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Acyclic edge-coloring of planar graphs:

∆ colors suffice when ∆ is large

Daniel W. Cranston∗

January 31, 2019

Abstract

An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph
induced by any two color classes is acyclic. The acyclic chromatic index, χ′

a
(G), is the smallest

number of colors allowing an acyclic edge-coloring of G. Clearly χ′

a
(G) ≥ ∆(G) for every graph

G. Cohen, Havet, and Müller conjectured that there exists a constant M such that every planar
graph with ∆(G) ≥M has χ′

a
(G) = ∆(G). We prove this conjecture.

1 Introduction

A proper edge-coloring
proper

edge-
coloring

of a graph G assigns colors to the edges of G such that two edges receive
distinct colors whenever they have an endpoint in common. An acyclic edge-coloring

acyclic

edge-
coloring

is a proper
edge-coloring such that the subgraph induced by any two color classes is acyclic (equivalently, the
edges of each cycle receive at least three distinct colors). The acyclic chromatic index

acyclic

chro-
matic
index

, χ′
a(G), is

the smallest number of colors allowing an acyclic edge-coloring of G. In an edge-coloring ϕ, if a
color α is used incident to a vertex v, then α is seen by

seen by

v. For the maximum degree of G, we write
∆(G), and simply ∆ when the context is clear. Note that χ′

a(G) ≥ ∆(G) for every graph G. When
we write graph, we forbid loops and multiple edges. A planar graph

planar

graph

is one that can be drawn in
the plane with no edges crossing. A plane graph

plane

graph

is a planar embedding of a planar graph. Cohen,
Havet, and Müller [9, 4] conjectured that there exists a constant M such that every planar graph
with ∆(G) ≥M has χ′

a(G) = ∆(G). We prove this conjecture.

Main Theorem. All planar graphs G satisfy χ′
a(G) ≤ max{∆, 4.2 ∗ 1014}. Thus, χ′

a(G) = ∆ for
all planar graphs G with ∆ ≥ 4.2 ∗ 1014.

We start by reviewing the history of acyclic coloring and acyclic edge-coloring. An acyclic
coloring acyclic

coloring

of a graph G is a proper vertex coloring of G such that the subgraph induced by any
two color classes is acyclic. The smallest number of colors that allows an acyclic coloring of G is
the acyclic chromatic number acyclic

chro-
matic
number

, χa(G). This concept was introduced in 1973 by Grünbaum [11],
who conjectured that every planar graph G has χa(G) ≤ 5. This is best possible, as shown (for
example) by the octahedron. After a flurry of activity, Grünbaum’s conjecture was confirmed in
1979 by Borodin [6]. This result contrasts sharply with the behavior of χa(G) for a general graph

∗Department of Mathematics and Applied Mathematics, Viriginia Commonwealth University, Richmond, VA;

dcranston@vcu.edu; This research is partially supported by NSA Grant H98230-15-1-0013.

1

http://arxiv.org/abs/1705.05023v2


G. Alon, McDiarmid, and Reed [1] found a constant C1 such that for every ∆ there exists a graph
G with maximum degree ∆ and χa(G) ≥ C1∆

4/3(log∆)−1/3. This construction is nearly best
possible, since they also found a constant C2 such that χa(G) ≤ C2∆

4/3 for every graph G with
maximum degree ∆. The best known upper bound is χa(G) ≤ 2.835∆4/3 + ∆, due to Sereni and
Volec [14].

Now we turn to acyclic edge-coloring. In contrast to the results above, there does exist a constant
C3 such that χ′

a(G) ≤ C3∆ for every graph G with maximum degree ∆. Using the Asymmetric
Local Lemma, Alon, McDiarmid, and Reed [1] showed that we can take C3 = 64. This constant
has been improved repeatedly, and the current best bound is 2, due to Kirousis and Livieratos [13].
But this upper bound is still far from the conjectured actual value.

Conjecture 1. Every graph G satisfies χ′
a(G) ≤ ∆+ 2.

Conjecture 1 was posed by Fiamč́ık [10] in 1978, and again by Alon, Sudakov, and Zaks [2] in
2001. The value ∆+2 is best possible, as shown (for example) by Kn when n is even. In an acyclic
edge-coloring at most one color class can be a perfect matching; otherwise, two perfect matchings
will induce some cycle, by the Pigeonhole principle. Now the lower bound ∆ + 2 follows from an
easy counting argument.

For planar graphs, the best upper bounds are much closer to the conjectured value. Cohen,
Havet, and Müller [9] proved χ′

a(G) ≤ ∆ + 25 whenever G is planar. The constant 25 has been
frequently improved [3, 4, 12, 16, 15]. The current best bound is χ′

a(G) ≤ ∆+6, due to Wang and
Zhang [15]. However, for planar graphs with ∆ sufficiently large, Conjecture 1 can be strengthened
further. This brings us to the previously mentioned conjecture of Cohen, Havet, and Müller [9].

Conjecture 2. There exists a constant M such that if G is planar and ∆ ≥M , then χ′
a(G) = ∆.

Our Main Theorem confirms Conjecture 2. For the proof we consider a hypothetical counterex-
ample. Among all counterexamples we choose one with the fewest vertices, a minimal counterexam-
ple minimal

counter-
example

. In Section 2 we prove our Structural Lemma, which says that every 2-connected plane graph
contains one of four configurations. In Section 3 we show that every minimal counterexample G
must be 2-connected, and that G cannot contain any of these four configurations. This shows that
no minimal counterexample exists, which finishes the proof of the Main Theorem.

2 The Structural Lemma

A vertex v is big
big

if d(v) ≥ 8680.
k/k+/k−-
vertex

For a graph G, a vertex v is very big very bigif d(v) ≥ ∆ − 4(8680). A
k-vertex (resp. k+-vertex and k−-vertex ) is a vertex of degree k (resp. at least k and at most k).
For a vertex v, a k-neighbor is an adjacent k-vertex; k+-neighbors and k−-neighbors are defined
analogously. Similarly, we define k-faces, k+-faces, and k−-faces.

k/k+/k−-
faceFor the length of a face f , we

write ℓ(f) ℓ(f).
A key structure in our proof, called a bunch bunch, consists of two big vertices with many common

4−-neighbors that are embedded as successive neighbors (for both big vertices); see Figure 1 for an
example. Let x0, . . . , xt+1 denote successive neighbors of a big vertex v, that are also successive for
a big vertex w. We require that d(xi) ≤ 4 for all i ∈ [t], where [t] denotes {1, . . . , t}. Further, for
each i ∈ [t+ 1], we require that the 4-cycle vxiwxi−1 is not separating; so, either the cycle bounds
a 4-face, or it bounds the two 3-faces vxixi−1 and wxixi−1. For such a bunch, we call x1, . . . , xt
its bunch vertices

bunch
vertices

, and we call v and w the parents parentsof the bunch. (When we refer to a bunch, we
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x0 xt+1

v

w

Figure 1: A bunch, with v and w as its parents.

typically mean a maximal bunch.) For technical reasons, we exclude x0 and xt+1 from the bunch.
Thus, each 4-vertex in a bunch is incident to four 3-faces, each 3-vertex in a bunch is incident to a
4-face and two 3-faces, and each 2-vertex in a bunch is incident to two 4-faces. The length lengthof the
bunch is t. A horizontal edge

horizon-

tal edge

is any edge xixi+1, with 1 ≤ i ≤ t− 1. Each path vxiw is a thread thread.
Borodin et al. [8] constructed graphs in which every 5−-vertex has at least two big neighbors.

Begin with a truncated dodecahedron, and subdivide t times each edge that lies on two 10-faces.
Now add a new vertex into every 4+-face, making it adjacent to every vertex on the face boundary.
The resulting plane triangulation has ∆ = 5t+10, minimum degree 4, and every 5−-vertex has two
∆-neighbors. This final fact motivates our Structural Lemma, by showing that if we omit from it
(C3) and (C4), then the resulting statement is false. (For illustrating that we cannot omit both
(C3) and (C4), the above construction can be generalized. Rather than truncating a dodecahedron,
we can start by truncating any 3-connected plane graph with all faces of length 5 or 6; the rest of
the construction is the same.) Now we state and prove our Structural Lemma.

Structural Lemma. Let G be a 2-connected plane graph. Let k = max{∆, 5(8680)} k. Now G
contains one of the following four configurations:

(C1) a vertex v such that
∑

w∈N(v) d(w) ≤ k; or

(C2) a big vertex v such that among those 5−-vertices which have v as their unique big neighbor the
number of (i) 2-vertices is at least 8889 or (ii) 3−-vertices is at least 17655 or (iii) 4−-vertices
is at least 26401 or (iv) 5−-vertices is at least 35137; or

(C3) a big vertex v such that n5 + 2n6 ≤ 35, where n5 and n6 n5, n6denote the number of 5−-neighbors
and 6+-neighbors of v that are in no bunch with v as a parent; or

(C4) a very big vertex v such that n5 + 2n6 ≤ 141415, where n5 and n6 denote the number of
5−-neighbors and 6+-neighbors of v that are in no bunch with v as a parent.

Proof. We use discharging, assigning charge d(v)− 6 to each vertex v and charge 2ℓ(f)− 6 to each
face f . By Euler’s formula, the sum of these charges is −12. We assume that G contains none of
the four configurations and redistribute charge so that each vertex and face ends with nonnegative
charge, a contradiction. We use the following three discharging rules.

3
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1/2

−→ 1/2←−−
6− d(v)

տ
1

տ
2

տ
1

2 ←−$$

−→12 $$

Figure 2: Examples of rules (R1), (R2), and (R3) are shown, from top to bottom respec-
tively. Big vertices are drawn as , and 5−-vertices are drawn as , and vertices that
are not big (but possibly small) are drawn as .

(R1) Let v be a 5−-vertex. If v has a single big neighbor w, then v takes 6 − d(v) from w. If v is
in a bunch, then v takes 1 from each parent of the bunch. If v has exactly two big neighbors,
and they are not its parents in a bunch, then v takes 1

2 from each of these big neighbors.

(R2) Let v be a 5−-vertex with a big neighbor w, and let vw lie on a face f . If ℓ(f) = 4, then v
takes 1 from f . If ℓ(f) ≥ 5 and v has a second big neighbor along f , then v takes 2 from f .
Otherwise, if ℓ(f) ≥ 5, then v takes 1 from f .

(R3) Every 5−-vertex on a 3-face with two big neighbors takes 2 from a central “bank” bank; each big
vertex gives 12 to the bank.

If a vertex or face ends with nonnegative charge, then it ends happy happy. We show that each vertex
and face (and the bank) ends happy. Let Vbig Vbigdenote the set of big vertices. The number of 5−-
vertices that take 2 from the bank is at most 2|E(G[Vbig ])|. Since G[Vbig] is planar, |E(G[Vbig ])| <
3|Vbig|. So the bank ends happy, since it receives 12|Vbig | and gives away less than this.

4



Consider a face f .

1. ℓ(f) ≥ 6. Rather than sending charge as in (R2), suppose that f sends 1 to each incident
vertex, and then each big incident vertex sends 1 to its successor (in clockwise direction)
around f . Now each 5−-vertex incident to f receives at least as much as in (R2), so f sends
at least as much as in (R2), and f ends happy since 2ℓ(f)− 6− ℓ(f) ≥ 0.

2. ℓ(f) = 5. If f sends charge to at most two incident vertices, then f ends happy, since
2ℓ(f)− 6− 2(2) = 0. So suppose f sends charge to at least three incident vertices. Now two
of these receive only 1 from f . So f again ends happy, since 2ℓ(f)− 6− 2− 2(1) = 0.

3. ℓ(f) = 4. Because f sends charge to at most two incident vertices, it ends happy, since
2(4) − 6− 2(1) = 0.

4. ℓ(f) = 3. The face f ends happy, since it starts and ends with 0.

Now we consider vertices. Since G is 2-connected, it has minimum degree at least 2, and each
vertex v lies on d(v) distinct faces. A 5−-vertex v with no big neighbor would satisfy (C1), so each
5−-vertex has at least one big neighbor. Note that if v has only one big neighbor, w, then v takes
6− d(v) from w by (R1), so v ends happy. Thus, we assume v has at least two big neighbors.

1. d(v) = 2. Let w1 and w2 denote the two big neighbors of v. Since G is 2-connected, the path
w1vw2 lies on two (distinct) faces. If one of these is a 3-face, then v takes 2 from the bank
by (R3), at least 1 from its other incident 4+-face by (R2), and 1

2 from each big neighbor by
(R1); so v ends happy, since 2− 6+ 2+1+ 2(12 ) = 0. If one incident face f is a 5+-face, then
v takes 2 from f by (R2), at least 1 from its other incident 4+-face by (R2), and 1

2 from each
big neighbor by (R1); so again v ends happy. So assume that both incident faces are 4-faces.
Now v is in a bunch with its two big neighbors, so v takes 1 from each by (R1). Thus v ends
with 2− 6 + 2(1) + 2(1) = 0.

2. d(v) = 3. If v has three big neighbors, then for each incident face f , either v takes at least
1 from f by (R2) or v takes 2 from the bank by (R3), and v ends happy. So assume v has
exactly two big neighbors, w1 and w2. If w1vw2 lies on a 3-face, then v takes 2 from the bank
by (R3) and v takes 1

2 from each wi by (R1), and v ends happy, since 3 − 6 + 2 + 2(12 ) = 0.
So assume w1vw2 lies on a 4+-face. If it lies on a 5+-face, or if v lies on two 4+-faces, then
v receives at least 2 from its incident faces by (R2) and 1

2 from each wi by (R1), and again
v ends happy. So assume v lies on a 4-face with w1 and w2 and also on two 3-faces. Now v
is in a bunch with w1 and w2, so v takes 1 from each, by (R1). Thus, v ends happy, since
3− 6 + 1 + 2(1) = 0.

3. d(v) = 4. Suppose v has at least three big neighbors. So v has two big neighbors along at
least two incident faces, f1 and f2. If either fi is a 3-face, then v takes 2 from the bank by
(R3) and ends happy. Otherwise v takes at least 1 from each of f1 and f2 by (R2), so v ends
happy. Assume instead that v has exactly two big neighbors, w1 and w2. Suppose that vw1

and vw2 are incident to the same face f . If f is a 3-face, then v takes 2 from the bank by
(R3) and ends happy. If f is a 4+-face, then v takes at least 1 from f by (R2) and at least
1
2 from each big neighbor by (R1), and v ends happy since 4 − 6 + 1 + 2(12 ) = 0. So assume
that w1 and w2 do not appear consecutively among the neighbors of v. If v is incident to
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any 4+-face f , then v takes at least 1 from f by (R2) and 1
2 from each of its big neighbors

by (R1), and again v ends happy. Thus, we assume that v lies on four 3-faces. Now v is in a
bunch with w1 and w2, so v takes 1 from each by (R1), and v ends happy.

4. d(v) = 5. If v has exactly two big neighbors, w1 and w2, then v receives 1
2 from each by (R1),

and v ends with 5 − 6 + 2(12 ) = 0. So assume that v has at least three big neighbors. By
the Pigeonhole principle, v lies on at least one face, f , with two big neighbors. So v receives
at least 1 from either f or from the bank, by (R2) or (R3). Thus, v finishes with at least
5− 6 + 1 = 0.

5. d(v) ≥ 6, but v is not big. Now v ends happy, since d(v) − 6 ≥ 0.

6. v is a big vertex but not a very big vertex. Suppose that v has a 5−-neighbor w such that v is
the only big neighbor of w. Now

∑

x∈N(w) d(x) ≤ 4(8680)+d(v) ≤ 4(8680)+(∆−4(8680)) =

∆ ≤ k. Thus, w is an instance of (C1), a contradiction. So v has no such 5−-neighbor. As a
result, v sends at most 1 to each of its neighbors. Since G has no instance of (C3), we have
n5 + 2n6 ≥ 36, where n5 and n6 are defined as in (C3). Note that v sends at most 1

2 to each
vertex counted by n5 and sends no charge to each vertex counted by n6. Further, v sends
at most 1 to each other neighbor. Also, v sends 12 to the bank. So v finishes with at least
d(v) − 6− 12− 1

2n5 − 1(d(v) − n5 − n6) = −18 + 1
2 (n5 + 2n6) ≥ −18 + 1

2(36) = 0.

7. v is a very big vertex. LetW denote the set of 5−-vertices w for which v is the only big neighbor
of w. Since G has no instance of (C2), the numbers of 2-vertices, 3−-vertices, 4−-vertices, and
5−-vertices inW are (respectively) at most 8888, 17654, 26400, and 35136. So the total charge
that v sends to these vertices is at most 8888 + 17654 + 26400 + 35136 = 88078. Since G has
no copy of (C4), we have n5+2n6 ≥ 141416. We may assume that as many as possible of the
vertices counted by n5 are in W, since this is the situation in which v sends the most charge.
If w is counted by n5 and is not inW, then v sends w at most 1

2 . If w is counted by n6, then v
sends w nothing. So v ends happy, since d(v)−6−12−88078−1

2 (n5−35136)−1(d(v)−n5−n6) =
−18− 88078 + 1

2n5 +
1
2 (35136) + n6 = −70528 + 1

2(n5 +2n6) ≥ −70528 + 1
2(141416) ≥ 0.

3 Reducibility

In this section we use the Structural Lemma to prove the Main Theorem (its second statement
follows immediately from its first, so we prove the first). Throughout, we assume the Main Theorem
is false and let G be a counterexample with the fewest vertices. Let k = max{∆, 4.2 ∗ 1014}. We
must show that χ′

a(G) ≤ k. In Lemma 1, we show that G is 2-connected, so we can apply the
Structural Lemma to G. Thus, it suffices to show that G contains none of (C1), (C2), (C3), and
(C4). Lemma 1 forbids (C1), and Lemma 2 and Corollary 3 forbid (C2). The proofs of these results
are straightforward. For (C3) the argument is more technical, so we pull out a key piece of it as
Lemma 4, before finishing the proof in Lemma 5. Finally, we handle (C4) in Lemma 6, using a
proof similar to that of Lemma 5. Since the proofs for (C3) and (C4) are long, we outline our
approach just prior to Lemma 4.

Lemma 1. Let G be a minimal counterexample to the Main Theorem. Now G is 2-connected and
has no instance of configuration (C1). That is, every vertex v has

∑

w∈N(v) d(w) > k. In particular,

every 5−-vertex has a big neighbor.
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Proof. Let G be a minimal counterexample. Note that G is connected, since otherwise one of its
components is a smaller counterexample. Suppose G has a cut-vertex v, and let G1, G2, . . . denote
the components of G − v. For each i, let Hi = G[V (Gi) ∪ {v}], the subgraph formed from Gi by
adding all edges between v and V (Gi). By minimality, each Hi has an acyclic edge-coloring, say ϕi.
By permuting colors, we can assume that the sets of colors seen by v in the distinct ϕi are disjoint.
Now identifying the copies of v in each Hi gives a acyclic edge-coloring of G, a contradiction. Thus,
G must be 2-connected.

Suppose that G has a vertex v such that
∑

w∈N(v) d(w) ≤ k. By minimality, G− v has a acyclic
edge-coloring ϕ. We greedily extend ϕ to each edge incident to v. We color these edges with distinct
colors that do not already appear on some edge incident to a vertex w in N(v). This is possible
precisely because

∑

w∈N(v) d(w) ≤ k. Since each color seen by v is seen by only one neighbor of v,
the resulting extension of ϕ is proper and has no 2-colored cycle containing v; thus, it is acyclic. This
contradiction shows that

∑

w∈N(v) d(w) > k for every vertex v. Finally, suppose some 5−-vertex v
contradicts the final statement of the lemma. Now

∑

w∈N(v) d(w) ≤ d(v)(8680) ≤ 5(8680) ≤ k, a
contradiction. Thus, the lemma is true.

x1 xi

wjwiw2w1 wq+
√
5q

v

? i 1 j

j1 2 i

Figure 3: A big vertex v and its set W of 5−-neighbors with v as their unique big
neighbor, as in Lemma 2.

Lemma 2. Fix an integer q such that q ≥ 100. Now G cannot have a vertex v such that |W| ≥
q +
√
5q, where W is the set of 5−-neighbors w of v such that

∑

x∈N(w)\v d(x) < q.

Proof. Suppose the lemma is false, and that q, G, and v witness this. q, G, vLet W
W

be the set of these
neighbors of v; see Figure 3 for an example. Pick an arbitrary w1 ∈ W. By minimality, G − w1

has an acyclic edge-coloring, ϕ. We can greedily extend this coloring to G−w1 + vw1 (and we still
call it ϕ). Let w1, w2, . . . denote the vertices of W. Let S Sbe the set of colors either not used on
an edge incident to v or else used on an edge from v to a neighbor in W. For each neighbor wi,
by symmetry we assume that ϕ(vwi) = i. For each wi, let Ci Cibe the set of colors used on edges
incident to vertices in N(wi) \ v. For each i, let Si = S \ (Ci ∪ {i}). SiAny coloring obtained from
ϕ by coloring x1w1 with a color i ∈ S1 or by recoloring an edge incident to wi (and not v) with
a color j ∈ Si is a proper edge-coloring, and we explain further how to find one that is an acyclic
edge-coloring.

Let x1 x1be an arbitrary neighbor in G of w1, other than v. We now show how to extend the acyclic
edge-coloring to w1x1. This will complete the proof, since the same argument can be repeated to
extend the coloring to each other uncolored edge of G incident to w1.

7



If we color w1x1 with any i ∈ S1, then any 2-colored cycle we create must use edges x1w1, w1v,
and vwi. Such a cycle is only possible if wi sees color 1. So we assume wi sees color 1, for every
i ∈ S1 (otherwise we can extend the coloring to w1x1). Now for each i ∈ S1, define xi such that
ϕ(wixi) = 1. (Note that xi = x1 for at most one value of xi, so we can essentially ignore this case.)

Our goal is to find indices i and j such that i ∈ S1 and j ∈ Si and wj does not see color i.
If we find such i and j, then we color w1x1 with i and recolor wixi with j (as in Figure 3). This
creates no 2-colored cycles, as we now show. Any 2-colored cycle using w1x1 must also use w1v
and vwi (since i ∈ S1). But no such 2-colored cycle exists, since wi no longer sees 1. Similarly, any
2-colored cycle using edge wixi also uses wiv and vwj . Again, no such 2-colored cycle exists, since
wj does not see i.

Now we show that we can find such i and j. Suppose not. So for each i ∈ S1 and j ∈ Si vertex
wj sees color i. Thus, among the at most 4|W| edges incident to some wi, but not to v, each color
i ∈ S1 appears at least |Si| times. Since |Si| ≥ |W|− (|Ci|+1) ≥ |W|− q, we get (|W|− q)2 ≤ 4|W|.
Solving this quadratic gives |W| ≤ q + 2 +

√
4q + 4. But this quantity is less than q +

√
5q when

q > 80, a contradiction.

Corollary 3. Configuration (C2) cannot appear in a minimal counterexample G. That is, G has
no big vertex v such that among those 5−-vertices with v as their unique big neighbor the number
of (i) 2-vertices is at least 8889 or (ii) 3−-vertices is at least 17655 or (iii) 4−-vertices is at least
26401 or (iv) 5−-vertices is at least 35137.

Proof. This is a direct application of the previous lemma, for each q ∈ {8680, 17360, 26040, 34720}.
Each 5−-vertex w with v as its only big neighbor has

∑

x∈d(w)\v d(x) < (d(w) − 1)8680. Thus, for
2-vertices, 3-vertices, 4-vertices, and 5-vertices, the sums are (respectively) at most 8680, 17360,
26040, and 34720. Now we are done, since 8680 +

√

5(8680) ≤ 8889; 17360 +
√

5(17360) ≤ 17655;
26040 +

√

5(26040) ≤ 26401; and 34720 +
√

5(34720) ≤ 35137.

Next we turn to the task of proving that neither (C3) nor (C4) can appear in a minimal
counterexample. Since the proofs are long, we sketch the ideas below. The proof for (C4) is similar
to that for (C3), so we just sketch the latter. First, we need definitions. Recall that, for a bunch
with parents v and w and bunch vertices x0, . . . , xt+1, the length

length

is t and each path vxiw is a thread thread.
A horizontal edge horizon-

tal edge
is any edge xixi+1, with 1 ≤ i ≤ t − 1. For a bunch B in a graph G, we form

GB from G
B, GB

by deleting all horizontal edges of B (recall that this does not delete x0x1 and xtxt+1).
Now B is long longif, given any integer k ≥ 13 and any acyclic k-edge-coloring of GB , there exists an
acyclic k-edge-coloring of G. If B is not long, then it is short short.

Using a counting argument, we show that the big vertex v in (C3) has all but a constant number,
a0, of its incident edges in long bunches; further, one of these bunches, say B0, has length greater
than a0. We delete all horizontal edges in long bunches, as well as one edge, e, incident to v that
lies on a thread in B0. By minimality, the resulting graph has an acyclic k-edge-coloring. By
repeatedly recoloring threads incident to v in long bunches, we can eventually extend this coloring
to e. Finally, we extend the coloring to all the horizontal edges in long bunches. We now prove
that every bunch of length at least 11 is long. (It is easy to check that bunches of sufficiently large
length (say 22) are long, but relying on this weaker bound would increase the value 4.2 ∗ 1014 in
our Main Theorem.)
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1 2 3 4 5 6 7 8 9 10 11 12

4 9

2 3 4 5 6 1 8 9 10 11 12 7

Figure 4: An acyclic edge-coloring of GB , restricted to the edges incident to bunch
vertices of B, where B is a bunch of length 12.

Lemma 4. In every planar graph, every bunch of length at least 11 is long.

Proof. Consider a planar graph G with a bunch, B B, of length at least 11. Fix an integer k ≥ 13.
We may assume GB has an acyclic k-edge-coloring; see Figure 4 for an example. Let v and w v, wbe
the parents of the bunch and let x1, . . . , xt denote its vertices. We will show that we can reorder the
threads of B so that (for each i ∈ [t−1]) no color appears incident to both xi and xi+1. (Technically,
we reorder the pairs of colors on the edges vxi and xiw, while preserving, in each pair, which color
is incident to v and which is incident to w; but this minor distinction will not trouble us.) We also
require that the colors seen by x2 do not appear on edge x0x1 and, similarly, the colors seen by
xt−1 do not appear on edge xtxt+1. If we can reorder the threads to achieve this property, then it
is easy to extend the k-edge-coloring to G, as follows.

We greedily color the horizontal edges in any order, requiring that the color used on xixi+1

not appear on any (colored) edge incident to xi−1, xi, xi+1, or xi+2. Each of these vertices has
two incident edges on a thread, for a total of 8 edges. We must also avoid the colors on at most
4 horizontal edges. Thus, at most 12 colors are forbidden. Since k ≥ 13, we greedily complete
the coloring. Given an acyclic k-edge-coloring of GB , suppose that we reorder the threads of GB

and greedily extend the coloring to the horizontal edges of B. Call the resulting k-edge-coloring ϕ ϕ.
Clearly, ϕ is a proper edge-coloring. We must also show that it has no 2-colored cycles. Suppose, to
the contrary, that ϕ has a 2-colored cycle, C. By the condition on our ordering of the threads of B,
the cycle C must use at least two successive horizontal edges of B. But now one of these horizontal
edges xixi+1 of C must share a color with an edge incident to xi−1 or xi+2, a contradiction. Thus,
ϕ is an acyclic k-edge-coloring of G, as desired. Hence, it suffices to show that we can reorder the
threads of B so that no color appears incident to both xi and xi+1.

For each i ∈ [t], we think of putting some thread vxjw into position i (where also j ∈ [t]). We
always put thread 1 into position 1 and thread t into position t. We will also initially put threads
into the positions with i odd. Let O Obe the set of threads that we put in the odd positions (and
thread t, whether or not t is odd); O is for odd. Note that |O| = ⌈(t+1)/2⌉. Later, we put threads
into the even positions. To do so, after putting threads into the odd positions, we build a bipartite
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1 2 3

456

7 8 9

101112

Figure 5: The conflict graph, Bconf . We label each vertex with the color the thread uses
on the edge to its parent “above”. Applying our algorithm to this instance of Bconf

yields O = {1, 7, 8, 9, 10, 11, 12}.

graph, H(B,O) H(B,O), where the vertices of one part are the even numbered positions (excluding t) and
the vertices of the other part are those threads not yet placed. We add an edge between a thread
vxiw and a position j if no color used on the thread is also used on a thread already in position
j − 1 or j + 1, or used on x0x1 when j = 2, or on xtxt+1 when j = t − 1; see Figure 7 for an
example. (The notation H(B,O) is slightly misleading, since the edges of this graph depend not
only on our choice of O, but also on which threads we put where.) Thus, to place the remaining
threads, it suffices to find a perfect matching in H(B,O). When t ≥ 22, we can put threads into
the odd positions essentially arbitrarily, and we are guaranteed a perfect matching in H(B,O) by a
straightforward application of Hall’s Theorem. This approach allows us to complete the proof, but
requires that we replace 4.2 ∗ 1014 with a larger constant. For smaller t, we use a similar approach,
but need more detailed case analysis.

We build a conflict graph conflict

graph

, Bconf

Bconf

, which has as its vertices the threads of B, that is, vxiw, for
all i ∈ [t]. Two vertices are adjacent in Bconf if their corresponding threads share a common color;
see Figure 5 for an example. Note that Bconf is a disjoint union of paths and cycles, since every
edge in a thread of B is incident to either v or w. We refer interchangeably to a thread and its
corresponding vertex in Bconf . To form O we start with an empty set and repeatedly add vertices,
subject to the following condition. Each component of Bconf with a vertex in O must have all of
its vertices in O, except for at most one component; if such a component exists, then its vertices
that are in O must induce a path. Thus, at most two threads in O have neighbors in Bconf that
are not in O (and if exactly two, then each has at most one such neighbor).

First suppose that threads 1 and t are in different components of Bconf . We begin by putting
into O all threads in the smaller of these components, and then proceed to the other component,
beginning with the thread in {1, t}. If threads 1 and t are in the same component of Bconf , then we
start by putting into O all vertices on a shortest path in Bconf from 1 to t, and thereafter continue
growing arbitrarily, such that when the set reaches size ⌈(t+1)/2⌉ it satisfies the desired property.

The only exception is if the shortest path from 1 to t has more than ⌈(t+1)/2⌉ vertices. In this
case the component of Bconf is a path; now we add a single edge in Bconf joining its endpoints,
and proceed as above, which allows us to take a shorter path from 1 to t, including the edge we
just added. Thus, we have constructed the desired O.

First, we place the threads of O in the odd positions; second, we place the remaining threads in
the even positions, using Hall’s Theorem. See Figure 6 for an example of these threads in position,
and Figure 7 for the resulting graph H(B,O). Let r denote the size of each part in H(B,O). Since
|O| = ⌈(t + 1)/2⌉ and t ≥ 11, we get that r = ⌊(t− 1)/2⌋ ≥ 5. Recall that at most two threads in
O have neighbors in Bconf that are not in O (and if exactly two, then each has at most one such
neighbor). We consider five cases, depending on which threads in O have neighbors in Bconf that
are not in O.
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Case 1: Suppose that 1 and t are the two threads in O with neighbors in Bconf that are not
in O. We put threads 1 and t in their positions and we put the other threads of O in the odd
positions arbitrarily, except that if t is even, then we pick a thread for position t− 1 that does not
conflict with thread t and does not conflict with the color on xtxt+1 (if it exists); this is easy, since
t ≥ 11. Now we must put the remaining threads into the even positions. At most three threads
are forbidden from position 2, since at most one thread has a color used on thread 1 and at most
two threads have colors used on x0x1. Similarly, at most three threads are forbidden from position
t− 1. For all other positions, no threads are forbidden. Positions 2 and t− 1 have degree at least
r − 3 ≥ 2 in H(B,O) and all other positions have degree r. Thus, by Hall’s Theorem, H(B,O)
has a perfect matching. We now use similar arguments to handle the other possibilities for which
vertices of O have neighbors in Bconf that are not in O.

Case 2: Suppose that exactly one of threads 1 and t has a neighbor in Bconf that is not in O.
By symmetry, assume that it is 1. Further, assume that also i ∈ O and thread i has a neighbor in
Bconf that is not in O (the case when no such i exists is easier). If t is odd, then we put thread i
in position t− 2, and fill the remaining odd positions arbitrarily from O. If t is even, then we put
thread i in position t− 2, and fill odd positions 3 through t− 3 arbitrarily from O, except that we
require that the thread in position t−3 not conflict with that in position t−2; this is possible, since
at most two threads in O conflict with thread i, and |O| ≥ 7. Note that here we put an element of
O in position t− 2, but not in position t. Again, we use Hall’s Theorem to show that H(B,O) has
a perfect matching. Now positions 2 and t − 1 each have degree at least r − 3 ≥ 2, and position
t− 3 has degree at least r − 1 ≥ 4. All other positions have degree r.

Case 3: Suppose that one of threads 1 and t has two neighbors in Bconf that are not in O,
and the other has no such neighbors. (This will happen when Bconf consists of two cycles, each of
length t/2.) By symmetry, assume that thread 1 has two neighbors in Bconf that are not in O. We
fill the odd positions arbitrarily with threads from O (here, and in the remaining cases, if t is even,
then we also require that the thread in position t − 1 not conflict with thread t or with the color
on xtxt+1). In H(B,O), position 2 has degree at least r− 4 ≥ 1. Also, position t− 1 has degree at
least r − 2 ≥ 3. All other positions have degree r. So H(B,O) has a perfect matching.

Now we can assume that neither of threads 1 and t has neighbors in Bconf that are not in O.

1 7 8 11 9 10 12

4 9

2 8 9 12 10 11 7

Figure 6: A partial acyclic edge-coloring of GB , with the threads in O in position.
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2 3 4 5 6

2 4 6 8 10

Figure 7: The auxiliary graph H(B,O), with threads on top and positions on bottom,
and a perfect matching shown in bold.

1 5 7 2 8 3 11 6 9 4 10 12

4 9

2 6 8 3 9 4 12 1 10 5 11 7

Figure 8: The desired acyclic edge-coloring of GB , ready to be extended greedily to the
horizontal edges of B.

Case 4: Suppose that some thread, say i, in O has two neighbors in Bconf that are not in O.
We put thread i in position 3 and fill the remaining odd positions arbitrarily from O. Position 2
has degree at least r− 4 ≥ 1, and position 4 has degree at least r− 2 ≥ 3. If t is odd, then position
t − 1 has degree at least r − 2 ≥ 3. All other positions have degree r. So H(B,O) has a perfect
matching.

Case 5: Finally, suppose that two threads, i and j (neither of which is 1 or t), each have a
neighbor in Bconf that is not in O. Now we put thread i in position 3 and thread j in position
5, and fill the remaining odd positions from the rest of O. Between them, threads i and j forbid
at most two threads from position 4 and at most one thread each from positions 2 and 6. Thus,
position 2 has degree at least r− 3 ≥ 2, position 4 has degree at least r− 2 ≥ 3, and position 6 has
degree at least r − 1 ≥ 4. Once again H(B,O) has a perfect matching.

Lemma 5. Configuration (C3) cannot appear in a minimal counterexample G. That is, G cannot
contain a big vertex v such that n5+2n6 ≤ 35, where n5 and n6 n5, n6denote the numbers of 5−-neighbors
and 6+-neighbors of v that are in no bunch with v as a parent.

Proof. Suppose G is a minimal counterexample that contains such a vertex v. Form G′ G′from G
by deleting all horizontal edges of long bunches for which v is a parent. It suffices to find an
acyclic edge-coloring of G′ since, by definition, we can extend it to G. Let B Bbe the longest bunch
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that has v as a parent, and let w be the other parent of this bunch. Let x v, w, xbe a bunch vertex
in B. By minimality, we have an acyclic edge-coloring of G′ − x; we can greedily extend this to
G′ − x+wx, and we call this coloring ϕ. We construct a set of colors Cgood(v) as follows. Initially,
let Cgood(v) = [k]. For each color α used by ϕ on an edge vp where p is not a bunch vertex of
some bunch with v as a parent, we do the following. (Since n5 + 2n6 ≤ 35, we do this at most 35
times.) Remove from Cgood(v) both color α and either (i) all other colors used incident to p or (ii)
every color used on an edge vu, whenever u is a 2-vertex in G′ incident to an edge colored with
α; for each color α, we pick either (i) or (ii), giving preference to the option that removes fewer
colors from Cgood. Since n5 + 2n6 ≤ 35, the vertex v is a parent for at most 35 bunches. This is
true because x0 and xt+1 are excluded from the bunch. Thus, each application of (ii) removes from
Cgood(v) at most 35 colors. Finally, we remove from Cgood(v) all colors used on edges incident to v
that are in short bunches. Since each short bunch has at most 10 threads (by Lemma 4), and v
is a parent for at most 35 bunches, this removes from Cgood(v) at most 350 colors. This completes
the construction of Cgood(v). Note that |Cgood(v)| ≥ k − 35(35) − 35(10) = k − 1575. Starting from
ϕ, we uncolor all edges incident to v that used a color in Cgood(v); these are all edges of threads
in bunches with v as a parent. We will use colors in Cgood(v) to recolor all of the uncolored edges,
as well as vx (first with a proper coloring, and eventually with an acyclic coloring). This is the
motivation behind our construction of Cgood(v).

Suppose that ϕ(wx) is already used on some edge vy in bunch B. To avoid creating any 2-
colored cycles through x, it suffices to color vx with any color in Cgood(v) \ {ϕ(wx), ϕ(wy)}, which
is easy. So assume ϕ(wx) is not used on any edge vy in B. (The hardest case is when ϕ(wx) is
used on some edge incident to v leading to a non-bunch vertex. This case motivates most of our
effort, so the reader will do well to keep it in mind.) Our goal is to find some color, say α, other
than ϕ(wx), such that α ∈ Cgood(v) and α is already used on an edge wy of B. Given such an α,
we use it to color vx, and color vy with some color in Cgood(v) \{ϕ(wx), α}. This ensures that each
of vx and wx will never appear in a 2-colored cycle, no matter how we further extend the coloring.
Such an α exists by the Pigeonhole principle, because length(B) + |Cgood(v)| ≥ k+2. We defer the
computation proving this to the end of the proof. Now we extend our coloring to a proper (not
necessarily acyclic) k-edge-coloring of G′, using colors of Cgood(v) on the uncolored edges. This is
easy by Hall’s Theorem, since each edge has only one color forbidden: the one already used incident
to its endpoint of degree 2.

Now we modify this proper edge-coloring to make it acyclic. It is important to note that any
2-colored cycle must pass through v. Further, it must use some edges e1, e2, e3, e4, where v is the
common endpoint of e2 and e3 and the common endpoints of edges e1 and e2 and of edges e3 and
e4 are both 2-vertices (this follows from our construction of Cgood). Suppose that such a 2-colored
cycle exits, say with colors β1, β2. One of these colors must be in Cgood(v), since the 2-colored cycle
did not exist before assigning these colors; say it is β1. Suppose that a second such 2-colored cycle
exists, with colors γ1, γ2; by symmetry, assume that γ1 ∈ Cgood. To fix both cycles, we swap colors
β1 and γ1 on the edges incident to v where they are used. We repeat this process until we have
only at most one 2-colored cycle through v. Suppose we have one, with edges colored β1, β2 (and
β1 ∈ Cgood(v)); when we state the colors on edges of a thread, we always start with the edge incident
to v. Now we look for some other thread with edges colored γ1, γ2 (and γ1 ∈ Cgood(v)) such that
no thread incident to v has edges colored γ2, β1. If we find such a thread, then we swap colors β1
and γ1 on the edges incident to v where they appear, and this fixes the 2-colored cycle. Since v
is a parent in at most 35 bunches, at most 35 incident threads have edges colored γ2, β1, for some
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choice of γ2. Further, for each choice of γ2, v has at most 35 incident threads colored γ1, γ2, for
some choice of γ1. Thus, at most 352 = 1225 of these threads are forbidden. Recall from above that
|Cgood(v)| ≥ k − 1575. Now we have the desired thread incident to v since d(v)− 1225 − 1575 > 0.
Thus, we can recolor the edge colored β1 to get an acyclic edge-coloring of G′, as desired.

Now we prove that length(B)+ |Cgood(v)| ≥ k+2. Note that k− |Cgood(v)|+2 ≤ 5n5+n6(n5+
n6 + 1− s) + 10s + 2, where s sis the number of short bunches with v as a parent. This is because
each short bunch causes us to remove at most 10 colors, each vertex counted by n5 causes us to
remove at most 5 colors, and each counted by n6 causes us to remove at most n5 + n6 + 1 − s
colors. We must show that the right side of the latter inequality is at most length(B). In fact, we
will show that it is no more than the average length of the long bunches (rounded up). Since the
number of bunches is at most n5 + n6, we want the following inequality to hold. On the left, the
numerator is a lower bound on the number of vertices in long bunches, and the denominator is an
upper bound on the number of long bunches. The right side comes from the previous inequality.

d(v)− (n5 + n6 + 10s)

n5 + n6 − s
> 5n5 + n6(n5 + n6 + 1− s) + 10s) + 1,

which is implied by

d(v) ≥ (5n5 + n6(n5 + n6 + 1− s) + 10s + 1)(n5 + n6 − s+ 1).

Since n5 + 2n6 ≤ 35, it suffices to have

d(v) ≥ (5(35 − 2n6) + n6((35 − 2n6) + n6 + 1− s) + 10s + 1)(35 − n6 − s+ 1).

If we maximize the right side over all integers n6 and s such that 0 ≤ n6 ≤ 17 and 0 ≤ s ≤ 35− n6

(using nested For loops, for example), then we get 8680.

Lemma 6. Configuration (C4) cannot appear in a minimal counterexample G. That is, G cannot
contain a very big vertex v such that n5 + 2n6 ≤ 141415, where n5 and n6 denote the numbers of
5−-neighbors and 6+-neighbors of v that are in no bunch with v as a parent.

Proof. Most of the proof is identical to that of Lemma 4, that (C3) cannot appear in a minimal
counterexample. The only difference is our argument showing that length(B) + |Cgood(v)| ≥ k + 2,
which we give now. As in the previous lemma, it suffices to have

d(v) ≥ (5n5 + n6(n5 + n6 + 1− s) + 10s + 1)(n5 + n6 − s+ 1).

By hypothesis, we have n5 ≤ 141415− 2n6. Now substituting for n5, we get that it suffices to have

d(v) ≥ (5(141415 − 2n6) + n6((141415 − 2n6) + n6 + 1− s) + 10s+ 1)((141415 − 2n6) + n6 − s+ 1)

= n3
6 + 2n2

6s− 282822n2
6 + n6s

2 − 282832n6s

+ 19996363820n6 − 10s2 + 707084s + 99991859616. (1)

We must upper bound the value of (1) over the region where 0 ≤ n6 ≤ 70707 and 0 ≤ s ≤
n5 + n6− 1 ≤ 141415− n6. Since this domain is much larger than in the previous lemma, we relax
the integrality constraints and solve a multivariable calculus problem. The only critical point for
this function is outside the domain, so it suffices to find the maximum along the boundary. This
occurs when s = 0 and n6 ≈ 47134; the value is approximately 4.19 ∗ 1014. Recall that v is very
big, so we have d(v) ≥ ∆ − 4(8680). Since we need d(v) ≥ 4.19 ∗ 1014, it suffices to require that
∆ ≥ 4.2 ∗ 1014. This completes the proof.
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