∂tu = div
(

∇e δG
δu

)

= ∆e−∆pu.

This equation is assumed to hold in a space-time domain ΩT ≡ Ω× (0, T ), T > 0, coupled with the
following initial boundary conditions

∇u · ν = ∇e−∆pu · ν = 0 on ΣT ≡ ∂Ω× (0, T ),(1.8)

u(x, 0) = u0(x) on Ω.(1.9)

As we shall see, a priori estimates for this problem are rather weak. As a result, an existence
theorem seems to be hopeless. Instead, we focus on the associated stationary problem. That is, we
discretize the time derivative in (1.7), thereby obtaining the following stationary equation

(1.10)
u− v

δ
−∆e−∆pu = 0 in Ω.

Here v is a given function. Initially, v = u0(x). The positive number δ is the step size. Set a = 1
δ

and f = 1
δ
v. This leads to the boundary value problem (1.1)-(1.2).

The objective of this paper is to establish an existence assertion for the stationary problem
problem (1.1)-(1.2), while the time-dependent problem (1.7)-(1.9) is left open.

If we linearize the exponential term

(1.11) e−∆pu ≈ 1−∆pu,

then (1.7) reduces to

(1.12) ∂tu+∆∆pu = 0.

Giga-Kohn [11] proved that there is a finite time extinction for the equation when p > 1. For the
difficult case of p = 1, Giga-Giga [10] developed an H−1 total variation gradient flow to analyze
this equation and they showed that the solution may instantaneously develop jump discontinuity
in the explicit example of important crystal facet dynamics. This explicit construction of the jump
discontinuity solution for facet dynamics was extended to the exponential PDE in [19].
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The time-dependent problem in the case where p = 2 has been investigated in [20]. The math-
ematical novelty there is that the exponent −∆u is only a measure. But the singular part of the
measure is such that the composition e−∆u is still a well-defined function. A gradient flow approach
to the problem can be found in [8]. We also would like to mention two other related articles [9, 21].
Note that if p = 2 then the principal term in (1.1), i.e., e−∆u, can be viewed as a monotone oper-
ator in a suitable function space. This property is essential to the results in [20, 8]. If p 6= 2, this
property is no longer true. Moreover, the exponent becomes nonlinear. Subsequently, we lose most
of the a priori estimates in [20]. What remains is collected in the following

Lemma 1.1. If u is a classical solution of (1.7)-(1.9), then we have

1

p

∫

Ω
|∇u(x, s)|p dx+ 4

∫

Ωs

|∇√
ρ|2 dx dt =

1

p

∫

Ω
|∇u0(x)|p dx,(1.13)

∫

Ω
ln ρ dx = 0,(1.14)

∫

Ω
u(x, t)dx =

∫

Ω
u0(x)dx.(1.15)

where s > 0, Ωs = Ω× (0, s), and

(1.16) ρ = e−∆pu.

Proof. We calculate
∫

Ω
∆pu∂tudx = −

∫

Ω
|∇u|p−2∇u∇∂tudx = −1

p

d

dt

∫

Ω
|∇u|pdx,(1.17)

∫

Ω
∆e−∆pu ·∆pu dx = −

∫

Ω
∇e−∆pu · ∇∆pu dx

=

∫

Ω
e−∆pu |∇∆pu|2 dx

= 4

∫

Ω

∣

∣

∣
∇e− 1

2
∆pu

∣

∣

∣

2
dx.(1.18)

Multiply through (1.7) by ∆pu and integrate the resulting equation with respect to the space
variables over Ω to obtain

(1.19)
1

p

d

dt

∫

Ω
|∇u(x, t)|p dx+ 4

∫

Ω

∣

∣

∣
∇e− 1

2
∆pu

∣

∣

∣

2
dx = 0.

Integrate (1.19) with respect to t to arrive at (1.13). By (1.16), we have

(1.20) −∆pu = ln ρ on Ω.

Integrate the above equation over Ω to obtain (1.14). Similarly, we can integrate (1.7) over Ω to
get (1.15). �

Unfortunately, this lemma is not enough for an existence assertion for problem (1.7)-(1.9). To
gain any further results, we are facing two main challenges. First, it does not seem possible to
derive any meaningful estimates in the time variable such as estimates (6) and (9) in [20]. Second,
do equations (1.13) and (1.14) really imply that ρ ∈ Lq(ΩT ) for some q ≥ 1 in the context here?
Obviously, the two are interconnected. In the stationary problem (1.1)-(1.2), of course, the first
challenge mentioned earlier goes away, but the second one remains. Thus the main mathematical
interest of problem (1.1)-(1.2) is how to suitably interpolate between ln ρ and ∇√

ρ. We must point



4 XIANGSHENG XU

out that condition (1.14) is rather weak. Indeed, we can easily construct a sequence {fj} such that

fj → ∞ a.e. on Ω as j → ∞, and(1.21)
∫

Ω
fjdx = 0.(1.22)

For example, take Ω = (0, 1) and define

fj(s) =



















j if 0 ≤ s < 1
j
,

j − 4j3(s − 1
j
) if 1

j
≤ s < 3

2j ,

−2j2 + j + 4j3(s− 3
2j ) if 3

2j ≤ s < 2
j
,

j if 2
j
≤ s ≤ 1.

Note that fj is continuous and piecewise linear and satisfies the boundary condition (1.2). This
means that equation (1.14) cannot be approximated. On the other hand, we obviously can not
prevent a sequence with the boundary condition (1.2) from going to infinity if we only have some
control on its partial derivatives. That is to say, neither (1.13) nor (1.14) alone is sufficient for
our purpose, and we must find a right combination between the two and equation (1.1). This
constitutes the core of our mathematical analysis. Our investigations reveal that the set where
∆pu is negative infinity and the set where it is positive infinity play two significantly different roles
with the former commanding most of our attention, while the latter is similar to the case already
considered in [20, 21].

In view of Lemma 1.1 and the analysis in [20], we can give the following definition of a weak
solution.

Definition 1.2. We say that a pair (u, ρ) is a weak solution to (1.1)-(1.2) if the following conditions
hold:

(D1) ρ ∈ W 2,p∗(Ω), u ∈ W 1,p(Ω), ∆pu ∈ M(Ω) ∩
(

W 1,p(Ω)
)∗
, where p∗ = Np

N−p ,
(

W 1,p(Ω)
)∗

is

the dual space of W 1,p(Ω), and M(Ω) is the space of bounded Radon measures on Ω;
(D2) Let

−∆pu = ga + νs

be the Lebesgue decomposition of −∆pu ([4], p.42). That is, ga ∈ L1(Ω) and the support of
νs ≡ A0 has Lebesgue measure 0. Then there holds

(1.23) ρ = e ga a.e. on Ω;

(D3) We have

−∆ρ+ au = f a.e. on Ω,(1.24)

∇ρ · ν = 0 a.e. on ∂Ω.(1.25)

The boundary condition ∇u · ν = 0 on ∂Ω is satisfied in the sense

〈−∆pu, ξ〉 =
∫

Ω
|∇u|p−2∇u · ∇ξ dx for all ξ ∈W 1,p(Ω),

where 〈·, ·〉 is the duality pairing between W 1,p(Ω) and
(

W 1,p(Ω)
)∗

.

An example in [20] shows that the singular part in ∆pu is an intrinsic property of our solutions.
Physically, the singularities represent rupture defects and pinning on the surface evolution due to
the asymmetric in the exponential curvature dependent mobility. The pinning point ruptures in
the epitaxial growth models was carefully studied numerically in [23]. An easy way to remove the
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singular part in −∆pu is by adding a lower order perturbation to the equation (1.1). To be precise,
we consider the problem

−∆e−∆pu + ε∆pu+ au = f in Ω(1.26)

∇u · ν = ∇e−∆pu · ν = 0 on ∂Ω,(1.27)

where ε > 0 is a small perturbation parameter. In this case, we will have ∆pu ∈ L2(Ω). Indeed,
we use −∆pu as a test function in (1.26) to obtain

(1.28)

∫

Ω
|∇u|p dx+

∫

Ω
|∇e− 1

2
∆pu|2 dx+ ε

∫

Ω
(∆pu)

2 dx ≤ c

∫

Ω
|∇f |p dx.

Our main result is the following

Theorem 1.3. Assume that Ω is a bounded domain in R
N with C2,α boundary for some α ∈ (0, 1),

N ≤ 4, a > 0, and f ∈W 1,p(Ω) with 1 < p ≤ 2. Then there is a weak solution to (1.1)-(1.2).

We have not considered the case where p = 1. The physical relevance of this case can be found
in [17]. It is also related to the motion by surface curvature. Our key compactness result Claim
3.9 relies on (ii) in Lemma 2.3, which fails when p = 1. Thus it would be interesting to know if
we can take the limit of our solutions as p → 1. Theorem 1.3 should also hold for p > 2. In the
remark following Claim 3.6 below we shall see why we have to require p ≤ 2. Since we allow p to
be arbitrarily close 1, the Sobolev embedding theorem forces us to impose the condition N ≤ 4.
The uniqueness assertion for problem (1.1)-(1.2) is still open. The difficulty here is due to the fact
that the operator −∆e−∆pu does not seem to be monotone anymore for p 6= 2.

A solution to (1.1)-(1.2) will be constructed as the limit of a sequence of approximate solutions.
The key is to design an approximation scheme that can generate sufficiently regular approximate
solutions so that all the preceding formal calculations are made vigorous. Then we must be able
to show that the sequence of approximate solutions does not converge to infinity a.e. on Ω. This
is accomplished in Section 3. In Section 2 we state a few preparatory lemmas, while in Section 4
we make some further remarks about the time-dependent problem.

Finally, we make some remarks about the notation. The letter c denotes a positive constant.
In theory, its value can be computed from various given data. In the applications of the Sobolev
embedding theorems, whenever the term N − 2 appears in a denominator, it is understood that
N > 2 because the case where N = 2 can always be handled separately.

2. Preliminaries

In this section we state a few preparatory lemmas.
Relevant interpolation inequalities for Sobolev spaces are listed in the following lemma.

Lemma 2.1. Let Ω be a bounded domain in R
N . Denote by ‖ · ‖p the norm in the space Lp(Ω).

Then we have:

(1) ‖f‖q ≤ ε‖f‖r + ε−σ‖f‖p, where ε > 0, p ≤ q ≤ r, and σ =
(

1
p
− 1

q

)

/
(

1
q
− 1

r

)

;

(2) If ∂Ω is Lipschitz, then for each ε > 0 and each q ∈ (1, p∗), where p∗ = pN
N−p if N > p ≥ 1

and any number bigger than p if N = p, there is a positive number c = c(ε, p) such that

‖f‖q ≤ ε‖∇f‖p + c‖f‖1 for all f ∈W 1,p(Ω).(2.1)

(3) If ∂Ω is C2,α for some α ∈ (0, 1) and q is given as in (2), then

‖∇g‖q ≤ ε‖∆g‖p + c‖g‖1 for all g ∈W 2,p(Ω).(2.2)

This lemma can be found in [12, 13, 26]. The next lemma collects a few frequently used elemen-
tary inequalities.

Lemma 2.2. For x, y ∈ R
N and a, b ∈ R

+, we have:
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(4) |x|p−2x · (x− y) ≥ 1
p
(|x|p − |y|p);

(5) ab ≤ εap + 1
εq/p

bq if ε > 0, p, q > 1 with 1
p
+ 1

q
= 1.

Lemma 2.3. Let x, y be any two vectors in R
N . Then:

(i) For p ≥ 2,
((

|x|p−2x− |y|p−2y
)

· (x− y)
)

≥ 1

2p−1
|x− y|p;

(ii) For 1 < p ≤ 2,

(

1 + |x|2 + |y|2
)

2−p
2

((

|x|p−2x− |y|p−2y
)

· (x− y)
)

≥ (p− 1)|x− y|2.

The proof of this lemma is contained in ([25], p. 146-148).

Lemma 2.4. Let Ω be a bounded domain in R
N with Lipschitz boundary ∂Ω. Consider the problem

−∆pu+ τ |u|p−2u = f in Ω,(2.3)

∇u · ν = 0 on ∂Ω,(2.4)

where τ > 0, p > 1, f ∈ L
p

p−1 (Ω). Without loss of generality, we also assume

(2.5) p < N.

Then there is a unique weak solution u to the above problem in the space W 1,p(Ω). Furthermore, if
f also lies in the space Lq(Ω) with

(2.6) q >
N

p
,

u is bounded and we have the estimate

(2.7) ‖u‖∞ ≤ c‖u‖1 + c (‖f‖q)
1

p−1 .

Proof. We do not believe that the estimate (2.7) is new. Since we cannot find a good reference for
it, we shall offer a proof here. We employ a technique of iteration of Lq norms originally due to
Moser [24]. Without loss of generality, assume

(2.8) ‖u+‖∞ = ‖u‖∞.

Set b = (‖f‖q)
1

p−1 . For each s > p−1
p

we use sp

ps−p+1(u
+ + b)ps−p+1 as a test function in (2.3) to

obtain

sp
∫

Ω
(u+ + b)ps−p|∇u+|pdx

+
τsp

ps− p+ 1

∫

Ω
|u|p−2u(u+ + b)ps−p+1dx

=
sp

ps− p+ 1

∫

Ω
f(u+ + b)ps−p+1dx.(2.9)

Note that
∫

Ω
|u|p−2u−(u+ + b)ps−p+1dx = bps−p+1

∫

Ω
|u|p−2u−dx.(2.10)

Letting u = u+−u− in (2.3) and integrating the resulting equation over Ω, which amounts to using
1 as a test function in the equation, yield

(2.11) τ

∫

Ω
|u|p−2u+dx = τ

∫

Ω
|u|p−2u−dx+

∫

Ω
fdx.
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Substitute this into (2.10) to obtain
∫

Ω
|u|p−2u−(u+ + b)ps−p+1dx = bps−p+1

∫

Ω
|u|p−2u+dx− bps−p+1

τ

∫

Ω
fdx

≤
∫

Ω
(u+ + b)psdx+

1

τ

∫

Ω
|f |(u+ + b)ps−p+1dx.(2.12)

Keeping this in mind, we can derive from (2.9) that
∫

Ω

∣

∣∇(u+ + b)s
∣

∣

p
dx

≤ τsp

ps− p+ 1

∫

Ω
(u+ + b)psdx+

2sp

ps− p+ 1

∫

Ω
|f |(u+ + b)ps−p+1dx

≤ τsp

ps− p+ 1

∫

Ω
(u+ + b)psdx

+
2sp

ps− p+ 1
‖f(u+ + b)−p+1‖q

(
∫

Ω
(u+ + b)

psq
q−1dx

)
q−1

q

≤ τsp

ps− p+ 1

∫

Ω
(u+ + b)psdx+

2sp

ps− p+ 1

(
∫

Ω
(u+ + b)

psq
q−1 dx

)
q−1

q

≤ csp

ps− p+ 1

(
∫

Ω
(u+ + b)

psq
q−1 dx

)
q−1

q

, c = c(Ω, τ, q).(2.13)

Here we have used the fact that

(2.14) ‖f(u+ + b)−p+1‖q =
(
∫

Ω

|f |q
(u+ + b)(p−1)q

dx

)
1

q

≤ ‖f‖q
bp−1

= 1.

With the aid of the Sobolev inequality, we obtain
(
∫

Ω
(u+ + b)

sNp
N−p dx

)
N−p
N

≤ c

∫

Ω

∣

∣∇(u+ + b)s
∣

∣

p
dx+ c

∫

Ω
(u+ + b)spdx

≤ csp

ps− p+ 1

(
∫

Ω
(u+ + b)

psq
q−1 dx

)
q−1

q

+ c

∫

Ω
(u+ + b)spdx

≤ csp

ps− p+ 1

(
∫

Ω
(u+ + b)

psq
q−1 dx

)
q−1

q

.(2.15)

The last step is due to the fact that
sp

ps− p+ 1
≥ 1.

Set χ = N
N−p/

q
q−1 . Our assumption (2.6) implies that χ > 1. We can write (2.13) in the form

‖u+ + b‖psqχ
q−1

≤
(

c

ps− p+ 1

)
1

ps

s
1

s ‖u+ + b‖ psq
q−1

≤ c
1

s s
1

s ‖u+ + b‖ psq
q−1

, provided that s ≥ 1.(2.16)

In view of the proof in ([12], p. 190), we take s = χm,m = 0, 1, 2, · · · in the above inequality.
Iterating and taking the limit lead to

(2.17) ‖u+ + b‖∞ ≤ c‖u+ + b‖ pq
q−1

,
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whence by the interpolation inequality (1) in Lemma 2.1 we have

(2.18) ‖u+ + b‖∞ ≤ c‖u+ + b‖1.
This implies the desired result. �

Further regularity results for solutions to equations of p-laplace type can be found in [2, 29] and
the references therein.

Our existence theorem is based upon the following fixed point theorem, which is often called the
Leray-Schauder Theorem ([12], p.280).

Lemma 2.5. Let B be a map from a Banach space B into itself. Assume:

(H1) B is continuous;
(H2) the images of bounded sets of B are precompact;
(H3) there exists a constant c such that

‖z‖B ≤ c

for all z ∈ B and σ ∈ [0, 1] satisfying z = σB(z).

Then B has a fixed point.

Lemma 2.6. Let Ω be a bounded domain in R
N with Lipschitz boundary and 1 ≤ p < N . Then

there is a positive number c = c(N) such that

(2.19) ‖u− uS‖p∗ ≤ cdN+1− p
N

|S|
1

p

‖∇u‖p for each u ∈W 1,p(Ω),

where S is any measurable subset of Ω with |S| > 0, uS = 1
|S|

∫

S
udx, and d is the diameter of Ω.

This lemma can be inferred from Lemma 7.16 in [12]. Also see [13, 26]. It is a version of the
Poincaré inequality.

3. Proof of Theorem 1.3

In this section we first design an approximation scheme for problem (1.1)-(1.2). Then we obtain
a weak solution by passing to the limit in our approximate problems.

Following [20], we introduce a new unknown function

(3.1) ψ = −∆pu.

Then regularize this equation by adding the term τ |u|p−2u, τ > 0, to its right-hand side. This is
due to the Neumann boundary condition in our problem. By the same reason, we add τψ to (1.1).
This leads to the study of the system

−∆eψ + τψ + au = f in Ω,(3.2)

−∆pu+ τ |u|p−2u = ψ in Ω(3.3)

coupled with the boundary conditions

(3.4) ∇u · ν = ∇eψ · ν = 0 on ∂Ω,

where we assume

(3.5) f ∈ L∞(Ω.

This is our approximating problem. Basically, we have transformed a fourth-order equation into
a system of two second-order equations. A mathematical motivation behind this construction is
given in [20].
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Theorem 3.1. Let Ω be a bounded domain in R
N with C2,α boundary with some α ∈ (0, 1), and

assume that 1 < p < N and (3.5) hold. Then there is a weak solution (ψ, u) to (3.2)-(3.4) with

ψ ∈ W 2,q(Ω) for each q > 1,(3.6)

u ∈ C1,λ(Ω), λ ∈ (0, 1).(3.7)

.

Proof. The existence assertion will be established via the Leray-Schauder Theorem. For this pur-
pose, we define an operator B from L∞(Ω) into itself as follows: for each g ∈ L∞(Ω) we say
B(g) = ψ if ψ is the unique solution of the linear boundary value problem

−div (eg∇ψ) + τψ = f − au in Ω,(3.8)

∇ψ · ν = 0 on ∂Ω,(3.9)

where u solves the problem

−∆pu+ τ |u|p−2u = g in Ω,(3.10)

∇u · ν = 0 on ∂Ω.(3.11)

Concerning the preceding boundary value problem, a theorem in ([25], p.124) asserts that the
problem has a weak solution u in the space W 1,p(Ω). Obviously, the uniqueness of such a solution
is a consequence of Lemma 2.3. In fact, we can further conclude from [2, 18, 29] that u satisfies
(3.7). Observe that since g ∈ L∞(Ω) the equation (3.8) is uniformly elliptic. According to the
classical regularity theory for linear elliptic equations, problem (3.8)-(3.9) has a unique solution ψ
in the space W 1,2(Ω) ∩ C0,β(Ω) for some β ∈ (0, 1) ([12], Chap. 8). Therefore, we can conclude
that B is well-defined, continuous, and maps bounded sets into precompact ones. It remains to
show that there is a positive number c such that

(3.12) ‖ψ‖∞ ≤ c

for all ψ ∈ L∞(Ω) and σ ∈ [0, 1] satisfying

ψ = σB(ψ).

This equation is equivalent to the boundary value problem

−∆eψ + τψ = σ(f − au) in Ω,(3.13)

−∆pu+ τ |u|p−2u = ψ in Ω,(3.14)

∇u · ν = ∇eψ · ν = 0 on ∂Ω.(3.15)

Claim 3.2. We have

‖ψ‖q ≤ 1

τ
‖f − au‖q for each q > 2, and thus(3.16)

‖ψ‖∞ ≤ 1

τ
‖f − au‖∞.(3.17)

Furthermore,

(3.18) ‖ψ‖2 ≤ 1

τ
‖f‖2

Proof. We just need to slightly modify the proof of Claim 2.1 in [20]. Let q > 2 be given. Then
the function |ψ|q−2ψ lies in W 1,2(Ω) and ∇

(

|ψ|q−2ψ
)

= (q − 1)|ψ|q−2∇ψ. Multiply through (3.13)
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by this function and integrate the resulting equation over Ω to obtain

(q − 1)

∫

Ω
eψ|ψ|q−2|∇ψ|2 dx+ τ

∫

Ω
|ψ|q dx = σ

∫

Ω
(f − au)|ψ|q−2ψ dx

≤
∫

Ω
|f − au||ψ|q−1 dx

≤ ‖f − au‖q‖ψ‖q−1
q .

Dropping the first integral in the above inequality yields (3.16).
Multiplying ψ through (3.13), we obtain

(3.19)

∫

Ω
eψ|∇ψ|2 dx+ τ

∫

Ω
ψ2 dx = −σ

∫

Ω
auψ dx+ σ

∫

Ω
fψ dx.

Upon using u as a test function in (3.14), we can derive
∫

Ω
uψ dx =

∫

Ω
|∇u|p dx+ τ

∫

Ω
up dx ≥ 0.

Keeping this in mind, we deduce from (3.19) that

τ

∫

Ω
ψ2 dx ≤ σ

∫

Ω
fψ dx ≤

∫

Ω
|f ||ψ| dx ≤ ‖f‖2‖ψ‖2.

Then (3.18) follows. �

To continue the proof of Theorem 3.1, multiply through (3.13) by eψ − 1 and integrate the
resulting equation over Ω to obtain

∫

Ω
|∇eψ|2dx+ τ

∫

Ω
ψ(eψ − 1)dx = −σ

∫

Ω
au(eψ − 1)dx+ σ

∫

Ω
f(eψ − 1)dx

≤
∣

∣

∣

∣

∫

Ω
au(eψ − 1)dx

∣

∣

∣

∣

+ ‖f‖∞
∫

Ω
|(eψ − 1)|dx.(3.20)

In view of (2.1), the first integral on the right-hand side in the above equation can be estimated as
follows:

∣

∣

∣

∣

∫

Ω
u(eψ − 1)dx

∣

∣

∣

∣

≤ ‖u‖2‖eψ − 1‖2

≤ cε‖∇eψ‖2 + c‖eψ − 1‖1, ε > 0.(3.21)

Here we have taken (3.18) into account. For each M > 0 we have
∫

Ω

∣

∣

∣
(eψ − 1)

∣

∣

∣
dx =

∫

|ψ|>M

∣

∣

∣
eψ − 1

∣

∣

∣
dx+

∫

|ψ|≤M

∣

∣

∣
eψ − 1

∣

∣

∣
dx

≤ 1

M

∫

Ω
ψ
(

eψ − 1
)

dx+ c(M).(3.22)

Plug (3.21) and then (3.22) into (3.20), choose ε suitably small andM suitably large in the resulting
inequality, thereby derive

(3.23)

∫

Ω
|∇eψ|2dx+ τ

∫

Ω
ψ(eψ − 1)dx ≤ c.

This combined with (3.22) implies that ψ is bounded in Lq(Ω) for each q ≥ 1. Thus we apply
Lemma 2.4 to obtain that u is bounded in L∞(Ω). Consequently, (3.12) follows from (3.17) and
(3.5). As we mentioned earlier, we can infer (3.7) from [18, 2, 29]. This together with the classical
Calderón-Zygmund estimate implies (3.6). The proof is complete. �
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Proof of Theorem 1.3. Without loss of genelarity, we may assume that

(3.24) f ∈ L∞(Ω) ∩W 1,p(Ω).

Otherwise, f can be approximated by a sequence in the above space in W 1,p(Ω). We shall show
that we can take τ → 0 in (3.2)-(3.4). For this purpose we need to derive estimates that are uniform
in τ . We write

(3.25) u = uτ , ψ = ψτ .

Then problem (3.2)-(3.4) becomes

−∆ρτ + τψτ + auτ = f in Ω,(3.26)

eψτ = ρτ in Ω,(3.27)

−∆puτ + τ |uτ |p−2uτ = ψτ in Ω,(3.28)

∇uτ = ·ν = ∇ρτ · ν = 0 on ∂Ω.(3.29)

We also view {uτ , ρτ , ψτ} as a sequence in the subsequent proof. Take τ = 1
k
, where k is a positive

integer, for example. The rest of the proof is divided into several claims.
�

Claim 3.3. We have
∫

Ω
|∇√

ρτ |2dx+ τ

∫

Ω
ψ2
τdx+

∫

Ω
|∇uτ |pdx+ τ

∫

Ω
upτdx ≤ c,(3.30)

‖uτ‖W 1.p(Ω) ≤ c.(3.31)

Proof. Use ψτ = ln ρτ as a test function in (3.26) to obtain

(3.32) 4

∫

Ω
|∇√

ρτ |2dx+ τ

∫

Ω
ψ2
τdx+ a

∫

Ω
uτψτdx =

∫

Ω
fψτdx.

With the aid of (3.28), we evaluate the last two integrals in the above equation as follows:
∫

Ω
uτψτdx =

∫

Ω
|∇uτ |pdx+ τ

∫

Ω
upτdx,(3.33)

∫

Ω
fψτdx =

∫

Ω
|∇uτ |p−2∇uτ∇fdx+ τ

∫

Ω
|uτ |p−2uτfdx

≤ ‖∇f‖p‖∇uτ‖p−1
p + τ‖f‖p‖uτ‖p−1

p .(3.34)

Plug (3.33) and (3.34) into (3.32), apply the interpolation inequality (5) in Lemma 2.2 in the
resulting inequality, and thereby obtain

∫

Ω
|∇√

ρτ |2dx+ τ

∫

Ω
ψ2
τdx+

∫

Ω
|∇uτ |pdx+ τ

∫

Ω
upτdx

≤ c

∫

Ω
|∇f |pdx+ cτ

∫

Ω
|f |pdx

≤ c

∫

Ω
|∇f |pdx+ c

∫

Ω
|f |pdx.(3.35)

From here on we assume that τ ≤ 1. The above estimate gives (3.30). Integrate (3.26) over Ω to
yield

(3.36)

∣

∣

∣

∣

a

∫

Ω
uτdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
fdx− τ

∫

Ω
ψτdx

∣

∣

∣

∣

≤ c.
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Subsequently, we can apply the Poincaré inequality to get

‖uτ‖p∗ ≤ ‖uτ −
1

|Ω|

∫

Ω
uτdx‖p∗ +

1

|Ω|1−
1

p

∣

∣

∣

∣

∫

Ω
uτdx

∣

∣

∣

∣

≤ c‖∇uτ‖p +
1

|Ω|1−
1

p

∣

∣

∣

∣

∫

Ω
uτdx

∣

∣

∣

∣

≤ c.(3.37)

Thus (3.31) follows. The proof is complete. �

Claim 3.4. There exists a subsequence of {ρτ}, still denoted by {ρτ}, such that

(3.38) ρτ → ρ a.e. on Ω as τ → 0.

Proof. We use arctan ρτ as a test function in (3.26) to obtain
∫

Ω

|∇ρτ |2
1 + ρ2τ

dx =

∫

Ω
(f − τψτ − auτ ) arctan ρτdx

≤ π

∫

Ω
|f − τψτ − auτ | dx ≤ c.(3.39)

Thus {arctan ρτ} is bounded in W 1,2(Ω). We can extract a subsequence of {arctan ρτ} which
converges a .e. on Ω. It follows that ρτ = tan (arctan ρτ ) also converges a.e. along the subsequence.
This completes the proof. �

It should be noted that at this point we cannot rule out the possibility that {arctan ρτ} goes to
π
2 on a large set. Thus the limit ρ may not be finite a.e. on Ω.

Claim 3.5. If ρ is finite on a set of positive measure, then there is a subsequence of {ρτ} which is
bounded in Lq(Ω) for each 1 ≤ q < N

N−2 .

Proof. Our assumption implies that there is a positive number s0 such that the set

(3.40) Ωs0 = {x ∈ Ω : ρ(x) ≤ s0}
has positive measure. According to Claim 3.4 and Egoroff’s theorem, for each ε > 0 there is a
closed set K ⊂ Ωs0 such that |Ωs0 \K| < ε and ρτ → ρ uniformly on K. We take ε = 1

2 |Ωs0 |. Then
the corresponding K has positive measure. We easily conclude from the uniform convergence that
there is a positive number s1 > s0 with the property

(3.41) ρτ ≤ s1 on K.

For each s > s1 we use
(

1
s
− 1

ρτ

)+
as a test function in (3.26) to obtain

(3.42)

∫

Ω

∣

∣

∣
∇ ln+

ρτ
s

∣

∣

∣

2
dx =

∫

Ω
(f − τψτ − auτ )

(

1

s
− 1

ρτ

)+

dx ≤ c

s
.

Denote by Sτ,s the set where the function
(

1
s
− 1

ρτ

)+
is 0. It follows that

(3.43) K ⊂ Sτ,s for all s > s1 and sufficiently many τ > 0.

Thus we may apply Lemma 2.6 to obtain

ln2 2|{x ∈ Ω : ρτ (x) > 2s}|N−2

N ≤
[
∫

Ω

(

ln+
ρτ
s

)
2N
N−2

dx

]

N−2

N

≤ c

|K|

∫

Ω

∣

∣

∣
∇ ln+

ρτ
s

∣

∣

∣

2
dx ≤ c

s
.(3.44)

This implies the desired result. �
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Claim 3.6. The set where ρ is finite has positive measure.

Proof. We argue by contradiction. Suppose that the claim is false. Then we have

(3.45) ρ = ∞ a.e. on Ω.

For each L > 0 we define

(3.46) γL(s) =







L if s > L,
s if −L ≤ s ≤ L,
−L if s < −L.

Fix L > 1. Multiply through (3.26) by γL ((ρτ − 1)+) and integrate to obtain

(3.47)

∫

Ω

∣

∣∇γL
(

(ρτ − 1)+
)∣

∣

2
dx =

∫

Ω
(f − τψτ − auτ )γL

(

(ρτ − 1)+
)

dx ≤ cL.

Here we have used the fact that

(3.48) ∇γL
(

(ρτ − 1)+
)

= 0 on the set where either ρτ ≤ 1 or ρτ > L+ 1.

Now consider the sequence {ln ρτγL ((ρτ − 1)+)}. It is easy to see that

ln ρτγL
(

(ρτ − 1)+
)

≥ 0 a.e. on Ω,(3.49)

lim
τ→0

ln ρτγL
(

(ρτ − 1)+
)

= ∞ a.e. on Ω.(3.50)

By (3.27) and (3.28), we have

(3.51) −∆puτ + τ |uτ |p−2uτ = ln ρτ in Ω.

Use γL ((ρτ − 1)+) as a test function in the above equation, thereby deriving
∫

Ω
ln ρτγL

(

(ρτ − 1)+
)

dx

=

∫

Ω
|∇uτ |p−2∇uτ∇γL

(

(ρτ − 1)+
)

dx

+τ

∫

Ω
|uτ |p−2uτγL

(

(ρτ − 1)+
)

dx

≤ ‖∇γL
(

(ρτ − 1)+
)

‖p‖∇uτ‖p−1
p + Lτ

∫

Ω
|uτ |p−1dx ≤ c(L).(3.52)

The last step is due to the assumption p ≤ 2. It follows from Fatou’s lemma that the left-hand
side of the above inequality goes to ∞ as τ → 0. This gives us a contradiction. The proof is
complete. �

We would like to make a remark about the condition p ≤ 2. Note from (3.16) that

(3.53) τ‖ψτ‖p∗ ≤ ‖f − auτ‖p∗ .

Thus this condition could be avoided here if we had the estimate

(3.54) ‖∇ρτ‖p ≤ c‖f − τψτ − auτ‖ Np
N+p

.

The above inequality is valid if ρτ satisfies the Dirichlet boundary condition ρτ |∂Ω = 0. In our case,
the right hand side of (3.54) seems to also depend on the L1-norm of ρτ .

Claim 3.7. The sequence {ln ρτ} is bounded in L1(Ω).



14 XIANGSHENG XU

Proof. Use the number 1 as a test function in (3.51) to get

(3.55)

∣

∣

∣

∣

∫

Ω
ln ρτdx

∣

∣

∣

∣

= τ

∣

∣

∣

∣

∫

Ω
|uτ |p−2uτdx

∣

∣

∣

∣

≤ cτ
1

p .

The last step is due to (3.35). By virtue of Claims 3.5 and 3.6,

(3.56) the sequence {ρτ} is bounded in Lq(Ω) for each 1 ≤ q < N
N−2 .

We will use this for q = 1. Aslo keeping (3.55) in mind, we estimate
∫

Ω
| ln ρτ |dx =

∫

Ω
ln+ ρτdx+

∫

Ω
ln− ρτdx

= 2

∫

Ω
ln+ ρτdx−

∫

Ω
ln ρτdx

≤ 2

∫

Ω
ρτdx+ cτ

1

p ≤ c.(3.57)

�

Claim 3.8. The sequence {ρτ} is precompact in W 1,2(Ω).

Proof. Note that our assumptions on N, p imply

(3.58)
2N

N + 2
<

Np

N − p
= p∗.

Use ρτ − 1 as a test function in (3.26) to obtain
∫

Ω
|∇ρτ |2dx ≤

∫

Ω
(f − auτ )(ρτ − 1)dx

≤ ‖f − auτ‖ 2N
N+2

‖ρτ − 1‖ 2N
N−2

≤ c‖∇ρτ‖2 + c‖ρτ − 1‖2.(3.59)

Here we have used the fact that ψτ (ρτ − 1) ≥ 0. Use (3.56) and the interpolation inequality (2.1)
in (3.59) to obtain

(3.60)

∫

Ω
|∇ρτ |2dx ≤ c.

This combined with (3.56) implies that

(3.61) {ρτ} is bounded in W 1,2(Ω).

Thus {ρτ} is precompact in Lq(Ω) for each q ∈ [0, 2∗). Set gτ = f − auτ − τψτ . Then by (3.53),
the sequence {gτ} is bounded in Lp

∗
(Ω). Let τ1, τ2 ∈ (0, 1). We calculate from (3.26) that

∫

Ω
|∇ρτ1 −∇ρτ2 |2dx ≤

∫

Ω
(gτ1 − gτ2)(ρτ1 − ρτ2)dx

≤ c‖gτ1 − gτ2‖p∗‖ρτ1 − ρτ2‖ Np
Np−N+p

≤ c‖ρτ1 − ρτ2‖ Np
Np−N+p

.(3.62)

In view of our assumptions on N, p, we have that

(3.63)
Np

Np−N + p
< 2∗.

The claim follows from the precompactness of {ρτ} in Lq(Ω) for each q ∈ [0, 2∗). �

Claim 3.9. At least a subsequence of {∇uτ} converges a.e. on Ω.
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Proof. We will show that {uτ} is precompact in W 1,q(Ω) for each q < p. The idea behind the proof
has appeared elsewhere. See, for example, the proof of Lemma 2.2 in [31].

By (3.31) and Egoroff’s theorem, for each δ > 0 there is a closed set E ⊂ Ω with the properties

|Ω \ E| ≤ δ,(3.64)

uτ → u uniformly on E.(3.65)

Subsequently, we can find a positive number K so that

(3.66) |uτ | ≤ K on E.

For any ε > 0 we have

(3.67) |uτ1 − uτ2 | < ε on E for sufficiently small τ1, τ2.

We can derive from (3.28) and Lemma 2.3 that
∫

E

(

|∇uτ1 |p−2∇uτ1 − |∇uτ2 |p−2∇uτ2
)

· ∇(uτ1 − uτ2)dx

≤
∫

Ω

(

|∇uτ1 |p−2∇uτ1 − |∇uτ2 |p−2∇uτ2
)

· ∇γε(uτ1 − uτ2)dx

=

∫

Ω

(

ln ρτ1 − τ1|uτ1 |p−2uτ1 − ln ρτ2 + τ2|uτ2 |p−2uτ2
)

γε(uτ1 − uτ2)dx

≤ cε,(3.68)

where γε is obtained by replacing L with ε in (3.46). Apply (ii) in Lemma 2.3 and (3.66) to deduce

(3.69)

∫

E

|∇(uτ1 − uτ2)|2dx ≤ cε.

Thus {∇uτ} is precompact in
(

L2(E)
)N

. Let q < p be given. We estimate
∫

Ω
|∇(uτ − u)|qdx =

∫

E

|∇(uτ − u)|qdx+

∫

Ω\E
|∇(uτ − u)|qdx

≤ c|Ω \ E|1−
q
p +

∫

E

|∇(uτ − u)|qdx

≤ cδ1−
q
p +

∫

E

|∇(uτ − u)|qdx.(3.70)

Therefore,

(3.71) lim sup
τ→0

≤ cδ
1− q

p at least along a subsequence.

Since δ is arbitrary, this implies the desired result. �

In view of Lemma 2.1, (3.56), the classical Calderón and Zygmund estimate, {ρτ} is bounded in

W 2,q(Ω), where q = min{2, Np
N−p}. Passing to subsequences if necessary, we may assume

uτ ⇀ u weakly in W 1,p(Ω),(3.72)

ρτ ⇀ ρ weakly in W 2,q(Ω) and a.e. on Ω.(3.73)

By virtue of Claim 3.9,

(3.74) |∇uτ |p−2∇uτ ⇀ |∇u|p−2∇u weakly in
(

L
p

p−1 (Ω)
)N

.

With the aid of Fatou’s Lemma, we deduce from Claim 3.7 that
∫

Ω
| ln ρ| dx ≤ lim inf

τ→0

∫

Ω
| ln ρτ | dx ≤ c.
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Therefore, the set
A0 = {(x) ∈ Ω : ρ(x) = 0}

has Lebesque measure 0. This combined with (3.73) asserts that

(3.75) ln ρτ → ln ρ a.e. on Ω.

Obviously, we have from (3.31) that

(3.76) τ |uτ |p−2uτ → 0 strongly in L
p

p−1 (Ω), and thus a.e on Ω

(passing to a subsequence if need be). Recall (3.51) to obtain

(3.77) −∆puτ → ln ρ a.e. on Ω.

On the other hand, we conclude from Claim 3.7 and (3.31) that the sequence {−∆puτ} is bounded

in both L1(Ω) and
(

W 1,p(Ω)
)∗
. Hence we have

(3.78) −∆puτ ⇀ −∆pu ≡ µ weakly in both M(Ω) and
(

W 1,p(Ω)
)∗
.

The key issue is: do we have
−∆pu = µ = ln ρ?

The following claim addresses this issue.

Claim 3.10. The restriction of µ to the set Ω \ A0 is a function. This function is exactly ln ρ.
That is, the Lebesgue decomposition of µ with respect to the Lebesgue measure is ln ρ + νs, where
νs is a measure supported in A0, and we have

(3.79) ρ = eµ on the set Ω \ A0.

That is, ln ρ is the function ga in the definition of a weak solution.

Proof. The proof is almost identical to the proof of Proposition 3.7 in [20]. For the reader’s
convenience, we shall reproduce it here. Keep in mind that since µ ∈

(

W 1,p(Ω)
)∗

each function in

W 1,p(Ω) is µ-measurable, and thus it is well-defined except on a set of µ measure 0. Furthermore,
〈µ, v〉 =

∫

Ω v dµ for each v ∈ W 1,p(Ω). For ε > 0 let θε be a smooth function on R having the
properties

θε(s) =

{

1 if s ≥ 2ε,
0 if s ≤ ε and

0 ≤ θε ≤ 1 on R.

Then it is easy to verify from Claim 3.8 that we still have

(3.80) θε(ρτ ) → θε(ρ) strongly in W 1,p(Ω) for each p ≤ 2.

Pick a function ξ from C∞(Ω). Multiply through (3.51) by ξ θε(ρτ ) and integrate the resulting
equation over Ω to obtain

(3.81) −
∫

Ω
∆puτθε(ρτ ) ξ dx+ τ

∫

Ω
|uτ |p−2uτ θε(ρτ ) ξ dx =

∫

Ω
ln ρτ θε(ρτ ) ξ dx.

For each fixed ε we can infer from (3.56) that the sequence {ln ρτ θε(ρτ )} is bounded in Lp(Ω) for
any p > 1. This, along with (3.73), gives

∫

Ω
ln ρτ θε(ρτ ) ξ dx→

∫

Ω
θε(ρ) ln ρ ξ dx.

Observe from (3.80) and (3.78) that

(3.82) −
∫

Ω
∆puτ θε(ρτ ) ξ dx = 〈−∆puτ , θε(ρτ ) ξ〉 →

∫

Ω
θε(ρ) ξ dµ.



A CRYSTAL SURFACE MODEL 17

Taking τ → 0 in (3.81) yields

(3.83)

∫

Ω
θε(ρ) ξ dµ =

∫

Ω
θε(ρ) ln ρ ξ dx.

Obviously, ρ ∈ W 1,p(Ω), and thus it is well-defined except on a set of µ measure 0. We can easily
conclude from the definition of θε that {θε(ρ)} converges everywhere on the set where ρ is defined
as ε → 0. With the aid of the Dominated Convergence Theorem, we can take ε → 0 in (3.83) to
obtain

∫

Ω\A0

ξ dµ =

∫

Ω\A0

ln ρ ξ dx.

This is true for every ξ ∈ C∞(Ω), which means

(3.84) µ = ln ρ on Ω \ A0.

This proves the claim. �

With this claim, the proof of Theorem 1.3 is now totally completed.

4. Remarks about the time-dependent problem

In this section, we first fabricate an approximation scheme for the time-dependent problem (1.7)-
(1.9). This is based upon Theorem 3.1. Then we show that estimate (1.13) is preserved for the
approximate problems.

Let T > 0 be given. For each j ∈ {1, 2, · · · , } we divide the time interval [0, T ] into j equal
subintervals. Set

δ =
T

j
.

We discretize (1.7)-(1.9) as follows. For k = 1, · · · , j, we solve recursively the system

uk − uk−1

δ
−∆eψk + δψk = 0 in Ω,(4.1)

−∆puk + δ|uk|p−2uk = ψk in Ω,(4.2)

∇eψk · ν = ∇uk = 0 on ∂Ω.(4.3)

Introduce the functions

ũj(x, t) =
t− tk−1

δ
uk(x) +

(

1− t− tk−1

δ

)

uk−1(x), x ∈ Ω, t ∈ (tk−1, tk],(4.4)

ūj(x, t) = uk(x), x ∈ Ω, t ∈ (tk−1, tk],(4.5)

ψ̄j(x, t) = ψk(x), x ∈ Ω, t ∈ (tk−1, tk],(4.6)

where tk = kδ. We can rewrite (4.1)-(4.3) as

∂ũj
∂t

−∆eψ̄j + δψ̄j = 0 in ΩT ,(4.7)

−∆pūj + δ|ūj |p−2ūj = ψ̄j in ΩT .(4.8)

We proceed to derive a priori estimates for the sequence of approximate solutions {ũj , ūj , ψ̄j}.
Proposition 4.1. There holds

1

p
max
0≤t≤T

∫

Ω
|∇ūj|pdx+ 4

∫

ΩT

|∇e 1

2
ψ̄j |2dxdt

+
δ

p
max
0≤t≤T

∫

Ω
|ūj |pdx+ δ

∫

ΩT

ψ̄2
j dxdt

≤ 1

p

∫

Ω
|∇u0|pdx+

δ

p

∫

Ω
|u0|pdx.(4.9)
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Obviously, this proposition is the discretized version of (1.13).

Proof. Multiply through (4.1) by ψk and integrate to obtain

(4.10)

∫

Ω

uk − uk−1

δ
ψk dx+

∫

Ω
∇

(

eψk

)

· ∇ψk dx+ δ

∫

Ω
ψ2
k dx = 0.

The second integral in the preceding equation is computed as follows:
∫

Ω
∇

(

eψk

)

∇ψk dx =

∫

Ω
eψk |∇ψk|2 dx

= 4

∫

Ω
|∇e 1

2
ψk |2dx.(4.11)

Using uk − uk−1 as a test function in (4.2) yields
∫

Ω
(uk − uk−1)ψk dx =

∫

Ω
|∇uk|p−2∇uk(∇uk −∇uk−1)dx

+δ

∫

Ω
|uk|p−2uk(uk − uk−1)dx

≥ 1

p

∫

Ω
(|∇uk|p − |∇uk−1|p) dx+

δ

p

∫

Ω
(|uk|p − |uk−1|p) dx.(4.12)

The last step is due to (3) in Lemma 2.2. Substituting (4.11) and (4.12) into (4.10) yield

1

pδ

∫

Ω
(|∇uk|p − |∇uk−1|p) dx+ 4

∫

Ω
|∇e 1

2
ψk |2dx

+
1

p

∫

Ω
(|uk|p − |uk−1|p) dx+ δ

∫

Ω
ψ2
kdx ≤ 0.(4.13)

Then the proposition follows from multiplying through the above inequality by δ and summing up
the resulting one over k. �

Obviously, this theorem is not enough to justify passing to the limit in (4.7). It remains open to
find additional estimates to accomplish the feat.

Acknowledgment. The author is grateful to Prof. Jian-Guo Liu for originally bringing this
problem to his attention.
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cations), 73, BirKäuser Verlag, Basel, 2007.
[27] J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982.
[28] V. Shenoy and L. Freund, A continuum description of the energetics and evolution of stepped surfaces in 312

strained nanostructures, Journal of the Mechanics and Physics of Solids, 50 (2002), no. 9, 18171841.
[29] E.V. Teixeira, Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358 (2014), 241-256.
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