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A PROBABILISTIC CHARACTERIZATION OF RANDOM AND

MALICIOUS COMMUNICATION FAILURES IN MULTI-HOP

NETWORKED CONTROL

A. CETINKAYA, H. ISHII, AND T. HAYAKAWA

Abstract. The control problem of a linear discrete-time dynamical system
over a multi-hop network is explored. The network is assumed to be subject to
packet drops by malicious and nonmalicious nodes as well as random and ma-
licious data corruption issues. We utilize asymptotic tail-probability bounds of
transmission failure ratios to characterize the links and paths of a network as
well as the network itself. This probabilistic characterization allows us to take
into account multiple failures that depend on each other, and coordinated ma-
licious attacks on the network. We obtain a sufficient condition for the stability
of the networked control system by utilizing our probabilistic approach. We
then demonstrate the efficacy of our results in different scenarios concerning
transmission failures on a multi-hop network.

1. Introduction

Networked control systems incorporate communication networks to facilitate the
exchange of measurement and control data between the plant and the controller [1].
Recently, multi-hop networks have been utilized in networked control operations
[2, 3, 4, 5, 6, 7]. A multi-hop network such as a wireless ad hoc network consists
of a number of nodes that are connected with a number of communication links.
Ensuring orderly operation of a multi-hop networked control system can be chal-
lenging, as packets may sometimes fail to be transmitted at different parts of the
network due to various reasons.

One of the reasons for transmission failures in a multi-hop network is channel
noise in the communication links, which may corrupt the contents of state and
control input data packets. The occurrence of data corruption in a communication
network may be modeled using random processes [8]. In addition to channel noise,
network congestion may also cause packet transmission failures. Routers may drop
some packets to mitigate congestion [9].

Furthermore, it has become apparent that malicious attacks may also hamper
transmissions in a networked control system. For instance, jamming attacks by
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2 CHARACTERIZATION OF FAILURES IN MULTI-HOP NETWORKED CONTROL

an adversary may interfere with the communication on links and effectively pre-
vent transmission of packets. This issue was investigated in several works from the
viewpoints of wireless communications [10, 11], as well as control and game theory
[12, 13, 14, 15, 16]. Transmissions of state and control input information between
the plant and the controller may also fail due to malicious activities of routers.
Malicious routers may intentionally drop some of the packets coming from and/or
headed to certain nodes of the network [6, 17, 18]. The detection of such rout-
ing attacks can be challenging especially when the malicious nodes act normal for
certain periods of time (see grayhole attacks in [19]). Furthermore, networks may
face both malicious routing and random packet losses due to link errors [20, 21].
Understanding the effects of malicious attacks on networks is important from the
viewpoint of cyber security of networked control systems [22, 23].

Our goal in this paper is to explore the effects of random and malicious transmis-
sion failures in a general multi-hop communication network and develop a network
characterization to be used in the analysis of networked control systems. The key
problem here is to characterize the failures for the overall multi-hop network in
a nonconservative way while still taking into account mutually-dependent packet
failures and coordinated malicious attacks on the network.

In the literature, researchers have proposed different characterizations of packet
failures in a networked control system. Specifically, [2] explored control over a
network with multiple links that introduce random packet drops. The results ob-
tained in [2] utilize packet drop probabilities on the edges that constitute cut-sets
of the network graph. This approach is also utilized in network characterization by
[24]. Furthermore, [3] discussed almost sure networked control system stability, and
[25] studied networked state estimation problem. Recently, [7] investigated mean
square stability and robustness under delays and packet losses through a Markov
jump linear system framework. Prior to these works, random packet losses have
been studied for the simpler single-hop case. There, Bernoulli processes as well as
time-homogeneous and time-inhomogeneous Markov chains are utilized for mod-
eling purposes. In particular, [26] investigated the single-hop networked Kalman
filtering problem under Bernoulli-type packet losses. Furthermore, for single-hop
networked stabilization problems, packet losses have been modeled with Bernoulli
processes in [27, 28] and finite-state time-homogeneous Markov chains in [29, 30]. In
[31, 32, 33], where both random packet losses and malicious attacks in a single-hop
networked control problem is considered, we modeled random packet losses through
time-inhomogeneous Markov chains. In addition, stability as well as robust and op-
timal control problems concerned with general time-inhomogeneous Markov jump
linear systems with polytopic uncertainties in transition probability matrices are
investigated in [34, 35, 36], where the obtained results are applicable to multi-hop
networked control systems with random packet losses.

In this paper, we consider a network with not only random failures but also
malicious activities on nodes or links. As a result, failures may not always be
modeled by Markov processes and packet losses may not always have well-defined
probabilities. In [6], researchers explored a multi-hop network model with malicious
nodes. There, the fault detection and isolation problem is explored for the case
where the nodes induce delay in transmissions. Here, we consider a different setup
and a different modeling approach. In particular, we do not investigate a detection
problem, and we do not model the effect of delays. In this paper, we would like to
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characterize the overall packet exchange failures on a network between the plant
and the controller by using the properties of the paths of the network and the
communication links on those paths. We also note that our network characterization
provides a high level model and it is tailored to be utilized for stability analysis
in networked control as in [2]. Instead of specifying underlying physical channel
models and routing protocols, we take a probabilistic approach to characterize
transmission failure ratios on the links, paths of a network, as well as the network
itself.

Our approach for modeling the overall packet failures in a network is built upon
tail-probability bounds for the binary-valued processes that describe the occur-
rences of failures on the network. Specifically, each link on a multi-hop network
is described through an asymptotic tail-probability bound of the transmission fail-
ure ratio of that link. This tail-probability-based approach is different from the
typical random packet loss modeling approach of assigning probabilities to failures.
Our approach can capture failures that occur due to both malicious and nonma-
licious reasons. In fact, we utilized the tail-probability-based approach in [33] to
study the combined effects of malicious-attacks following the discrete-time version
of the attack model in [13, 16] and random packet losses modeled as Markov chains.
Through this modeling approach, [33] provides a Lyapunov-based stability analysis,
which is further enhanced in [37] by using linear programming techniques. Differ-
ently from [33], we show in this paper that when tail-probability bounds for the
links are available, then we can obtain tail-probability bounds describing the overall
failures on individual paths of a network. Then those bounds are used for deriving
tail-probability bounds describing the overall failures on the network itself. Using
our proposed characterizations, we obtain a probabilistic upper-bound for the aver-
age number of packet exchange failures between the plant and the controller, which
we use in almost sure stability analysis of a discrete-time linear networked control
system.

In the multi-hop setting, the location of failures and whether multiple failures
depend on each other or not critically affect the quality of communication and
hence the stabilization performance of the controller. Especially, the situation be-
comes more serious when the network is targeted by a number of adversaries that
launch coordinated attacks on different locations in the communication network.
Our tail-probability bound approach can handle such worst-case situations in a uni-
fied manner. In addition to our investigation on those situations, we also explore
the case where one or more paths/links are known to be associated with random
failures and the corresponding indicator processes are mutually independent. For
such cases, we show that tighter results can be obtained. This is done by exploit-
ing certain properties of the hidden Markov models that characterize the random
failures.

The organization of the rest of the paper is as follows. In Section 2, we explain the
networked control problem over a multi-hop network. We then present our multi-
hop network characterization in Sections 3 and 4. Specifically, in Section 3, we give
a characterization of the overall transmission failures in a multi-hop network based
on the failures on individual paths of that network. Furthermore, in Section 4,
we investigate failures on the paths that occur due to data-corruption and packet-
dropping issues at nodes and communication links. We demonstrate the utility of
our results in Section 5, and conclude the paper in Section 6.
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Table 1. Notation concerning the links and the paths of a graph,
binary-valued failure indicator processes concerning those links and
paths, and the classes of failure indicator processes.

Pi ith path on a graph representing a communication network

Pi,j jth communication link on path Pi

lPi
Binary-valued process indicating overall transmission failures on path Pi

l
Pi,j

Pi
Binary-valued process indicating transmission failures on jth link of path Pi

Λρ General class of failure indicator processes

Γp0,p1 Class of indicator processes that characterize random failures

Πκ,w Class of failure indicator processes that characterize malicious attacks

θl Markov chain of a hidden Markov model with the output process l ∈ Γp0,p1

hl Output function of a hidden Markov model with the output process l ∈ Γp0,p1

f(P) First link of path P

R(P) Subpath obtained from path P by removing its first link

We note that the conference version of this paper appeared in [38]. In this
paper, we provide more detailed discussions throughout the paper. Furthermore,
we present new results in Sections 3, 4 and new examples in Section 5.

In this paper, we use N0 and N to denote nonnegative and positive integers,
respectively. The notation P[·] denotes the probability on a probability space
(Ω,F ,P) with filtration {Ft}t∈N0. For binary numbers, the notation ∨ represents
the or-operation; moreover, ∧ represents the and-operation. Furthermore, Table 1
provides notation concerning graphs, binary-valued processes, and classes of such
processes.

2. Control over Multi-hop Networks

In this section, we investigate the control of a linear plant over multi-hop net-
works depicted in Figure 1. On these networks, the plant and the controller ex-
change state measurement and control input packets. The transmissions are not
subject to delay; however, there may be failures in packet exchange attempts be-
tween the plant and the controller.

We describe the linear dynamics of the plant by

x(t + 1) = Ax(t) +Bu(t), x(0) = x0, t ∈ N0,(1)

where A ∈ R
n×n and B ∈ R

n×m respectively denote the state and input matrices;
furthermore, x(t) ∈ R

n and u(t) ∈ R
m are the state and the control input vectors,

respectively.
The plant and the controller attempt to exchange state measurement and control

input packets at each time instant t. Packet exchanges are attempted over multi-
hop networks G and G̃ as shown in Figure 1. The detailed models of these networks
will be given in Section 3.1. We denote success or failure states of packet exchange
attempts by using the binary-valued process {l(t) ∈ {0, 1}}t∈N0. In the case of a
successful packet exchange (l(t) = 0), the plant transmits the state measurement
to the controller; the controller uses the received state information together with a
linear static feedback control law to compute the control input, which is then sent
back to the plant. The transmitted control input is applied at the plant side. At
certain time instants, either the state packet or the control input packet cannot be
delivered due to network issues such as packet drops, jamming attacks, and other
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Figure 1. Multi-hop networked control system

communication errors. In such cases packet exchange attempts fail (l(t) = 1), and
the control input at the plant side is set to 0, which is one of the common approaches
in the literature (see [1] and the references therein).

Under this characterization, the control input u(t) applied at the plant side is
given by

u(t) , (1− l(t))Kx(t), t ∈ N0,(2)

where K ∈ R
m×n represents the feedback gain.

Although we consider a static state-feedback control setup here, the techniques
that we develop in this paper can also be used in conjunction with other con-
trol approaches. In particular, the predictive control approach of [39] and the
event-triggered output-feedback control approach from our earlier work [32] can be
studied within the context of multi-hop networked control by using the network
characterizations that we develop here.

We assume that the information packets between the plant and the controller
propagate with no delay, although there may be transmission failures due to:

1) packet drops by malicious nodes to prevent communication and/or by non-
malicious nodes to avoid congestion;

2) data corruption on communication links because of random channel errors
and/or malicious jamming attacks.

We now introduce a class of processes that is useful in describing packet failure
indicators in the paper.

Definition 2.1 (Λρ). Given a scalar ρ ∈ [0, 1] we define the class of binary-valued
processes Λρ by

Λρ ,
{
l : l(t) ∈ {0, 1}, t ∈ N0;

∞∑

k=1

P[

k−1∑

t=0

l(t) > ρk] <∞
}
.

By this definition, we have Λρ1 ⊆ Λρ2 for ρ1 ≤ ρ2. Furthermore, any binary-
valued process l satisfies l ∈ Λ1.

In [33], we explored a problem similar to the one that we discuss in this paper.
There, we considered a single direct communication channel between the plant
and the controller. To describe the packet losses on this channel, we proposed a
probabilistic characterization that is based on the following assumption.
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Assumption 2.2. For the packet exchange failure indicator l(·), we have l ∈ Λρ

with ρ ∈ [0, 1].

This assumption allows us to characterize a range of scenarios in a unified manner
through the scalar ρ ∈ [0, 1]. For instance, the case where all packet exchange
attempts fail (l(t) = 1, t ∈ N0) can be described by setting ρ = 1. Moreover, in
the case where all packet exchange attempts are successful (l(t) = 0, t ∈ N0), then
l ∈ Λ0. In addition to these two extreme cases, as we illustrate throughout the
paper, Assumption 2.2 can also be used to describe random failures and malicious
attacks.

When the packet exchange failures in a networked control system satisfy As-
sumption 2.2, then the scalar ρ ∈ [0, 1] also represents a bound on the asymptotic
packet exchange failure ratio. Specifically, it follows from Borel-Cantelli Lemma

that lim supk→∞
1
k

∑k−1
t=0 l(t) ≤ ρ, almost surely. When this inequality holds with

a small ρ, it means that the packet exchanges fail statistically rarely. We showed
in [33] that the plant (1) can be stabilized over a network, if ρ is sufficiently small.

The stability analysis method developed in [33] allows us to obtain the following
result, which presents sufficient stability conditions for the closed-loop networked
control system (1), (2).

Theorem 2.3. Consider the dynamical system (1), (2). Suppose Assumption 2.2
holds with scalar ρ ∈ [0, 1]. If there exist a positive-definite matrix P ∈ R

n×n and
scalars β ∈ (0, 1), ϕ ∈ [1,∞) such that

(A+BK)
T
P (A+ BK)− βP ≤ 0,(3)

ATPA− ϕP ≤ 0,(4)

(1− ρ) lnβ + ρ lnϕ < 0,(5)

then the zero solution x(t) ≡ 0 of the closed-loop system (1), (2) is asymptotically
stable almost surely.

In Theorem 2.3, the conditions (3) and (4) characterize stability and instability of
the closed-loop and the open-loop dynamics through scalars β and ϕ. These scalars
also appear in condition (5). When ρ (and hence the packet exchange failure ratio)
is sufficiently small so that (5) is satisfied, then we have almost sure asymptotic
stability, which implies P[limt→∞ ‖x(t)‖ = 0] = 1.

In Sections 3 and 4 below, we will present some key methods for obtaining ρ of
a multi-hop networked control system (1), (2) to facilitate its stability analysis with
Theorem 2.3. Specifically, we will consider the setting where the state measurement
and control input packets are attempted to be transmitted over multi-hop networks
instead of a single direct channel, which was considered in [33]. We will use as-
sumptions similar to Assumption 2.2 to characterize packet transmission failures
on the paths between the plant and the controller as well as the individual links on
those paths. We will then show that the packet exchange failures (represented by
l(·)) in the overall networked control system satisfy Assumption 2.2 with a scalar
ρ ∈ [0, 1] that depends on the network structure as well as failure models of links.

To facilitate the analysis in the following sections, we now define two more classes
of binary-valued processes that are distinct from Λρ. Our goal is to characterize
more specific models for random and malicious failures.

In our earlier work [33], we utilized time-inhomogeneous Markov chains for char-
acterizing random failures in a single communication channel. When we consider
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a multi-hop network composed of a number of channels that face random trans-
mission failures, we are required to introduce a different characterization. This is
because the overall failures in the network depends on the failures on each individ-
ual channel. Hence, the overall failures cannot always be described as a Markov
chain. In order to describe random failures in multi-hop networks, we utilize time-
inhomogeneous hidden Markov models (see [40, 41, 42]). The binary-valued process
{l(t) ∈ {0, 1}}t∈N0 has a time-inhomogeneous hidden Markov model if

l(t) = hl(θl(t)), t ∈ N0,(6)

where hl : Θl → {0, 1} is a binary-valued function on a set Θl of finite number of
elements, and moreover, {θl(t) ∈ Θl}t∈N0 is an Ft-adapted, finite-state, and time-
inhomogeneous Markov chain with initial distributions ϑlq ∈ [0, 1], q ∈ Θl, and

time-varying transition probability functions plq,r : N0 → [0, 1], q, r ∈ Θl, satisfying

P[θl(0) = q] = ϑlq,

P[θl(t+ 1) = r|θl(t) = q] = plq,r(t), t ∈ N0.

The process {l(t) ∈ {0, 1}}t∈N0 is also called the output process of a hidden
Markov model. Notice that {l(t) ∈ {0, 1}}t∈N0 depends on the Markov chain
{θl(t) ∈ Θl}t∈N0 through function hl, but it is not necessarily a Markov chain itself.
Specifically, in certain cases, we may have P[l(t+ 1) = 1|Ft] 6= P[l(t+ 1) = 1|l(t)],
which shows that Markov property (see [43]) does not hold. This is for example the
case where l(·) represents the failures on a Gilbert-Elliott channel (see [44, 45]). We
also note that hidden Markov models naturally arise in the description of multi-hop
networks. For instance, l(·) may be the failure indicator of a path with multiple
links. Even if the failures on individual links may satisfy the Markov property,
the overall failure indicator l(·) does not satisfy it due to dependence on the fail-
ure/success states of all individual links. In such cases, l(·) follows a hidden Markov
model, where the Markov chain {θl(t) ∈ Θl}t∈N0 represents the combined states of
all individual links.

For a given binary-valued output process {l(t) ∈ {0, 1}}t∈N0 associated with a
time-inhomogeneous hidden Markov model, let Θl

0,Θ
l
1 ⊂ Θl be given by

Θl
0 , {r ∈ Θl : hl(r) = 0}, Θl

1 , {r ∈ Θl : hl(r) = 1}.

In the next definition we introduce a class of binary-valued output processes asso-
ciated with time-inhomogeneous hidden Markov models.

Definition 2.4 (Γp0,p1). Given scalars p0, p1 ∈ [0, 1] we define the class Γp0,p1 of
binary-valued output processes of time-inhomogeneous hidden Markov models by

Γp0,p1 ,
{
l :

∑

r∈Θl
0

plq,r(t) ≤ p0, q ∈ Θl, t ∈ N0;
∑

r∈Θl
1

plq,r(t) ≤ p1, q ∈ Θl, t ∈ N0

}
.

The advantage of the class Γp0,p1 is that by utilizing the values p0 and p1 as-
sociated with different hidden Markov models, we can characterize the combined
effects of those models even if detailed information on the Markov chain θl and the
output function hl of those models are not available.

The following result establishes the relation between the classes Γp0,p1 and Λρ.

Proposition 2.5. Consider the binary-valued output process {l(t) ∈ {0, 1}}t∈N0 of
a time-inhomogeneous hidden Markov model. If l ∈ Γp0,p1 with p1 ∈ (0, 1), then we
have l ∈ Λρ for any ρ ∈ (p1, 1].
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Before, we give the proof of Proposition 2.5, we first present a technical result
that provides upper bounds on the tail probabilities of sums involving a binary-
valued output process associated with a time-inhomogeneous hidden Markov model.

Lemma 2.6. Let {ξ(t) ∈ Ξ}t∈N0 be a finite-state time-inhomogeneous Markov
chain with transition probabilities pq,r : N0 → [0, 1], q, r ∈ Ξ, and let Ξ1 ⊂ Ξ be

given by Ξ1 , {r ∈ Ξ: h(r) = 1}, where h : Ξ → {0, 1} is a binary-valued function.
Furthermore, let {χ(t) ∈ {0, 1}}t∈N0 be a binary-valued process that is independent
of {ξ(t) ∈ Ξ}t∈N0 . Assume

∑

r∈Ξ1

pq,r(t) ≤ p̃, q ∈ Ξ, t ∈ N0,(7)

∞∑

k=1

P[
k−1∑

t=0

χ(t) > w̃k] <∞,(8)

where p̃ ∈ (0, 1), w̃ ∈ (0, 1]. We then have for ρ ∈ (p̃w̃, w̃),

P[

k−1∑

t=0

h(ξ(t))χ(t) > ρk] ≤ ψk, k ∈ N,(9)

where ψk , σ̃k+φ
−ρk+1 ((φ−1)p̃+1)w̃k−1

(φ−1)p̃ , φ ,
ρ
w̃
(1−p̃)

p̃(1− ρ
w̃
) , σ̃k , P[

∑k−1
t=0 χ(t) > w̃k], k ∈

N. Moreover,
∑∞

k=1 ψk <∞.

Lemma 2.6 is an essential tool for dealing with different failure scenarios specific
to multi-hop networks, and it generalizes a result for the fully observable Markov
chains from our previous work [33]. In particular, in the case where Ξ = {0, 1} and
h(r) = r, r ∈ Ξ, Lemma 2.6 recovers Lemma A.1 of [33]. The proof Lemma 2.6 is
given in the Appendix.

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. Notice that l ∈ Λρ for ρ = 1, since l(·) is binary-valued.
For the case ρ ∈ (p1, 1), we show l ∈ Λρ by employing Lemma 2.6. Specifically, let
p̃ = p1, w̃ = 1, and define the processes {ξ(t) ∈ {0, 1}}t∈N0 and {χ(t) ∈ {0, 1}}t∈N0

with ξ(t) = θl1(t) and χ(t) = 1, t ∈ N0. Since the conditions in (7) and (8) are
satisfied with p̃ = p1, h = hl, Ξ = Θl, and Ξ1 = Θl

1, it follows from Lemma 2.6 that

∞∑

k=1

P[
k−1∑

t=0

l(t) > ρk] =
∞∑

k=1

P[
k−1∑

t=0

hl(θl1(t)) > ρk] =
∞∑

k=1

P[
k−1∑

t=0

h(ξ(t))χ(t) > ρk] <∞,

which completes the proof. �

Next, we introduce a class for binary-valued processes that we employ in char-
acterizing the timing of malicious attacks.

Definition 2.7 (Πκ,w). Given scalars κ ≥ 0, w ∈ [0, 1] we define the class of
binary-valued processes Πκ,w by

Πκ,w ,
{
l : l(t) ∈ {0, 1}, t ∈ N0; P

[ k−1∑

t=0

l(t) ≤ κ+ wk
]
= 1, k ∈ N

}
.

The characterization for the class Πκ,w is based on a discrete-time version of the
malicious attack model used by [13, 16]. In this model, occurrences of malicious

attacks are described by a process l(·) such that P
[∑k−1

t=0 l(t) ≤ κ + wk
]
= 1,
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k ∈ N, where κ ≥ 0 represents an upper-bound for a number of initial attacks, and
w ∈ (0, 1) represents a bound on the average attack rate. Lemma 2.3 in [33] shows
that if l ∈ Πκ,w with w ∈ (0, 1), then l ∈ Λρ for any ρ ∈ (w, 1].

Note that the malicious attack characterization through the class Πκ,w does not
require the process l ∈ Πκ,w to follow a particular distribution at each time. This
is the key difference of the class Πκ,w from the class Γp0,p1 that represents random
failures.

There are several ways an attacker can strategize when to cause transmission
failures. For instance, game-theoretic [14, 15] and optimization-based methods can
be used by the attacker to decide the timing of attacks. An important property
of the class Πκ,w is that it characterizes attacks by their maximum average attack
rate but not by the specific timing strategy they follow. Thus by using Πκ,w,
we can capture the uncertainty in the generation of attacks, which may follow a
deterministic strategy, or may involve randomness. Interestingly, an attacker can
also make use of system dynamics as well as past/present state information to
decide the timing of attacks to cause more damage to the system. In the following
example, we discuss such an attack scenario.

Example 2.8. Consider the scenario where the plant’s communication node vP
in Figure 1 is compromised by an attacker. The attacker is assumed to utilize the
knowledge of system dynamics and the state information for deciding whether to
transmit packets or not. We represent the attacker’s actions with a binary-valued
process {lA(t) ∈ {0, 1}}t∈N0, where lA(t) = 0 indicates that the attacker transmits
the state packet at time t to nodes v1, v2, v3 and lA(t) = 1 indicates no transmission.
The attacker decides the values of the binary-valued process lA(t) according to

lA(t) = a∗t ,(10)

where (a∗t , a
∗
t+1, · · · , a

∗
t+N−1) ∈ {0, 1}N is a solution to the optimization problem

maximize
(at,··· ,at+N−1)

∑N

i=1 ‖x̂(t+ i)‖2

subject to
∑t−1

i=0 lA(i) +
∑t+j−1

i=t ai ≤ κA + wA(t+ j), j ∈ {1, . . . , N},

(11)

with x̂(t+i) =
(
A+(1−at+i−1)BK

)(
A+(1−at+i−2)BK

)
· · ·

(
A+(1−at)BK

)
x(t),

κA ≥ 0, wA ∈ (0, 1), and N ∈ N. Here, x̂(t + i) denotes the attacker’s prediction
of the future state at time t + i. In this strategy, the attacker decides to attack
(lA(t) = 1) or not (lA(t) = 0) at time t, based on the solution of the optimization
problem where the goal is to maximize the sum of squared predicted future state
norms over the interval [t+ 1, t+N ], while keeping the attack rate below a certain
value wA ∈ (0, 1). The positive integer N ∈ N is the horizon in the optimization
problem, and it can be large if the attacker has sufficient computational resources.
The optimization problem in (11) is solved at each time step and the updated state
information is used by the attacker for decision making.

The process {lA(t) ∈ {0, 1}}t∈N0 under the attack strategy (10), (11) is not a
Markov process, since the value of lA(t) depends on not just the action lA(t−1) but
all previous actions lA(0), lA(1), . . . , lA(t− 1). Moreover, lA(t) depends also on the
state value x(t).

Notice that under this attack strategy, we have lA ∈ ΠκA,wA , and hence, lA ∈ Λρ

for any ρ ∈ (wA, 1]. This illustrates the generality of the class Λρ characterized
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in Definition 2.1. Not only the output processes of hidden Markov models from
the class Γ, but also the non-Markovian, state-dependent, and optimization-based
attacks from the class Π belong to the class Λρ for certain values of ρ. In Section 5.3,
we further illustrate the effects of such attacks.

As we discussed above, a process l that belongs to either of the classes Πκ,w

and Γp0,p1 also belongs to the class Λρ for a suitable value of ρ. This observation
suggests us that both random failures and malicious attacks can be characterized
by utilizing the class Λρ. We note also that there are cases where a process may
belong to Λρ, even though it does not belong to Πκ,w or Γp0,p1 . The following
example discusses such a case.

Example 2.9. In our recent work [46], we investigated the effects of channel noise
and jamming attacks on a wireless communication channel. There, we considered a
physical channel model to determine the wireless transmission failure probabilities.
In particular, we used the binary-valued process {lJ(t) ∈ {0, 1}}t∈N0 to indicate
the transmission failures and the process {vJ(t) ∈ [0,∞)}t∈N0 to denote the jam-
ming interference power. These two processes are related to each other through the
equality

P[lJ(t) = 1|vJ(t) = v∗] = p(v∗), v∗ ≥ 0,(12)

where p : [0,∞) → [0, 1] is a function determined by the properties (such as the
constant channel noise power) associated with the underlying channel. We showed
that lJ ∈ Λρ holds for certain ρ values. Specifically, if there exist κJ ≥ 0, vJ ≥ 0

such that
∑t−1

i=0 v(i) ≤ κJ + vJt for t ∈ N, then we have lJ ∈ Λρ for ρ ∈ (p̂(v), 1],
where p̂ : [0,∞) → [0, 1] is a concave function that upper-bounds p. Notice that
in this case, lJ depends on the uncertain power process vJ. Moreover, lJ does not
necessarily belong to the class Π or Γ, even though it belongs to Λρ for ρ ∈ (p̂(v), 1].

As we make it clear in the following sections, the class Λρ has useful properties.
For instance, if two processes l1 and l2 belong to classes Λρ1 and Λρ2 , then the
processes l∧ and l∨ defined by setting l∧(t) = l1(t) ∧ l2(t) and l∨ = l1(t) ∨ l2(t)
belong to classes Λρ∧ and Λρ∨ , respectively, where ρ∧ and ρ∨ depend on ρ1 and ρ2.
Such properties enable us to model the failures on both the links and the paths of
a network by using processes that belong to the class Λρ for certain values of ρ.

3. Random and Malicious Packet Failures in Multi-Hop Networks

In this section, we present a framework for modeling random and malicious
packet transmission failures in the multi-hop networks that are used for exchanging
state and control input packets between the plant and the controller.

3.1. Multi-Hop Network Model. We follow the approach of [24] and represent
the networks between the plant and the controller by using directed acyclic graphs.
To model the network, over which the state packets are transmitted from the plant
to the controller, we consider the directed acyclic graph G , (V,E), where V

denotes the set of nodes, and E ⊂ V × V denotes the set of edges. Here the
nodes and the edges correspond respectively to communication devices and links.
We represent the nodes at the plant and the controller with vP ∈ V and vC ∈ V ,
respectively. A path P from a node v1 ∈ V to another node vh ∈ V is identified as
a sequence of nonrepeating edges P =

(
(v1, v2), (v2, v3), . . . , (vh−1, vh)

)
. We write

|P| to denote the number of edges on the path P .
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Similarly, the network used for transmission of the control input packets from the
controller to the plant is represented by graph G̃ , (Ṽ , Ẽ) with plant and controller

nodes ṽP ∈ Ṽ and ṽC ∈ Ṽ . In practice, the same physical network may be used for
transmission of both the state and the control input packets. For those cases, the
nodes in V and Ṽ would correspond to the same physical devices.

We assume that there exists at least one directed path from node vP to node vC
in G, and at least one directed path from node ṽC to node ṽP in G̃. This ensures
that the underlying communication network topology allows packet transmissions
between the plant and the controller. Note that each path represents a possible
transmission route. When multiple routes are utilized, the same packet is attempted
to be transmitted on all those routes. In the ideal case where packet drops and
data corruption do not occur, packets can be delivered in either one of these routes
at all times. In this paper, we are interested in the nonideal case, where at certain
times, transmissions on these routes may fail.

Example 3.1. We show an example of G and G̃ in Fig. 1, where the nodes cor-
responding to the plant and the controller are not directly connected, but state and
control input packets can still be transmitted with the help of the intermediate nodes
v1, . . . , v4 in G, and ṽ1, . . . , ṽ5 in G̃.

Intermediate nodes in networks forward data packets that they receive from
their incoming edges to their outgoing edges. Depending on the communication
protocol, the forwarding method may differ. For instance, in the broadcast method,
intermediate nodes forward all data packets that they receive from their incoming
edges to all the nodes that they are connected with their outgoing edges. On the
other hand, it may also be the case that intermediate nodes follow a specific routing
scheme, where a packet coming from a certain incoming edge is forwarded through
a certain outgoing edge [47].

A packet exchange between the plant and the controller may fail if the state or
the control input packets are dropped or get corrupted. Here note that corrupted
data packets are allowed to be transmitted over intermediate nodes, but they are
detected and discarded at the plant/controller nodes. Error-detecting codes can
be used for this purpose. Note also that if the controller only receives corrupted
versions of a state packet, the control input is not computed.

In the following sections, we present some key results for the analysis of packet
failures on network G, which are directly applicable for analyzing G̃. In particular,
we characterize failures on G in terms of the failures on different paths between the
plant and the controller. Then we present a set of results that relate data corruption
and packet dropping issues of nodes and links to the failures on each individual
path of G. These results enable us to obtain ρ ∈ [0, 1] in Assumption 2.2, which is
essential for analyzing the system in Fig. 1 with Theorem 2.3. We emphasize that
the central problem here is to find ρ for the overall multi-hop network in Fig. 1 in
a nonconservative way while still taking into account mutually-dependent packet
failures and coordinated attacks on the network.

3.2. Packet Transmission Failures on Networks. We use the binary-valued
process {lG(t) ∈ {0, 1}}t∈N0 to indicate transmission failures on G. Specifically,
lG(t) = 0 means that the state packet x(t) sent from the plant node vP is successfully
received at the controller node vC. On the other hand, lG(t) = 1 indicates a failure,
that is, the controller does not receive the state x(t).
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Let c ∈ N denote the number of paths on graph G from the node vP to the node
vC, and let Pi, i ∈ {1, . . . , c}, denote these paths. In the example network G in
Fig. 1, there are c = 3 paths

P1 =
(
(vP, v1), (v1, vC)

)
, P2 =

(
(vP, v2), (v2, v4), (v4, vC)

)
,

P3 =
(
(vP, v3), (v3, v4), (v4, vC)

)
.(13)

Note that different paths may include the same link. Hence, when packet transmis-
sion is attempted on multiple paths, a link that is shared on those paths may be
used multiple times. For instance, (v4, vC) is on both P2 and P3. Hence, (v4, vC)
may be utilized twice to forward the packets coming from v2 and v3. On the other
hand, the framework that we describe below also allows modeling the case where
one of the packets is dropped at node v4 and not transmitted further. Furthermore,
the packet drop can be random or malicious.

We use {lPi
(t) ∈ {0, 1}}t∈N0 to indicate whether the state packet x(t) is success-

fully transmitted to the controller through path Pi or not. Specifically, lPi
(t) = 0

represents a successful transmission. On the other hand lPi
(t) = 1 may indicate

that the path is not utilized for transmission due to the particular routing scheme,
or it may indicate a failure. Failures occur if packets get dropped on the path or if
they get corrupted.

Thus, in network G, the transmission of the state packet x(t) from node vP to
node vC results in failure if lPi

(t) = 1 for all paths Pi, i ∈ {1, . . . , c}. Therefore,
lG(·) is given by

lG(t) = lP1(t) ∧ lP2(t) ∧ · · · ∧ lPc
(t).(14)

The following result presents a probabilistic and asymptotic bound for the packet
transmission failure ratio of G as a function of the bounds for the individual paths
Pi.

Proposition 3.2. Assume for each path Pi that we have lPi
∈ ΛρPi

, where ρPi
∈

[0, 1]. Then lG ∈ ΛρG
with ρG , mini∈{1,...,c} ρPi

.

Proof. First let i∗ ∈ argmini∈{1,...,c} ρPi
. It follows that ρG = mini∈{1,...,c} ρPi

=
ρPi∗

. Now, by (14),

k−1∑

t=0

lG(t) ≤
k−1∑

t=0

lPi
(t), i ∈ {1, . . . , c},

and hence
∑k−1

t=0 lG(t) ≤
∑k−1

t=0 lPi∗
(t). Therefore,

P[
k−1∑

t=0

lG(t) > ρGk] ≤ P[
k−1∑

t=0

lPi∗
(t) > ρPi∗

k].

The result then follows, since lPi∗
∈ ΛρPi∗

. �

The scalars ρPi
, i ∈ {1, . . . , c}, in Proposition 3.2 represent bounds for asymp-

totic packet failure ratios on different paths of network G. Proposition 3.2 indicates
that the minimum of these scalars is also a bound for the packet failure ratio of the
whole network. Observe that if ρPi

= 0 for some path Pi, then we have ρG = 0,
which means that the state can be securely and reliably transmitted to the con-
troller at all time instants. This is because the transmission on path Pi never fails.
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If, on the other hand, ρPi
= 1 for all paths Pi, then ρG = 1, indicating all packet

transmission attempts fail, almost surely.
Note that in Proposition 3.2, we do not assume that {lPi

(t) ∈ {0, 1}}t∈N0 are
mutually-independent processes. This allows us to deal with the scenarios where
transmission failures on different paths may depend on each other. In particular,
we can consider coordinated packet dropout attacks of several malicious routers
on different paths. For instance, two malicious routers v2 and v3 in Fig. 1 may
skip forwarding packets at the same time. Then transmissions on paths P2 and P3

given in (13) would both fail. Similarly, Proposition 3.2 is also useful when links on
different paths are attacked at the same time by coordinated jamming attackers.

Another scenario that can be explored through Proposition 3.2 is related to
packet drops by nonmalicious routers to prevent congestion [9]. For example, a
nonmalicious router v4 in Fig. 1 may choose to forward only one of the packets
coming from v2 and v3. Then, lP2(·) and lP3(·) would be dependent processes.
In particular, if there are no other failures in the network, then we have lP2(t) =
1− lP3(t).

We remark that by utilizing additional properties of the indicator processes lPi
(·)

for paths, we can obtain a better asymptotic failure bound ρG than the one provided
in Proposition 3.2. In particular, if one or more paths are known to be associated
with random failures and the corresponding indicator processes are mutually inde-
pendent, we can obtain tighter results than Proposition 3.2. To this end, we first
present the following result on the properties of a process that is obtained by using
∧ operation on the output processes of two mutually-independent hidden Markov
models.

Theorem 3.3. Consider the binary-valued output processes {l(1) ∈ {0, 1}}t∈N0

and {l(2) ∈ {0, 1}}t∈N0 of hidden Markov models such that l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

, l(2) ∈

Γ
p
(2)
0 ,p

(2)
1

with p
(1)
0 , p

(1)
1 , p

(2)
0 , p

(2)
1 ∈ [0, 1]. Suppose that the Markov chains {θl

(1)

(t) ∈

Θl(1)}t∈N0 and {θl
(2)

(t) ∈ Θl(2)}t∈N0 associated with the processes l(1) and l(2) are

mutually independent. Let p̃0 , min{p
(1)
0 + p

(1)
1 p

(2)
0 , p

(2)
0 + p

(2)
1 p

(1)
0 , 1} and p̃1 ,

p
(1)
1 p

(2)
1 . Then the process {l̃(t) ∈ {0, 1}}t∈N0 defined by

l̃(t) = l(1)(t) ∧ l(2)(t), t ∈ N0,(15)

is the output process of a time-inhomogeneous hidden Markov model, and moreover,
l̃ ∈ Γp̃0,p̃1 .

Proof. Let Θl̃ , {(q(1), q(2)) : q(1) ∈ Θl(1) , q(2) ∈ Θl(2)} and define the bivariate

process {θl̃(t) ∈ Θl̃}t∈N0 by

θl̃(t) = (θl
(1)

(t), θl
(2)

(t)), t ∈ N0.

It follows that {θl̃(t) ∈ Θl̃}t∈N0 is a time-inhomogeneous Markov chain with ini-

tial distribution ϑl̃
(q(1),q(2))

= ϑl
(1)

q(1)
ϑl

(2)

q(2)
, q(1) ∈ Θl(1) , q(2) ∈ Θl(2) , and time-varying

transition probabilities pl̃
(q(1),q(2)),(r(1),r(2))

(t) = pl
(1)

q(1),r(1)
(t)pl

(2)

q(2),r(2)
(t), t ∈ N0. Here,

for j ∈ {1, 2}, ϑl
(j)

and pl
(j)

(·) respectively denote the initial distribution and the

transition probability function for the Markov chain {θl
(j)

(t) ∈ Θl(j)}t∈N0 associ-
ated with the output process {l(j) ∈ {0, 1}}t∈N0. Furthermore, it follows from (15)
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that

l̃(t) = l(1)(t) ∧ l(2)(t) = l(1)(t)l(2)(t) = hl
(1)

(θl
(1)

(t))hl
(2)

(θl
(2)

(t)), t ∈ N0.

Now let hl̃ : Θl̃ → {0, 1} be given by

hl̃((q, r)) = hl
(1)

(q)hl
(2)

(r), (q, r) ∈ Θl̃.

It follows that (6) holds with l replaced with l̃. Thus, {l̃(t) ∈ {0, 1}}t∈N0 is the
output process of a time-inhomogeneous hidden Markov model.

Our next goal is to prove l̃ ∈ Γp̃0,p̃1 by showing
∑

(r(1),r(2))∈Θl̃
0

pl̃(q(1),q(2)),(r(1),r(2))(t) ≤ p̃0,(16)

∑

(r(1),r(2))∈Θl̃
1

pl̃(q(1),q(2)),(r(1),r(2))(t) ≤ p̃1, t ∈ N0.(17)

First, we show (16). Observe that

Θl̃
0 = {(r(1), r(2)) ∈ Θl̃ : hl̃((r(1), r(2))) = 0}

= {(r(1), r(2)) ∈ Θl̃ : hl
(1)

(r(1))hl
(2)

(r(2)) = 0}.(18)

Now let j1, j2 ∈ {1, 2} be such that j1 6= j2. It follows from (18) that

Θl̃
0 = {(r(1), r(2)) ∈ Θl̃ : hl

(j1)

(r(j1)) = 1, hl
(j2)

(r(j2)) = 0}

∪ {(r(1), r(2)) ∈ Θl̃ : hl
(j1)

(r(j1)) = 0}.(19)

Hence, by (19), we obtain
∑

(r(1),r(2))∈Θl̃
0

pl̃(q(1),q(2)),(r(1),r(2))(t)

=
∑

r(j1)∈Θl(j1)

0 ,r(j2)∈Θl(j2)

pl̃(q(1),q(2)),(r(1),r(2))(t)

+
∑

r(j1)∈Θl(j1)

1 ,r(j2)∈Θl(j2)

0

pl̃(q(1),q(2)),(r(1),r(2))(t)

=
∑

r(j1)∈Θl(j1)

0

∑

r(j2)∈Θl(j2)

pl
(j1)

q(j1),r(j1)(t)p
l(j2)

q(j2),r(j2)(t)

+
∑

r(j1)∈Θl(j1)

1

∑

r(j2)∈Θl(j2)

0

pl
(j1)

q(j1),r(j1)(t)p
l(j2)

q(j2),r(j2)(t)

=
∑

r(j2)∈Θl(j2)

pl
(j2)

q(j2),r(j2)(t)
∑

r(j1)∈Θl(j1)

0

pl
(j1)

q(j1),r(j1)(t)

+
∑

r(j1)∈Θl(j1)

1

pl
(j1)

q(j1),r(j1)(t)
∑

r(j2)∈Θl(j2)

0

pl
(j2)

q(j2),r(j2)(t).(20)

Now, since l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

, l(2) ∈ Γ
p
(2)
0 ,p

(2)
1

, we have
∑

r(j1)∈Θl(j1)

0

pl
(j1)

q(j1),r(j1)(t) ≤

p
(j1)
0 ,

∑
r(j1)∈Θl(j1)

1

pl
(j1)

q(j1),r(j1)(t) ≤ p
(j1)
1 , and

∑
r(j2)∈Θl(j2)

0

pl
(j2)

q(j2),r(j2)(t) ≤ p
(j2)
0 , t ∈
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N0. Furthermore, we have
∑

r(j2)∈Θl(j2) pl
(j2)

q(j2),r(j2)(t) = 1, since the summation is

over all possible states r(j2) ∈ Θl(j2)

. Using these inequalities in (20), we obtain
∑

(r(1),r(2))∈Θl̃
0

pl̃(q(1),q(2)),(r(1),r(2))(t) ≤ p
(j1)
0 + p

(j1)
1 p

(j2)
0 ,(21)

for t ∈ N0. Since (21) holds for all j1, j2 ∈ {1, 2} such that j1 6= j2, we have

∑

(r(1),r(2))∈Θl̃
0

pl̃(q(1),q(2)),(r(1),r(2))(t) ≤ min{p
(1)
0 + p

(1)
1 p

(2)
0 , p

(2)
0 + p

(2)
1 p

(1)
0 }, t ∈ N0.

(22)

Furthermore, noting that Θl̃
0 ⊂ Θl̃, we obtain

∑
(r(1),r(2))∈Θl̃

0
pl̃
(q(1),q(2)),(r(1),r(2))

(t) ≤
∑

(r(1),r(2))∈Θl̃ p
l̃
(q(1),q(2)),(r(1),r(2))

(t) = 1, t ∈ N0. By using this inequality, it follows

from (22) that (16) holds.
Next, we show (17). Notice that

Θl̃
1 = {(r(1), r(2)) ∈ Θl̃ : hl̃((r(1), r(2))) = 1}

= {(r(1), r(2)) ∈ Θl̃ : hl
(1)

(r(1))hl
(2)

(r(2)) = 1}

= {(r(1), r(2)) ∈ Θl̃ : hl
(1)

(r(1)) = 1, hl
(2)

(r(2)) = 1}.(23)

Noting that l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

, l(2) ∈ Γ
p
(2)
0 ,p

(2)
1

, we use (23) to obtain for t ∈ N0,

∑

(r(1),r(2))∈Θl̃
1

pl̃(q(1),q(2)),(r(1),r(2))(t) =
∑

r(1)∈Θl(1)

1 ,r(2)∈Θl(2)

1

pl̃(q(1),q(2)),(r(1),r(2))(t)

=
∑

r(1)∈Θl(1)

1

∑

r(2)∈Θl(2)

1

pl
(1)

q(1),r(1)(t)p
l(2)

q(2),r(2)(t)

=
∑

r(1)∈Θl(1)

1

pl
(1)

q(1),r(1)
(t)

∑

r(2)∈Θl(2)

1

pl
(2)

q(2),r(2)
(t) ≤ p

(1)
1 p

(2)
1 ,

which implies (17). Now since (16) and (17) hold, we have l̃ ∈ Γp̃0,p̃1 . �

Theorem 3.3 shows that when two hidden Markov output processes l(1) and l(2)

are combined with ∧ operation, the resulting process l̃ is also a hidden Markov
output process. Furthermore, Theorem 3.3 provides the values of p̃0, p̃1 for which
l̃ ∈ Γp̃0,p̃1 .

This result can be applied to obtain ρG. For instance, consider the case c = 2,
where lP1(·) and lP2(·) are the output processes of hidden Markov models such
that lP1 ∈ Γ

p
(1)
0 ,p

(1)
1

, lP2 ∈ Γ
p
(2)
0 ,p

(2)
1

. It follows from Theorem 3.3 with l(1) = lP1 ,

l(2) = lP2 , and l̃ = lG that lG ∈ Γp̃0,p̃1 with p̃1 , p
(1)
1 p

(2)
1 . Now, suppose that

p
(1)
1 p

(2)
1 < 1. Notice that since lP1 ∈ Γ

p
(1)
0 ,p

(1)
1

and lP2 ∈ Γ
p
(2)
0 ,p

(2)
1

, we have lP1 ∈

ΛρP1
and lP2 ∈ ΛρP2

with ρP1 ∈ (p
(1)
1 , 1] and ρP2 ∈ (p

(2)
1 , 1]. The direct application

of Proposition 3.2 gives lG ∈ ΛρG
with ρG = min{ρP1 , ρP2}. However, by applying

Proposition 2.5, we can obtain a smaller value for ρG. In fact by Proposition 2.5,

we obtain lG ∈ ΛρG
for any ρG ∈ (p

(1)
1 p

(2)
1 , 1]. Notice that in the case where c > 2,

Theorem 3.3 can be applied repeatedly. For instance, when c = 3, we can use
Theorem 3.3 first for lP2(t) ∧ lP3(t) and then for lG(t) = lP1(t) ∧ (lP2(t) ∧ lP3(t)).
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Now consider the case where the graph G possesses some paths with indicator
processes that are mutually independent but not all of them are associated with
random failures. Even for this case, we can obtain results that are tighter than
Proposition 3.2. To this end, we first provide the following result where we derive
properties of a process that is obtained by using ∧ operation on a hidden Markov
output process l(1) ∈ Γ

p
(1)
0 p

(1)
1

and a binary-valued process l(2) ∈ Λρ(2) .

Theorem 3.4. Consider the binary-valued processes {l(1) ∈ {0, 1}}t∈N0 and {l(2) ∈

{0, 1}}t∈N0 that satisfy l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

and l(2) ∈ Λρ(2) with p
(1)
1 ρ(2) < 1. Then the

process {l̃(t) ∈ {0, 1}}t∈N0 defined by

l̃(t) = l(1)(t) ∧ l(2)(t), t ∈ N0,(24)

satisfies l̃ ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 ρ(2), 1].

Proof. For the case where p
(1)
1 ρ(2) = 0 and the case where p

(1)
1 = 1, the result follows

from Proposition 3.2. Now consider the case where p
(1)
1 ∈ (0, 1), ρ(2) ∈ (0, 1]. We

will first show that l̃ ∈ Λρ̃ for ρ̃ ∈ (p
(1)
1 ρ(2), ρ(2)). The process {χ(t) ∈ {0, 1}}t∈N0

defined by χ(t) = l(2)(t), t ∈ N0, satisfies (8) with w̃ = ρ(2). Furthermore, {ξ(t) ∈

{0, 1}}t∈N0 defined by ξ(t) = θl
(1)

(t), t ∈ N0, satisfies (7) with p̃ = p
(1)
1 , h = hl

(1)

,

Ξ = Θl(1) , and Ξ1 = Θl(1)

1 . It then follows from Lemma 2.6 that for all ρ ∈ (p̃w̃, w̃),
we have

∑

k∈N

P[

k−1∑

t=0

h(ξ(t))χ(t) > ρk] =
∑

k∈N

P[

k−1∑

t=0

l(1)(t) ∧ l(2)(t) > ρk] <∞.

Now since p̃w̃ = p
(1)
1 ρ(2) and w̃ = ρ(2), it follows that l̃ ∈ Λρ̃ holds for ρ̃ ∈

(p
(1)
1 ρ(2), ρ(2)). This implies l̃ ∈ Λρ̃, ρ̃ ∈ [ρ(2), 1], since Λρ1 ⊆ Λρ2 for any ρ1, ρ2 ∈

[0, 1] such that ρ1 ≤ ρ2. Consequently, we have l̃ ∈ Λρ̃ for ρ̃ ∈ (p
(1)
1 ρ(2), 1] =

(p
(1)
1 ρ(2), ρ(2)) ∪ [ρ(2), 1]. �

Theorem 3.4 is concerned with ∧ operation applied to a process l(1)(·) from the
hidden Markov model class Γ

p
(1)
0 ,p

(1)
1

and another process l(2)(·) from the class Λρ(2) .

It is shown that if p
(1)
1 ρ(2) < 1, then this operation results in a process l̃ that satisfies

l̃ ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 ρ(2), 1]. We note that the application of Proposition 3.2 to

this situation would allow us to show l̃ ∈ Λρ̃ for all ρ̃ ∈ (min{p
(1)
1 , ρ(2)}, 1]. Notice

that Proposition 3.2 in this case is conservative since min{p
(1)
1 , ρ(2)} > p

(1)
1 ρ(2). On

the other hand, we note that Proposition 3.2 allows us to deal with processes that
are not mutually independent.

Remark 3.5. Theorem 3.3 explains the joint effects of random transmission fail-
ures happening on two different paths. On the other hand, Theorem 3.4 is concerned
with the case where one path is associated with random packet losses and the other
path may be subject to more general types of failures (random, malicious, or a com-
bination of both). In this sense, Theorem 3.4 considers a more general situation
than that considered in Theorem 3.3. In fact Theorem 3.4 can also be utilized for
two processes that are both associated with random failures. The difference between
Theorem 3.3 and Theorem 3.4 is that they describe the joint effects of the processes
through different classes (Γ and Λ, respectively).
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Table 2. Comparison of the classes of processes obtained by com-
bining processes l(1) and l(2) of different classes through ∧ opera-
tion. For the case where l(1) ∈ Λρ(1) and l(2) ∈ Λρ(2) , the processes

l(1) and l(2) can be dependent; for other cases, l(1) and l(2) are
assumed to be mutually independent.

l(1) l(2) l(1) ∧ l(2)

Γ
p
(1)
0

,p
(1)
1

Γ
p
(2)
0 ,p

(2)
1

Γp̃0,p̃1 with p̃0 , min{p
(1)
0 + p

(1)
1 p

(2)
0 , p

(2)
0 + p

(2)
1 p

(1)
0 , 1} and p̃1 , p

(1)
1 p

(2)
1

(Theorem 3.3)

Λ
ρ(2)

Λρ̃ for ρ̃ ∈ (p
(1)
1 ρ(2), 1] (Theorem 3.4)

Λ
ρ(1)

Γ
p
(2)
0 ,p

(2)
1

Λρ̃ for ρ̃ ∈ (p
(2)
1 ρ(1), 1] (Theorem 3.4)

Λ
ρ(2)

Λρ̃ for ρ̃ ∈ [min{ρ(1)ρ(2)}, 1] (Proposition 3.2)

We also note that when two processes associated with random failures are in-
volved, Theorem 3.3 is more advantageous than Theorem 3.4, since Theorem 3.4
may result in conservatism in certain situations. Consider for example l(1) ∈
Γ
p
(1)
0 ,p

(1)
1

and l(2) ∈ Γ
p
(2)
0 ,p

(2)
1

associated both with random failures and l(3) ∈ Λρ(3)

associated with malicious packet losses. Since l(2) ∈ Λρ(2) with ρ(2) ∈ (p
(2)
1 , 1],

we can apply Theorem 3.4 to obtain l(1) ∧ l(2) ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 ρ(2), 1].

Here, by Theorem 3.4, the process associated with joint failures (l(1) ∧ l(2)) be-
longs to the class Λρ̃. Now, in order to explain the joint effects of l(1) ∧ l(2) to-

gether with yet another process l(3) ∈ Λρ(3) , we would be required to use Proposi-
tion 3.2, which would result in conservatism as explained after the proof of The-
orem 3.4. In order not to introduce unnecessary conservatism, we can first apply
Theorem 3.3 to l(1) ∈ Γ

p
(1)
0 ,p

(1)
1

and l(2) ∈ Γ
p
(2)
0 ,p

(2)
1

to obtain l(1) ∧ l(2) ∈ Γp̃0,p̃1 with

p̃0 , min{p
(1)
0 + p

(1)
1 p

(2)
0 , p

(2)
0 + p

(2)
1 p

(1)
0 , 1} and p̃1 , p

(1)
1 p

(2)
1 . Notice now that the

process associated with joint failures (l(1) ∧ l(2)) belongs to the class Γp̃0,p̃1 . Then,

we can apply Theorem 3.4 for processes l(1)∧l(2) ∈ Γp̃0,p̃1 and l(3) ∈ Λρ(3) , obtaining
a less conservative result.

We summarize the results presented in this section in Table 2, where we indicate
the classes obtained through the ∧ operation.

Remark 3.6. Although in this paper we assume delay-free packet transmissions,
in practice delays are inevitable. Moreover, different routes represented by different
paths may induce different amounts of delay for the transmission of the same packet.
This is because the numbers of links on different paths Pi may be different, and
furthermore, links on those paths may have different transmission properties. As a
result, the receiver node (e.g., the controller node vC in G) may obtain the same
packet from different paths at different times. It is clear that the performance can
be improved if the controller acts immediately upon receiving the first uncorrupted
state packet from the path with the shortest delay. Furthermore, we can introduce
setups that utilize a delay threshold: a path Pi that faces delay beyond the threshold
can be considered to have faced a failure (lPi

(t) = 0) in transmission of the state
packet x(t). In such setups, the delay properties of the links on different paths have
to be taken into account to fully model the processes {lPi

(t) ∈ {0, 1}}t∈N0. This
requires further analysis that is different from what we provide in this paper. In
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particular, the effects of different delay models for links as well as the combined
effects of delays and failures (due to data corruption and packet dropping) need to
be investigated.

4. Packet Transmission Failures on Paths of a Network

So far, in the previous section, we have looked at how packet failures on the
paths of a network affect the overall packet transmission rate. In this section, our
goal is to explore the effect of the failures at individual nodes and links of a path.
To this end, we first consider the scenario where packet transmission failures occur
due to only data corruption. We then explore the case where data corruption and
packet drops may occur on the same path.

4.1. Characterization for Data Corrupting Paths. Let Pi,j denote the jth

edge on path Pi. We use the binary-valued process {l
Pi,j

Pi
(t) ∈ {0, 1}}t∈N0 to denote

the data corruption indicator for this link. For example, in Fig. 1, consider the

second edge P1,2 = (v1, vC) of path P1 in (13). The state l
(v1,vC)
P1

(t) = 1 indicates
that at time t, the packet flowing on path P1 faces data corruption on the link
(v1, vC). This may be due to a jamming attack on this link, or due to channel
noise, and moreover, it may also be the case that the node v1 maliciously corrupts
the packet.

The notation for the data corruption indicator allows us to distinguish data
corruption issues when we consider the same communication link on different paths.
For instance, communication link (v4, vC) is on both P2 and P3. It may be the case
that node v4 corrupts all packets transmitted along P2, but none of the packets

transmitted along P3. This situation can be described by setting l
(v4,vC)
P2

(t) = 1,

t ∈ N0, and l
(v4,vC)
P3

(t) = 0, t ∈ N0.
State packet transmitted through path Pi is subject to data corruption if there

is data corruption on one (or more) of the edges in this path. Hence, for each
i ∈ {1, . . . , c},

lPi
(t) = l

Pi,1

Pi
(t) ∨ l

Pi,2

Pi
(t) ∨ · · · ∨ l

Pi,|Pi|

Pi
(t).(25)

The next result shows that an upper-bound for the asymptotic transmission
failure rate of a path can be given as the sum of the failure rate bounds of the links
on the path.

Proposition 4.1. Consider {lPi
(t) ∈ {0, 1}}t∈N0 given by (25). Assume l

Pi,j

Pi
∈

Λ
ρ
Pi,j

Pi

, j ∈ {1, . . . , |Pi|}, where ρ
Pi,j

Pi
∈ [0, 1], j ∈ {1, . . . , |Pi|}, satisfy

∑|Pi|
j=1 ρ

Pi,j

Pi
≤

1. Then lPi
∈ ΛρPi

with ρPi
,

∑|Pi|
j=1 ρ

Pi,j

Pi
.

Proof. By (25),
∑k−1

t=0 lPi
(t) ≤

∑|Pi|
j=1

∑k−1
t=0 l

Pi,j

Pi
(t). Hence,

P[

k−1∑

t=0

lPi
(t) > ρPi

k] ≤ P[

|Pi|∑

j=1

k−1∑

t=0

l
Pi,j

Pi
(t) > ρPi

k] ≤

|Pi|∑

j=1

P[

k−1∑

t=0

l
Pi,j

Pi
(t) > ρ

Pi,j

Pi
k],

(26)
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for k ∈ N, where to obtain the last inequality, we used

P[

|Pi|∑

j=1

γj > 0] ≤ P[∪
|Pi|
j=1{γj > 0}] ≤

|Pi|∑

j=1

P[γj > 0]

with γj ,
∑k−1

t=0 l
Pi,j

Pi
(t) − ρ

Pi,j

Pi
k. The result then follows from (26) since l

Pi,j

Pi
∈

Λ
ρ
Pi,j

Pi

, j ∈ {1, . . . , |Pi|}. �

Proposition 4.1 can be used to characterize overall failures on a path. Note
that in Proposition 4.1, the indicators for the links are not necessarily mutually-
independent processes. This allows us to model failures on different links that
depend on each other. In particular, we can explore the effect of interference be-
tween links as well as coordinated jamming attacks targeting several links at the
same time.

Note that in certain cases the result provided in Proposition 4.1 can be improved
in terms of conservativeness. In particular, if one or more links in a path are known
to be associated with random failures and the corresponding indicator processes
are mutually independent, we can obtain less conservative results in comparison
to Proposition 4.1. The following result is the counterpart of Theorem 3.3 for ∨
operation and it is concerned with output processes of two mutually-independent
hidden Markov models.

Theorem 4.2. Consider the binary-valued output processes {l(1) ∈ {0, 1}}t∈N0

and {l(2) ∈ {0, 1}}t∈N0 of hidden Markov models such that l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

, l(2) ∈

Γ
p
(2)
0 ,p

(2)
1

with p
(1)
0 , p

(1)
1 , p

(2)
0 , p

(2)
1 ∈ [0, 1]. Suppose that the Markov chains {θl

(1)

(t) ∈

Θl(1)}t∈N0 and {θl
(2)

(t) ∈ Θl(2)}t∈N0 associated with the processes l(1) and l(2)

are mutually independent. Let p̃0 , p
(1)
0 p

(2)
0 and p̃1 , min{p

(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 +

p
(2)
0 p

(1)
1 , 1}. Then the process {l̃(t) ∈ {0, 1}}t∈N0 defined by

l̃(t) = l(1)(t) ∨ l(2)(t), t ∈ N0,(27)

is the output process of a time-inhomogeneous hidden Markov model, and moreover,
l̃ ∈ Γp̃0,p̃1 .

Proof. Let Θl̃ , {(q(1), q(2)) : q(1) ∈ Θl(1) , q(2) ∈ Θl(2)} and define the bivariate

process {θl̃(t) ∈ Θl̃}t∈N0 by

θl̃(t) = (θl
(1)

(t), θl
(2)

(t)), t ∈ N0.

It follows that {θl̃(t) ∈ Θl̃}t∈N0 is a time-inhomogeneous Markov chain with ini-

tial distribution ϑl̃
(q(1),q(2))

= ϑl
(1)

q(1)
ϑl

(2)

q(2)
, q(1) ∈ Θl(1) , q(2) ∈ Θl(2) , and time-varying

transition probabilities pl̃
(q(1),q(2)),(r(1),r(2))

(t) = pl
(1)

q(1),r(1)
(t)pl

(2)

q(2),r(2)
(t), t ∈ N0. Here,

for j ∈ {1, 2}, ϑl
(j)

and pl
(j)

(·) respectively denote the initial distribution and the

transition probability function for the Markov chain {θl
(j)

(t) ∈ Θl(j)}t∈N0 associ-
ated with the output process {l(j) ∈ {0, 1}}t∈N0. Furthermore, it follows from (15)
that

l̃(t) = l(1)(t) ∨ l(2)(t) = l(1)(t) + (1− l(1)(t))l(2)(t)

= hl
(1)

(θl
(1)

(t)) + (1 − hl
(1)

(θl
(1)

(t)))hl
(2)

(θl
(2)

(t)),
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for t ∈ N0. Now let hl̃ : Θl̃ → {0, 1} be given by

hl̃((q, r)) = hl
(1)

(q) + (1 − hl
(1)

(q))hl
(2)

(r), (q, r) ∈ Θl̃.

It follows that (6) holds with l replaced with l̃. Thus, {l̃(t) ∈ {0, 1}}t∈N0 is the
output process of a time-inhomogeneous hidden Markov model.

To show l̃ ∈ Γp̃0,p̃1 , we can apply Theorem 3.3. To this end, we first note that
for an output process l ∈ Γp0,p1 , the complementing process {lc(t) ∈ {0, 1}}t∈N0

given by lc(t) = 1 − l(t), t ∈ N0, is the output process of a time-inhomogeneous
hidden Markov model, for which Θlc = Θl, θlc(t) = θl(t), t ∈ N0. Furthermore, we

have Θlc
0 = Θl

1 and Θlc
1 = Θl

0, since hlc((q, r)) = 1 − hl((q, r)), (q, r) ∈ Θlc = Θl.

As a consequence, we have l ∈ Γp0,p1 if and only if lc ∈ Γp1,p0 . In the following,

we show l̃ ∈ Γp̃0,p̃1 by proving that {l̃c(t) ∈ {0, 1}}t∈N0 given by l̃c(t) = 1 − l̃(t),

t ∈ N0, satisfies l̃c ∈ Γp̃1,p̃0 .

First, observe that l̃c(t) = 1−l̃(t) = 1−l(1)(t)∨l(2)(t) = (1−l(1)(t))∧(1−l(2)(t)) =

l
(1)
c (t) ∧ l

(2)
c (t), where l

(i)
c (t) = 1 − l(i)(t), i ∈ {1, 2}. Since l(1) ∈ Γ

p
(1)
0 ,p

(1)
1
, l(2) ∈

Γ
p
(2)
0 ,p

(2)
1

, we have l
(1)
c ∈ Γ

p
(1)
1 ,p

(1)
0

, l
(2)
c ∈ Γ

p
(2)
1 ,p

(2)
0

. Finally, noting that l̃c(·) is

obtained by using ∧ operation on processes l
(1)
c (·), l

(2)
c (·), we can use Theorem 3.3,

to obtain l̃c ∈ Γp̃1,p̃0 , which implies l̃ ∈ Γp̃0,p̃1 . �

Theorem 4.2 shows that when two hidden Markov output processes l(1) and l(2)

are combined with ∨ operation, the resulting process l̃ is also a hidden Markov
output process. Furthermore, it provides the values of p̃0, p̃1 for which l̃ ∈ Γp̃0,p̃1 .

Theorem 4.2 can be applied in obtaining ρPi
for a given path Pi. Consider

for example a path Pi with |Pi| = 2 links. Assume that the failure indicator

processes l
Pi,1

Pi
(·), l

Pi,2

Pi
(·) associated with the links are mutually independent and

l
Pi,1

Pi
∈ Γ

p
(1)
0 ,p

(1)
1

, l
Pi,2

Pi
∈ Γ

p
(2)
0 ,p

(2)
1

. It follows from Theorem 4.2 with l(1)(t) = l
Pi,1

Pi
(t)

and l(2)(t) = l
Pi,2

Pi
(t) that lPi

∈ Γp̃0,p̃1 with p̃0 = p
(1)
0 p

(2)
0 and p̃1 = min{p

(1)
1 +

p
(1)
0 p

(2)
1 , p

(2)
1 + p

(2)
0 p

(1)
1 , 1}. Furthermore, if min{p

(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 + p

(2)
0 p

(1)
1 } < 1,

then by Proposition 2.5, we have lPi
∈ ΛρPi

with ρPi
∈ (min{p

(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 +

p
(2)
0 p

(1)
1 }, 1].

On the other hand, the direct application of Proposition 4.1 provides a conserva-

tive result. To apply Proposition 4.1, notice first that l
Pi,1

Pi
∈ ΛρPi,1

, l
Pi,2

Pi
∈ ΛρPi,2

with ρPi,1 ∈ (p
(1)
1 , 1] and ρPi,2 ∈ (p

(2)
1 , 1]. Hence, by Proposition 4.1, we obtain the

value ρPi
= ρPi,1 + ρPi,2 , which implies that lPi

∈ ΛρPi
with ρPi

∈ (p
(1)
1 + p

(2)
1 , 1].

The inequality min{p
(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 + p

(2)
0 p

(1)
1 } ≤ p

(1)
1 + p

(2)
1 allows us to con-

clude that Theorem 4.2 provides a less conservative range for ρPi
compared to

Proposition 4.1.
In certain scenarios a path Pi may be composed of communication links with

mutually-independent indicator processes some of which are not associated with
random failures. In such scenarios, it is again possible to obtain results that are
less conservative than those in Proposition 4.1. Specifically, in the following result
we derive properties of a process that is obtained by using ∨ operation on a hidden
Markov output process l(1) ∈ Γ

p
(1)
0 p

(1)
1

and a binary-valued process l(2) ∈ Λρ(2) .
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Theorem 4.3. Consider the binary-valued processes {l(1) ∈ {0, 1}}t∈N0 and {l(2) ∈

{0, 1}}t∈N0 that satisfy l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

and l(2) ∈ Λρ(2) with p
(1)
1 +p

(1)
0 ρ(2) < 1. Then

the process {l̃(t) ∈ {0, 1}}t∈N0 defined by

l̃(t) = l(1)(t) ∨ l(2)(t), t ∈ N0,(28)

satisfies l̃ ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 + p

(1)
0 ρ(2), 1].

Proof. For the case where p
(1)
0 = 1 and the case where ρ(2) = 0, the result follows

from Proposition 4.1. Here, we consider the case where p
(1)
0 ∈ (0, 1), ρ(2) ∈ (0, 1].

Notice that since l̃(·) is a binary-valued process, we have Λρ̃ for ρ̃ = 1. Next, we

show l̃ ∈ Λρ̃ for ρ̃ ∈ (p
(1)
1 + p

(1)
0 ρ(2), 1). First, (28) implies

l̃(t) = l(1)(t) + (1− l(1)(t))l(2)(t), t ∈ N0.(29)

Let L̃(k) ,
∑k−1

t=0 l̃(t). It follows from (29) that

L̃(k) =

k−1∑

t=0

l(1)(t) +

k−1∑

t=0

(1− l(1)(t))l(2)(t), k ∈ N.(30)

Now, let ǫ , ρ̃ − p
(1)
1 − p

(1)
0 ρ(2), ǫ2 , min{ ǫ

2 ,
ρ(2)−p

(1)
0 ρ(2)

2 }, ǫ1 , ǫ − ǫ2, and define

ρ̃1 , p
(1)
1 + ǫ1, ρ̃2 , p

(1)
0 ρ(2) + ǫ2. Furthermore, let L̃1(k) ,

∑k−1
t=0 l

(1)(t) and

L̃2(k) ,
∑k−1

t=0 (1− l(1)(t))l(2)(t). We then have

P[L̃(k) > ρ̃k] = P[L̃1(k) + L̃2(k) > ρ̃1k + ρ̃2k]

≤ P

[{
L̃1(k) > ρ̃1k

}
∪
{
L̃2(k) > ρ̃2k

}]

≤ P[L̃1(k) > ρ̃1k] + P[L̃2(k) > ρ̃2k].(31)

In the following we show
∑∞

k=1 P[L̃1(k) > ρ̃1k] <∞ and
∑∞

k=1 P[L̃2(k) > ρ̃2k] <∞.
First, note that

ρ̃1 = p
(1)
1 + ǫ− ǫ2 = max{p

(1)
1 +

ǫ

2
, p

(1)
1 + ǫ−

ρ(2) − p
(1)
0 ρ(2)

2
}

= max{
p
(1)
1 + ρ̃− p

(1)
0 ρ(2)

2
, ρ̃− p

(1)
0 ρ(2) −

ρ(2) − p
(1)
0 ρ(2)

2
}

= max{
p
(1)
1 + ρ̃− p

(1)
0 ρ(2)

2
,
2ρ̃− ρ(2)(1 + p

(1)
0 )

2
}.(32)

As
p
(1)
1 +ρ̃−p

(1)
0 ρ(2)

2 < 1 and
2ρ̃−ρ(2)(1+p

(1)
0 )

2 < 1, it holds from (32) that ρ̃1 ∈ (p
(1)
1 , 1).

Since l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

, we can use Proposition 2.5 with ρ replaced with ρ̃ and l

replaced with l(1) to obtain
∑∞

k=1 P[L̃1(k) > ρ̃1k] <∞.

Next, we use Lemma 2.6 to show that
∑∞

k=1 P[L̃2(k) > ρ̃2k] < ∞. To obtain

this result, we first observe that ρ̃2 > p
(1)
0 ρ(2), since ǫ2 > 0. Moreover,

ρ̃2 = p
(1)
0 ρ(2) +min{

ǫ

2
,
ρ(2) − p

(1)
0 ρ(2)

2
} ≤ p

(1)
0 ρ(2) +

ρ(2) − p
(1)
0 ρ(2)

2

< p
(1)
0 ρ(2) + ρ(2) − p

(1)
0 ρ(2) = ρ(2),
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Table 3. Comparison of the classes of processes obtained by com-
bining processes l(1) and l(2) of different classes through ∨ opera-
tion. For the case where l(1) ∈ Λρ(1) and l(2) ∈ Λρ(2) , the processes

l(1) and l(2) can be dependent; for other cases, l(1) and l(2) are
assumed to be mutually independent.

l(1) l(2) l(1) ∨ l(2)

Γ
p
(1)
0

,p
(1)
1

Γ
p
(2)
0 ,p

(2)
1

Γp̃0,p̃1 with p̃0 , p
(1)
0 p

(2)
0 and p̃1 , min{p

(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 + p

(2)
0 p

(1)
1 , 1}

(Theorem 4.2)

Λ
ρ(2)

Λρ̃ for ρ̃ ∈ (p
(1)
1 + p

(1)
0 ρ(2), 1] (Theorem 4.3)

Λ
ρ(1)

Γ
p
(2)
0 ,p

(2)
1

Λρ̃ for ρ̃ ∈ (p
(2)
1 + p

(2)
0 ρ(1), 1] (Theorem 4.3)

Λ
ρ(2)

Λρ̃ for ρ̃ ∈ [ρ(1) + ρ(2), 1] (Proposition 4.1)

and hence, we have ρ̃2 ∈ (p
(1)
0 ρ(2), ρ(2)). Let {l

(1)
c (t) ∈ {0, 1}}t∈N0 be defined

by l
(1)
c (t) = 1 − l(1)(t), t ∈ N0. Since l(1) ∈ Γ

p
(1)
0 ,p

(1)
1

, we have l
(1)
c ∈ Γ

p
(1)
1 ,p

(1)
0

.

Furthermore, since l(2) ∈ Λρ(2) , conditions (7), (8) in the Lemma 2.6 hold with

p̃ = p
(1)
0 and w̃ = ρ(2), together with processes {ξ(t) ∈ {0, 1}}t∈N0 and {χ(t) ∈

{0, 1}}t∈N0 defined by setting ξ(t) = θlc(t), χ(t) = lM(t), t ∈ N0. Now, we have

L̃2(k) =
∑k−1

t=0 ξ(t)χ(t) and hence, Lemma 2.6 implies
∑∞

k=1 P[L̃2(k) > ρ̃2k] <∞.
Finally, by (31), we arrive at

∞∑

k=1

P[L̃(k) > ρ̃k] ≤
∞∑

k=1

P[L̃1(k) > ρ̃1k] +

∞∑

k=1

P[L̃2(k) > ρ̃2k] <∞,

which shows that l̃ ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 + p

(1)
0 ρ(2), 1]. �

Theorem 4.3 is concerned with ∨ operation applied to a process l(1)(·) from the
hidden Markov model class Γ

p
(1)
0 ,p

(1)
1

and another process l(2)(·) from the class Λρ(2) .

It is shown that the ∨ operation results in a process l̃ that satisfies l̃ ∈ Λρ̃ for all

ρ̃ ∈ (p
(1)
1 +p

(1)
0 ρ(2), 1]. Notice that the application of Proposition 3.2 to this situation

would allow us to show l̃ ∈ Λρ̃ for all ρ̃ ∈ (p
(1)
1 +ρ(2), 1]. Proposition 4.1 in this case

is conservative since p
(1)
1 + ρ(2) ≥ p

(1)
1 + p

(1)
0 ρ(2) (and p

(1)
1 + ρ(2) > p

(1)
1 + p

(1)
0 ρ(2) if

p
(1)
0 < 1). We remark that the advantage of Proposition 4.1 may be that it allows

us to deal with processes that are not mutually independent.
The results presented so far in this section are summarized in Table 3. There we

show the classes of processes obtained by using the ∨ operation.

Remark 4.4. By utilizing (14) and (25) together with the results so far presented,
we can obtain ρ values for which the overall packet exchange failure indicator l sat-
isfies l ∈ Λρ. As discussed in Section 2, l ∈ Λρ implies that the average number of

packet exchange failures is upper-bounded by ρ (i.e., lim supk→∞
1
k

∑k−1
t=0 l(t) ≤ ρ,

almost surely). We would like ρ to be a tight upper bound so that we can avoid
additional conservatism in checking the closed-loop stability with Theorem 2.3. As
discussed in Section 4 of [33], conditions (3)–(5) of Theorem 2.3 are tight for scalar

systems when limk→∞
1
k

∑k−1
t=0 l(t) = ρ. However, notice that in certain cases,
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Table 4. Comparison of the conservativeness of our results with
respect to the range of ρ̃ of the process l̃ ∈ Λρ̃ obtained by

combining mutually independent processes l(1) ∈ Γ
p
(1)
0 ,p

(1)
1

and

l(2) ∈ Γ
p
(2)
0 ,p

(2)
1

through ∧ or ∨ operations (i.e., l̃(t) = l(1)(t)∧l(2)(t)

or l̃(t) = l(1)(t) ∨ l(2)(t)). For each operation, less conservative
results are marked with ⋆ and they provide larger ranges of ρ̃ (in-

dicating that l̃ ∈ Λρ̃ holds with smaller ρ̃ values close to the lower
bound of the range). However, these less conservative results are
applicable only when l(1) and l(2) are mutually independent. The
sequences of results that are not marked with ⋆ are more conser-
vative, but they are also applicable to scenarios where l(1) and l(2)

are not necessarily mutually independent.

Operation Applied Results ρ̃ range

∧
⋆ First Theorem 3.3, then Proposition 2.5 (p

(1)
1 p

(2)
1 , 1]

First Proposition 2.5, then Proposition 3.2 (min{p
(1)
1 , p

(2)
1 }, 1]

∨
⋆ First Theorem 4.2, then Proposition 2.5 (min{p

(1)
1 + p

(1)
0 p

(2)
1 , p

(2)
1 + p

(2)
0 p

(1)
1 }, 1]

First Proposition 2.5, then Proposition 4.1 (p
(1)
1 + p

(2)
1 , 1]

l may be a nonergodic process for which limk→∞
1
k

∑k−1
t=0 l(t) takes different val-

ues for different outcomes ω ∈ Ω (see Remark 3.4 in [33]); moreover, in certain

cases limk→∞
1
k

∑k−1
t=0 l(t) may not exist. In such cases ρ (as an upper bound of

lim supk→∞
1
k

∑k−1
t=0 l(t)) is still useful in stability analysis through Theorem 2.3.

In some cases, lim supk→∞
1
k

∑k−1
t=0 l(t) may be strictly smaller than ρ that we ob-

tain by using our results in this paper. The gap between lim supk→∞
1
k

∑k−1
t=0 l(t) and

ρ can be identified if all link failure model parameters and independence/dependence
relations between communication links are known. Note that it may be difficult to

obtain an analytical expression for lim supk→∞
1
k

∑k−1
t=0 l(t) even if the properties

of the failure processes are known exactly. This is because such properties may be
time-dependent and may have complicated inter-dependence relations. We compare

lim supk→∞
1
k

∑k−1
t=0 l(t) and ρ numerically through repeated simulations for an ex-

ample case in Section 5.3. To guarantee a small gap between lim supk→∞
1
k

∑k−1
t=0 l(t)

and ρ, failure processes need to be placed in adequate classes Γp0,p1 and Πκ,w so that
the bounds utilized in Definitions 2.4 and 2.7 are sufficiently tight. Furthermore, to
keep the gap small, it is also essential to utilize Theorems 3.3, 3.4, 4.2, and 4.3 when
the processes involved in ∧ and ∨ operations are known to be mutually independent
and at least one of them is from the class Γ. If, instead, Propositions 3.2 and 4.1

are used, this may introduce additional gap between lim supk→∞
1
k

∑k−1
t=0 l(t) and ρ.

This is because, in scenarios where random failures on links/paths occur indepen-
dently, Propositions 3.2 and 4.1 are more conservative. In Table 4, we compare
these results with Theorems 3.3 and 4.2 in terms of the conservatism that they may
introduce.
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4.2. Characterization of Paths with Packet Dropping Links. In the previous
section, we provided a characterization for paths with data-corrupting links. In this
section we look at packet drops.

A packet dropout on a communication link (v, w) may occur if v is a malicious
router that intentionally skips forwarding packets (see blackhole and grayhole at-
tacks in [19]). A nonmalicious router may also drop packets to avoid congestion. In
addition to these two issues, a packet may also be dropped if the header part of the
packet, which includes information on the destination of the packet, is corrupted.
Furthermore, in scenarios where error-detection is implemented at intermediate
nodes, corruption on the data part of a packet can be detected. As a result, a
corrupted packet needs not be further transmitted. Such a scenario can also be
studied within the packet drop framework.

Consider a link Pi,j = (v, w) on path Pi. Let t = 0, 1, . . ., denote the indices
of packets that node v possesses (or receives from previous nodes on path Pi).
Observe that if there are links before Pi,j that are packet-dropping, then the first
packet (with index t = 0) that v receives may be different from x(0), and it may
be the state at a later time. This is because x(0) may have been dropped before
reaching node v. We use lPi,j

(t) ∈ {0, 1} to indicate the status of transmission of
the (t+ 1)th packet (with index t) that node v possesses to node w.

The following result is concerned with the characterization of the failures on a
path with only packet dropping links.

Proposition 4.5. Let {lPi
(t) ∈ {0, 1}}t∈N0 denote the failure indicator of a path Pi

composed only of packet dropping links with failure indicators denoted by {l
Pi,j

Pi
(t) ∈

{0, 1}}t∈N0. Assume l
Pi,j

Pi
∈ Λ

ρ
Pi,j

Pi

with ρ
Pi,j

Pi
∈ [0, 1], j ∈ {1, . . . , |Pi|}, that satisfy

∑|Pi|
j=1 ρ

Pi,j

Pi
≤ 1. Then lPi

∈ ΛρPi
with ρPi

,
∑|Pi|

j=1 ρ
Pi,j

Pi
.

The proof of this result is skipped since it is similar to that of Theorem 4.8
provided in the next section, where we consider paths that include data corrupting
and packet dropping communication links.

4.3. A General Characterization of Paths with Data Corruption and
Packet Drops. In this section we investigate the effects of both data corruption
and packet dropouts. Without loss of generality, we assume that links on a path are
either data-corrupting or packet-dropping, but not both. Note that if in the original
network, a link (v, w) is subject to both of the issues, we can artificially add a node
v′ and edges (v, v′), (v′, w) to the graph, and consider (v, v′) as a packet-dropping
link and (v′, w) as a data-corrupting link.

For a data-corrupting link (v, w), packets available at v are always transmitted
to w, but their content may be externally manipulated or damaged during the
transmission over this link. On the other hand, if (v, w) is a packet-dropping link,
packets available at v may or may not be received by w, but never get corrupted
on the communication link (v, w).

Our goal here is to obtain a relation between the asymptotic packet failure ratio
of path Pi and the failure ratios of the links on that path. To this end, we will
use a recursive characterization for describing packet failures on paths. Specifically,
consider a path

P ,
(
(v1, v2), (v2, v3), . . . , (vh, vh+1)

)
(33)
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of h ≥ 1 links, and consider the associated process {lP(t) ∈ {0, 1}}t∈N0. The state
lP(t) = 0 indicates that the (t + 1)th packet that the first node v1 possesses can
be successfully transmitted to the last node vh+1, whereas lP(t) = 1 indicates a
failure.

If h = 1 in (33), then we have lP(t) = l
(v1,v2)
P (t), t ∈ N0. Now consider the

case h ≥ 2, and let f(P) and R(P) respectively denote the first link on P , and the
subpath composed of the rest of the links, that is,

f(P) = (v1, v2),(34)

R(P) =
(
(v2, v3), . . . , (vh, vh+1)

)
.(35)

We illustrate f(P) and R(P) on the left side of Fig. 2.

Next, we show that transmission failures on a path P can be characterized

through transmission failures on the link f(P) and the subpath R(P). Let {l
f(P)
P (t) ∈

{0, 1}}t∈N0 and {l
R(P)
P (t) ∈ {0, 1}}t∈N0 denote indicators of transmission failures

on the link f(P) and the subpath R(P). If the link f(P) = (v1, v2) is a data-

corrupting link, then we would have lP(t) = l
f(P)
P (t) ∨ l

R(P)
P (t). But this relation

does not hold if f(P) is a packet-dropping link, because the index t for l
f(P)
P (t) and

l
R(P)
P (t) represent different packets.

Now, we will introduce a new process {l̂
R(P)
P (t) ∈ {0, 1}}t∈N0 for which

lP(t) = l
f(P)
P (t) ∨ l̂

R(P)
P (t), t ∈ N0.(36)

If f(P) is a data-corrupting link, then we define l̂
R(P)
P (·) by setting l̂

R(P)
P (t) =

l
R(P)
P (t), t ∈ N0. On the other hand, if f(P) is a packet-dropping link, then for
t ∈ N0,

l̂
R(P)
P (t) ,

{
0, if l

f(P)
P (t) = 1,

l
R(P)
P

(
k̂(t+ 1)− 1

)
, if l

f(P)
P (t) = 0,

(37)

where k̂(t) ,
∑t−1

i=0(1 − l
f(P)
P (i)), t ∈ N. In this definition, k̂(t + 1) denotes the

number of packets that are successfully transmitted from node v1 to node v2 among

the first t+1 packets that node v1 possesses. Hence, the scalar k̂(t+1)−1 represents

the index of the k̂(t + 1)th packet received by v2. Moreover, l
R(P)
P

(
k̂(t + 1) − 1

)

indicates whether this packet is successfully transmitted from v2 over R(P) to vh+1.

Observe that by (37), l̂
R(P)
P (t) is set to 0, if v1 drops the (t+1)th packet that it

possesses. On the other hand, if v1 transmits this packet to v2, the state l̂
R(P)
P (t) =

1 indicates that further transmission of this packet on subpath R(P) has failed,

whereas l̂
R(P)
P (t) = 0 indicates success. As a result, we have lP(t) = l

f(P)
P (t) + (1−

l
f(P)
P (t))l̂

R(P)
P (t), and hence, (36) holds.

The characterization above is recursive in the sense that it is recursively applied
to describe failures on R(P) by means of failures on the first link f(R(P)) and the
subpath R(R(P)).

Example 4.6. In Fig. 2, we see a path P, its packet-dropping first link f(P) =

(v1, v2), and its subpath R(P), together with sample trajectories of l
f(P)
P (·), l̂

R(P)
P (·),

l
R(P)
P (·) and lP(·). Note that the link f(P) = (v1, v2) drops the first two packets, that

is, l
f(P)
P (t) = 1 for t ∈ {0, 1}. By (37), we have l̂

R(P)
P (0) = l̂

R(P)
P (1) = 0, and as
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Figure 2. [Left] Paths P , R(P), and packet-dropping link f(P).

[Right] Trajectories of l
f(P)
P

(·), l̂
R(P)
P

(·), l
R(P)
P

(·) and lP(·).

a consequence of (36), lP(0) = lP(1) = 1. Furthermore, the link f(P) successfully

transmits the 3rd packet, i.e, l
f(P)
P (2) = 0. The value of l̂

R(P)
P (2) represents whether

this packet is successfully transmitted over the subpath R(P) or not. Since this
packet is the first packet that v2 receives, its transmission state is represented by

lR(P)(0), and as a result, l̂
R(P)
P (2) = l

R(P)
P (0). We have l̂

R(P)
P (2) = l

R(P)
P (0) = 0,

indicating successful transmission over R(P). Now, by (36), lP(2) = 0, which
indicates that the 3rd packet possessed by the first node v1 is successfully transmitted
to the last node vh+1.

The following result is essential for characterizing the failures on path P through
those on the first link f(P) and the subpath R(P). We obtain the result by first

establishing the key inequality
∑k−1

t=0 l̂
R(P)
P (t) ≤

∑k−1
t=0 l

R(P)
P (t), and then applying

some of the arguments that we employed for proving Proposition 4.1.

Lemma 4.7. Consider path P given in (33) for h ≥ 1. Assume l
f(P)
P ∈ Λ

ρ
f(P)
P

and

l
R(P)
P ∈ Λ

ρ
R(P)
P

with scalars ρ
f(P)
P , ρ

R(P)
P ∈ [0, 1], such that ρ

f(P)
P + ρ

R(P)
P ≤ 1. It

follows that lP ∈ ΛρP with ρP = ρ
f(P)
P + ρ

R(P)
P .

Proof. We will first show that l̂
R(P)
P ∈ Λ

ρ
R(P)
P

. If f(P) is a data-corrupting link,

we have l̂
R(P)
P (t) = l

R(P)
P (t), t ∈ N0, and therefore l̂

R(P)
P ∈ Λ

ρ
R(P)
P

. Now consider

the situation where f(P) is a packet-dropping link. For this case,

k−1∑

t=0

l̂
R(P)
P (t) =

{
0, k̂(k) = 0,
∑k̂(k)−1

t=0 l
R(P)
P (t), k̂(k) 6= 0,

k ∈ N.

Since k̂(k) ≤ k and lR(P)(t) ≥ 0, we have
∑k̂(k)−1

t=0 l
R(P)
P (t) ≤

∑k−1
t=0 l

R(P)
P (t), and

hence,
∑k−1

t=0 l̂
R(P)
P (t) ≤

∑k−1
t=0 l

R(P)
P (t). It follows that

P[
k−1∑

t=0

l̂
R(P)
P (t) > ρ

R(P)
P k] ≤ P[

k−1∑

t=0

l
R(P)
P (t) > ρ

R(P)
P k].

Now, as l
R(P)
P ∈ Λ

ρ
R(P)
P

, we also have l̂
R(P)
P ∈ Λ

ρ
R(P)
P

.
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Finally, since (36) holds, we have lP(t) ≤ l
f(P)
P (t) + l̂

R(P)
P (t), t ∈ N0. Hence,

P[

k−1∑

t=0

lP(t) > ρPk] ≤ P[

k−1∑

t=0

l
f(P)
P (t) +

k−1∑

t=0

l̂
R(P)
P (t) > ρPk]

= P[
k−1∑

t=0

l
f(P)
P (t) +

k−1∑

t=0

l̂
R(P)
P (t) > (ρ

f(P)
P + ρ

R(P)
P )k]

≤ P[
k−1∑

t=0

l
f(P)
P (t) > ρ

f(P)
P k] + P[

k−1∑

t=0

l̂
R(P)
P (t) > ρ

R(P)
P k].(38)

It then follows from (38) together with
∑∞

k=1 P[
∑k−1

t=0 l
f(P)
P (t) > ρ

f(P)
P k] < ∞ and∑∞

k=1 P[
∑k−1

t=0 l̂
R(P)
P (t) > ρ

R(P)
P k] < ∞ that

∑∞
k=1 P[

∑k−1
t=0 lP(t) > ρPk] < ∞,

which completes the proof. �

Now, for a given path Pi, repeated application of Lemma 4.7 to Pi, R(Pi),
R(R(Pi)), . . ., leads us to the following result.

Theorem 4.8. Assume l
Pi,j

Pi
∈ Λ

ρ
Pi,j

Pi

with ρ
Pi,j

Pi
∈ [0, 1], j ∈ {1, . . . , |Pi|}, that

satisfy
∑|Pi|

j=1 ρ
Pi,j

Pi
≤ 1. Then lPi

∈ ΛρPi
with ρPi

,
∑|Pi|

j=1 ρ
Pi,j

Pi
.

Note that Theorem 4.8 allows us to consider both data-corruption and packet-
dropouts on links, and hence it generalizes Proposition 4.1.

Remark 4.9. By utilizing Theorem 4.8 together with Proposition 3.2, we can obtain
ρG, ρG̃ ∈ [0, 1] as upper-bounds for the average number of packet exchange failures

on networks G and G̃ such that lG ∈ ΛρG
and lG̃ ∈ ΛρG̃

. Note that when lG(t) = 1,
then the controller either does not receive the state packet or receives corrupted
versions, which are discarded. Hence, when lG(t) = 1, no control input packet is

attempted to be transmitted on G̃. This setting is similar to the situation that we
discussed above for packet dropping links. Here we can consider the whole networked
system as a path P from node vP to node ṽP, where lG(·) corresponds to the indicator
for the first packet dropping link (f(P)) and lG̃(·) corresponds to packet transmission
failure indicator for the rest of the path (R(P)). Hence, by arguments similar to
the ones used above, we can show that if ρG+ρG̃ ≤ 1, then l ∈ Λρ with ρ = ρG+ρG̃.
This ρ value is utilized for stability analysis with Theorem 2.3.

5. Illustrative Numerical Examples

In this section, we present illustrative examples to demonstrate the utility of our
results in the characterization of communication failures on multi-hop networks. We
also investigate the effects of those failures on the stability of a multi-hop networked
control system.

Consider the networked control system (1), (2) with

A =

[
1 0.1

−0.5 1.1

]
, B =

[
0.1
1.2

]
, K =

[
−2.9012 −0.9411

]
(39)

together with the networks G and G̃ in Fig. 1. This system was explored previously
in [33] with a single channel network model. Here, differently from [33], we consider

networks G and G̃ that incorporate multiple paths and multiple links for packet
transmissions.
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In what follows, we investigate various scenarios where we demonstrate the utility
of our results in Sections 3 and 4 for characterizing overall network failures. For
each different scenario, our goal is to find out the level of transmission failures that
can be tolerated on the communication links so that the stability of the system (1),
(2) is guaranteed.

5.1. Data corruption/packet dropout issues on both networks G and G̃.

Consider the scenario where all links on both networks G and G̃ are subject to
malicious/nonmalicious data corruption or packet dropout issues. We explore the
general situation where the failures may depend on each other. For this general
setup, we can use Proposition 3.2 and Theorem 4.8 for the characterization of the
overall transmission failures between the plant and the controller. As explained in
Remark 4.9, the overall packet exchange failure process l(·) satisfies Assumption 2.2
with ρ = ρG + ρG̃. Here, ρG and ρG̃ are asymptotic failure ratios for the networks

G and G̃, that is, lG ∈ ΛρG
, lG̃ ∈ ΛρG̃

.
To find the values of ρG and ρG̃, we can use Proposition 3.2 and Theorem 4.8. In

particular, by Proposition 3.2 and Theorem 4.8, we obtain ρG = mini∈{1,...,c=3} ρPi

where ρPi
=

∑|Pi|
j=1 ρ

Pi,j

Pi
. Similarly, we have ρG̃ = mini∈{1,...,c̃} ρP̃i

and ρP̃i
=

∑|P̃i|
j=1 ρ

P̃i,j

P̃i
, where c̃ = 4 is the number of paths (denoted by P̃i) from the controller

node ṽC to the plant node ṽP on the network G̃. Consequently, Assumption 2.2
holds with

ρ = min
i∈{1,...,c}

|Pi|∑

j=1

ρ
Pi,j

Pi
+ min

i∈{1,...,c̃}

|P̃i|∑

j=1

ρ
P̃i,j

P̃i
.

The effect of the asymptotic packet failure ratios ρ
Pi,j

Pi
, ρ

P̃i,j

P̃i
on the stability of

the networked system can be analyzed by using Theorem 2.3. First, we identify
the values of asymptotic packet exchange failure ratio ρ in Assumption 2.2, for
which the stability conditions (3)–(5) hold. For this numerical example, there
exist a positive-definite matrix P and scalars β ∈ (0, 1), ϕ ∈ [1,∞) that satisfy
(3)–(5), when ρ is less than 0.411. Hence, Theorem 2.3 guarantees that the zero
solution of the closed-loop system (1), (2) is asymptotically stable almost surely if
the asymptotic packet transmission failure ratios satisfy

min
i∈{1,...,c}

|Pi|∑

j=1

ρ
Pi,j

Pi
+ min

i∈{1,...,c̃}

|P̃i|∑

j=1

ρ
P̃i,j

P̃i
≤ 0.411.(40)

The system operator can guarantee (40) by ensuring that at least one path in
each network is sufficiently secure and reliable. In particular, if there exist a

path Pi∗ in network G and a path P̃i∗ in network G̃ such that
∑|Pi∗ |

j=1 ρ
Pi∗,j

Pi∗
+

∑|P̃i∗ |
j=1 ρ

P̃i∗,j

P̃i∗
≤ 0.411, then (40) holds and the stability is guaranteed regardless of

the security/reliability of all other paths. Another approach to guarantee (40) is
to ensure a certain level of security/reliability for all links. For this example, if

all links are sufficiently secure and reliable so that ρ
Pi,j

Pi
, ρ

P̃i,j

P̃i
≤ ρ , 0.411

6 , then

(40) holds and the stability is guaranteed. To see this, first note that the network
G contains 3 paths, and the number of links on these paths are given by 2, 3, 3.
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Figure 3. Paths from the plant node vP to the controller node vC in
network G

Figure 4. Paths from the controller node ṽC to the plant node ṽP in
network G̃

Furthermore, the network G̃ contains 4 paths, each of which contains 4 links. It
follows that

min
i∈{1,...,c}

|Pi|∑

j=1

ρ
Pi,j

Pi
+ min

i∈{1,...,c̃}

|P̃i|∑

j=1

ρ
P̃i,j

P̃i
≤ min

i∈{1,...,c}

|Pi|∑

j=1

ρ+ min
i∈{1,...,c̃}

|P̃i|∑

j=1

ρ

= min{2ρ, 3ρ, 3ρ}+min{4ρ, 4ρ, 4ρ, 4ρ} = 6ρ ≤ 0.411,

which implies that (40) holds, and hence stability is guaranteed.
Notice that in this example, we have not made any particular assumption on

the independence or randomness of the failures on the links. In fact, all links may
be subject to failures caused by actions of coordinated adversaries. In such a case,
the occurrence of the failures may be nonrandom, and moreover, the binary-valued
processes that characterize failures on different links would depend on each other.
For example, in the case of data-corruption attacks, the worst-case scenario would
be that the failures on the paths are synchronized so that packet transmissions
necessarily fail in all parallel paths (such as paths P1, P2, and P3 of the graph

G) at the same time. Notice that the condition ρ
Pi,j

Pi
, ρ

P̃i,j

P̃i
≤ ρ guarantees that

such failures happen sufficiently rarely in average in the long run. Thus, networked
stabilization can be achieved through the successful exchanges of measurement and
control data.

In the following examples, we will illustrate how our results in Sections 3 and 4
can be used for scenarios where some information on the properties of the commu-
nication links are available.
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5.2. Jamming Attacks and Random Transmission Failures on Multiple
Links. Consider the network G and its paths shown in Fig. 3. We assume that
the paths P1 and P3 are subject to malicious attacks. In particular, the node v3
on P3 is assumed to be controlled by a malicious agent and all packets arriving

at node v3 are dropped. Hence, we have l
P3,2

P3
(t) = 1, t ∈ N0, which implies that

lP3(t) = 1, t ∈ N0. Moreover, the first and the second links on path P1 are assumed
to be subject to jamming attacks that cause data corruption. Here the worst-case
scenario happens when the attackers coordinate and jam only one of the links at
once. This would maximize the number of packet losses within the total energy
constraint of the attackers. Our results take this worst-case into account.

In particular, suppose that the attacked links P1,1 and P1,2 satisfy l
P1,1

P1
∈ Πκ,w,

l
P1,2

P1
∈ Πκ,w with κ ≥ 0 and w ∈ (0, 1). Here, w provides a bound on average

failures on each link and it is related to the energy available to each attacker. The

fact that l
P1,1

P1
∈ Πκ,w, l

P1,2

P1
∈ Πκ,w implies l

P1,1

P1
∈ Λ

ρ
P1,1
P1

, l
P1,2

P1
∈ Λ

ρ
P1,2
P1

for all

ρ
P1,1

P1
, ρ

P1,1

P1
∈ (w, 1]. It then follows from Proposition 4.1 that ρP1 = ρ

P1,1

P1
+ ρ

P1,1

P1
,

and hence lP1 ∈ ΛρP1
for ρP1 ∈ (2w, 1]. Notice that lP1 ∈ ΛρP1

holds even in the
worst-case scenario mentioned above. Here ρP1 ∈ (2w, 1] provides an upper-bound
on the average number of overall failures on path P1 in the worst-case scenario.

We further assume that the link (v4, vC) on path P2 is subject to random data

corruption and the associated failure indicator process {l
P2,3

P2
(t) ∈ {0, 1}}t∈N0 sat-

isfies l
P2,3

P2
∈ Γp0,p1 with p0, p1 ∈ (0, 1). We consider ideal communication on the

other links on path P2. Thus, by using (25), we obtain

lP2(t) = l
P2,1

P2
(t) ∨ l

P2,2

P2
(t) ∨ l

P2,3

P2
(t) = 0 ∨ 0 ∨ l

P2,3

P2
(t) = l

P2,3

P2
(t), t ∈ N0,

and hence we also have lP2 ∈ Γp0,p1 .
To characterize overall failures on network G, we use (14) and obtain

lG(t) = lP1(t) ∧ lP2(t) ∧ lP3(t) = lP1(t) ∧ lP2(t) ∧ 1 = lP1(t) ∧ lP2(t), t ∈ N0.

Now, assuming that the failures on paths P1 and P2 are mutually-independent, it

follows from Theorem 3.4 with l(1)(t) = lP2(t), l
(2)(t) = lP1(t), p

(1)
0 = p0, p

(1)
1 = p1,

and ρ(2) = ρP1 that if p1ρP1 < 1, then lG ∈ ΛρG
with ρG ∈ (p1ρP1 , 1]. Noting that

ρP1 ∈ (2w, 1], we see that if 2p1w < 1, then lG ∈ ΛρG
for all ρG ∈ (2p1w, 1].

Next, consider the network G̃. Suppose that G̃ is secure against attacks, but
it is unreliable and subject to random transmission failures. To characterize the
overall transmission failures on the network G̃, we utilize Theorems 3.3 and 4.2.
Before we apply these results, we first describe the routing scheme on this network.
Specifically, in this network ṽ3 is assumed to be a router that forwards all incoming
packets from node ṽ1 only to node ṽ5, and all incoming packets from node ṽ2 only
to node ṽ4. Among the paths shown in Fig. 4, packets may be transmitted on P̃1

and P̃2, but are never transmitted on P̃3 and P̃4 due to the routing scheme. Hence
lP̃3

(t) = 1, lP̃4
(t) = 1, t ∈ N0.

We assume that the links (ṽ1, ṽ3) and (ṽ3, ṽ5) on path P̃1 and the links (ṽ2, ṽ3)

and (ṽ3, ṽ4) on P̃2 face random data corruption issues. Furthermore, the failure

indicator processes {l
(ṽ1,ṽ3)

P̃1
(t) ∈ {0, 1}}t∈N0, {l

(ṽ3,ṽ5)

P̃1
(t) ∈ {0, 1}}t∈N0, {l

(ṽ2,ṽ3)

P̃2
(t) ∈

{0, 1}}t∈N0, {l
(ṽ3,ṽ4)

P̃2
(t) ∈ {0, 1}}t∈N0 are assumed to be mutually independent pro-

cesses that belong to the hidden Markov model class Γp0,p1 with p0, p1 ∈ (0, 1) (see
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Definition 2.4). The links that are connected directly to the plant and the controller
nodes (ṽP and ṽC) are considered to be ideal communication links. In other words,

l
P̃i,1

P̃i
(t) = 0, l

P̃i,4

P̃i
(t) = 0, t ∈ N0, i ∈ {1, 2}.

Now, observe that the failure indicators for paths P̃1 and P̃2 satisfy

lP̃i
(t) = l

P̃i,1

P̃i
(t) ∨ l

P̃i,2

P̃i
(t) ∨ l

P̃i,3

P̃i
(t) ∨ l

P̃i,4

P̃i
(t) = 0 ∨ l

P̃i,2

P̃i
(t) ∨ l

P̃i,3

P̃i
(t) ∨ 0

= l
P̃i,2

P̃i
(t) ∨ l

P̃i,3

P̃i
(t), t ∈ N0, i ∈ {1, 2}.

By applying Theorem 4.2 with l(1)(t) = l
P̃i,2

P̃i
(t), l(2)(t) = l

P̃i,3

P̃i
(t), p

(1)
0 = p

(2)
0 = p0,

and p
(1)
1 = p

(2)
1 = p1, we obtain lP̃i

∈ Γp̃0,p̃1 , i ∈ {1, 2}, where p̃0 = p20 and

p̃1 = min{p1 + p0p1, p1 + p0p1, 1} = min{p1 + p0p1, 1}.
Next, since lP̃3

(t) = 1, lP̃4
(t) = 1, t ∈ N0, we have

lG̃(t) = lP̃1
(t) ∧ lP̃2

(t) ∧ lP̃3
(t) ∧ lP̃4

(t) = lP̃1
(t) ∧ lP̃2

(t) ∧ 1 ∧ 1 = lP̃1
(t) ∧ lP̃2

(t),

for t ∈ N0. It then follows from Theorem 3.3 with l(1)(t) = lP̃1
(t), l(2)(t) = lP̃2

(t),

p
(1)
0 = p

(2)
0 = p20, and p

(1)
1 = p

(2)
1 = min{p1 + p0p1, 1}, that we have lG̃ ∈ Γ

pG̃
0 ,pG̃

1

with

pG̃0 = min{p
(1)
0 + p

(1)
1 p

(2)
0 , p

(2)
0 + p

(2)
1 p

(1)
0 , 1} = min{p

(1)
0 + p

(1)
1 p

(2)
0 , 1}

= min{p20 +min{p1 + p0p1, 1}p
2
0, 1} = min{p20 +min{p20p1 + p30p1, p

2
0}, 1}

= min{min{p20 + p20p1 + p30p1, 2p
2
0}, 1} = min{p20 + p20p1 + p30p1, 2p

2
0, 1}

and pG̃1 = p
(1)
1 p

(2)
1 = (min{p1+p0p1, 1})2 = min{(p1+p0p1)2, 1}. Finally, in the case

where (p1 + p0p1)
2 < 1, as a consequence of Proposition 2.5, we obtain lG̃ ∈ Λρ̃G

for ρG̃ ∈ (pG̃1 , 1] = ((p1 + p0p1)
2, 1].

Now, we note once again that the overall packet exchange failure indicator {l(t) ∈
{0, 1}}t∈N0 satisfies l ∈ Λρ with ρ = ρG + ρG̃. Since ρG ∈ (2p1w, 1] and ρG̃ ∈
((p1 + p0p1)

2, 1], it follows that if 2p1w + (p1 + p0p1)
2 < 1, then l ∈ Λρ with

ρ ∈ (2p1w+(p1+p0p1)
2, 1]. As we discussed in Section 5.1, stability of the networked

control system can be ensured when ρ ≤ 0.411. It follows that if

2p1w + (p1 + p0p1)
2 < 0.411,(41)

then l ∈ Λρ holds with ρ = 0.411, implying almost sure asymptotic stability of the
networked control system. Observe that by utilizing the results in Sections 3 and
4, we are able to derive the sufficient stability condition (41) in terms of the attack
rate w ∈ (0, 1) associated with the links on path P1 that are attacked by jamming
attackers as well as random failure parameters p0, p1 ∈ (0, 1).

5.3. State-dependent Attacks by a Malicious Node. In the scenarios dis-
cussed in Sections 5.1 and 5.2, the strategies of the attackers are not specified.
However, in certain cases an attacker may have access to the state or control input
information and be able to directly cause transmission failures between the plant
and the controller. In such scenarios, the goal of the attacker might be to increase
state norm with small amount of attacks. In this section, our goal is to illustrate
such an attack strategy. In particular, we consider the case where the plant node
vP is compromised by an attacker. The attacker is assumed to have access to the
state information.
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We consider an attack strategy that is based on an optimization problem. In par-
ticular, the attacker at node vP decides whether to transmit the state information on
links P1,1 = (vP, v1), P2,1 = (vP, v2), and P3,1 = (vP, v3) after solving an optimiza-
tion problem for maximizing the norm of the state at a future time. In particular,
we consider the attack strategy (10), (11) discussed in Example 2.8, where we rep-
resent the attackers actions with a binary-valued process {lA(t) ∈ {0, 1}}t∈N0. In
the case where lA(t) = 0, the attacker transmits the state packet on P1,1 = (vP, v1),
P2,1 = (vP, v2), and P3,1 = (vP, v3); moreover, lA(t) = 1 indicates no transmission.

Observe that in this scenario, we have

l
P1,1

P1
(t) =l

P2,1

P2
(t) = l

P1,1

P1
(t) = lA(t), t ∈ N0.

Since lA ∈ Πκ,w, we have lA ∈ ΛρA with ρA ∈ (w, 1]. As a consequence, l
Pi,1

Pi
∈

Λ
ρ
Pi,1
Pi

with ρ
Pi,1

Pi
∈ (wA, 1] for all i ∈ {1, 2, 3}. Notice that lA(t) = 1 implies l(t) = 1,

since the attacker can completely prevent the packet exchange between the plant
and the controller. Observe also that if there are other sources of transmission
failures on the network, then there may be times when l(t) = 1 even if lA(t) = 0.
As a result, if lA(t) = 0 then the attacker may not be able to correctly predict the
state x(t + 1) at time t, as there may or may not be a failure in the network that
prevents control input to reach the plant. However, as the optimization problem in
(11) is solved at each time step, the updated state information is used for decision.

Notice that in the case where all links other than P1,1 = (vP, v1), P2,1 = (vP, v2),
and P3,1 = (vP, v3) are secure and reliable, we have lG(t) = lA(t), since

lG(t) = lP1(t) ∧ lP2(t) ∧ lP3(t) = l
P1,1

P1
(t) ∧ l

P2,1

P2
(t) ∧ l

P3,1

P3
(t)

= lA(t) ∧ lA(t) ∧ lA(t) = lA(t), t ∈ N0.

Hence, lG ∈ ΛρG
with ρG ∈ (w, 1].

Now suppose that the network G̃ also faces failures. In particular, consider the

setup in Section 5.2, where lG̃ ∈ Λρ̃G
for ρG̃ ∈ (pG̃1 , 1] = ((p1 + p0p1)

2, 1]. Since
l ∈ Λρ with ρ = ρG+ρG̃, we have l ∈ Λρ for all ρ ∈ (w+(p1+p0p1)

2, 1]. Noting that
the stability of the networked control system can be ensured when ρ ≤ 0.411, we
can impose a sufficient condition on the attack rate w. Specifically, for the scenario
of this section, if

w + (p1 + p0p1)
2 < 0.411,(42)

then l ∈ Λρ holds with ρ = 0.411, and thus the networked control system is almost
surely asymptotically stable.

To illustrate the effect of different parameters in the attack strategy (11), we
conduct simulations. First, we generate 50 sample trajectories of the process lG̃ by

setting the failure processes l
P̃i,2

P̃i
, l

P̃i,3

P̃i
, i ∈ {1, 2}, as outputs of time-inhomogeneous

hidden Markov models such that

l
P̃i,j

P̃i
(t) = θi,j(t), t ∈ N0, i ∈ {1, 2}, j ∈ {2, 3},(43)
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Figure 5. Comparison of state trajectories for different values of N
in (11)

where {θi,j(t) ∈ Θl = {0, 1}}t∈N0 is an Ft-adapted finite-state time-inhomogeneous
Markov chain with initial distributions and time-varying transition probability func-
tions satisfying P[θi,j(0) = 0] = 0.6 and

P[θi,j(t+ 1) = 1|θi,j(t) = 0] = 0.2 + 0.02 cos2(0.1t),

P[θi,j(t+ 1) = 1|θi,j(t) = 1] = 0.2 + 0.02 sin2(0.2t),

for t ∈ N0, i ∈ {1, 2}, j ∈ {2, 3}. Notice that l
P̃i,2

P̃i
, l

P̃i,3

P̃i
∈ Γp0,p1 , i ∈ {1, 2}, with

p0 = 0.8, p1 = 0.22. Next, for each sample trajectory of lG̃, we simulate the
networked control system (1), (2) under the attack strategy (11). In Fig. 5, we
show state trajectories when attack parameters are selected as w = 0.25 and κ = 1.
In top part of Fig. 5, the horizon parameter N = 2, and in the bottom part N = 10.
Observe that with larger horizon variable, the attacker following the strategy (11)
can utilize the resources more efficiently so that in certain sample state trajectories
the state norm is set to larger values for longer durations even though in both
cases N = 2 and N = 10, the attack belongs to the same class Πκ,w. Notice that
with p0 = 0.8, p1 = 0.22, and w = 0.25, the inequality (42) holds. Therefore, the
zero solution of the closed-loop system is almost surely asymptotically stable by
Theorem 2.3.

For w = 0.25, κ = 1, and N = 2, we show in Fig. 6 the average number of failures
on the networks G̃ and G as well as the average number of total packet exchange
failures between the plant and the controller. These averages are upper bounded in
the long run by certain scalars. In particular, for a process l that satisfies l ∈ Λρ with

ρ ∈ (ρ, 1], we have lim supk→∞
1
k

∑k−1
t=0 l(t) ≤ ρ (see Lemma 3.3 in [33]). As a result,

we have lim supk→∞
1
k

∑k−1
t=0 lG̃(t) ≤ (p1 + p0p1)

2, lim supk→∞
1
k

∑k−1
t=0 lG(t) ≤ w,

and lim supk→∞
1
k

∑k−1
t=0 l(t) ≤ w + (p1 + p0p1)

2.
Next, we consider the case where κ = 10, which corresponds to the case where

the attacker has more initial resources. In this case, we consider two scenarios
w = 0.25 and w = 0.75, for which we obtain the sample state trajectories shown
in Fig. 7. First, notice that in the case with κ = 10, w = 0.25 (top plot in Fig. 7),
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Figure 6. Average number of failures on networks G̃ and G together
with average number of overall packet exchange failures
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Figure 7. Comparison of state trajectories for different values of w in (10)

the state grows to larger values for longer durations in comparison to the case with
κ = 1, w = 0.25 (top plot in Fig. 5). In both cases, the stability conditions hold
with w = 0.25, and therefore the state eventually converges to zero as guaranteed
by Theorem 2.3. Note that, when w is set to larger values, the attacker can attack
at a higher rate. For this example, we set w = 0.75 and observe that for such a
high attack rate all sample state trajectories diverge (see bottom plot in Fig. 7).
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6. Conclusion

In this paper, we explored state feedback control of a linear plant over an unre-
liable network that may also face malicious attacks. We developed a probabilistic
approach to characterize the failures on the network in terms of the failures on
different paths between the plant and the controller. We showed that the failures
on each path can be described as a combination of data-corruption and packet-
dropout failures on the communication links of that particular path. We obtained
sufficient conditions for almost sure asymptotic stability of the overall networked
control system, which allow us to check stability by using a probabilistic upper-
bound obtained for the average number of packet exchange failures between the
plant and the controller.

Our framework can take into account mutual independence/dependence rela-
tionships between the failures on different links and paths of a network, and as a
result, it can provide relatively tight upper bounds for the long run average num-
ber of overall transmission failures on a network. This is achieved by utilizing
upper bounds on the tail probabilities of sums involving a binary-valued process
from a general class together with a binary-valued output process associated with
a time-inhomogeneous hidden Markov model.

Appendix A. Proof of Lemma 2.6

In this section, we prove Lemma 2.6. As in the proof of Lemma A.1 of [33], for
proving Lemma 2.6, we use Markov’s inequality and follow the approaches used for
obtaining Chernoff-type tail distribution inequalities for sums of random variables
(see Appendix B of [48] and Section 1.9 of [43]). In the proof Lemma 2.6, the
following result also plays a key role.

Lemma A.1. Let {ξ(t) ∈ Ξ}t∈N0 be a finite-state time-inhomogeneous Markov
chain with transition probabilities pq,r : N0 → [0, 1], q, r ∈ Ξ. Furthermore, let

Ξ1 ⊂ Ξ be given by Ξ1 , {r ∈ Ξ: h(r) = 1}, where h : Ξ → {0, 1} is a binary-valued
function. Then for all φ > 1, s ∈ N, and p̃ ∈ [0, 1] such that

∑

r∈Ξ1

pq,r(t) ≤ p̃, q ∈ Ξ, t ∈ N0,(44)

we have

E[φ
∑s

j=1 h(ξ(tj))] ≤ φ ((φ− 1)p̃+ 1)s−1
,(45)

where t1, t2, . . . , ts ∈ N0 denote indices such that 0 ≤ t1 < t2 < . . . < ts.

Proof. We use induction to show (45). First, we consider the case where s = 1. In
this case, we have

E[φ
∑s

j=1 h(ξ(tj))] = E[φh(ξ(t1))] ≤ φ.(46)

Next, consider the case where s = 2. Observe that t1 ≤ t2 − 1, thus the random
variable ξ(t1) is Ft2−1-measurable. Consequently,

E[φ
∑s

j=1 h(ξ(tj))] = E[φh(ξ(t1))φh(ξ(t2))] = E[E[φh(ξ(t1))φh(ξ(t2)) | Ft2−1]]

= E[φh(ξ(t1))E[φh(ξ(t2)) | Ft2−1]],(47)



36 CHARACTERIZATION OF FAILURES IN MULTI-HOP NETWORKED CONTROL

where the last equality follows from the fact that φh(ξ(t1)) is a measurable function
of ξ(t1), and hence, it is Ft2−1-measurable. Now, since {ξ(t) ∈ Ξ}t∈N0 is a Markov
chain, we have E[φh(ξ(t2)) | Ft2−1] = E[φh(ξ(t2)) | ξ(t2 − 1)]. Therefore,

E[φ
∑s

j=1 h(ξ(tj))] = E[φh(ξ(t1))E[φh(ξ(t2)) | ξ(t2 − 1)]]

= E

[
φh(ξ(t1))

(
φP[h(ξ(t2)) = 1 | ξ(t2 − 1)] + P[h(ξ(t2)) = 0 | ξ(t2 − 1)]

)]

= E

[
φh(ξ(t1))

(
φP[h(ξ(t2)) = 1 | ξ(t2 − 1)] + 1− P[h(ξ(t2)) = 1 | ξ(t2 − 1)]

)]

= E

[
φh(ξ(t1))

(
(φ − 1)P[h(ξ(t2)) = 1 | ξ(t2 − 1)] + 1

)]
.

(48)

Here we obtain P[h(ξ(t2)) = 1 | ξ(t2−1)] = P[ξ(t2) ∈ Ξ1|ξ(t2−1)] =
∑

r∈Ξ1
P[ξ(t2) =

r|ξ(t2 − 1)]. Thus, by using (44) and (46), we arrive at

E[φ
∑s

j=1 h(ξ(tj))]
)]

≤ E

[
φh(ξ(t1))

(
(φ− 1)p̃+ 1

)]
= E[φh(ξ(t1))]((φ − 1)p̃+ 1)

≤ φ((φ − 1)p̃+ 1).(49)

Hence, we have that (45) is satisfied for s ∈ {1, 2}.
Now, assume that (45) holds for s = s̃ > 2, i.e.,

E[φ
∑s̃

j=1 h(ξ(tj))] ≤ φ ((φ− 1)p̃+ 1)
s̃−1

.(50)

We will to prove that (45) holds for s = s̃+ 1. By employing arguments similar to
those used for obtaining (47)–(49), we get

E[φ
∑s̃+1

j=1 h(ξ(tj))] = E[φ
∑s̃

j=1 h(ξ(tj))φh(ξ(ts̃+1))]

= E[E[φ
∑s̃

j=1 h(ξ(tj))φh(ξ(ts̃+1)) | Fts̃+1−1]]

= E[φ
∑s̃

j=1 h(ξ(tj))E[φh(ξ(ts̃+1)) | Fts̃+1−1]]

= E[φ
∑s̃

j=1 h(ξ(tj))E[φh(ξ(ts̃+1)) | ξ(ts̃+1 − 1)]] ≤ E[φ
∑s̃

j=1 h(ξ(tj))]((φ − 1)p̃+ 1).

(51)

Finally, by (50) and (51), we obtain (45) with s = s̃+ 1. �

Next, by utilizing Lemma A.1, we prove Lemma 2.6.

Proof of Lemma 2.6. First, we define

h(k) , [h(ξ(0)), h(ξ(1)), . . . , h(ξ(k − 1))]T,

χ(k) , [χ(0), χ(1), . . . , χ(k − 1)]T, k ∈ N.

Next, let Fs,k , {χ ∈ {0, 1}k : χTχ = s}, s ∈ {0, 1, . . . , k}, k ∈ N. Here, we have
Fs1,k ∩ Fs2,k = ∅, s1 6= s2, and moreover, P[χ(k) ∈ ∪k

s=0Fs,k] = 1, k ∈ N. By
utilizing these definitions we obtain for all ρ ∈ (p̃w̃, 1) and k ∈ N,

P[

k−1∑

t=0

h(ξ(t))χ(t) > ρk] = P[h
T
(k)χ(k) > ρk]

=

k∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ(k) > ρk | χ(k) = χ]P[χ(k) = χ].(52)
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Since ξ(·) and χ(·) are mutually-independent,

P[h
T
(k)χ(k) > ρk | χ(k) = χ] = P[h

T
(k)χ > ρk].(53)

Therefore, it follows from (52) and (53) that for k ∈ N,

P[

k−1∑

t=0

h(ξ(t))χ(t) > ρk] =

k∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ]

=

⌊w̃k⌋∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ]

+

k∑

s=⌊w̃k⌋+1

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ].(54)

In what follows, our goal is to find upper bounds for the two summation terms

in (54). We start with the second term. Since P[h
T
(k)χ > ρk] ≤ 1, k ∈ N, we

obtain

k∑

s=⌊w̃k⌋+1

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ]

≤
k∑

s=⌊w̃k⌋+1

∑

χ∈Fs,k

P[χ(k) = χ] = P[
k−1∑

t=0

χ(t) > w̃k] = σ̃k,(55)

for k ∈ N. Next, we obtain an upper bound for the first term in (54). Observe

that P[h
T
(k)χ > ρk] = 0 for χ ∈ F0,k. It then follows that, for all k ∈ N such that

⌊w̃k⌋ = 0, we have

⌊w̃k⌋∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ] = 0.(56)

Moreover, for all k ∈ N such that ⌊w̃k⌋ ≥ 1, we obtain

⌊w̃k⌋∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ] =

⌊w̃k⌋∑

s=1

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ].

(57)

To obtain an upper bound for the term P[h
T
(k)χ > ρk], we will utilize Markov’s

inequality and Lemma A.1. First, for s ∈ {1, 2, . . . , ⌊w̃k⌋}, let t1(χ), t2(χ), . . . , ts(χ)
denote the indices of the nonzero entries of χ ∈ Fs,k such that t1(χ) < t2(χ) < · · · <
ts(χ). Consequently,

P[h
T
(k)χ > ρk] = P[

s∑

j=1

htj(χ̄)(k) > ρk] = P[
s∑

j=1

h(ξ(tj(χ)− 1)) > ρk],(58)

for χ ∈ Fs,k, s ∈ {1, 2, . . . , ⌊w̃k⌋}, and k ∈ N such that ⌊w̃k⌋ ≥ 1.
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Now observe that φ > 1, since ρ ∈ (p̃w̃, w̃). By using Markov’s inequality, we
obtain

P[h
T
(k)χ > ρk] ≤ P[

s∑

j=1

h(ξ(tj(χ)− 1)) ≥ ρk] = P[φ
∑s

j=1 h(ξ(tj(χ)−1)) ≥ φρk]

≤ φ−ρk
E[φ

∑s
j=1 h(ξ(tj(χ)−1))].(59)

It follows from Lemma A.1 that E[φ
∑s

j=1 h(ξ(tj(χ)−1))] ≤ φ ((φ− 1)p̃+ 1)
s−1

. This
inequality together with (57) and (59) imply that for all k ∈ N such that ⌊w̃k⌋ ≥ 1,

⌊w̃k⌋∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ]

≤

⌊w̃k⌋∑

s=1

∑

χ∈Fs,k

φ−ρkφ ((φ − 1)p̃+ 1)
s−1

P[χk = χ]

= φ−ρk+1

⌊w̃k⌋∑

s=1

((φ− 1)p̃+ 1)
s−1

∑

χ∈Fs,k

P[χk = χ]

= φ−ρk+1

⌊w̃k⌋∑

s=1

((φ− 1)p̃+ 1)
s−1

P[χk ∈ Fs,k]

≤ φ−ρk+1

⌊w̃k⌋∑

s=1

((φ− 1)p̃+ 1)
s−1

.(60)

Notice that to obtain the last inequality in (60), we employed the fact that P[χk ∈
Fs,k] ≤ 1. The summation term on the far right-hand side of (60) satisfies

⌊w̃k⌋∑

s=1

((φ− 1)p̃+ 1)s−1 =
((φ− 1)p̃+ 1)⌊w̃k⌋ − 1

((φ− 1)p̃+ 1)− 1
≤

((φ − 1)p̃+ 1)w̃k − 1

(φ− 1)p̃
.(61)

Therefore, from (60) and (61), we obtain

⌊w̃k⌋∑

s=0

∑

χ∈Fs,k

P[h
T
(k)χ > ρk]P[χ(k) = χ] ≤ φ−ρk+1 ((φ − 1)p̃+ 1)

w̃k − 1

(φ− 1)p̃
,(62)

for all k ∈ N such that ⌊w̃k⌋ ≥ 1. The right-hand side of this inequality is zero if
⌊w̃k⌋ = 0. Therefore, (62) holds also for all k ∈ N. By using this fact together with
(54), (55), we arrive at (9).

Next, we show
∑∞

k=1 ψk <∞. First of all, we have

∞∑

k=1

φ−ρk+1 ((φ− 1)p̃+ 1)
w̃k − 1

(φ − 1)p̃

=
φ

(φ − 1)p̃

∞∑

k=1

φ−ρk ((φ − 1)p̃+ 1)
w̃k −

φ

(φ − 1)p̃

∞∑

k=1

φ−ρk.(63)

We will prove that the summation terms on the right-hand side of (63) are both
convergent. First, we have φ−ρ < 1, because φ > 1. Therefore, the geometric series
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∑∞
k=1 φ

−ρk converges, that is,
∑∞

k=1 φ
−ρk <∞. Next, we show φ−ρ ((φ− 1)p̃+ 1)

w̃
<

1. Observe that

φ−ρ ((φ− 1)p̃+ 1)
w̃
=

(
φ−

ρ
w̃ ((φ− 1)p̃+ 1)

)w̃

.(64)

Moreover,

φ−
ρ
w̃ ((φ− 1)p̃+ 1) =

( ρ
w̃
(1− p̃)

p̃(1− ρ
w̃
)

)− ρ
w̃
(( ρ

w̃
(1− p̃)

p̃(1− ρ
w̃
)
− 1

)
p̃+ 1

)

=

(
p̃w̃

ρ

) ρ
w̃
(

1− p̃

1− ρ
w̃

)1− ρ
w̃

.

Here, we have p̃w̃
ρ
, 1−p̃
1− ρ

w̃

∈ (0, 1) ∪ (1,∞). As a result, since ln v < v − 1 for any

v ∈ (0, 1) ∪ (1,∞), we obtain

ln
(
φ−

ρ
w̃ ((φ− 1)p̃+ 1)

)
=
ρ

w̃
ln

(
p̃w̃

ρ

)
+ (1−

ρ

w̃
) ln

(
1− p̃

1− ρ
w̃

)

<
ρ

w̃

(
p̃w̃

ρ
− 1

)
+ (1−

ρ

w̃
)

(
1− p̃

1− ρ
w̃

− 1

)
= p̃−

ρ

w̃
+
p

w̃
− p̃ = 0,

which implies φ−
ρ
w̃ ((φ− 1)p̃+ 1) < 1. Thus, by (64), φ−ρ ((φ− 1)p̃+ 1)

w̃
< 1. It

then follows that
∞∑

k=1

φ−ρk ((φ− 1)p̃+ 1)
w̃k

<∞.(65)

Finally, since
∑∞

k=1 φ
−ρk <∞, we obtain

∑∞
k=1 ψk <∞ from (63) and (65). �
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