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Abstract. This paper considers a class of nonlinear, degenerate drift- diffusion equations. We study

well-posedness and regularity properties of the solutions, with the goal to achieve uniform Hölder
regularity in terms of Lp-bound on the drift vector field. A formal scaling argument yields that the

threshold for such estimates is p = d, while our estimates are for p > d + 4
d+2

. On the other hand we

are able to show by a series of examples that one needs p > d for such estimates, even for divergence

free drift.

1. Introduction

Let u = u(x, t) be a nonnegative function which solves the following problem:

ut = ∆um +∇ · (uV ) in Rd × [0,∞) with m > 1. (1.1)

The drift term V : Rd → Rd is assumed to be time-independent, though our results extend to V (x, t) ∈
L∞(Lp(Rd);R+).

The m > 1 in the nonlinear diffusion term above represents anti-congestion effect, and has been
considered in many physical applications, including fluids in porous medium and population dynamics.
Our system (1.1) can be thus naturally contextualized as a population moving with preferences or fluids
in a porous medium moving with wind (see e.g. [4–6,11,13,16]). The goal of this paper is to investigate
well-posedness and regularity properties of (1.1) in terms of bounds of V in Lp(Rd).

When m = 1, our equation is the classical drift-diffusion equation where an extensive literature is
available for the corresponding regularity results, as we will discuss below. When V = 0, (1.1) is
the classical porous medium equation (see the book [21]) where initially integrable, nonnegative weak
solutions exist, is unique and immediately become Hölder continuous for positive times. In contrast
to these two cases, few regularity results are available for (1.1) with m > 1 and nonzero V , even in
smooth settings. Below we discuss differences in local behaviors of solutions between our equation and
the aformentioned cases by a scaling argument.

For given a, r > 0, let ua,r(x, t) := au(rx, r2am−1t). Then ũ := ua,r solves

∂tũ = ∆ũm +∇ · (Ṽ ũ) with Ṽ (x) := am−1rV (rx).

When V = 0, the above scaling was used in [7, 9] along with Di Giorgi-Nash-Moser iteration arguments
to derive Hölder continuity results. Here 1/a is chosen to be the size of oscillation for ua,r in the unit
neighborhood, and our goal is to show that this oscillation decays with a polynomial rate as r → 0.
Thus our interest is in the case when the oscillation is large, i.e. when a ≤ r−ε for arbitrary small ε > 0.
Note that

‖Ṽ (·)‖Lp(Rd) = am−1r1−
d
p ‖V (·)‖Lp(Rd).

Recalling that a is bounded by an arbitrarily small negative power of r > 0, it is plausible that if V
is bounded in Lp(Rd) for some p > d, then solutions to (1.1) behave like the classical porous medium
equation in small scales and generate bounded, Hölder continuous solutions. Indeed when V ∈ Lp(Rd)
with p > d we will show that weak solutions exist and stay bounded for all times, if the solutions are
initially bounded.
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These heuristics however pose serious challenges to deliver uniform regularity results for our equation.
The most apparent difference from the linear case comes from the fact that our diffusion is degenerate
at low densities. Due to this degeneracy, the proof of oscillation reduction in [7, 9] already differs from
the standard ones. For us this step corresponds to Proposition 4.4 and Proposition 4.6, which turns out
to be more challenging due to the competition between the singularity of the drift and the degeneracy
of the diffusion in small scales. Indeed for this reason we can only show the uniform Hölder continuity
of solutions when p > d+ 4

d+2 . Whether the results extend to the remaining range d < p ≤ d+ 4
d+2 or

not remains as an interesting open question. We expect that it possibly requires new ideas to extend
the “oscillation reduction” mentioned above up to p = d. Perhaps for the same reason it stays also open
to show that solutions become immediately bounded when starting with merely integrable initial data,
when p > d.

On the other hand we are able to show that when p ≤ d, uniform Hölder estimates are impossible even
among divergence-free vector fields, thus establishing half of the sharp threshold. This is again expected
to hold from the above heuristics, however the corresponding result does not seem to be shown for the
linear case m = 1 to the best of our knowledge. Our proof, based on barrier arguments akin to [20], uses
the degeneracy of diffusion at low densities and thus cannot be extended to the linear case.

Below we state two theorems that summarizes our main results.

Theorem 1.1 (Well-posedness and regularity). Let us consider (1.1) with nonnegative initial data
u0 ∈ L1(Rd) ∩ L∞(Rd) and with ‖V ‖Lp(Rd) <∞.

(a) [Theorem 3.1] If p > d, then there exists a weak solution u ∈ C([0,∞), L1(Rd)). Moreover u is
uniformly bounded for all t ∈ [0,∞),

sup |u| ≤ C(m, d, ‖u0‖∞, ‖u0‖1, p, ‖V ‖p).

(b) [Theorem 3.5] The weak solution is unique if V is uniformly C1 in Rd.

(c) [Theoreml 4.1] If p > d + 4
d+2 , and if u is a weak solution of (1.1) in {|x| ≤ 1} × [0, 1] that is

also bounded, then u is Hölder continuous in {|x| < 1} × (0, 1).

As for (b), when V is not C1, general uniqueness of weak solutions are open except between strong
solutions: see Theorem 3.5.

Regarding (c), the only relevant result for (1.1) that we are aware of is from [12], where integra-
bility conditions are assumed on both V and ∇V . Let us also very briefly mention some results for
the linear case m = 1 where the threshold L∞t L

d
x remains the same. In [10, 19] it is shown that if

V ∈ L∞([0, T ], BMO−1(Rd)), then an initially integrable solution becomes immediately Hölder contin-
uous. Let us mention that BMO−1(Rd) shares the same scaling property with Ld(Rd), however the
corresponding result for Ld(Rd) drifts is open except for the stationary case, see [18]. In two dimensions,
even L1-bound for time independent divergence-free drift turns out to be sufficient to yield continuous
solutions ( [19], [20]). Corresponding regularity results for m > 1 in two dimensions remains open.

Next we state the singularity results for the threshold case, where V ∈ Ld(Rd).

Theorem 1.2 (Loss of regularity). There exist sequences of vector fields {V in}n, i = 1, 2, which are
uniformly bounded in Ld(Rd), along with sequences of compactly supported, uniformly bounded initial
data {ui0,n}, i = 1, 2, such that the following holds:

(a) [Theorem 5.2] The solutions {u1n}n of (1.1) with V = V 1
n and initial data u10,n satisfies

limT→∞ sup[0,T ] |u1n| =∞;

(b) [Theorem 5.3] The solutions {u2n}n of (1.1) with V = V 2
n and initial data u20,n stays uniformly

bounded, but they do not share any common mode of continuity.



DEGENERATE EQUATIONS WITH DRIFTS 3

The sequence of drifts given in above theorem represents strongly compressive drifts concentrated
near the origin. Thus one naturally asks whether the regularity of solutions are better with singular, but
divergence-free drifts. It turns out that the critical norm for drifts stays the same for divergence-free
drifts.

Theorem 1.3. (Loss of regularity II) [Theorem 5.4 for d = 2 and Theorem 5.7 for d = 3]
There is a sequence of vector fields {Vn}n that are uniformly bounded in Ld(Rd), and a sequence of
uniformly smooth initial data {un,0}n, such that the corresponding solutions {un} of (1.1) are uniformly
bounded in height but not bounded in any Hölder norm in a unit parabolic neighborhood.

We believe that above statement holds in general dimensions. To illustrate this point, we give examples
both in dimensions two and three. The construction for both cases are similar, but the vector field we
choose for three dimensions has more complex singularity structure than the other one. We suspect that
this is only due to increased technicality in computations.

The proof of above theorem is motivated by the corresponding result in [20], where loss of continuity
is shown for solutions of fractional diffusion with drift at critical regime. In contrast to [20] our example
makes use of the degeneracy of diffusion in small density region, such as finite propagation properties
or slow decay rate for the density heights: see section 5 for further discussions. For linear diffusion the
corresponding loss of Hölder regularity results appear to be open, to the best of our knowledge. Let
us mention that for linear diffusion with L1-drifts, [19] shows the existence of discontinuous solutions
for d = 3, while in two dimensions time-dependent vector fields are needed to generate discontinuity in
solutions (see [20]).

Outline of the paper

Section 2 contains preliminary definitions and notations. Section 3 deals with a priori estimate of
solutions that yields existence and uniqueness of uniformly bounded weak solutions for V ∈ Lp(Rd)
with p > d. In section 4 bounded solutions in the parabolic cylinder are shown to be Hölder continuous
for drifts bounded in Lp norms with p > d + 4

d+2 . The proof follows the strategy of DiBenedetto and

Friedman [8, 9]. The key idea there is to circumvent the low regularity near small densities to work
with De Giorgi-Nash-Moser type iteration but with re-scaled cylinders, where its size depends on the
oscillation of solutions, based on the scale invariance of the first two terms in (1.1) discussed above
(see (4.3)). Our challenge when doing this is to carefully study how the singularity of the drift term
affects the diffusion, especially in small density region. The original argument carries out without too
much effort when p > d+ 2, and with more subtle arguments for p > d+ 4

d+2 (see Proposition 4.4 and

Lemma 4.5). Regularity property of solutions for d < p ≤ d+ 4
d+2 stays open at the moment. In section

5, we give several examples that illustrate the loss of regularity when the drifts are only bounded in
Ld(Rd). We discuss potential vector fields as well as divergence free vector fields.

Acknowledgements. Both authors are partially supported by NSF grant DMS-1566578. We would
like to thank Michael Hitrik, Kyungkeun Kang, Luis Silvestre and Monica Visan for helpful discussions
and suggestions.

2. Preliminaries and Notations

Definition 2.1. Let u0(x) ∈ L∞(Rd) ∩ L1(Rd) be non-negative. We say that a non-negative function
u(x, t) : Rd × [0, T ]→ [0,∞) is a subsolution (resp. supersolution) to (1.1) if

u ∈ C([0, T ], L1(Rd)) ∩ L∞(Rd × [0, T ]),

uV ∈ L2([0, T ]× Rd) and um ∈ L2(0, T, Ḣ1(Rd)).
(2.1)
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And for all non-negative test functions φ ∈ C∞c (Rd × [0, T ))∫ T

0

∫
Rd
uφtdxdt ≥ (resp. ≤)

∫
Rd
u0(x)φ(0, x)dx+

∫ T

0

∫
Rd

(∇um + uV )∇φ dxdt.

We say u is a weak solution to (1.1) if it is both sub- and supersolution of (1.1), or equivalently, it
satisfies for all test function φ ∈ C∞c (Rd × [0, T )),∫ T

0

∫
Rd
uφtdxdt =

∫
Rd
u0(x)φ(0, x)dx+

∫ T

0

∫
Rd

(∇um + uV )∇φ dxdt.

Definition 2.2. We say an integrable vector vector field V : Rd → Rd is admissable if V = V1 + V2
where

‖V1‖∞ + ‖V2‖p <∞ for some p > d.

Definition 2.3. We say V : Rd → Rd is bounded in Lplogq (Rd) for p, q > 0 if

‖V ‖pLp
logq

:=

∫
Rd
|V |p max{logq |V |, 1}dx <∞.

The following will be used to obtain regularity estimates in section 3.

Lemma 2.1. (Gagliardo-Nirenberg Interpolation Inequality) For any u such that u ∈ Lq(Rd) and
∇u ∈ Lr(Rd), there exists a constant C(α, r, q, s) that

‖|∇|su‖p ≤ C ‖∇u‖
α
r ‖u‖

1−α
q

where we require
1

p
=
s

d
+

(
1

r
− 1

d

)
α+

1− α
q

(2.2)

and s ≤ α < 1, r ≥ 1, q ≥ 1. (2.3)

For functions u : BR → R, the interpolation inequality has the same hypotheses as above and reads

‖|∇|su‖p ≤ C1 ‖∇u‖αr ‖u‖
1−α
q + C2‖u‖1.

where the constants C1, C2 are independent of R for all R large enough.

We refer readers to [17] for the proof.

Notations.

◦ Given S ⊂ Rd (or Rd+1) measurable, we write |S| to be the Lebesgue measure of S in Rd (or Rd+1).
We write Br(x) ⊂ Rd as a ball centered at x with radius r, and denote Br = Br(0).

◦ For simplicity we denote

‖ · ‖p := ‖ · ‖Lp(Rd) and ‖ · ‖α := ‖ · ‖Cα(Rd) and

oscS(u) := sup
x∈S

u− inf
x∈S

u,

for any measurable function u : Rd → R and S ⊂ Rd.
◦ The scaled parabolic cylinders are denoted by

Q(r, c) := {x, |x| < r} × (−cr2, 0) for r, c > 0. (2.4)

The standard parabolic cylinder is denoted by Qr := Q(r, 1).

◦ Throughout this paper, the constant C represents universal constants, by which we mean various
constants that only depends on m, d and L1, L∞ norms of the initial data u0. In addition, C may also
depend on ‖V ‖p or ‖V ‖Lploc with p given in the statement of the Theorem. We may write C(A) or CA
to emphasize the dependence of C on A.



DEGENERATE EQUATIONS WITH DRIFTS 5

◦ We write A . B if A ≤ CB for some universal constant C. When we write A .D B, we mean
A ≤ CB where C depends on universal constants and D (with particular emphasis on the dependence
of D). By A ∼ B, we mean both A . B and B . A.

3. Priori Estimates

In this section several a priori estimates are obtained for solutions for (1.1).

Let V be an admissible vector field given in Definition 2.2. For any ε > 0, consider smooth vector
fields {V ε1 , V ε2 } such that, as ε → 0, V ε1 converges to V1 in L∞(Rd) and V ε2 converges to V2 in Lp(Rd).
Denote V ε := V ε1 + V ε2 and

ϕε(x) := xm + εx.

For some large r > 0, we consider uε,r which solves the following problem:
∂

∂t
uε,r = ∆ϕε(uε,r) +∇ · (uε,rV ε) = 0 in Br × [0, T ],

(∇ϕε(uε,R) + uε,rV
ε) · ν = 0 on (∂Br)× [0, T ],

uε(x, 0) = u0(x) on Br

(3.1)

where ν denotes the outward unit normal on ∂Br. Note that (3.1) is a uniformly parabolic quasi-linear
equation with smooth coefficients, and thus uε,r exists and is smooth.

In the following theorem, we are going to prove that uε,r are uniformly bounded independent of ε and
r. We use a refined iteration method of Lemma 5.1 [14].

Theorem 3.1. Let u = uε,r solves (3.1) with initial data u0 ∈ L1(Rd) ∩ L∞(Rd) and admissible vector
fields V ε = V ε1 + V ε2 . Then u(x, t) is uniformly bounded for all (x, t) ∈ Rd × [0,∞). The bound only
depends on m, p, ‖V ε1 ‖∞, ‖V ε2 ‖p, ‖u0‖1 and ‖u0‖∞.

Proof. Without loss of generality, let us suppose that the total mass of u0 is 1 and so is the total mass
of u(·, t) by the equation. Let us omit the script ε on V ε and simply write V = V1 + V2.

Denote u1 := max{(u− 1), 0}. Since u is smooth, we multiply un−11 on both sides of (3.1) and find

∂t

∫
Br

un1dx = n

∫
Br

utu
n−1
1 dx ≤ −mn

∫
Br

um−1∇u∇un−11 dx− n
∫
Br

V u∇un−11 dx.

Since in the region where ∇u1 6= 0, u ≥ 1, the above

≤ −cm
∫
Br

∣∣∣∇un21 ∣∣∣2 dx− 2(n− 1)

∫
Br

V uu
n
2−1
1 ∇u

n
2
1 dx.

We have for any δ > 0,

n

∣∣∣∣∫
Br

V uu
n
2−1
1 ∇u

n
2
1 dx

∣∣∣∣ ≤ δ ∫
Br

∣∣∣∇un21 ∣∣∣2 dx+ Cn2
∫
Rd∩{u≥1}

∣∣∣V uun2−11

∣∣∣2 dx.
Later we will fix a δ small enough such that the sum of the positive coefficients in front of

∫
Br
|∇u

n
2
1 |2dx

terms are bounded by cm. The above shows

∂t

∫
Br

un1dx . −
∫
Br

∣∣∣∇un21 ∣∣∣2 dx+ n2
∫
{u≥1}

∣∣∣V uun2−11

∣∣∣2 dx︸ ︷︷ ︸
Xn:=

(3.2)

where the constant in “ . ” depends only on m, δ. Next

Xn .
∫
{u≥1}

∣∣∣V1(1 + u1)u
n
2−1
1

∣∣∣2 dx︸ ︷︷ ︸
Xn1:=

+

∫
{u≥1}

∣∣∣V2(1 + u1)u
n
2−1
1

∣∣∣2 dx︸ ︷︷ ︸
Xn2
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and

Xn1 .
∫
{u≥1}

∣∣un−11 + un1
∣∣2 dx.

By Hölder’s inequality,

Xn2 .

(∫
{u≥1}

V 2q1
2 dx

) 1
q1
(∫
{u≥1}

unq21 + u
(n−2)q2
1 dx

) 1
q2

.

(∫
{u≥1}

unq21 + u
(n−2)q2
1 dx

) 1
q2

where q1 = p
2 ,

1
q1

+ 1
q2

= 1. By the condition

1 >
1

q2
> 1− 2

d
. (3.3)

Because u has total mass 1, the total volume of the set {u ≥ 1} is bounded by 1. So Xn1 . Xn2 and we
have

Xn .

(∫
{u≥1}

unq21 + u
(n−2)q2
1 dx

) 1
q2

.

(∫
{u≥1}

unq21 + 1dx

) 1
q2

.
∥∥∥un21 ∥∥∥2

2q2
+ 1

By Gagliardo-Nirenberg inequality,∥∥∥un21 ∥∥∥
2q2
≤ C1

∥∥∥∇un21 ∥∥∥γ
2

∥∥∥un21 ∥∥∥1−γ
1

+ C1

∥∥∥un21 ∥∥∥
1

where 1
2q2

=
(
1
2 −

1
d

)
γ + (1− γ) and

γ =

(
1− 1

2q2

)/(1

2
+

1

d
,

)
which belongs to (0, 1) due to (3.3), and C1 only depends on p. By Young’s inequality

Xn ≤
δ

n2

∥∥∥∇un21 ∥∥∥2 + Cδn
cγ

(∫
u
n
2
1 dx

)2

+ C (3.4)

with cγ = 2γ
1−γ .

Again using Galiardo-Nirenberg inequality and Young’s inequality it follows∥∥∥un21 ∥∥∥
2
.
∥∥∥∇un21 ∥∥∥β

2

∥∥∥un21 ∥∥∥1−β
1

+
∥∥∥un21 ∥∥∥

1
.
∥∥∥∇un21 ∥∥∥

2
+
∥∥∥un21 ∥∥∥

1

with β = 1
2/
(
1
2 + 1

d

)
. So for some universal C, c > 0∥∥∥∇un21 ∥∥∥2

2
≥ C

∥∥∥un21 ∥∥∥2
2
− c

∥∥∥un21 ∥∥∥2
1
. (3.5)

From (3.2), (3.4) and (3.5), we have

∂t

∫
Br

un1 + c0

∫
Br

un1dx ≤ Cncγ+2

(∫
Br

u
n
2
1 dx

)2

+ Cn2.

Now let nk = 2k for k = 0, 1, 2... and Ak(t) =
∫
unk1 (x, t)dx. To conclude the proof we need the following

lemma, whose proof will be given in the appendix.

Lemma 3.2. Suppose {nk} is a sequence defined by

n0 = 1, nk+1 := 2nk + a for all k ≥ 0, where a > −1. (3.6)

Let {Ak(·), k = 0, 1, ...} be a sequence of differentiable, positive functions on [0,∞) that satisfies

d

dt
Ak + C0Ak ≤ Cnk1 + C1

k(Ak−1)2+C1n
−1
k ,

for some constants C0, C1. Then {Bk(t) := A
(n−1
k )

k (t)} are uniformly bounded for all t > 0 and k, given
that {Bk(0)} with respect to k and {B0(t)} are uniformly bounded with respect to t > 0.
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From above lemma, A
n−1
k

k are uniformly bounded. We have that ‖un1 (·, t)‖n are uniformly bounded

for all t and n ∈ {2k, k = 0, 1, 2...}. By interpolation, this shows that ‖u1‖p <∞ for 1 ≤ p ≤ ∞. Since∫
Br

undx ≤
∫
{u≥2}

(2u1)ndx+ 2n−1
∫
{u≤2}

u dx . 2n,

we find the L∞ bound of u which is independent of r, ε. �

3.1. Existence. In this section, we show existence of solutions to (1.1) with V ∈ L∞(Rd) + Lp(Rd) for
some p > d.

Theorem 3.3. Assume V is admissible. Then there exists a weak solution u to (1.1) with nonnegative
initial data u0 ∈ L∞(Rd) ∩ L1(Rd).

Proof. The proof is parallel to the previous works [2–4]. Recall that uε,r solve (3.1). Theorem 3.1 states
that for all t ∈ [0, T ], {uε,r} are uniformly bounded in L1(Br) ∩ L∞(Br) independent of ε, r.

Using ϕε(uε,r) as the test function in (3.1), we obtain(∫
Br

1

m+ 1
um+1
ε,r +

ε

2
u2dx

) ∣∣∣∣∣
T

0

= −
∫∫

Br×[0,T ]

|∇ϕε(uε,r)|2dxdt−
∫∫

Br×[0,T ]

uε,rV
ε · ∇ϕε(uε,r)dxdt.

From Hölder and Young’s inequality∫∫
Br×[0,T ]

|∇ϕε(uε,r)|2dxdt ≤ C +

∫∫
Br×[0,T ]

u2ε,r|V ε|2dxdt (3.7)

Let q be such that 2
q + 2

p = 1. Then

‖uε,rV ε‖2L2(Br×[0,T ]) ≤ ‖uε,rV
ε
1 ‖

2
L2(Br×[0,T ]) + 2 ‖uε,r‖2Lq(Br×[0,T ]) ‖V

ε
2 ‖

2
Lp(Br×[0,T ]) .

The two terms on the right hand side are uniformly bounded with respect to ε and r, since {uε,r} are
uniformly bounded in L∞(BR) ∩ L1(BR).

By (3.7), {∇ϕε(uε,r)} are uniformly bounded in L2(Br × [0, T ]). As in Theorem 1 of [2], {uε,r}ε>0 is
precompact in L1(Br × [0, T ]). Along a subsequence as ε→ 0, we obtain a weak solution ur to (1.1) in
Br × [0, T ] with no-flux boundary condition. Then following the proof of Theorem 1 [2], it follows that
ur ∈ C([0, T ], L1(BR)).

Now we send r → ∞. Notice that the L∞([0, T ], Lp(Br)), p ∈ [1,∞] bounds we have on {ur} and
L2(Br × [0, T ]) bounds on |∇umr | are independent of r. These bounds yields sufficient compactness to
yield a subsequential limit u ∈ C([0, T ], L1(Rd)) which is a weak solution of (1.1). For complete details,
we refer to Theorem 2 [2].

�

3.2. Uniqueness. This section discusses two uniqueness results. First let us consider a relatively smooth
vector field V and show comparison principle for weak solutions.

Theorem 3.4. Write V = (V i)i=1,...,d and Id as d× d identity matrix. Suppose for some M > 0

|V | < +∞, −MId ≤ DV ≤MId. (3.8)

Let ū, u be respectively a subsolution and a supersolution of (1.1) with initial functions ū0, u0 such that
ū0 ≤ u0. Then ū ≤ u for t ≥ 0.

Proof. Define a(x, t) = (um − ūm)/(u− ū). Suppose ε > 0 is small enough and N is large enough such
that ∫∫

Rd×[0,1]∩{a≥N}
|um − ūm|dxdt ≤ ε2. (3.9)

Let aN,ε be a smooth approximation of a+ ε such that for t ∈ [0, 1]

ε ≤ aN,ε ≤ N, ‖aN,ε(·, t)−min{a(·, t), N} − ε‖2 ≤ ε. (3.10)
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For any smooth non-negative compactly supported test function ξ, we consider the following dual
problem to (1.1): {

ϕt + aN,ε∆ϕ− V · ∇ϕ+ ξ = 0 in Rd × [0, T ];

u(x, T ) = 0 on Rd
(3.11)

for some T ∈ (0, 1] to be determined. Since aN,ε ≥ ε, there is a unique solution ϕ ≥ 0 of (3.11) which is
smooth.

We write u = u − ū. Since u and ū are respectively super and subsolutions, by the weak inequality
satisfied by u with respect to test function ϕ, we deduce

0 ≤
∫∫

Rd×[0,T ]

uϕtdxdt+

∫∫
Rd×[0,T ]

au∆ϕdxdt−
∫∫

Rd×[0,T ]

uV∇ϕdxdt−
∫
Rd
u(x, 0)ϕ(x, 0)dx.

Using that u(·, 0) ≥ 0, ϕ ≥ 0 and (3.11), then∫∫
Rd×[0,T ]

uξdxdt ≤
∫∫

Rd×[0,T ]

|u||a− aN,ε||∆ϕ|dxdt

≤

(∫∫
Rd×[0,T ]

aN,ε|∆ϕ|2dxdt

) 1
2
(∫∫

Rd×[0,T ]

|a− aN,ε|2

aN,ε
|u|2dxdt

) 1
2

. (3.12)

We want to obtain a priori estimate for the term ∆ϕ.

Fix ζ(t) be a smooth function such that 1 ≤ ζ(t) ≤ 2 and ζt ≥ 2dM + 4M + 1 for t ∈ [0, T ] which can
be done when T is small enough.

We multiply (3.11) by ζ∆ϕ, after integration that is∫∫
Rd×[0,T ]

ζV · ∇ϕ∆ϕdxdt =∫∫
Rd×[0,T ]

ϕtζ∆ϕdxdt+

∫∫
Rd×[0,T ]

ζaN,ε|∆ϕ|2dxdt+

∫∫
Rd×[0,T ]

ζξ∆ϕdxdt.

Using integration by parts and Hölder’s inequality in the first inequality, the above (see Theorem 6.5 [21]
in 6.2.1 for details).

≥
∫∫

Rd×[0,T ]

1

2
ζt|∇ϕ|2dxdt+

∫∫
Rd×[0,T ]

ζaN,ε|∆ϕ|2dxdt−
∫∫

Rd×[0,T ]

ζ∇ξ∇ϕdxdt

≥ (dM + 2M)

∫∫
Rd×[0,T ]

|∇ϕ|2dxdt+

∫∫
Rd×[0,T ]

aN,ε|∆ϕ|2dxdt− C
∫∫

Rd×[0,T ]

|∇ξ|2dxdt.

Then
∫∫

Rd×[0,T ]
aN,ε|∆ϕ|2dxdt ≤∫∫

Rd×[0,T ]

ζV · ∇ϕ∆ϕdxdt− (d+ 2)M

∫∫
Rd×[0,T ]

|∇ϕ|2dxdt+ C

∫∫
Rd×[0,T ]

|∇ξ|2dxdt. (3.13)

By (3.8), −(V ixj ) ≤MId and |∇ · V | ≤ dM ,∫∫
Rd×[0,T ]

ζV · ∇ϕ∆ϕdxdt =
1

2

∫∫
Rd×[0,T ]

ζ|∇ϕ|2∇ · V dxdt−
∫∫

Rd×[0,T ]

ζ
∑
i,j

ϕxiV
i
xjϕxjdxdt

≤ (d+ 2)M

∫∫
Rd×[0,T ]

|∇ϕ|2dxdt.

Plugging the above inequality and (3.13) into (3.12), we get∫∫
Rd×[0,T ]

uξdxdt ≤ C‖∇ξ‖L2(Rd×[0,T ])

(∫∫
Rd×[0,T ]

|a− aN,ε|2

aN,ε
|u|2dxdt

) 1
2

.
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Now we use (3.10) and find out∫∫
Rd×[0,T ]

|a− aN,ε|2|u|2 ≤ 2

∫∫
Rd×[0,T ]

|min{a,N}+ ε− aN,ε|2|u|2dxdt+

2

∫∫
Rd×[0,T ]

ε2|u|2dxdt+ 2

∫∫
{a>N}

a2|u|2dxdt

≤
(

2‖u‖2∞ + 2‖u‖2L2(Rd×[0,T ]) + 2
)
ε2 ≤ Cε2.

So since aN,ε ≥ ε, by (3.12) ∫∫
Rd×[0,T ]

uξdxdt ≤ C‖∇ξ‖L2(Rd×[0,T ])ε
1
2 .

Letting ε > 0, we conclude that
∫∫

Rd×[0,T ]
uξdxdt ≤ 0 for all arbitrary C∞c test function ξ ≥ 0. And so

u ≤ 0 within time [0, T ].
Finally since T only depends on d,M , doing this repeatedly finishes the proof. �

Our second uniqueness result is a consequence of the following L1 contraction, which holds between
“strong solutions” if m is not too large depending on the singularity of V . The existence of strong
solutions remain open, with the exception of zero drift case (see [1] and section 8.1.1 of [21]).

Theorem 3.5. Suppose ‖V ‖p < ∞ for some p ≥ 2 and 1 < m < 1 + 2
p . Let u1, u2 be two nonnegative

weak solutions to (1.1) with initial datas u1,0, u2,0 respectively. Assume in addition that

∂t(u1 − u2) ∈ L1(Rd × [0, T ]).

Then the following holds:∫
Rd

(u1 − u2)+(t)dx ≤
∫
Rd

(u1,0 − u2,0)+dx for 0 ≤ t ≤ T.

Proof. Let ϕ ∈ C1(R) be such that ϕ(s) = 0 if s ≤ 0 and ϕ(s) = 1 if s ≥ 1, with ϕ′(s) ∈ (0, 2). Denote
ϕn(s) := ϕ(ns) for n = 1, 2, ... By definition of the weak solution we have, with w := um1 − um2 ,∫∫

Rd×[0,T ]

(u1 − u2)tϕn(w)dxdt = −
∫∫

Rd×[0,T ]

∇w∇ϕn(w)dxdt−
∫∫

Rd×[0,T ]

(u1 − u2)V · ∇ϕ(w)dxdt

= −
∫∫

Rd×[0,T ]

|∇w|2ϕ′n(w)dxdt−
∫∫

Rd×[0,T ]

(u1 − u2)V · ∇w ϕ′n(w)dxdt.

Since ϕ′n ≤ 2n,

−
∫∫

Rd×[0,T ]

(u1 − u2)V∇w ϕ′n(w)dxdt ≤
∫∫

Rd×[0,T ]

|∇w|2ϕ′n(w)dx+ 2n

∫∫
0<w≤ 1

n

|u1 − u2|2|V |2dxdt.

When p > 2, let q be such that 2
q + 2

p = 1. Note that when w > 0, u1 > u2 ≥ 0 and thus

|u1 − u2|m ≤ |um1 − um−11 u2| ≤ |w|.
Thus we have∫∫

0<w≤ 1
n

|u1 − u2|2|V |2dxdt ≤
∫∫

0<w≤ 1
n

|w|
1
m (2− 2

q )|u1 − u2|
2
q |V |2dxdt.

≤ n−
1
m (2− 2

q )

(∫∫
0<w≤ 1

n

|u1 − u2|dxdt

) 2
q
(∫∫

Rd×[0,T ]

|V2|pdxdt

) 2
p

.

Then, since |u1 − u1| ≤ C([0, T ];L1(Rd)), it follows that∫
Rd

(u1 − u2)t ϕn(w)dx ≤ Cn1−
1
m (2− 2

q ) = Cn1−
p+2
pm ,
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the right hand side of which goes to 0 as n→∞ due to m < 1 + 2
p . Now we send n→∞ to derive the

desired inequality: ∫
Rd

(u1 − u2)+(t)dx ≤
∫
Rd

(u1,0 − u2,0)+dx.

If p = 2, parallel and easier proof yields the result. �

4. Hölder Continuity

4.1. Interior Estimates. In this section we establish the Hölder continuity results for (1.1).

Theorem 4.1. Suppose V is locally uniformly bounded in Lp(Rd) for some p > d + 4
d+2 . Let u be a

non-negative weak solution to equation (1.1) in Q1. If u(·, t) is uniformly bounded by M in Q1, then
u(·, ·) is Hölder continuous in Q 1

2
. The Hölder norm only depends on M , m, p, d and ‖V ‖Lploc .

The proof of above theorem consists of several lemmas and propositions. We begin with notations.
For given p, we will use

δ1 := 2− 2d

p
, δ2 :=

1

2
δ1, q1 := 1− 2

p
, q2 := 1− 1

p
.

In particular if p > d ≥ 2, q1 + 2
d > 1, q2 + 2

d+2 > 1. Let us define a new variable

ν := u
1
m . (4.1)

Then ν satisfies
∂

∂t
ν

1
m = ∆ν +∇ · (ν 1

mV ). (4.2)

Next we re-scale ν by

v(x, t) := ν(rx, r2w−αt) in Q(r, w−α) with α :=
m− 1

m
. (4.3)

Then v solves
wα(v

1
m )t = ∆v + r∇ · (v 1

m Ṽ ), where Ṽ (x, t) := V (rx, r2w−αt). (4.4)

Also denote

v+k := max{(v − k), 0}, v−k := max{(k − v), 0}.

We begin with an energy inequality. The proof of the lemma below are in the same spirit of the ones
in Theorem 1.2 in [9] and Lemma 6.5 [8] which applies to (1.1) with V = 0. We will emphasize on the
differences in the proof that occurs due to the nonzero drift term.

Lemma 4.2. Suppose v satisfies (4.4) in a neighbourhood of Q1 for some positive w, r such that w ≥
oscQ1

v. Suppose V is locally uniformly bounded in Lp(Rd) for some p > 0. Let ζ ∈ C∞0 (Q1) be non-
negative and

ζ ≤ 1, |∇ζ| ≤ C1, |∆ζ2| ≤ C2
1 , |ζt| ≤ C2.

Denote B′ := B1 ∩ supp{ζ} and for q ∈ (0, 1]

Bk;q :=

(∫ 0

−1

(∫
B′
χ{v(x,t)<k}dx

)q
dt

) 1
q

,

Ak;q :=

(∫ 0

−1

(∫
B′
χ{v(x,t)>k}dx

)q
dt

) 1
q

and M+,M− as the supremum and infimum of v in Q1 respectively.
If w

4 ≥M
−, then for t ∈ [−1, 0], k ≤M+,∫

B1×{t}
|v−k ζ|

2dx+

∫ t

−1

∥∥∇ (v−k ζ)∥∥22,B1×{s}
ds . (C2

1 + C2)w2Bk;1+
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rδ1w
2
mBq1k;q1 + C1r

δ2w1+ 1
mBq2k;q2 .

For t ∈ [−1, 0], w4 ≥M
−, k ≥M−, we have∫

B1×{t}
|v+k ζ|

2dx+

∫ t

−1

∥∥∇ (v+k ζ)∥∥22,B1×{s}
ds . (C2

1 + C2)w2Ak;1+

rδ1w
2
mAq1k;q1 + C1r

δ2w1+ 1
mAq2k;q2 . (4.5)

Proof. Let us only prove the second inequality. After multiplying (4.4) by v+k ζ
2 and doing integration

in space as well as from 0 to t, we get

wαm−1
∫
B1×{t}

(∫ v+k

0

(k + ξ)−αξdξ

)
ζ2dx+

∫ t

−1

∥∥∇ (v+k ζ)∥∥22,B1×{s}
ds

≤ 2C2
1

∫ t

−1

∥∥v+k ∥∥22,B1
ds+ 2C2w

αm−1
∫ t

−1

∫
B1

(∫ v+k

0

(k + ξ)−αξdξ

)
ζdxds+

r

∫ t

−1

∫
B1

v
1
m Ṽ∇(v+k ζ

2)dxds+ 2C1r

∫∫
Q1

v
1
m |Ṽ |v+k ζdxds.

Since v+k + k ≤ w, we know

1

2
w−α(v+k )2 ≤

∫ v+k

0

(k + ξ)−αξdξ ≤
∫ v+k

0

(k + ξ)
1
m dξ ≤ w 1

m v+k . (4.6)

The term r
∫ t
−1
∫
B1
v

1
m Ṽ∇(v+k ζ

2)dxds is bounded by

2r2
∫ t

−1

∫
B1

v
2
m |Ṽ |2ζ2χ{v>k}dxds+

1

2

∫ t

−1

∫
B1

|∇
(
v+k ζ

)
|2dxds+ r

∫ t

−1

∫
B1

v
1
m |Ṽ |v+k ζ|∇ζ|dxds.

From the above inequality we deduce∫
B1×{t}

|v+k ζ|
2dx+

∫ t

−1

∥∥∇ (v+k ζ)∥∥22,B1×{s}
ds . C2

1

∥∥v+k ∥∥22,Q1
+ C2w

∫∫
Q1

v+k dxdt+

r2
∫∫

Q1

v
2
m |Ṽ |2ζ2χ{v>k}dxdt+ C1r

∫∫
Q1

v
1
m |Ṽ |v+k ζdxds.

We denote the last two terms in the above by X. Note v+k . w, therefore∥∥v+k ∥∥22,Q1
≤ w2Ak;1,

∥∥v+k ∥∥1,Q1
≤ wAk;1.

Recalling that Ak;1 = meas{Q1 ∩ {v > k}}, it follows that∫
B1×{t}

|v+k ζ|
2(t)dx+

∫ t

−1

∥∥∇ (v+k ζ)∥∥22,B1×{s}
ds . (C2

1 + C2)w2Ak;1 +X. (4.7)

Now we bound the term X. Since Ṽ (x, t) = V (rx, r2w−αt), by the assumption, for each time t

‖Ṽ (·, t)‖p = r−
d
p ‖V (·, t)‖p . r−

d
p . (4.8)

Then recalling q1 := 1− 2
p ,

r2
∫∫

Q1

|Ṽ |2ζ2χ{v>k}dxdt ≤ r2
∫ 0

−1

(∫
B1

|Ṽ |pdx
) 2
p
(∫

B′
χv>kdx

)q1
dt

≤
∫ 0

−1
r2‖Ṽ ‖2p

(∫
B′
χv>kdx

)q1
dt . r2−

2d
p Aq1k;q1 .
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Similarly, for q2 satisfying 1
p + q2 = 1 we have

r

∫∫
Q1

|Ṽ |ζχv>kdxdt . r1−
d
pAq2k;q2 .

Combining with (4.7), this immediately gives (4.5) by the assumptions. Parallel argument applies for
the first inequality, except that instead of (4.6) we apply

1

2
k−α(v−k )2 ≤

∫ v−k

0

(k − ξ)−αξdξ ≤ k 1
m v−k

and the bounds of v, Ṽ . �

Corollary 4.3. Under the assumptions of Lemma 4.2. If there exists some universal constants c, ε > 0
such that

k ≥ cw, rδ1w 2
m ≤ rεw2, rδ2w1+ 1

m ≤ rεw2.

Then we have ∫ 0

−1

∥∥∇ (v+k ζ)∥∥22,B1×{s}
ds ≤ C|M+ − k|2Ak;1 + Crεw2Aq1k;1. (4.9)

Proof. The proof follows from a straightforward modification of the one of Lemma 4.2. First, by the
assumptions we can replace the second and third inequalities in (4.6) by∫ v+k

0

(k + ξ)−αξdξ ≤ k−α
∫ v+k

0

ξdξ . w−α(v+k )2 . w−α|M+ − k|2.

Second by Hölder’s inequality it is not hard to see that Ak,q is increasing in q for q ∈ (0, 1] i.e. Ak;q1 ≤
Ak;q2 ≤ Ak;1. With these two and the previous proof, we conclude with the clean expression (4.9). �

The first energy inequality in Lemma 4.2 will be used in Proposition 4.4. The second one will be used
in Lemma 4.10 and we will apply (4.9) in Lemma 4.9.

Next we prove two propositions which regards oscillation reduction. The first one implies that under
a suitable assumption the solution is bounded away from 0 with certain amount. The other shows that
if the assumption is not satisfied, then the supremum of the solution decreases once we look at a smaller
parabolic neighborhood.

Proposition 4.4. Let p > d + 4
d+2 , α = m−1

m and δ0 =
(
1− 1

m

)
/
(

1− d
p

)
. Suppose ν solves (4.2) in

a neighbourhood of Q(r, w−α) for some r, w > 0. Denote M− = inf {ν, (x, t) ∈ Q(r, w−α)} and let us
assume that

w ≥ oscQ(r,w−α)ν; and M− ≤ w

4
. (4.10)

Then there exists c0 ∈ (0, 1) that only depends on m, p and ‖V ‖Lp(Q(r,w−α)) such that the following holds:

for all 0 < r < wδ0 if

meas
{

(x, t) ∈ Q(r, w−α), ν(x, t) ≥M− +
w

2

}
≥ (1− c0)|Q(r, w−α)|, (4.11)

then

ν|Q( r2 ,w
−α) ≥M− +

w

4
.

Proof. Recall that v(x, t) defined in (4.3) satisfies (4.4) in Q1. Set

rn :=
1

2
+ 2−n, Q̃n = Q(rn, 1), kn := M− +

w

4
+

w

2n+2
,

B̃n;q =

(∫ 0

−r2n

(∫
Brn

χv(x,t)<kndx

)q
dt

) 1
q

.
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Pick ζn ∈ C∞0 (Q̃n ∪
(
Q̃n + (0, 2−n)

)
) which equals its maximum 1 in Q̃n+1. Since r2n − r2n+1 ∼ 2−n, we

can assume

|∇ζn| . 2n, |∆ζ2n| . 4n, |∂tζn| . 2n.

Recall the notation v−k := max {k − v, 0}. By Lemma 4.2, after integration we have

ess sup
−rn+1

2≤t≤0

∫
Brn+1

×{t}
|v−kn |

2dx+

∫ t

−rn+1

∥∥∇ (v−knζn)∥∥22,Brn×{s} ds
. 4nw2B̃n;1 + rδ1w

2
m B̃q1n;q1 + 2nrδ2w1+ 1

m B̃q2n;q2 .

Unravelling the definition and condition we have rδ1w
2
m ≤ w2, rδ2w1+ 1

m ≤ w2. Therefore if taking
supremum of t ∈ [−r2n+1, 0] as well as t = 0, we obtain∥∥v−knζn∥∥2V 1,0

:= ess sup
−rn+1

2≤t≤0

∫
Brn

|v−knζn|
2(·, t)dx+

∫ 0

−r2n+1

∥∥∇ (v−knζn)∥∥22,Brn×{s} ds
. 4nw2B̃n;1 + w2B̃q1n;q1 + 2nw2B̃q2n;q2 , (4.12)

By Sobolev type embedding (see page 76 in [15]),∥∥v−knζn∥∥2L2(Brn×[−r2n+1,0])
.
∥∥v−knζn∥∥2V 1,0

× B̃
2
d+2

n;1 .

So by (4.12), we get∥∥v−knζn∥∥2L2(Brn×[−r2n+1,0])
.
(

4nB̃n;1 + B̃q1n;q1 + 2nB̃q2n;q2

)
w2B̃

2
d+2

n;1 . (4.13)

By definition, v−kn ≥
w

2n+3 in Q̃n+1 ∩ {v < kn+1}. Then∥∥v−knζn∥∥2L2(Brn×[−r2n+1,0])
≥
∫∫

Q̃n+1∩{v−kn+1
>0}

(
w 2−n−3

)2
dxdt ≥ w22−2n−6B̃n+1;1.

Putting above two computations together, we arrive at

B̃n+1;1 . 4n
(

4nB̃n;1 + B̃q1n;q1 + 2nB̃q2n;q2

)
B̃

2
d+2

n;1 . (4.14)

First let us show the result when p > d + 2. Notice the length of the time interval is bounded by 1.
By definition, B̃n;q is monotone in q ∈ [0, 1]. In particular since q1 < q2 < 1,

B̃n;q1 ≤ B̃n;q2 ≤ B̃n;1.

Also B̃n;1 is obviously bounded, we have

B̃n+1;1 ≤ C16nB̃
q1+

2
d+2

n;1 . (4.15)

Here C is bounded by a universal constant and

q1 +
2

d
= 1− 2

p
+

2

d+ 2

is strictly greater than 1 if p > d+ 2. Then iterating (4.15) finishes the proof once the starting point (of

the iteration) B̃0,1 is small enough. And this is the same as c0 in (4.11) being small enough. For more
details, we refer readers to Lemma 2.2 [8]. The choice of c0 only depends on C, q1 + 2

d+2 in (4.14) (and

of course on m,V ) which is an universal constant independent of w.

For p ∈ (d + 4
d+2 , d + 2], we continue with the argument described before (4.13). For any α ∈ (0, 1),

applying Sobolev embedding in space gives∫ 0

−r2n+1

∥∥v−kn∥∥2αL2(Brn+1
)
dt
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≤
∫ 0

−r2n+1

∥∥v−knζn∥∥2αL2(Brn )
dt ≤ C

∫ 0

−r2n+1

∥∥∇ (v−knζn)∥∥2αL 2d
d+2 (Brn )

dt

≤ C
∫ 0

−r2n+1

∥∥∥χv−kn>0

∥∥∥2α
Ld(Brn+1

)

∥∥∇ (v−knζn)∥∥2αL2(Brn+1
)
dt

≤ C

(∫ 0

−r2n+1

∥∥∥χv−kn>0

∥∥∥ 2α
1−α

Ld(Brn+1
)
dt

)1−α(∫ 0

−r2n+1

∥∥∇ (v−knζn)∥∥2L2(Brn+1
)
dt

)α
.

Pick α = q1 = 1− 2
p , then the above is bounded by

.
(
B̃n; p−2

d

) 2α
d

(∫ 0

−r2n+1

∥∥∇ (v−knζn)∥∥2L2(Brn+1
)
dt

)α
.

By (4.12) and monotonicity of B̃n;q in q,

.
(
B̃n;1

) 2α
d
(

4nw2B̃n;1 + w2B̃q1n;q1 + 2nw2B̃q2n;q2

)α
.
(
B̃n;1

) 2α
d
(

4nw2B̃q2n;1 + w2B̃q1n;q1

)α
.

On the other hand since v−kn+1
≥ w

2n+3 in Q̃n+1 ∩ {v > kn}, we obtain

w2α2−2αnB̃q1n+1;q1
≤
∫ 0

−r2n+1

∫
Brn+1

∩{v
k
−
n+1

>0}

(
w 2−n−3

)2
dx

α

dt

≤
∫ 0

−r2n+1

∥∥v−kn∥∥2αL2(Brn+1
)
dt.

Putting together what we have,

w2α2−2αnB̃q1
n+1;1− 2

d

.
(
B̃n;1

) 2α
d
(

4nw2B̃q2n;1 + w2B̃q1n;q1

)α
which simplifies to

B̃n+1;q1 . 16nB̃
2
d
n;1B̃

q2
n;1 + 4nB̃

2
d
n;1B̃

q1
n;q1 . (4.16)

Here we have one inequality. By (4.14) we proved

B̃n+1;1 . 4n
(

4nB̃n;1 + B̃q1n;q1 + 2nB̃q2n;q2

)
B̃

2
d+2

n;1 .

By monotonicity,

B̃n+1;1 . 16nB̃
q2+

2
d+2

n;1 + 4nB̃q1n;q1B̃
2
d+2

n;1 . (4.17)

Let an = B̃n;1, bn = B̃n;q1 . Then the proof is finished by applying Lemma 4.5 and using both (4.16) and
(4.17). �

We state the Lemma 4.5, whose proof will be given in the appendix.

Lemma 4.5. Suppose we have two sequences {an}, {bn} such that

1 > a0 ≥ b0 ≥ a1 ≥ b1... ≥ an ≥ bn ≥ 0,

and there exists a constant C1 that

bn+1 ≤ Cn1 a
q2+

2
d

n + Cn1 a
2
d
n b

q1
n ;

an+1 ≤ Cn1 a
q2+

2
d+2

n + Cn1 b
q1
n a

2
d+2
n .
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Then if p > d+ 4
d+2 and a0 is small enough,

lim
n→∞

an = lim
n→∞

bn = 0.

Now we proceed to the second proposition.

Proposition 4.6. Let ν and c0 be as in Proposition 4.4. Suppose (4.10) holds while (4.11) is not
satisfied. Then there exists universal constants c1, c2 which only depends on c0, p and ‖V ‖Lp(Q1)such
that the following is true:

For r satisfying r < c1w
c2 , there exists some η ∈ (0, 1) such that

ν|Q( r2 ,
c0
2 w
−α) ≤ ηw.

The constant η is independent of w which may depend on c0.

The proof of the proposition rests on a number of lemmas which are variants of Lemma 6.1, 6.2, 6.3,
6.4 in [8]. We will sketch the proof for some lemmas and emphasize on the differences.

Lemma 4.7–Lemma 4.10 stated below are proven under the conditions of Proposition 4.6 and, for c0
given in Proposition 4.4 we have

M+ −M− ≥ w

2
+ c0w, (4.18)

where M+ and M− denote respectively the supremum and infimum of ν in Q(r, w−α). Let v(x, t) be as

given in (4.3) and define

Ak,R(t) := {x ∈ BR : v(x, t) > k} . (4.19)

We denote Ak(t) := Ak,1(t).

Lemma 4.7. Let k1 = M+ − c0w. There exists τ ∈ (−1,− c02 ) such that

|Ak1(τ)| ≤ (1− c0)
(

1− c0
2

)−1
|B1|.

Proof. Observe that, by (4.18), k1 ≥M− + w
2 . If the claim is false,

meas
{

(x, t) : |x| ≤ 1, t ∈ (−1,−c0
2

), v > M− +
w

2

}
≥
∫ − c02
−1

|Ak1(t)|dt > (1− c0)|B1|

which agrees with (4.11) and thus contradicts with the condition of Proposition 4.6. �

Lemma 4.8. Let c0 as given in Proposition 4.4, M+ in (4.18) and Ak(t) in (4.19). There exist universal
constants c1, c2 > 0 and a sufficiently large positive integer q = q(c0) which is independent of w such
that if r < c1w

c2 then for k2 = M+ − c0
2qw we have

|Ak2(t)| ≤
(

1− c20
4

)
|B1| for t ∈ [−c0

2
, 0].

Proof. Without loss of generality we may assume that c0 < 1. We follow the outline of the proof for
Lemma 6.2 in [8]. The additional ingredient is that we need to consider the effect of the drift term and
give a clear description of how small r need to be. For q > 3, consider

ψ(x) = log+

(
c0w

c0w − (x− (M+ − c0w))+ + c0w
2q

)
.

Then

0 ≤ ψ(x) ≤ q log 2, and ψ′(x) ∈
[
0,

2q

c0w

]
for x ∈ [0,M+]. (4.20)

Let ζ be a cutoff function in B1 that

ζ = 1 in B1−λ, ζ ∈ [0, 1], |∇ζ| ≤ 2

λ
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where λ ∈ (0, 1) is to be determined.

Consider φ = (ψ2)′(v)ζ2(x). Let τ be from Lemma 4.7 and set Qτ := B1 × [τ, t]. By calculating∫∫
Qτ
mvαvt(ψ

2)′ζ2dxdt and using equation (4.4), we find

wα
∫∫

Qτ
∂tφdxdt = −

∫∫
Qτ
m
(
∇v + rv

1
m Ṽ

) (
∇(vα(ψ2)′ζ2)

)
dxdt.

Notice that (ψ2(t))′′ = 2(1 + ψ(t))(ψ′(t))2. So

wα
∫
B1×{t}

ψ2(v)ζ2dx− wα
∫
B1×{τ}

ψ2(v)ζ2dx

+

∫∫
Qτ
v−

1
m (ψ2)′|∇v|2ζ2dxdt+

∫∫
Qτ
vα(1 + ψ)|ψ′|2|∇v|2ζ︸ ︷︷ ︸

X1:=

.m

∫∫
Qτ
|∇v ψ′ψ 1

2 v
α
2 |v α2 ψ 1

2 ζλ−1︸ ︷︷ ︸
X2:=

+ r

∫∫
Qτ
|∇(vα(ψ2)′ζ2)| · |Ṽ v 1

m |dxdt︸ ︷︷ ︸
X3:=

.

Since v ≤M+ ∼ w, ψ . q,
X2 ≤ Cwαqλ−2 + o(1)X1.

From the Hölder inequality and the fact that |∇ζ| . λ−1, ζ ∈ [0, 1],

X3 ≤ Cr
∫∫

Qτ

(
|∇v ψ 1

2 (ψ′)
1
2 ζ|ψ 1

2 (ψ′)
1
2 |Ṽ |ζ + v(1 + ψ)|ψ′|2|∇v||Ṽ |ζ2 + λ−1vψψ′|Ṽ |ζ

)
dxdt

. o(1)X1 + r2
∫∫

Qτ

(
v

1
mψψ′ + v2−α(1 + ψ)|ψ′|2

)
|Ṽ |2dxdt+ r

∫∫
Qτ
λ−1vψψ′|Ṽ |dxdt.

Recall (4.20) and that v . w . 1. Hence we obtain

X3 . o(1)X1 + (4qqr2/c20w
α)

∫∫
Qτ
|Ṽ |2dxdt+ (2qqr/c0λ)

∫∫
Qτ
|Ṽ |dxdt

Now by (4.8)

X3 . o(1)X1 + (4qqrδ1/c20w
α) + (2qqrδ2/c0λ).

Let Ak,R(t) be as given in (4.19). Computations in the proof of Lemma 6.2 [8] yield∫
B1×{t}

ψ2(v)ζ2dx ≥ ((q − 1) log 2)2|Ak2,1−λ(t)|,∫
B1×{τ}

ψ2(v)dx ≤ (q log 2)2|Ak1(τ)|

where k1 is as defined in Lemma 4.7. From the above,

|Ak2,1−λ(t)| ≤
(

q

q − 1

)2

|Ak1(τ)|+ Cq

λ2(q − 1)2
+

C4qrδ1q

c20(q − 1)2w2α
+

C2qrδ2q

c0λ(q − 1)2wα
.

And we have

|Ak2,1−λ(t)| ≥ |Ak2(t)| − |B1\B1−λ| ≥ |Ak2(t)| − Cdλ|B1|.
By Lemma 4.7 and q ≥ 3, we obtain

|Ak2(t)| ≤

((
q

q − 1

)2
1− c0

1− 1
2c0

+ C0dλ

)
|B1|+ C1

(
1

λ2q
+

4qrδ1

c20qw
2α

+
2qrδ2

c0qλwα

)
, (4.21)

where C0 and C1 are universal constants.



DEGENERATE EQUATIONS WITH DRIFTS 17

Let us now choose λ and q such that

λ :=
1

4C0d
c20,

(
q

q − 1

)2

≤
(

1− c0
2

)
(1 + c0) ,

C1

λq
≤ 1

4
c20|B1|.

It is possible to choose such q since for c0 small, (1− c0
2 )(1 + c0) > 1. Due to the drift term we require

(4qrδ1/c20w
2α + 2qrδ2/c0λw

α) .
1

4
qc20|B1|.

Since c0 is fixed and λ(c0), q(c0) are fixed, this condition is equivalent to r ≤ c1w
c2 for some fixed

c1(c0), c2(c0) > 0.

Finally we can conclude with the right hand side of (4.21) ≤ (1− ( c02 )2)|B1|.
�

Lemma 4.9. Let q be as given in Lemma 4.8. Then for any γ ∈ (0, 1) there exists c(γ, c0, q) > 0
and p0(γ, c0, q) > q such that the following holds: if r satisfies the assumption given in Lemma 4.8 and
further satisfies r ≤ c, then∣∣∣{(x, t) ∈ Q

(
1,
c0
2

)
, v > M+ − c0

2p0
w
}∣∣∣ ≤ γ ∣∣∣Q(1,

c0
2

)
∣∣∣ .

Proof. The lemma is a variant of Remark 6.1, Lemma 6.3, 6.4 [8].

Write {u > k} := {x ∈ B1, u > k} for any u ∈W 1,2(B1). Lemma 6.3 [8] says that for any l > k,

(l − k)| {u > k} |1− 1
d ≤ C

|B1| − | {u > k} |

∫
{u>k}\{u>l}

|∇u|dx. (4.22)

We will chosider l = ks+1, k = ks in above inequaltiy, wher ks := M+ − c0
2sw, where s is a sufficiently

large integer to be determined below.

Let us choose λ = λ(γ, c0) such that∣∣∣Q(1,
c0
2

)∖
Q
(
λ,
c0
2

)∣∣∣ ≤ γ

2

∣∣∣Q(1,
c0
2

)∣∣∣ . (4.23)

With above choice of λ, let 0 ≤ ζ(x, t) ≤ 1 be a cut-off function compactly supported in Q
(
1, c02

)
which

equals 1 in Q(λ, c02 ).
Write

Aζk(t) := {x ∈ B1, vζ > k} , Aζk,c0 :=
{

(x, t) ∈ Q(1,
c0
2

), vζ > k
}
,

Ak,λ,c0 :=
{

(x, t) ∈ Q
(
λ,
c0
2

)
, v > k

}
.

Then
wc0
2s+1

|Aζks+1
(t)|1− 1

d ≤ C

meas
{
B1\Aζks(t)

} ∫
Aζks (t)\A

ζ
ks+1

(t)

|∇(vζ)|dx. (4.24)

Recall that from (4.19) Ak,R(t) = {x ∈ BR, v > k} and Ak(t) = Ak,1(t), so by definitions of the sets

Ak,λ(t) ⊆ Aζk(t) ⊆ Ak(t).

By Lemma 4.8, for any t ∈ [− c02 , 0],

meas
{
B1\Aζks(t)

}
≥ meas {B1\Aks(t)} ≥

(c0
2

)2
|B1|.

Since |Aζks(t)| is bounded by |B1|,

C|Aζks+1
(t)|1− 1

d ≥ |Aζks+1
(t)| ≥ |Aks+1,λ(t)|.

Then

|Aks+1,λ,c0 | ≤ C
∫ 0

− c0λ2
|Aζks+1

(t)|1− 1
d dt.
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After integrating (4.24), Hölder inequality yields that

wc0
2s+1

|Aks+1,λ,c0 | ≤
C

c20

∫ 0

− c02

∫
Aζks (t)\A

ζ
ks+1

(t)

|∇(vζ)|dxdt

≤ C

c20

(∫∫
Aζks,c0

\Aζks+1,c0

|∇(vζ)|2dxdt

) 1
2 ∣∣∣Aζks,c0\Aζks+1,c0

∣∣∣ 12 .
Next according to (4.9)∫∫

ζv>ks,(x,t)∈Q(1,
c0
2 )

|∇ (vζ) |2dxdt .λ
c20w

2

22s
+ rεw2.

Then

wc0
2s+1

|Aks+1,λ| ≤
C

c20

(
c20w

2

22s
+ rεw2

) 1
2 ∣∣∣Aζks\Aζks+1

∣∣∣ 12 .
Now we let r be small enough that rε4p0c−20 ≤ 1. Then for all q ≤ s ≤ p0 − 1

|Aks+1,λ,c0 |2 ≤
C0

c40
|Aζks,c0\A

ζ
ks+1,c0

|.

As in [8], since the sum of |Aζks,c0\A
ζ
ks+1,c0

| is uniformly bounded by |B1|. If p0 is large enough, there

is s0 ∈ [q, p0 − 1] that

C0

∣∣∣Aζks0 ,c0\Aζks0+1,c0

∣∣∣ ≤ Cc40
p0 − q − 1

≤ c40
(
c′γ

2

) 1
2

with c′ = |Q
(
1, c02

)
|. Let us choose s = s0. Then

|Aks0+1,λ,c0 | ≤
c′γ

2
=
γ

2

∣∣∣Q(1,
c0
2

)
∣∣∣ .

Consequently∣∣∣{v > M+ − c0
2p0

w in Q
(
λ,
c0
2

)}∣∣∣ =
∣∣Akp0 ,λ,c0 ∣∣ ≤ |Aks0+1,λ,c0 | ≤

γ

2

∣∣∣Q(1,
c0
2

)∣∣∣ .
Note that p0 can be determined by c0, q, γ and so we only need r ≤ c(c0, q, γ).

Finally from (4.23)∣∣∣{v > M+ − c0
2p0

w in Q
(

1,
c0
2

)}∣∣∣ ≤ ∣∣∣{v > M+ − c0
2p0

w in Q
(
λ,
c0
2

)}∣∣∣
+
∣∣∣Q(1,

c0
2

)
\Q(λ,

c0
2

)
∣∣∣ ≤ γ ∣∣∣Q(1,

c0
2

)∣∣∣ .
�

The following lemma helps finding the value of γ(c0, p0). The proof is parallel to Proposition 4.4.

Lemma 4.10. Let p0 be as given in Lemma 4.9. Suppose p > d + 4
d+2 . There exists γ ∈ (0, 1)

independent of w, r, p0 such that if r < c1w
c
2 for some c1, c2 depending on c0, p0 and∣∣∣{(x, t) ∈ Q(1,

c0
2

), v >
(
M+ − c0

2p0
w
)}∣∣∣ ≤ γ ∣∣∣Q(1,

c0
2

)
∣∣∣ ,

then ∣∣∣∣{(x, t) ∈ Q
(

1

2
,
c0
2

)
, v >

(
M+ − c0

2p0+1
w
)}∣∣∣∣ = 0.
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Proof of Proposition 4.6
Without loss of generality, we may assume c0 <

1
8 . If M+ −M− ≤ w

2 + c0w, then v is bounded by

M+ ≤ ( 3
4 +c0)w. In this case, taking η ≤ ( 3

4 +c0) finishes the proof of the Proposition with, for instance,
c1 = c2 = 1.

Otherwise condition (4.18) is satisfied. In this case we fix c1, c2 as given in Lemma 4.7, p0 as in
Lemma 4.9 and γ as in Lemma 4.10. By Lemma 4.7 and Lemma 4.8, we know that the conclusion of
Lemma 4.9 is valid for the range of r satisfying r < c1w

c2 . By Lemma 4.9, we know that the condition
in Lemma 4.10 is satisfied for the specific choice of p0. By Lemma 4.10 we proved that if (4.11) is not
satisfied, the solution goes down from above (from M+ to M+ − c02−p0−1w) if restricted to the smaller
box Q(1/2, c0/2). This yields the conclusion with η = 1− c02−p0−1.

�
Proof of Theorem 4.1 The proof follows an iteration process which was described in the proof of

Theorem 7.17 [21], based on Propositions 4.4 and 4.6.

Recall that M := supQ1
u and α = m−1

m . Fix (x0, t0) ∈ Q 1
2
, without loss of generality we can assume

it is (0, 0), and let ν := u1/m.
The goal for the argument below is to obtain

ηkw ≥ oscQ(akr,b2k)ν for all integers k, (4.25)

where a, b, η ∈ (0, 1) only depends on M,m, p, ‖V ‖Lp(Q1) and the dimension d.

We start with some Q(r, w−α) for some w > 0, 0 < r ≤ 1
2 such that

Q(r, w−α) ⊂ Q 1
2
, w ≥ oscQ(r,w−α)ν. (4.26)

For example we can take w = M .
Let us start with a given pair of (r0, w0) that satisfies (4.26). Below we will generate a sequence of

pairs (rn, wn) that satisfies (4.26). For each n and the given pair (rn, wn) let us denote

M−n := inf
Q(rn,w

−α
n )

ν, M+
n := sup

Q(rn,w
−α
n )

ν.

Let c1 and c2 be as given in Proposition 4.6. For each given pair (rn, wn) the next pair (rn+1, wn+1)
is generated depending on the following cases.

Case 1: if rn > c1w
c2
n , the situation is in some sense better since the oscillation is under control. In order

to apply the preceding scheme, let wn+1 = wn, rn+1 = 1
2rn, and we repeat until it falls into Case

2 or 3.
Case 2: if rn ≤ c1w

c2
n and either M−n ≥ wn

4 or (4.11) holds, we claim ν ∈ [wn/4,M
+
n ] in Q( 3rn

4 , w−αn ).
This is trivial if M−n ≥ wn

4 , otherwise with the help of (4.11) we can apply Proposition 4.4. Then
from classical regularity theory for parabolic equations, it follows that (4.25) holds for k ≥ n.

Case 3: We are left with the case rn ≤ c1w
c2
n , M−n < wn

4 and (4.11) fails. In this case Proposition 4.6
yields constants 0 < c0, η < 1 which are independent of w such that

oscQ( rn2 ,
c0
2 w
−α
n )ν ≤ ηwn. (4.27)

We choose

wn+1 := ηwn, rn+1 := c3rn.

Here c23 := 1
8η
αc0 is chosen such that Q(rn+1, w

−α
n+1) ⊂ Q( rn2 ,

c0
2 w
−α
n ). From this choice of c3

and (4.27) it follows that (4.26) holds for (rn+1, wn+1).
Suppose Case 3 is iterated for n times. Then inside {|x| < cn3 r, t ∈ (−c5c2n4 r2, 0)}, the

oscillation of ν is bounded by ηnw and here c4 = 1
4c0, c5 = c0w

−α. This yields (4.25) for k = n.

�
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5. Loss of regularity: Examples

In this section we show by examples that the regularity results obtained in section 3 and 4 are false for
drifts in Ld(Rd). We will discuss examples with both potential vector fields and divergence-free vector
fields.

5.1. Loss of uniform bound and continuity for potential vector fields. First let us recall the
description of stationary solutions for (1.1) with potential vector fields.

Theorem 5.1. [ [4], [13]] For a radially symmetric, increasing potential Φ ∈ C∞(Rd), the following is
true:

1. The unique stationary solution of (1.1), with a prescribed mass M , is of the form

ρM =

(
C(M)− m− 1

m
Φ

) 1
m−1

+

.

2. Let ρ solve (1.1) with V = ∇Φ and with smooth compactly supported initial data ρ0 with
∫
ρ0 =

M . Then the support of ρ stays bounded for all times, and ‖ρ(·, t)−ρM (·)‖L∞(Rd) → 0 as t→∞.

Based on above theorem, we give the example showing the loss of uniform boundedness of solutions.

Theorem 5.2. Let d ≥ 2 and 1 ≤ p ≤ d. Then there exists a sequence of vector fields {∇ΦA(x)}A∈N
which are uniformly bounded in Lp(Rd) such that the following holds. Let uA solve (1.1) with V = ∇ΦA
and with a smooth, compactly supported initial data u0. Then supx∈Rd,t>0 u

A(x, t)→∞ as A→∞.

Proof. Let f(r) := ln ln 1
r for r ∈ (0, 1), which satisfies f ′(r) = (1/r) ln r . For each A >> 1, consider a

radially symmetric and increasing function ΦA(x) := φA(|x|) such that

1. φA(r) = −f(r) if 1/A ≤ r ≤ (ln lnA)−1;

2. φ′A(r) ≤ −2f ′(r) if 1/(2A) ≤ r ≤ 2(ln lnA)−1;

3. 0 ≤ φ′A(r) ≤ min{1, r−d−1} if r ≤ 1/(2A) or r ≥ 2(ln lnA)−1.

From Theorem 5.1 there is a stationary solution ρA1 with total mass 1, of the form

ρA1 (x) =

(
CA −

m− 1

m
ΦA(x)

) 1
m−1

+

.

We claim that ρA(0)→∞ as A→∞. Indeed, otherwise sup ρA = ρA(0) are uniformly bounded, and
having to reach total mass 1 the support of ρA must stay away from vanishing. Thus it follows that
ρA1 ((ln ln(A))−1) > 0 for sufficiently large A, and we have

ρA1 (0) =

(
CA −

m− 1

m
ΦA(0)

) 1
m−1

≥
(
m− 1

m
ΦA((ln lnA)−1)− m− 1

m
ΦA(0)

) 1
m−1

.

Since ΦA((ln lnA)−1)−ΦA(0) > f
(
1
A

)
−f((ln lnA)−1)→ +∞ as A→ +∞, we reached a contradiction.

Let uA be a solution to (1.1) with initial data u0(x). Then by Theorem 5.1, uA → ρA1 in L∞(Rd) as
t→∞. From above argument we have supt>0 u

A(0, t) = ρA1 (0)→∞ as A→∞.
To finish the proof we only need to check that ∇ΦA is bounded in Lp(Rd). In fact one can check that

the vector fields ∇ΦA is uniformly bounded in Ldlogq for all 0 < q < d− 1, where

‖V ‖dLd
logq

:=

∫
Rd
|V |d max{logq |V |, 1}dx.

It is enough to check the region 1
A ≤ |x| ≤ (ln lnA)−1, since elsewhere property 3. in the construction

of ΦA guarantees the uniform bound. We have
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∫ (ln lnA)−1

1
A

|∇ΦA|d logq |∇ΦA|dx .
∫ (ln lnA)−1

1
A

| ln |x||−d|x|−d logq |x|−1dx

=

∫ (ln lnA)−1

1
A

| ln r|−d+qr−1dr = ε
(
| ln ln lnA|−ε − | lnA|−ε

)
,

which is uniformly bounded as A→∞ if d− 1− q = ε > 0. �

By choosing another family of potentials, we can also check that Ld(Rd) bound on drifts does not
guarantee any modulus of continuity for solutions of (1.1) even when the solutions are uniformly bounded.

Theorem 5.3. There exists a family of potentials ΦA such that ∇ΦA ∈ Ld(Rd) and a family of initial
data uA0 which are uniformly bounded in L1(Rd)∩L∞(Rd)∩C∞(Rd) such that the following holds: The
solutions uA of (1.1) with V = ∇ΦA with initial datas uA0 stays uniformly bounded but lacks any uniform
modulus of continuity as A→∞.

Proof. Let φ(x) = |x|2, and let ρ be a stationary solution of (1.1) ρ given in Theorem 5.1, with a
sufficiently small mass such that ρ is supported inside of the unit ball. Let φA(x) := φ(Ax), and
ρA(x) := ρ(Ax), which is a stationary solution for φA. Let us next modify φA so that ∇φA is uniformly
bounded in Ld(Rd), let ΦA satisfy

1. ΦA = φA if |x| ≤ 1/A.

2. |∇ΦA| ≤ |∇φA| if |x| ≤ 2/A.

3. |∇ΦA| ≤ min{1, |x|−1} if |x| ≥ 2/A.

4. ΦA is smooth, radially symmetric and increasing.

Then ∇ΦA is uniformly bounded in Ld(Rd) and ρA is still a stationary solution for the modified potential
ΦA.

For A > 1, consider a sequence of functions uA0 ≥ 0 such that they are uniformly bounded in L1(Rd)∩
L∞(Rd) ∩ C∞(Rd) and

∫
uA0 dx =

∫
ρAdx = CA−d. By Theorem 5.1, the solution uA of (1.1) with

initial data uA0 and with V = ∇ΦA converges uniformly to ρA = ρ(Ax) and ρA converges pointwise to
a discontinuous function ρ∞ which is 1 at x = 0 and zero for sufficiently small |x|. It follows that uA

cannot share any uniform modulus of continuity.
We are left to show that uA is bounded. To see this let vA(x, t) := uA

(
A−1x,A−2t

)
. Then

vAt = ∆
(
vA
)m

+∇ ·
(
vAA−1 (∇ΦA)

(
A−1x

))
,

and
∥∥A−1 (∇ΦA) (A−1x)

∥∥d+1

d+1
= A−1 ‖∇ΦA‖d+1

d+1

. A−1
(∫ 2

A

0

|A2x|d+1dx+

∫ ∞
1

|x|−d−1dx+ 1

)
<∞.

The vector field A−1 (∇ΦA)
(
A−1x

)
are uniformly bounded in Ld+1 and vA(0) are uniformly bounded

in L1(Rd) ∩ L∞(Rd). By previous Theorem 3.1, vA are uniformly bounded and so are uA.
�

5.2. Loss of Hölder regularity for Divergence free vector fields. In previous subsection we have
seen that drifts bounded in Ld(Rd) and initial data that are bounded in L1(Rd)∩L∞(Rd) are insufficient
to yield uniform mode of continuity for solutions of (1.1). Our example used a series of potential vector
fields with strong compression at one point, which yields discontinuity in limit. In this section we will
show that the loss of regularity continues to be true for divergence free vector fields, though here we are
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only able to present loss of Hölder estimates. Our example leaves open the possibility of weaker modulus
of continuity.

Our examples are inspired by that of [20], where parallel results are shown for a fractional diffusion-
drift equation, however there is a significant difference on the barrier argument that is presented below.
While [20] makes use of the nature of their fractional diffusion, we make use of the degeneracy of the
diffusion in the small density zone. More precisely, our counterexamples will describe loss of regularity
near small density region, due to the discontinuities of the drifts across the cone |x| = |y| (in two
dimensions) and |y| = |x1 ± x2| (in three dimensions). In the construction of barriers below, our use
of degenerate diffusion appears both in the evolution of the density height in the barriers, and in the
construction of supersolution where the zero set propagates with finite speed. See below for further
discussion on the construction of barriers.

5.2.1. Example in d = 2. Let us begin with two dimensions, where the presentation illuminates the main
components of the argument better. Let us recall that, for u solving (1.1) with divergence free V , the
pressure variable v := m

m−1u
m−1 solves

vt − (m− 1)v∆v − |∇v|2 + V · ∇v = 0. (5.1)

We will prove the following theorem by constructing barriers for the pressure equation above.

Theorem 5.4. There is a sequence of bounded vector fields {Vn} which are uniformly bounded in L2(R2),
and a sequence {un}n of solutions for (5.1) with Vn that satisfies the following:

1. {un(x, 0)} are uniformly bounded in Ck(R2) for any k > 0;
2. {un} are uniformly bounded in R2 × [0, 1];
3. For any δ > 0 we have supn[un]δ =∞, where [f ]δ denotes the Cδ semi-norm of f in R2× [0, 1].

◦ Construction of vector fields

For s ∈ (0, 1) define

ψ(x, y) :=
1

2
s

1
2 (|x− y|s − |y + x|s) .

Let us also define smooth cut-off functions κ and µε satisfying

χ[− 1
3 ,

1
3 ]
≤ κ ≤ χ[− 1

2 ,
1
2 ]

and

χ[2ε,10) ≤ µε ≤ χ[ε,20), |µ′ε|(x, y) ≤ 2

|(x, y)|
. (5.2)

Now define

V := ∇⊥F = (−∂yF, ∂xF ) , where F (x, y) := ψ(x, y)κ

(
x

y

)
µε(|(x, y)|). (5.3)

We claim that for all s, ε ∈ (0, 1), V is bounded uniformly in L2(Rd). To see this, note that by
definition we have

|∇⊥F | = |∇⊥(ψκ)| ≤ Cs 1
2 |y|s−1 for |(x, y)| ∈ [2ε, 1].

Then ∥∥∇⊥F (x, y)
∥∥2
L2(B1\B2ε)

≤ C
∫ 1

0

∫ cy

0

s|y|2(s−1)dxdy ≤ C.

On the other hand in B2ε, by (5.2), we have |∇⊥F | . x
1
2 |(x, y)|s−1. The claim follows now from above

computations and the truncation.

We will prove Theorem 5.4 by comparison principle, Theorem 3.4. More precisely, below we will
construct a subsolution ū and a supersolution u of (5.1) to compare with vs, to show the following:

Claim. There exists a family of solutions {vs}s>0 of (5.1), with smooth initial data bounded uniformly
in C2 with respect to ε and s, such that the following holds:
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1. vs(0, 4ε, T ) ≥ Csε2s,
2. vs(0,−4ε, T ) = 0.

This claim will conclude the theorem if we take s→ 0+.

Roughly speaking, our barriers are of the form ū(x, t) = k(t)Φ1(x, t) and u(x, t) = k̃(t)Φ2(x, t), where

k and k̃ are carefully chosen to estimate the evolution of density height inside and outside of the singular
cones (see Figure 1). The spatial function Φ1 is a small bump function of height 1 considered in [20].
While Φ2 roughy amounts to 1 − Φ1, it presents a nonnegative function with nonempty zero set that
moves with finite speed. This is a consequence of the finite propagation property of degenerate diffusion,
and is a crucial feature of u that is needed to establish the claim above.

◦ Construction of subsolution

For ε > 0, let us define the parameters

M := s−
3
2 and T := M(1− (4ε)2−s)/(2− s). (5.4)

Define

z(t) := (1− (2− s)M−1t)
1

2−s , t ∈ [0, T ] (5.5)

so that z satisfies

z′ = −M−1zs−1, z(0) = 1, z(T ) = 4ε.

Let ϕ ∈ C∞0 (B1(0)) be a smooth, non-negative, radially symmetric and decreasing function with the
property |∆ϕ| ≤ C. Now for some r ∈ (0, 18 ) and a constant cs > 0, define

ū((x, y), t) := csz
s(t)Φ((x, y), t) := csz

s(t)ϕ

(
x, y − z(t)
rz(t)

)
.

We will choose r small enough such that ū is supported in the upper cone y > 3(|x|).

Lemma 5.5. Let ū be defined as above. Then there exists rs > 0 which depends on s (but independent
of ε) such that for r ≤ rs and cs small enough independent of ε, ū is a subsolution to (5.1).

Proof. For simplicity, let us omit the subscript s, and denote z = z(t). By definition we only need to
check that

ūt − (m− 1)ū∆ū+ V · ∇ū ≤ 0

which is equivalent to

cs((z
s)Φ + zs∂tΦ)− (m− 1)c2sz

2sΦ∆Φ + csz
sV · ∇Φ ≤ 0.

Figure 1. Sub and Super Solutions
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Recall |∆ϕ| ≤ C, it is sufficient to show that

(zs)′ ≤ (m− 1)csz
2sΦ∆Φ ≤ −C(m− 1)

r2z2
csz

2s and (5.6)

∂tΦ + V · ∇Φ ≤ 0. (5.7)

The first inequality is equivalent to

C(m− 1)cs ≤ sr2M−1 = sr2M−1.

So once r = rs and cs are chosen small enough that

cs ≤
sr2

C(m− 1)M
. s

5
2 r2, (5.8)

inequality (5.6) holds.
Next we claim that there exists a universal constant rs > 0 which is independent of ε such that for all

r ≤ rs, (5.7) holds. From the computation in Lemma 3.6 [20], there exists a universal constant rs > 0
which is independent of ε that for all r ≤ rs, (5.7) holds. (Similar calculations will be performed for
construction of a supersolution, see Lemmas 5.6 - 5.9). It follows that for r and c small enough, ū is a
subsolution and ū(0, 4ε, T ) ∼ csz

s(T ) = cs(4ε)
s. Due to (5.8), ū(x, y, 0) is uniformly Ck for any k with

respect to ε.
�

◦ Construction of supersolution

Let M,T, z(t) be as previously defined in (5.4), (5.5).

Let us consider a smooth function ϕ(R) : [0,∞)→ [0, 1] with the following properties:

1. ϕ is increasing with ϕ(0) = ϕ′(0) = 0 and ϕ ≡ 1 for R ≥ 1.
2. There exists a constant C∗ > 0 that

(m− 1)ϕ(ϕ′′ +
1

R
ϕ′) + |ϕ′|2 ≤ C∗ϕ (5.9)

.

To construct such ϕ, for instance we can choose ϕ = R2 for |R| ≤ 1/2 and extend it to a smooth function
satisfying 1,2. With the above ϕ, define

Φ((x, y), t) := ϕ

(∣∣∣ (x, y + z(t))

rz(t)

∣∣∣) .
and

k(t) :=

(
C0 − C∗

Mr−2

s
z(t)s

)−1
, (5.10)

where

C0 := 2C∗Mr−2s−1(4ε)−s ∼ r−2s− 5
2 ε−s. (5.11)

The choice of C0 is to ensure that k(t) stays nonnegative for 0 ≤ t ≤ T and k(0) = 2
C0

= 4s

C∗ r
2s

5
2 εs.

With the functions k and Φ as defined above, we will consider a supersolution of the form

u(x, y, t) := k(t)Φ(x, y, t). (5.12)

Lemma 5.6. Let u(x, y, t) be as given in (5.12). There exist rs > 0 independent of ε and a universal

constant C1 > 0. If r ≤ rs and k(0) ≤ C1r
2s

5
2 εs, then u is a supersolution to (5.1) in the time interval

[0, T ].
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Proof. Consider the region S := {(x, y), 3ε ≤ 3|x| ≤ −y} × [0, T ]. Showing that u is a supersolution is
equivalent to

(k′Φ + k∂tΦ)− (m− 1)k2Φ∆Φ− k2|∇Φ|2 + kV · ∇Φ ≥ 0.

By (5.9),

Ck2z−2r−2Φ ≥ (m− 1)k2Φ∆Φ + k2|∇Φ|2.
Thus it suffices to show

k′ ≥ Ck2z−2r−2 and ∂tΦ + V · ∇Φ ≥ 0 (5.13)

The first inequality in (5.13) follows from the construction of k(t). The second inequality can be
written as

∇ϕ · (x, y) z−1−s +∇ϕ · (MV z−1) ≥ 0.

Notice that inside S, Ṽ := MV satisfies(
Ṽ1, Ṽ2

)
=

1

2

(
|x− y|s−1 − | − x− y|s−1, |x− y|s−1 + | − x− y|s−1

)
.

Since ∇ϕ is in the direction of (x, y + z), the above inequality is equivalent to

M(x, y, z) := (x , y + z) · (x, y)zs−2 + (x , y + z) · (Ṽ1, Ṽ2) ≥ 0.

By (s− 1)-homogeneity of (Ṽ1, Ṽ2), it is then equivalent to verify for |x|2 + |y + 1|2 ≤ r2, we have

f(x, y) := M(x, y, 1) = x2 + y(y + 1) +
1

2
|x− y|s−1(x+ y + 1) +

1

2
| − x− y|s−1(−x+ y + 1) ≥ 0.

After basic computations

f(0,−1) = fx(0,−1) = fy(0,−1) = fxy(0,−1) = 0,

fxx(0,−1) = 2s > 0, fyy(0,−1) = 2(2− s) > 0.

It follows that (0,−1) is a local minimum of f and therefore there exists rs such that f ≥ 0 inside
|x|2 + |y + 1|2 ≤ r2s . And hence the first inequality of (5.13) holds.

It follows that u is a supersolution in R2 × [0, T ] with u(x, y, 0) ≤ C1r
2
ss

5
2 εs in the lower half plane

(y ≤ 0). Since ϕ(0, 0) = 0 at time T we have

u(0,−4ε, T ) = 0.

�

Proof of Theorem 5.4:
Now for any module of holder continuity w(τ) = Cτ δ. Let us select s < 1

2δ and ε arbitrarily small.
Let r be sufficiently small so that Lemma 5.5 and Lemma 5.6 applies. Let C1 be the constant in Lemma
5.6.

Consider a smooth function v0 : Rd → R be supported in the upper half plane and

1. v0 ≥ C1

2 r
2
ss

5
2 εs in Brs(0, 1);

2. v0 ≤ C1r
2
ss

5
2 εs.

Let vs = vs,ε solve (5.1) with initial data v0. Let us choose ε small enough so that ū given in Lemma

5.5 with cs := C1

2 r
2
ss

5
2 εs is a subsolution of (5.1). From comparison principle, the solution to (5.1) with

initial data v0 satisfies

v(0, 4ε, T ) ≥ Cr2ss
5
2 ε2s. (5.14)

Next let u be the supersolution as given in Lemma 5.6. Then we have u(·, 0) ≥ v0, thus by comparison
principle it follows that v2 ≥ v. Then at time T ,

vs(0,−4ε, T ) ≤ u(0,−4ε, T ) = 0. (5.15)

Putting (5.14) and (5.15) together, it follows that

|vs(0, 4ε, T )− vs(0,−4ε, T )|/|8ε|δ ≥ Cr2ss
5
2 ε2s−δ = C(s)ε2s−δ.
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Finally, let us normalize parameters so that the singular time T is comparable to 1.

us,ε(x, t) = vs,ε(M
1
2x,Mt).

Let us normalize T by

T̃ = T/M =
1− (4ε)2−s

2− s
,

which is close to 1/2 for all s, ε close to 0. Recall V defined in (5.3). Then us,ε solves equation (5.1)
with V replaced by

Ṽ (x) = Ṽs := M
1
2V (M

1
2x),

where V is defined in (5.3). Then {Ṽs} are uniformly bounded in L2(R) for all s.
From Theorem 5.4,

|us(0, 4ε/M
1
2 , T̃ )− us(0,−4ε/M

1
2 , T̃ )|/|8ε|δ ≥ Csε2s−δ.

Then as ε→ 0, any Cδ- norm with δ > 2s again grows to infinity at time T̃ which is uniformly bounded
this time. Thus we can conclude our theorem if we choose

un := u1/n,εn .

where εn is chosen sufficiently small such that the Cn norm of u1/n,εn(x, 0) is bounded.
�

5.2.2. Example in d = 3.

Theorem 5.7. There exist a sequence of bounded vector fields {Vn} which are uniformly bounded in
L3(R3) such that parallel statements as in (5.4) holds.

◦ Construction of vector fields

Let us denote x = (x1, x2, y) ∈ R3. For s ∈ (0, 1), define

ψ(x1, x2, y) := (−(y + x1 − x2)s + (y + x1 + x2)s, (y − x1 + x2)s − (y + x1 + x2)s, 0 ) .

For ε > 0, let κ and µε be two smooth cut-off functions satisfying

χ[− 1
3 ,

1
3 ]
≤ κ ≤ χ[− 1

2 ,
1
2 ]

(5.16)

and

χ[2ε,10] ≤ µε ≤ χ[ε,20], |µ′ε|(x) ≤ 2

|x|
. (5.17)

Now we define V := ∇× F with

F (x) :=
1

4
(s)

1
3ψ(x)κ

(
x1 − x2

y

)
κ

(
x1 + x2

y

)
µε(|x|).

We claim that for all s, ε ∈ (0, 1) any small, V is bounded uniformly in L3(R3). To show this, by
symmetry it is enough to consider the following regions:

S1 := {(x1, x2, y) ∈ B1, y ≥ 3 max{|x1 + x2|, |x1 − x2|}, |(x1, x2, y)| ≥ 2ε} ,

S2 :=

{
(x1, x2, y) ∈ B1,

1

2
y ≥ x1 + x2 ≥

1

3
y > 0, |(x1, x2, y)| ≥ 2ε}

}
,

S3 := {(x1, x2, y) ∈ B1, |(x1, x2, y)| ≤ 2ε} .

In S1, κ = µε = 1 and ‖∇ × ψ‖ ≤ Cs|y|s−1. Therefore

‖V (x)‖3L3(S1)
≤ C

∫ 1

0

∫ 1
3y

0

∫ 1
3y

0

s4|y|3(s−1)dx1dx2dy ≤ s3C.
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In S2, since |κ′|, |κ| are bounded and µε = 1, each component in ∇× F is bounded by Cs
1
3 |y|s−1. Since

µ′ε ≤ 2
|x| similar bound holds in S3, and we have

‖V (x)‖3L3(S2∪S3)
≤ C

∫ 1

0

∫ 1
2y

0

∫ 1
2y

0

s|y|3(s−1)dx1dx2dy ≤ C.

As before, we will prove Theorem 5.7 by comparison principle.
Take M = s−

4
3 . We define T, z(t) the same as in (5.4), (5.5). We can write V = s

4
3 (V1, V2, V3), inside

S1

V1 = −1

4
(y − x1 + x2)s−1 +

1

4
(y + x1 + x2)s−1,

V2 = −1

4
(y + x1 − x2)s−1 +

1

4
(y + x1 + x2)s−1,

V3 = −1

4
(y − x1 + x2)s−1 − 1

4
(y + x1 − x2)s−1 − 1

2
(y + x1 + x2)s−1.

◦ Construction of subsolution

Let ϕ ∈ C∞0 (B1(0)) be a smooth, non-negative, radially symmetric and decreasing function with
|∆ϕ| ≤ C for some C > 0. For r ∈ (0, 19 ) and a constant cs, define

ū(x, t) := csz
s(t)Φ(x, t) := csz

s(t)ϕ

(
x1, x2, y − z(t)

rz(t)

)
.

Then the support of ū lies inside the upper cone S1.

Lemma 5.8. Let ū be defined as above. Then there exists rs > 0 independent of ε and a universal
constant C > 0 such that for r ≤ rs and cs = Cs

7
3 r2, ū is a subsolution to (5.1). Furthermore

ū(0, 0, 4ε, T ) ≥ cs(4ε)s.

Proof. We need to check that

ūt − (m− 1)ū∆ū+ V · ∇ū ≤ 0

inside the support of ū, which lies in Brz. Since |∆ϕ| ≤ C, it suffices to show that

(zs)′ ≤ −C(m− 1)

r2z2
csz

2s (5.18)

and

∂tΦ + V∇Φ ≤ 0 (5.19)

in Brz.
Since (5.18) is equivalent to C(m− 1)cs ≤ sr2M−1, it holds when

cs :=
sr2

C(m− 1)M
. s

7
3 r2.

Next notice

∂tΦ + Ṽ · ∇Φ = 0, with Ṽ = −M−1zs−2(x1, x2, y).

Hence to show (5.19), it suffices to show (Ṽ − V ) · ∇Φ ≥ 0 for t ∈ [0, T ] and for (x1, x2, y − z) ∈ Brz.

Recall that V = s
4
3 (V1, V2, V3), M = s−

4
3 . Since ∇Φ is parallel to (x1, x2, y), it suffices to show that

((V1, V2, V3) + zs−2(x1, x2, y)) · (x1, x2, y − z) ≥ 0 for {x : x21 + x22 + (y − z)2 ≤ z2r2}.

By (s− 1)-homogeneity of V , this is equivalent to

((V1, V2, V3) + (x1, x2, y)) · (x1, x2, y − 1) ≥ 0 for {x : x21 + x22 + (y − 1)2 ≤ r2}, (5.20)
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The left handside of (5.20) can be written as

f(x1, x2, y) = −1

4
|y − x1 + x2|s−1(x1 + y − 1)− 1

4
|y + x1 − x2|s−1(x2 + y − 1)

− 1

4
|y + x1 + x2|s−1(−x1 − x2 + 2(y − 1)) + x21 + x22 + y(y − 1). (5.21)

Straightforward computation yields

f(0, 0, 1) = fx1
(0, 0, 1) = fx2

(0, 0, 1) = fy(0, 0, 1),

fxixi = 1 + s, fyy = 4− 2s, fx1x2
= 0, fxiy = −1

2
(s− 1).

So (0, 0, 1) is a local minimum of f . Hence there exists rs > 0 which only depends on s such that (5.20)
holds for (x1, x2, y − z) ∈ Brsz, thus we conclude that v is a subsolution of (5.1) when cs and rs are
sufficiently small. In particular observe that

ū(0, 0, 4ε, T ) ∼ cszs(T ) = cs(4ε)
s with cs ≤ Cs

7
3 r2,

where C is a universal constant which is independent of s, ε.
�

◦ Construction of supersolution

Let ϕ : [0,∞) → [0, 1] be as given in (5.9) and let k(t) be as given in (5.10), (5.11) with M = s−
4
3 .

Recall that

k′ ≥ Cz−2r−2k2 for t ∈ [0, T ]. (5.22)

For r < 1
9 , we define

u(x, t) = k(t)Φ(x, t) := k(t)ϕ

(
(x1, x2, y + z(t))

rz(t)

)
.

Lemma 5.9. Let u be defined as above, and let rs as given in Lemma 5.6. If r ≤ rs, u is a supersolution

to (5.1) in R3 × [0, T ]. Furthermore u(0, 0,−4ε, T ) = 0 and u(x, 0) ≥ Cr2s
7
3 εs, where C is independent

of s and ε.

Proof. As done in Lemma 5.6, it is sufficient to show

k′Φ ≥ Cz−2r−2k2ϕ, and ∂tΦ + V · ∇Φ ≥ 0 (5.23)

in S := {(x1, x2, y), −y ≥ max{|x1 + x2|, |x1 − x2|}, |x| ≥ 2ε}.
The first inequality in (5.23) holds, as before, due to (5.9) and the definition of k(t). To show the

second inequality, write V = M−1(V1, V2, V3). In y < 0

M (∂tΦ + V · ∇Φ) = ∇ϕ · (x1, x2, y + z)z−3+s +∇ϕ · (V1, V2, V3)z−1.

By definition in the region S

V1 =
1

4
(y − x1 + x2)s−1 − 1

4
(y + x1 + x2)s−1,

V2 =
1

4
(y + x1 − x2)s−1 − 1

4
(y + x1 + x2)s−1,

V3 =
1

4
(y − x1 + x2)s−1 +

1

4
(y + x1 − x2)s−1 +

1

2
(y + x1 + x2)s−1.

As before we only need to verify that there exists r = rs such that inside |x1|2 + |x2|2 + |y + 1|2 ≤ r

|x1|2 + |x2|2 + (y + 1)y +
1

4
|y − x1 + x2|s−1(x1 + y + 1) +

1

4
|y + x1 − x2|s−1(x2 + y + 1)

+
1

4
|y + x1 + x2|s−1(−x2 − x1 + 2y + 2) ≥ 0.
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Recall f defined in (5.21), then the above is equivalent to

f(−x1,−x2,−y) ≥ 0

near (0, 0,−1) which has already been verified when r is small enough (depending only on s). Hence u

is a supersolution. Note that k(0) ≥ Cr2s 7
3 εs, and thus we conclude.

�

Proof. of Theorem 5.7. The proof is now parallel to the two dimensional case Theorem 5.4, with the
help of Lemma 5.8 and Lemma 5.9.

�

Appendix A. Proof of Lemma 3.2

Suppose Bk(0), B0(t) are bounded by M , then Ak(0) ≤Mnk . Solving the differential inequality gives
that for all t ≥ 0

Ak(t) ≤ e−C0t

∫ t

0

eC0s
(
C1

nk + C1
kA

2+C1n
−1
k

k−1 (s)
)
ds+Mnk .

If Ak−1(t) are uniformly bounded by Mk−1 for all t, we can choose a constant C2 depending only on
(C0, C1,M) such that

Ak(t) ≤ CCnk1 + CCk1M
2+C1n

−1
k

k−1 +Mnk ≤ Cnk2 + C2
kM

2+C1n
−1
k

k−1 . (A.1)

We claim that it can be proved by induction that

Ak(t) ≤ Cck3 for some constants C3(C0, C1,M), ck(C1, k). (A.2)

Here {ck} is defined inductively by

c0 = 1, ck := (2 +
C1

nk
)ck−1 + k + 1. (A.3)

By a slight abuse of notation, we will write C’s as constants which only depend on C1, C0,M, a (inde-
pendent of k) and they may vary from one expression to the other.

To see the claim, by induction taking Mk−1 = C
ck−1

3 in (A.1), we only need

Cnk2 + Ck2C
ck−1(2+C1n

−1
k )

3 ≤ Cck3 .

And it is not hard to see by definition, nk . k + ck−1(2 + C1n
−1
k ). So if choosing C3 large enough, we

only need

C
k+1+ck−1(2+C1n

−1
k )

3 ≤ Cck3
which is exactly (A.3). We proved the claim.

By (A.3) and simple calculations,

ck =

 k∑
j=1

j bj,k

+ k + 1 where bj,k := Πk
i=j(2 +

C1

ni
).

Notice nk = 2k(a+ 1)− a, there is a constant C4(a,C1) that C1

nk
≤ C42−k for all k ≥ 0. So

bj,k ≤ 2k−j+1Πk
i=j(1 + C42−k−1).

Then we apply the fact that given xn ≥ 0 and
∑
n xn ≤ C4, we have for some other constant C > 0

Πn(1 + xn) ≤ C + C
∑
n

xn.

We find out

bj,k ≤ 2k−j+1C(1 + C4) . 2k−j and
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ck ≤ C2k
k∑
j=1

j

2j
+ k + 1 . 2k . nk.

So ck ≤ Cnk. By (A.2), we proved that

A
(n−1
k )

k (t) ≤ CC2 uniformly for all k ∈ N0 and t ≥ 0.

Appendix B. Proof of Lemma 4.5

The idea of the proof is to find a finite N(p, d), C(N), ε > 0 such that for all natural numbers k ≥ 0

aN(k+1) ≤ Cka1+εNk . (B.1)

Then the proof again follows from the iteration, see Lemma 2.2 [8]. We claim that this can be done by
simply plugging the first inequality into the second one for finite times. If we do it once

an+1 ≤ Cn1 a
q2+

2
d+2

n + Cn1 a
2
d+2
n

(
Cn−11 a

q2+
2
d

n−1 + Cn−11 a
2
d
n−1b

q1
n−1

)q1
.

Recall q1 = 1− 2
p , q2 = 1− 1

p . Suppose n = 2k + 1 and from the above we have

a2(k+1) ≤ C2k+1
1 a

q2+
2
d+2

2k+1 + C4k+1
1 a

2
d+2

2k+1a
q1q2+

2q1
d+2

2k + C4k+1
1 a

2
d+2+

2q1
d

2k b
q21
2k

≤ Ck
(
a
q2+

2
d+2

2k + a
2
d+2+q1q2+

2q1
d+2

2k + a
2
d+2+

2q1
d

2k b
q21
2k

)
.

We used q1, q2 < 1 in the first inequality and a2k+1 ≤ a2k in the second one. Also since b2k ≤ a2k, if the
following two inequalities hold:

2

d+ 2
+ (

2

d
+ q2)q1 > 1 and

2

d+ 2
+

(
2

d
+ q1

)
q1 > 1,

(B.1) holds and we finish the proof. Because q2 > q1, we only need the second inequality to be true.
If the second one fails, then we do one more iteration. Similar computations and arguments imply

that we then only need

2

d+ 2
+

(
2

d
+

(
2

d
+ q1

)
q1

)
q1 > 1

to be true in order to have (B.1).
If we keep doing the process, eventually, we want

2

d+ 2
+

(
2

d
+

(
2

d
+ ...

(
2

d
+ q1

)
q1

)
q1

)
q1︸ ︷︷ ︸

n brackets

> 1 for some n,

which is
2

d+ 2
+

2

d

(
q1 + q21 + ...+ qn1

)
+ qn+1

1 > 1 for some n.

Letting n =∞ gives

2

d+ 2
+

2

d

q1
1− q1

=
2

d+ 2
+

2

d

p− 2

2
> 1

which is equivalent to

p > d+
4

d+ 2

and we finish the proof of the lemma.
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