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Abstract. We consider the problem of calibrating an imperfect computer model using experimental data. To
compensate the misspecification of the computer model and make more accurate predictions, a dis-
crepancy function is often included and modeled via a Gaussian stochastic process (GaSP). The
calibrated computer model alone, however, sometimes fits the experimental data poorly, as the cali-
bration parameters become unidentifiable. In this work, we propose the scaled Gaussian stochastic
process (S-GaSP), a novel stochastic process that bridges the gap between two predominant meth-
ods, namely the L2 calibration and the GaSP calibration. It is shown that our approach performs
well in both calibration and prediction. A computationally feasible approach is introduced for this
new model under the Bayesian paradigm. Compared with the GaSP calibration, the S-GaSP calibra-
tion enables the calibrated computer model itself to predict the reality well, based on the posterior
distribution of the calibration parameters. Numerical comparisons of the simulated and real data
are provided to illustrate the connections and differences between the proposed S-GaSP and other
alternative approaches.
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1. Introduction. Computer models or simulators are increasingly used to reproduce the
behavior of complex systems in physics, engineering and human processes. These models are
essentially computer implementations of mathematical models to generate outputs based on a
collection of inputs, such as initial conditions or model parameters. Some model parameters,
however, are unknown or unobservable in experiments. One of the fundamental tasks in
uncertainty quantification is to adjust the unknown parameters until the outputs of the model
fit the observed data, often referred as the model calibration or inverse problem [17].

Assume a set of field data from experiments is collected at xi, denoted as yF (xi) for
i = 1, ..., n. The computer model outputs, defined as fM (x,θ), are evaluated at the variable
input x ∈ X and calibration parameter θ. For simplicity, X is assumed to be a bounded
rectangle in Rpx and θ ∈ Rpθ . If the computer model has no bias to the reality, meaning that
the field data is a noisy realization of the computer model for some set of parameters, the
calibration is to choose θ that minimizes the distance between the field data and outputs of
the computer model.

In practice, a perfect computer model to the reality is rarely the case. It is common
to address the model misspecification by a discrepancy function, such that the reality can
be represented as yR(x) = fM (x,θ) + δ(x), where yR(·) and δ(·) denote the reality and
discrepancy function, respectively. It leads to the following statistical model for calibration,

(1) yF (x) = fM (x,θ) + δ(x) + ε,
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where ε is a zero-mean noise. This model is investigated in a vast amount of literature
[6, 16, 18, 26]. Unfortunately, many following-up studies found that the use of (1) sometimes
results in an identifiability problem of θ [3, 4, 25, 31].

To some extent, this identifiability problem is inherently rooted in (1). Suppose that the
field data is noise-free and the discrepancy function is defined as δθ(x) = yF (x) − fM (x,θ),
then the reality can always be modeled perfectly well regardless of the choice of θ. Much effort
has been made to eliminate the identifiability issue recently. We briefly review two popular
approaches in Subsection 1.1 and Subsection 1.2.

1.1. L2 calibration. In [31] and [32], the “optimal” calibration parameter θ is defined as
the one that minimizes the L2 norm of the discrepancy function (henceforth the L2 calibra-
tion), i.e.,

(2) θL2 = argmin
θ
||δθ(·)||L2(X ) = argmin

θ

{∫
x∈X

[
yR(x)− fM (x,θ)

]2
dx

}1/2

.

Since yR(·) is not observable due to the noise in the experimental data, [32] proposes to first
obtain an estimate ŷR(·) of the reality yR(·) via a Gaussian stochastic stochastic process and
then plug it into (2) to get the L2 calibration estimator θ̂L2 . This approach is

√
n-consistent

and semi-parametric efficient, which provides an optimal estimator for θL2 . Besides the nice
theoretical properties, the L2 calibration forces the computer model to explain the variability
of the reality as much as possible, and the calibrated computer model often fits the reality
well, if the ŷR(·) is an accurate estimator of yR(·) given a finite number of observations.

A related method to L2 calibration is the least squares (LS) estimator, which minimizes
the squared error between the experimental data and computer model, i.e.,

(3) θ̂LS = argmin
θ

n∑
i=1

[
yF (xi)− fM (xi,θ)

]2
.

It is shown in [32] and [33] that θ̂LS also converges to θL2 in probability under some mild
conditions, but it is generally less efficient than the L2 calibration unless the computer model
is perfect. The LS calibration is also used in [33] as a plug-in estimator for estimating the
discrepancy function via a nonparametric regression.

Both approaches have limitations in predicting the reality when the number of observations
is not large. Specifically, the approach in [32] estimates the reality yR(·) without the computer
model, which contradicts the basic assumption on the usefulness of the computer model in
reproducing the reality. On the other hand, the approach in [33] estimates θ without penalizing
the complexity in residuals, which sometimes makes it hard to capture the residuals yR(·) −
fM (·, θ̂LS) by the nonparametric regression model. A simulated example is given in Section 5.1
to illustrate the differences between our approach and these approaches.

1.2. GaSP calibration. In [17], the discrepancy function is specified as a Gaussian stochas-
tic process (GaSP) (henceforth the GaSP calibration). As modeling the discrepancy through
a GaSP provides a flexible sampling model for the experimental data, the prediction of the un-
observed field data, based on both the calibrated computer model and discrepancy function,
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is empirically better than using the calibrated computer model alone. Despite this bene-
fit, modeling the discrepancy function through a GaSP sometimes overwhelms the effects of
the computer model when the residuals between the experimental data and computer model
outputs are correlated, resulting in an identifiability issue of the calibration parameters.

Here we provide an example to illustrate the identifiability problem in the GaSP calibration
when the data is correlated. Consider a simple case where the computer model contains only
a mean parameter, i.e., fM (x, θ) = θ, with the true parameter being θ∗ = 0. Assume one
obtains n = 200 observations, denoted as yF = (yF (x1), ..., y

F (x200))
T , sampled from a zero-

mean multivariate normal distribution at xi = (i− 1)/199 for i = 1, ..., 200

(4) yF ∼MN(0, σ2δR),

with σ2δ = 1 and the (i, j) term of R being Ri,j = exp[−(|xi − xj |/γδ)1.9] for some γδ.
Here the symbol δ is used to indicate the covariance is used for modeling the discrepancy
function. For simplicity, assume no prior information is available and only two values of the
calibration parameter are considered, i.e., θ = 0 and θ = 1, corresponding to the true model
and misspecified model, respectively.

Under different γδ, the natural logarithm of the likelihood (log-likelihood) functions of
these two models from 100 simulations are graphed in Figure 1. When the data is correlated,
the log-likelihoods between these two models are extremely close, making them barely iden-
tifiable. Specifically, for γδ = 1 and γδ = 1/10, the average log-likelihoods of the true model
are only 0.93 and 3.50 larger than the misspecified model, respectively. In contrast, it is easy
to show the expected difference of the log-likelihood between θ = 0 and θ = 1 is 1 when there
are n = 2 independent samples. The average difference of the log-likelihoods between the true
and misspecified models with n = 200 correlated observations under γδ = 1 is even smaller
than the one with n = 2 independent samples.

Although the GaSP model provides a flexible sampling model of the reality, the likelihood
function of the GaSP model is very flat on the space of θ when the observations are moderately
correlated. Consequently, two different θ with almost the same probability masses could have
very different L2 losses (the squared L2 norm of the discrepancy function). The motivation
of this study is to develop a stochastic process that not only is flexible enough for modeling
the reality but also maintains an adequate amount of probability mass on the small L2 loss,
especially when data are correlated.

1.3. Our contribution. In this work, we introduce a new stochastic process, called the
scaled Gaussian stochastic process (S-GaSP), that reconciles the differences between the L2

calibration and GaSP calibration. We derive a closed-form likelihood of the new process,
which makes the computation feasible. Under the Bayesian framework, we provide the full
uncertainty quantification of the calibration parameters through their posterior distributions.

We evaluate the results of the calibration by the following two criteria.
• Using both the calibrated computer model and discrepancy function, the proposed

approach should predict the reality precisely.
• Using the calibrated computer model alone, the proposed approach should fit the data

and predict the reality well.
The first criterion requires an appropriate model for the discrepancy function, since we
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Figure 1. The log-likelihood functions `(θ) := log(p(yF | θ)) at different values of correlation. The obser-
vations are sampled from a zero-mean multivariate normal distribution with the (i, j) entry of the covariance
being exp[−(|xi − xj |/γδ)1.9]. A hundred simulations are implemented in each case with γδ = {1, 1/10, 1/100}
for the upper left, upper right and lower left panels, respectively. The independent case is graphed in the lower
right panel. The blue dots are `(θ = 0) (true model) and the red triangles are `(θ = 1) (misspecified model)
in each simulation. The average differences of the log-likelihood between the true model and misspecified model
are 0.93, 3.50, 28.91 and 100.41 for these four cases.

rely on the discrepancy function to improve the prediction when the computer model is mis-
specified. The second criterion is from the L2 calibration, as the computer model tends to be
better calibrated and more interpretable, when it can predict the reality reasonably well.

The interpretability of the calibration parameter in the computer model depends on the
specific background of the scientific problem, but an interpretable calibration parameter should
allow the computer model to predict the reality relatively well even without the discrepancy
function. The computer model, along with some linear order discrepancy terms, is inter-
pretable by the scientists, whereas the nonlinear effects from the discrepancy function can
be hard to interpret. Therefore, we define the interpretability of the calibration parameters
by measuring the predictive power of the calibrated computer model without a discrepancy
function. We demonstrate below that the proposed S-GaSP calibration performs better than
the previous approaches based on these two criteria. The method introduced in this work is
implemented in a new R package on CRAN [12].
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The remainder of the paper is organized as follows. We introduce the new calibration
approach in Section 2 with a focus on the connection to the previous approaches. The closed-
form marginal and predictive distributions of our new process are also derived. The method is
extended to slow computer models in Section 3. Detailed discussions on parameter estimation
and computation are covered in Section 4. Simulated and real data are studied in Section 5.
We conclude this work in Section 6.

2. Calibration and prediction by the scaled Gaussian stochastic process. We introduce
a new approach for computer model calibration in this section. The scaled Gaussian stochastic
process is introduced in Subsection 2.1. In Subsection 2.2, we discuss the default choice of a
key random variable in the new stochastic process, along with the connections to the previous
approaches. Subsection 2.3 provides an efficient way to compute the marginal and predictive
distributions. The comparison to the orthogonal Gaussian stochastic process is illustrated in
Subsection 2.4. The proofs of the lemmas are provided in Appendix A.

2.1. Scaled Gaussian stochastic process. We propose using the following model for cal-
ibration,

yF (x) = fM (x,θ) + µδ(x) + δz(x) + ε,

δz(x) =
{
δ(x) |

∫
ξ∈X δ(ξ)2dξ = Z

}
,

δ(·) ∼ GaSP(0, σ2δc
δ(·, ·)),

Z ∼ pδz(·), ε ∼ N(0, σ20).

(5)

We call δz(·) follows the scaled Gaussian stochastic process (S-GaSP). The innovation of the
above model comes from the random variable Z, whose distribution is discussed in Subsec-
tion 2.2. Given Z = z, the new process δz(·) is the GaSP δ(·) constrained at the space of∫
ξ∈X δ(ξ)2dξ = z.

In (5), µδ(·) is a mean discrepancy, typically modeled by regression,

(6) µδ(x) = hδ(x)βδ =

qδ∑
i=1

hδi (x)βδi ,

where hδ(x) = (hδ1(x), hδ2(x), ..., hδqδ(x)) is a known qδ-dimensional vector of basis functions and

βδ = (βδ1, β
δ
2, ..., β

δ
qδ

)T is an unknown qδ-dimensional vector with each βδi being the regression

parameter of hδi (x) for i = 1, ..., qδ.
As the mean discrepancy only contains the intercept and linear order terms which are

easy to interpret, we treat it as a part of the computer model. The mean discrepancy benefits
the prediction when the computer model does not contain the intercept or does not properly
explain the trend with regard to the variable inputs. However, µδ(·) should be zero when the
intercept and trend are properly modeled in the computer model.

We assume δ(·) follows a zero-mean GaSP, meaning that the density of any {x1, ...,xn}
takes the form of a multivariate normal

(7) (δ(x1), ..., δ(xn))T | Rδ ∼ MN(0, σ2δR
δ),
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where Rδ is a correlation matrix such that its (i, j) entry is defined as Rδi,j = cδ(xi,xj).
For any inputs xa,xb ∈ X , the correlation is typically assumed to have a product form

(8) cδ(xa,xb) =

px∏
l=1

cδl (xal, xbl),

where each cδl (·, ·) is a one-dimensional correlation function for the lth coordinate of the input
space. Power exponential correlation and Matérn correlation are widely used in GaSP models.
The power exponential correlation has the following form

(9) cδl (dl) = exp

{
−
(
dl

γδl

)νδl }
,

where dl = |xal−xbl| is the distance of the lth coordinate of the input vectors. νδl is a roughness
parameter typically held fixed and γδl is an unknown range parameter to be estimated.

The Matérn correlation has recently gained more interest in constructing GaSP emulators
[15]. The Matérn correlation with the roughness parameter νδl = (2k + 1)/2 for k ∈ N has a
closed-form expression. For instance, when νδl = 5/2, the Matérn correlation is as follows

(10) cδl (dl) =

(
1 +

√
5dl

γδl
+

5d2l
3(γδl )

2

)
exp

(
−
√

5dl

γδl

)
,

where γδl is an unknown range parameter. This covariance function is widely used in modeling
spatially correlated data [30] and is becoming popular in the field of uncertainty quantification.
It is also the default choice of several R packages for computer models [14, 27]. We use this
correlation function herein for the demonstration purpose, and the method is applicable to
any covariance function of interest.

Let γδ = (γδ1 , . . . , γ
δ
px)T . The parameters in the S-GaSP model are denoted as Θ that

contain {θ;βδ;γδ;σ2δ ;σ
2
0} and some possible parameters in the scaling density pδz(·). Recall

that Z =
∫
x∈X δ(x)2dx. Any marginal distribution of the S-GaSP at δz = (δz(x1), ..., δz(xn))T

for {x1, ...,xn} can be computed by marginalizing out Z as follows

pδz (δz | Θ) =

∫ ∞
0

pδ (δz | Z = z,Θ) pδz(Z = z | Θ)dz

= pδ (δz | Θ)

∫ ∞
0

pδ (Z = z | δz,Θ)

pδ (Z = z | Θ)
pδz(Z = z | Θ)dz,(11)

where pδ(δz | Θ) is the multivariate normal density in (7) evaluated at δz.
By the properties of the multivariate normal distribution, it follows that

δ(·) | δz,Θ ∼ GaSP(µ∗δ(·), σ2δc∗δ(·, ·)),

where for any x∗ ∈ X ,

(12) µ∗δ(x∗) = rδ(x∗)T
(
Rδ
)−1

δz,
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with rδ(x∗) = (cδ(x∗,x1), ..., c
δ(x∗,xn))T and for any x∗a,x

∗
b ∈ X ,

(13) c∗δ(x∗a,x
∗
b) = cδ(x∗a,x

∗
b)− rδ(x∗a)

T
(
Rδ
)−1

rδ(x∗b).

It is clear that δ(·) |Θ and δ(·) | δz,Θ are both GaSPs with different means and covariance
functions. We have the following lemma for computing the density in (11).

Lemma 2.1. For δ(·) ∼ GaSP(µ(·), σ2c(·, ·)) defined on X , if ||µ(·)||L2(X ) <∞, one has∫
x∈X

δ(x)2dx ∼ σ2
∞∑
i=1

λiχ
2
ai(1),

where χ2
ai(1) is a non-central chi-squared distribution with 1 degree of freedom and the non-

central parameter ai = µ2i /(λiσ
2) with µi =

∫
x∈X µ(x)φi(x)dx, λi being the ith eigenvalue and

φi being the ith normalized eigenfunction of c(·, ·) with regard to the Lebesgue measure.

Based on Lemma 2.1, both pδ (Z = z | δz,Θ) and pδ (Z = z | Θ) in (11) are the densities of
an infinite weighted sum of non-central chi-squared distributions, which can be approximated
by discretization. Direct calculation of the densities of the infinite weighted sum of chi-squared
distributions, however, is computationally challenging and could lead to a large approximation
error. Later we introduce a more robust way to evaluate the likelihood of the S-GaSP model
along with the default choice of pδz(·) in the following Subsection 2.2.

2.2. Choice of pδz(·). The pivotal part of the S-GaSP model is the measure of the random
variable Z =

∫
x∈X δ(x)2dx, which is also the L2 loss between the reality and computer model.

Unlike the L2 calibration, we do not assume the model with the smallest L2 loss is necessarily
the best model. Instead, we put a prior on all the values, but favor the one with the smaller
L2 loss, since the L2 loss is a good indicator of a well calibrated computer model. On the
other hand, the widely used GaSP calibration approach implicitly places a prior density for
Z = z, denoted as pδ(Z = z | Θ), given the parameters Θ. Therefore, to combine these two
ideas, we define the default choice of pδz(·) as follows:

(14) pδz(Z = z|Θ) =
fZ (Z = z | Θ) pδ (Z = z | Θ)∫∞

0 fZ (Z = t | Θ) pδ (Z = t | Θ) dt
,

where fZ(z | Θ) is a non-increasing function. In this specification, the density for Z is chosen
to be proportional to the GaSP prior for Z (as it is used widely in the previous literature), but
scaled by a scaling function fZ(· | Θ) to avoid the sample path deviating too much from zero.
We present the following lemma that connects the S-GaSP calibration and GaSP calibration.

Lemma 2.2 (Connection between the GaSP and S-GaSP model). When pδz(Z = z | Θ) is
specified in (14) and fZ(Z = z | Θ) is a non-zero constant for all z ∈ [0, +∞), the S-GaSP in
(5) becomes the calibration model in (1) where δ(·) ∼ GaSP (µδ(·), σ2δcδ(·, ·)) and ε ∼ N(0, σ20).

With the assumption in (14), the marginal density for any δz in the S-GaSP model in (11)
becomes

pδz(δz | Θ) =
b1(δz,Θ)

b0(Θ)
pδ (δz | Θ),(15)

This manuscript is for review purposes only.
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where

b0(Θ) =

∫ ∞
0

pδ (Z = t | Θ) fZ(t | Θ)dt,(16)

b1(δz,Θ) =

∫ ∞
0

pδ (Z = z | δz,Θ) fZ(z | Θ)dz.(17)

The pδ(δz | Θ) is the likelihood by the GaSP model and b1(δz,Θ)/b0(Θ) is the weight
depending on the choice of fZ(·). The motivation is to give a higher weight to the θ that leads
to the smaller L2 loss conditional on the observations and other parameters.

For any proper density fZ(·), b0(Θ) and b1(δz,Θ) can be computed by the standard
Monte Carlo integration method. To illustrate, one can first draw samples z1, ..., zM from
pδ (Z = z | Θ) using Lemma 2.1, and then use

∑M
i=1 fZ(zi| Θ)/M to approximate b0(Θ). Sim-

ilar strategy can be applied to approximate b1(δz,Θ). This method provides a comparatively
more stable way in evaluating the likelihood in the S-GaSP model than directly computing
the density of an infinite weighted sum of chi-squared distributions.

For the demonstration purpose and computational reason, we choose the following expo-
nential distribution for fZ(·),

(18) fZ(Z = z | Θ) =
λ

2σ2δVol(X )
exp

(
− λz

2σ2δVol(X )

)
,

where λ is a positive scaling parameter and Vol(X ) is the volume of X . A larger λ favors the
sample function with a smaller L2 norm, while a smaller λ means the S-GaSP model behaves
more similarly to a GaSP model. The magnitude of λ determines how similar the S-GaSP
model is to these two approaches.

With the specification of fZ(·) in (18), σ2δ is still a scale parameter and the S-GaSP is
equivalent to the GaSP with a transformed kernel function, stated in the following lemma.

Lemma 2.3 (Marginal distribution of the S-GaSP model). Assume pδz(Z = z | Θ) and
fZ(Z = z | Θ) are specified in (14) and in (18), respectively. The marginal distribution of
δz = (δz(x1), ..., δz(xn))T in the S-GaSP in (5) is a multivariate normal distribution

(19) δz | Θ ∼ MN(0, σ2δRz),

where the covariance follows

(20) Rz =
(
B + (Rδ)−1

)−1
,

and B is an n× n real-valued matrix with the following form
(21)

B = (Rδ)−1

{ ∞∑
i=1

λ

Vol(X ) + λ∗iλ

(∫
x∈X

rδ(x)φ∗i (x)dx

)(∫
x∈X

rδ(x)φ∗i (x)dx

)T}
(Rδ)−1,

with λ∗i and φ∗i (x) being the ith eigenvalue and normalized eigenfunction of c∗δ(·, ·) in (13)
with regard to the Lebesgue measure, respectively.
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Based on Lemma 2.3, the marginal distribution of yF = (yF (x1), ..., y
F (xn))T can be

computed by marginalizing δz out and it is still a multivariate normal distribution. It is
worth noting that the such simplification relies on the default choices of pδz(·) in (14) and
fZ(·) in (18). The calculation of the covariance Rz in (20), however, requires an approximation
of the integral in (21), which can still be quite complicated especially for predictions at many
unobserved points. To further simplify the computation, we propose a feasible way for the
computation by the discretized S-GaSP in the following subsection.

2.3. Discretized S-GaSP model with constraints on finite points. We use NC distinct
points xCi ∈ X for i = 1, ..., NC , to discretize the integral in the S-GaSP model in (5), such

that
∫
ξ∈X δ(ξ)2dξ ≈

∑NC
i=1 δ(x

C
i )2∆x, with ∆x = Vol(X )/NC and Vol(X ) being the volume

of X . The S-GaSP constrained on finitely many points is defined as follows:

yF (x) = fM (x,θ) + µδ(x) + δaz (x) + ε,

δaz (x) =

{
δ(x) |

NC∑
i=1

δ(xCi )2∆x = Z

}
,

δ(·) ∼ GaSP(0, σ2δc
δ(·, ·)),

Z ∼ pδaz (·), ε ∼ N(0, σ20).

(22)

We call δaz (·) follows the discretized S-GaSP model, where the only approximation is the
discretization of the integral in (5). The constraint points could be hard to choose especially
when px is large. A convenient choice is to have xCi = xi for i = 1, ..., n, which gives a good
approximation when n is large and the design of the experiments follows a “space-filling”
scheme. We show below that under the default choice of the scaling density pδz(·), the marginal
distribution of the discretized S-GaSP model is still a multivariate normal distribution.

Lemma 2.4 (Marginal distribution of the discretized S-GaSP model). Assume pδz(Z = z | Θ)
and fZ(Z = z | Θ) are specified in (14) and in (18), respectively. The marginal distribution
of δaz = (δaz (x1), ..., δ

a
z (xn))T in the discretized S-GaSP in (22) is a multivariate normal dis-

tribution

(23) δaz | Θ ∼ MN(0, σ2δR
a
z),

where

(24) Ra
z = Rδ − (rC)T

(
RC +

NC

λ
INC

)−1
rC .

with RC being an NC ×NC correlation matrix with the (i, j) entry RC
i,j = cδ(xCi ,x

C
j ) and rC

being an NC × n correlation matrix with the (i, j) entry being rCi,j = cδ(xCi ,xj).

Based on Lemma 2.4, for any xa,xb ∈ X , one has

(25) caz(xa,xb) = cδ(xa,xb)− rC(xa)
T (R̃C)−1rC(xb),

with

(26) R̃C = RC +NCINC/λ.
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Figure 2. Fifty samples from the GaSP and discretized S-GaSP are graphed in the left and right panels,
respectively, where xi is equally spaced in [0, 1]. For both processes, we let µδ = 0, σ2

δ = 1 and γδ = 1/2. In
the discretized S-GaSP, xCi = xi for i = 1, ..., NC , NC = n and λ = n/2 are assumed..

From (25), it is worth noting that covariance of the discretized S-GaSP is equivalent to the
covariance of the predictive distribution of a zero-mean GaSP given NC noisy observations,
if the variance of the i.i.d. zero-mean Gaussian noise is NC/λ. Therefore, as shown in
Figure 2, the samples from a zero-mean S-GaSP are more concentrated around zero than the
samples from a zero-mean GaSP. The S-GaSP, however, behaves quite differently than a GaSP
with a decreased variance. Simply controlling the variance of the GaSP may not solve the
identifiability issue, as the problem is caused by the correlation as discussed in Section 1. A
numerical example toward this direction is provided at the end of this subsection to further
illustrate the differences between the GaSP and S-GaSP in calibration and prediction.

The marginal distribution of δaz in Lemma 2.4 is attractable since no Monte Carlo method
or eigen-decomposition of the covariance matrix is required. The marginal distribution of the
field data is readily available by marginalizing out δaz .

Theorem 2.5 (Marginal distribution of the field data). Assume the conditions of Lemma 2.4
hold. After marginalizing out δaz (·), the marginal likelihood of yF = (yF (x1), ..., y

F (xn))T of
the discretized S-GaSP model in (22) follows

(27) yF | Θ ∼MN(fM (x1:n,θ) + µδ, σ2δR
a
z + σ20In),

where fM (x1:n,θ) = (fM (x1,θ), ..., fM (xn,θ))T are the computer model outputs evaluated at
xi and θ for i = 1, ..., n. The mean discrepancy is µδ = (µδ(x1), ..., µ

δ(xn))T with each term
defined in (6) and the correlation matrix Ra

z of the discrepancy function is defined in (24).

The following Theorem 2.6 gives the predictive distribution of yF (x∗) when both the
calibrated computer model and discrepancy function are used. It can be shown easily using
Theorem 2.5 and the properties of the multivariate normal distribution.
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Figure 3. Predictions of the GaSP and S-GaSP for the Brainin function [9]. Thirty training values of the
Brainin function are plotted as black circles. Both models take a constant mean and Matérn correlation in (10)
with the range parameter estimated by the RobustGaSP R package [14]. The default choices of pδz (·) in (14)
and fZ(·) in (18) of the S-GaSP model are used with λ = n/2. The mean squared predictive errors for the
GaSP and S-GaSP are 0.659 and 0.587, respectively.

Theorem 2.6 (Predictive distribution). Assume the conditions of Lemma 2.4 hold. The
predictive distribution of the field data at a new point x∗ by the discretized S-GaSP model in
(22) follows

yF (x∗) | yF ,Θ ∼ N(µ̂(x∗), σ2δc
∗ + σ20),

where

µ̂(x∗) = fM (x∗,θ) + µδ(x∗) + raz(x
∗)T (R̃a

z)
−1(yF − fM (x1:n,θ)− µδ),

c∗ = caz(x
∗,x∗)− raz(x

∗)T (R̃a
z)
−1raz(x

∗),

with R̃a
z = Ra

z +σ20In/σ
2
δ , raz(x

∗) = rδ(x∗)−(rC)T (R̃C)−1rC(x∗), caz(·, ·) and R̃C being defined
in (25) and (26) respectively.

Figure 3 compares the predictions by the GaSP and S-GaSP for the Brainin function
with px = 2 [9]. With the inputs sampled from the maximin Latin hypercube design [29],
both models perform reasonably well, suggesting good predictive powers for the complicated
nonlinear function.

The following Example 1 further illustrates the differences between the GaSP and S-GaSP,
where the reality is assumed to be the function studied in [23].

Example 1. Assume yF (x) = yR(x)+ε where ε ∼ N(0, 0.012) and yR(x) = 2
3 exp(x1+x2)−

x4 sin(x3) + x3 with xi ∈ [0, 1]. For simplicity, assume fM (x, θ) = θ and xi for i = 1, ..., 50,
are drawn from the maximin Latin hypercube design [29].

For Example 1, we are interested in estimating θ and predicting yF (x∗i ) at the held-out
x∗i , uniformly sampled from [0, 1]4 for i = 1, ..., 1000. The out-of-sample predictions using the
GaSP and S-GaSP calibrations are provided in Table 1, where the parameters are estimated
by the maximum likelihood estimation (MLE) via the low-storage quasi-Newton optimization
method [21] with 10 different initializations.

Let MSEfM denote the mean squared error using only the calibrated computer model and
MSEfM+δ denote the mean squared error using both the calibrated computer model and the
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12 MENGYANG GU AND LONG WANG

Table 1
Predictive mean squared errors and maximum likelihood estimation (MLE) for the parameters in GaSP

and S-GaSP calibration models in Example 1. MSEfM is the mean squared error using the calibrated computer
model to predict. MSEfM+δ is the mean squared error using the calibrated computer model and discrepancy
function to predict, where the discrepancy function is specified as the GaSP and S-GaSP. The results in the
first two rows are the cases when all parameters are estimated via MLE, while σ2

δ is fixed for the results in the
other rows. In the S-GaSP calibration model, xCi = xi, i = 1, ..., NC , NC = n and λ = n/2 are assumed.

MSEfM MSEfM+δ θ̂ σ̂2δ γ̂δ σ̂20
GaSP 20 2.8× 10−4 6.6 48 (3.2, 3.3, 5.7, 6.6) 6.5× 10−5

S-GaSP 0.84 2.7× 10−4 2.6 90 (3.7, 3.7, 6.6, 7.6) 6.9× 10−5

GaSP, σ2δ = 1 1.5 6.0× 10−4 3.1 / (1.2, 1.3, 2.3, 2.7) 6.3× 10−5

S-GaSP, σ2δ = 1 0.70 6.4× 10−4 2.3 / (1.2, 1.3, 2.2, 2.7) 6.3× 10−5

GaSP, σ2δ = 10 6.2 3.3× 10−4 4.6 / (2.2, 2.4, 3.9, 4.6) 5.8× 10−5

S-GaSP, σ2δ = 10 0.73 3.5× 10−4 2.4 / (2.2, 2.4, 3.9, 4.6) 5.7× 10−5

GaSP, σ2δ = 102 34 2.7× 10−4 8.0 / (3.8, 3.7, 6.7, 7.7) 7.2× 10−5

S-GaSP, σ2δ = 102 0.85 2.7× 10−4 2.6 / (3.8, 3.7, 6.7, 7.8) 7.2× 10−5

GaSP, σ2δ = 103 186 2.5× 10−4 16 / (6.2, 5.5, 12, 14) 9.1× 10−5

S-GaSP, σ2δ = 103 1.4 2.5× 10−4 3.1 / (6.2, 5.5, 12, 14) 9.1× 10−5

discrepancy function for prediction. When σ2δ is not given, the estimated range parameters γ̂
are large in both models, while the MSEfM is much larger in GaSP than in S-GaSP shown in
the first two rows in Table 1. When σ2δ is fixed at small values, the MSEfM is small under both
models since γ̂ are small. However, the MSEfM+δ becomes larger as γ̂ decrease. In particular,
the MSEfM+δ with σ2δ = 1 is two times larger than the one when σ2δ is estimated. When σ2δ is
fixed at a large value, the MSEfM+δ decreases, while the MSEfM increases in the GaSP model
due to the large γ̂. In the S-GaSP model, the MSEfM is always small for all tested scenarios,
because the S-GaSP calibration puts more probability mass to the discrepancy function that
leads to a smaller L2 loss between the reality and computer model.

Table 1 indicates that S-GaSP satisfies the two criteria in Subsection 1.3 by obtaining both
small values in MSEfM and MSEfM+δ, but these two goals are not simultaneously attainable
in the GaSP model. Here λ is chosen to be n/2 in the S-GaSP model. The sensitivity analysis
of λ is given in the supplementary materials. In general, selecting or estimating λ in a principle
way is still an open question.

2.4. Comparison to the orthogonal Gaussian stochastic process. In this subsection, we
compare our S-GaSP model to a recent approach, called the orthogonal Gaussian stochastic
process (O-GaSP) introduced in [25]. Under some regularity conditions of fM (·, ·) and as-
suming the existence and uniqueness of the L2 minimizer θL2 , it is shown in [25] that the
following constraint on the discrepancy function holds

(28)

∫
x∈X

D(0,1)fM (x,θ∗)δ(x)dx = 0,

where D(0,1)fM (x,θL2) is the derivative of fM (·, ·) with regard to θ, evaluated at x and
θ = θL2 . In [25], it is shown that if the discrepancy is modeled by a zero-mean orthogonal
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GaSP for any x,x′ ∈ X

δO−GaSP (·) ∼ GaSP(0, σ2δc
δ
O−GaSP (·, ·)),

where

(29) cδO−GaSP (x,x′) = cδ(x,x′)− gO−GaSP (x)TG−1O−GaSP gO−GaSP (x′),

for any positive definite covariance function cδ(x,x′) with

gO−GaSP (x) =

∫
ξ∈X

D(0,1)fM (ξ,θ)cδ(x, ξ)dξ,

and

GO−GaSP =

∫
ξ′∈X

∫
ξ∈X

D(0,1)fM (ξ,θ)
[
D(0,1)fM (ξ′,θ)

]T
cδ(ξ, ξ′)dξdξ′,

the (28) holds with probability 1.
The constraint in (28) is essentially the first-order optimality condition. As in the case

of all the optimization problems, (28) holds not only for the L2 minimizer θL2 , but also for
many other θ. In particular, any local maximum of the L2 loss also satisfies the constraint in
(28), which makes the likelihood favor the local maximizers as well. As fM (x,θ) is typically
a nonlinear function of θ, the L2 loss is often multi-dimensional and likely to have multiple
extreme values. Hence, in practice, using the O-GaSP also favors the local maximizers of the
L2 loss, giving undesired results. We illustrate this problem in Example 2 below.

Example 2. Suppose yF (x) = xcos(3x/2) + x + ε with x ∈ [0, 5] and ε ∼ N(0, 0.22). The
computer model is fM (x, θ) = sin(θx) + x for θ ∈ [0, 3]. Fifteen observations, denoted as
yF (xi) for i = 1, ..., 15, are collected with xi equally spaced in [0, 5].

The L2 loss over θ ∈ [0, 3] for Example 2 is graphed in the upper right panel in Figure 4,
which contains the global minimum at θ ≈ 1.88, a local minimum at θ ≈ 0.26 and two local
maxima at θ ≈ 1.06 and θ ≈ 2.62, respectively. The log-likelihoods of GaSP, S-GaSP and
O-GaSP models are plotted in the lower left, middle and right panels in Figure 4, respectively.
Not surprisingly, the log-likelihood of the O-GaSP model has modes at all the extreme values
in the L2 loss function, including both local minima and maxima. Note that this phenomenon
is not caused by the choice of the covariance function, but by the constraint in (28). Since all
the extreme values in the L2 loss function satisfy this constraint, the likelihood function of the
O-GaSP model is inevitably large at the extreme values as a consequence. Unlike the O-GaSP
model, the information in the L2 loss is faithfully expressed in the log likelihoods of the GaSP
and S-GaSP. A full numerical comparison between the GaSP and S-GaSP calibrations can be
found in the supplementary materials.

Although Example 2 is artificial, this scenario is not unusual in real applications, where θ
is often multi-dimensional and the L2 loss function is likely to have multiple extreme values.
The likelihood function shown in Figure 4 by the O-GaSP model is not satisfying, as there is
no reason for the likelihood function to favor those local maxima in the L2 loss. To overcome
the issue, one could possibly explore the second-order optimality condition of the L2 loss
function with regard to θ. However, such extension is complicated, as there are p2x inequality
constraints on the Hessian matrix. It also may not be feasible in practice, as some computer
models do not even have the second derivative.
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Figure 4. The target function and computer model outputs at two different θ are graphed in the upper left
panel in the first row. The L2 loss function in Example 2 is graphed in the upper right panel. The log-likelihoods
of the GaSP, discretized S-GaSP and O-GaSP are graphed in the left, middle, and right panels in the second
row, respectively. For all models, the Matérn covariance in (10) with σ2

δ = 1, γδ = 1/2 and η = 0.01 is used.
In the discretized S-GaSP calibration model, xCi = xi for i = 1, ..., NC , NC = n and λ = n/2 are assumed.

3. Calibration and prediction for slow computer models. This section handles the case
where a computer model is slow. When the computer model is computationally expensive
to evaluate, the common approach is to use an emulator, i.e., a statistical model that can
accurately approximate the computer model and can be run very fast. Using a GaSP model
as the emulator is well-studied in recent literature [5, 13, 28]. To construct an emulator,
we first run the computer model on D design points, denoted as ((xD

1 ,θ
D
1 ); ...; (xD

D,θ
D
D)),

usually sampled from the Latin hypercube design [29]. The computer model outputs evaluated
at the design points are denoted as (fM (xD

1 ,θ
D
1 ), ..., fM (xD

D,θ
D
D))T . We model fM (·, ·) as

an unknown function via a GaSP with a mean function µM (·, ·) and a covariance function
cM ((·, ·), (·, ·)). For any (x,θ), the mean function is still modeled via regression

µM (x,θ) = hM (x,θ)βM =

qM∑
i=1

hMi (x,θ)βMi ,

where hM (x,θ) = (hM1 (x,θ), ..., hMqM (x,θ)) is the mean vector of basis functions and βMi is the

ith regression parameter for hMi (x,θ), i = 1, ..., qM . For any two inputs (xa,θa) and (xb,θb),
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the covariance function is again assumed to have a product form

(30) σ2Mc
M ((xa,θa), (xb,θb)) = σ2M

px∏
i=1

cMi (xai, xbi)

pθ∏
j=1

cMj (θaj , θbj),

where cMi (xai, xbi) and cMj (θaj , θbj) are one-dimensional correlation functions each having an

unknown range parameter γMi,j , for i = 1, ..., px and j = 1, ..., pθ.

The additional parameters introduced by the GaSP emulator are σ2M , β
M and γM . To ex-

plore the uncertainty of these parameters, a full Bayesian approach can be adopted. However,
since the field data is typically much noisier than the computer model outputs, an additional
identifiable issue might be caused by combining the emulator and calibration model [6]. To
overcome this issue, a modular approach is often used, which requires the uncertainties of the
emulator parameters to be handled only using outputs from the computer model [18].

Estimating the parameters in an emulator is not trivial, and some routinely used estima-
tors, such as the maximum likelihood estimator, have been widely recognized to be unstable
in previous studies [10, 19, 22]. We assume an objective prior for the parameters in the GaSP
emulator, π(σ2M ,β

M ,γM ) ∝ πR(γM )/σ2M , where πR(γM ) is the reference prior for the range
parameters [7]. σ2M and βM can be marginalized out analytically, and γM is estimated by the
marginal posterior mode with the robust parameterization in [15]. The predictive distribution
at any (x∗,θ∗) follows a Student’s t-distribution. We omit the details of implementing the
emulator due to the limitation of the space. The theoretical justification of the emulator is
discussed in [15], and it is implemented in an R package [14]. In calibration, we draw from the
predictive distribution p(fM (x∗,θ∗) | fM (xD

1 ,θ
D
1 ), ..., fM (xD

D,θ
D
D)) when we need to evaluate

a computationally expensive computer model at (x∗,θ∗).

4. Parameter estimation and computation. Here we introduce a Bayesian paradigm to
assess the parameters uncertainties in both GaSP and S-GaSP models. The shared parameters
in both models are Θ = [θ;βδ;γδ;σ2δ ;σ

2
0]. We first do a transformation to define a nugget-

variance ratio parameter η = σ20/σ
2
δ and inverse range parameter ψδi = 1/γδi for i = 1, ..., px.

The transformed parameters are Θ̃ = [θ;βδ;ψδ;σ2δ ; η]. We assume the following prior for Θ̃

(31) π(Θ̃) ∝ π(θ)π(ψδ, η)

σ2δ
,

where π(θ) and π(ψδ, η) are both proper priors.
The prior for the calibration parameters θ should be chosen based on expert knowledge,

as these parameters have real meanings in a computer model. Thus, we do not introduce any
specific form herein. The objective priors of the parameters in the covariance matrix of the
GaSP model have been studied extensively (see e.g. [7, 8, 15, 24]). However the objective
priors for the S-GaSP model have not been studied. Here we use the jointly robust prior

π(ψδ, η) ∝

(
px∑
i=1

Ciψ
δ
i + η

)a
exp

(
−b

(
px∑
i=1

Ciψ
δ
i + η

))
,

with a > −px − 1, b > 0 and Ci > 0 being the prior parameters, for i = 1, ..., px. This
jointly robust prior is introduced in [11]. The default choices of the prior parameters for a
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rectangle X are Ci = |Xi|n−1/px , with |Xi| being the length of the space of the ith dimension
of the variable input, a = 1/2− px and b = 1. The jointly robust prior with the default prior
parameters has a moderate penalty on the large correlation in the covariance matrix, which is
more helpful for the identifiability problem than the reference prior in the GaSP model [11].

In the S-GaSP model, the parameter λ controls how similar the process to the GaSP
model. In all the numerical studies, we let the constraint points be the inputs of the observed
data, i.e. xCi = xi, for i = 1, ..., n, and set λ = n/2 with n being the number of observations.
The choice of λ is ad-hoc but the S-GaSP model with this choice seems to perform reasonably
well in numerical studies. One may develop a prior for the uncertainty in λ, but we do not
pursue this direction in this work.

With the likelihood in (27) and the prior in (31), we use the Metropolis-Hasting algorithm
to sample from the posterior distribution. Compare with the GaSP, the additional operations
in the S-GaSP are from Rz in (24), which cost O(N3

C) and O(nN2
C) due to the matrix inversion

and multiplication, respectively. By choosing xCi = xi for i = 1, ..., n, the total number of
additional operations becomes O(n3). Since the total number of operations in GaSP model is
also O(n3), the GaSP and S-GaSP models have the same order of computational complexity.

5. Numerical comparison. In this section, we provide numerical comparisons among sev-
eral approaches for calibration and prediction. To maintain a fair comparison, the mean
function, correlation function, prior distribution, as well as the initial values in the MCMC
algorithm are all set to be the same. Specifically, the prior in (31) with a constant prior for
θ, zero mean discrepancy µδ(x) = 0, and the product-form correlation function in (8) with
the Matérn correlation in (10) are used. S = 50, 000 posterior samples of the parameters
Θ̃ = (θ,βδ,ψδ, σ2δ , η) are generated with the first S0 = 10, 000 being the burn-in samples.
The code is implemented in the RobustCalibration R Package [12].

Subsection 5.1 compares different two-step approaches with the GaSP and S-GaSP cali-
brations. We denote GaSP+L2 as the two-step L2 approach in [32], where the reality is first
modeled by a GaSP and then θ is estimated by minimizing the L2 loss. The two-step LS ap-
proach in [33] is denoted as LS+GaSP, where θ is first estimated by (3) and then the residual
is modeled by a GaSP. All optimizations are made based on the low-storage quasi-Newton
method with 10 different initializations [21]. The RobustGaSP package [14] is used for fitting
the GaSP model and another widely-used R package [27] is also included for comparisons in
implementing these two-step approaches. A real example of calibrating a geophysical model
for the Kilauea Volcano is provided in Subsection 5.2 to compare the performances between
the GaSP and S-GaSP calibrations.

5.1. Simulated example.

Example 3. yF (x) = yR(x) + ε, where yR(x) = sin(10πx) + sin(πx), fM (x, θ) = sin(θx)
and ε ∼ N(0, 0.32). xi is equally spaced from [0, 1] for i = 1, ..., n.

Similar to Example 1, the goal in Example 3 is to estimate θ and predict yF (x∗i ) at held-out
x∗i , uniformly sampled from [0, 1] for i = 1, ..., 1000. Under various sample sizes, the results of
calibration and prediction are presented in Table 2 and Figure 5, respectively. When sample
size is small, since the truth contains a high frequency term sin(10πx) that is difficult to be
captured by the GaSP without the computer model, the GaSP+L2 approach performs poorly
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Figure 5. Predictions for Example 3, where the target function is graphed as the black curves. n = 10, n =
20 and n = 30 observations are graphed as the black circles in the left, middle and right panels, respectively. The
predictions using the GaSP model without the computer model are graphed in the first row of panels. In the the
second row of panels, the calibration parameter is first estimated by the LS estimator and the predictions are from
the GaSP model based on the residuals. Two GaSP models are implemented using the RobustGaSP R package
[14] and DiceKriging R package [27]. In the third row of panels, the predictions combine the mathematical
model and discrepancy function modeled as the GaSP and S-GaSP using RobustCalibration R package [12].

in prediction, shown in the first row of Figure 5. Because the loss of predictive accuracy in
GaSP+L2, the estimated θ̂ is around π for n = 20 and n = 30 shown in Table 2.

The other two-step approach in [33] estimates the calibration parameter by minimizing
(3). Since this approach does not penalize the model complexity, θ is estimated close to π
rather than 10π, shown in Table 2, which makes the GaSP model imprecise for the residuals.
As shown in the second row of Figure 5, the predictions are not satisfactory.

In contrast, both the GaSP and S-GaSP estimate θ close to 10π as shown in Table 2,
allowing the high frequency term to be explained by the computer model. Consequently, the
predictions of GaSP and S-GaSP are accurate even when the sample size is small, shown in the
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Table 2
Predictive mean squared errors and parameter estimations for Example 3. MSEfM denotes the mean

squared error using only the calibrated computer model and MSEfM+δ denotes the mean squared error using

both the calibrated computer model and the discrepancy function for prediction. θ̂ is the posterior median in
the GaSP calibration and S-GaSP calibration.

n = 10 MSEfM MSEfM+δ θ̂

GaSP +L2 0.72 / 1.1
LS+ GaSP 0.51 0.51 3.0
GaSP calibration 0.51 3.4× 10−2 31
S-GaSP calibration 0.47 4.9× 10−2 31

n = 20 MSEfM MSEfM+δ θ̂

GaSP +L2 0.50 / 3.2
LS+ GaSP 0.50 8.9× 10−2 3.1
GaSP calibration 0.50 8.1× 10−3 31
S-GaSP calibration 0.50 7.1× 10−3 31

n = 30 MSEfM MSEfM+δ θ̂

GaSP +L2 0.49 / 3.4
LS+ GaSP 0.50 6.8× 10−2 3.3
GaSP calibration 0.50 4.6× 10−3 31
S-GaSP calibration 0.50 3.8× 10−3 31

last row of Figure 5. In practice, the computer model is developed for reproducing the reality,
so combining it with the discrepancy function typically improves the predictive accuracy [17].

5.2. Real example: calibration of the geophysical model for the Kilauea Volcano. We
consider the geophysical model of Kilauea Volcano introduced in [1, 2] for the study of the
magma supply rate for Kilauea and the carbon concentration in Earth’s mantle. Several
different types of data were used in this study, including the SO2 and CO2 emission data,
and Interferometric synthetic aperture radar (InSAR) data, a radar technique to estimate the
ground deformation in centimeters [20]. In [1], the parameters in the geophysical model are
estimated using a Bayesian method without assuming a discrepancy function.

For the demonstration purpose, we limit ourselves to calibrate one part of the geophysical
model in [1] – the displacement of the ground’s surface caused by addition of magma to a
spherical reservoir. We use one ascending-mode and one descending-mode COSMO-SkyMed
interferogram shown in [1], spanning the period of time from October 21, 2011 to May 16, 2012
and October 20, 2011 to May 15, 2012, respectively. These interferograms are graphed in the
first row in Figure 6, showing that the ground deformation caused by the volcano is between
0 to 4 centimeters during this period of time. As the number of pixels in the InSAR data is
large, a Quadtree algorithm is used for downsampling before calibration [1]. The Quadtree
algorithm converts each interferogram to an image with only several hundred boxes, where the
size of the box is small if the values within the box change rapidly corresponding to where the
deformation gradients are high. The Quadtree algorithm is designed for visualization purposes,
however, as it favors those area with high ground deformations, it may cause potential bias
in the calibration. Here we uniformly sample 500 points from each interferogram and use
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Figure 6. Two interferograms of Kilauea Volcano are graphed in the first row and 500 uniform samples for
each interferogram are graphed in the second row.

them as our training data for the calibration and prediction. Two variable inputs and five
calibration parameters of this geophysical model are provided in Table 3.

Table 3
Input variables and calibration parameters of the geophysical model for Kilauea Volcano in 2011 to 2012.

Variable Input (x) Name Description

x1 Latitude Spatial coordinate
x2 Longitude Spatial coordinate

Parameter (θ) Name Description

θ1 ∈ [−2000, 3000] Chamber east (m) Spatial coordinate for the chamber
θ2 ∈ [−2000, 5000] Chamber north (m) Spatial coordinate for the chamber
θ3 ∈ [500, 6000] Chamber depth (m) Depth of the chamber
θ4 ∈ [0, 0.15] Res. vol. change rate (m3/s) Volume change rate of the reservoir
θ5 ∈ [0.25, 0.33] Poisson’s ratio Host rock property

The marginal posterior densities of θ by the GaSP and S-GaSP calibration are graphed
as the red and blue curves in Figure 7, respectively. The posterior mass of the GaSP spreads
widely throughout its domain, and a geophysical model with a deep chamber and high volume
change rate of the reservoir is preferred. The uncertainties of location of the chamber from
the GaSP calibration also seem quite large. In comparison, the S-GaSP suggests a geophys-
ical model with a much smaller chamber depth and a low reservoir volume change rate. In
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Figure 7. Marginal posterior densities of θ from the GaSP calibration (red curves) and S-GaSP calibration
(blue curve).

particular, the posterior medians of the depth of the chamber and reservoir volume change
rate are around 2700 meters and 0.06 m3/s, respectively. Both values are close to the results
in [1], which reports around 2300 meters for the depth of the chamber and 0.05 m3/s for the
reservoir volume change rate.

The differences of the marginal posterior distributions between the GaSP and S-GaSP cal-
ibration result in large differences in predictions by the calibrated geophysical model, shown
in the upper panels in Figure 8 and Figure 9 for the first and second interferograms, respec-
tively. As the calibrated geophysical model from the GaSP calibration has a deep chamber
of the volcano, the ground deformation caused by this geophysical model is very small, with
the maximum change being less than 2 centimeters. The predictive mean squared errors by
the GaSP calibration are 2.8 × 10−5 and 1.5 × 10−4 for the first and second interferograms,
respectively. Alternatively, the maximum ground deformation reported in the S-GaSP cali-
bration is around 3 centimeters, which is larger than the one by the GaSP calibration, since
a comparatively shallow chamber of the reservoir can cause a larger ground displacement in
a smaller area. The predictive mean squared errors by the S-GaSP calibration are 2.4× 10−5

and 1.2× 10−4, which are both smaller than the ones by the GaSP model.
Note the maximum ground deformations by the S-GaSP calibration are still a little smaller

than maximum values in the held-out images, which might be caused by the flaws in the in-
terferograms. For example, the ground deformation in the northern part of the second inter-
ferogram is very large, which can be caused by the factors other than the volcanic activities,
such as the air and ground conditions. This phenomenon is common in the InSAR data, and
manually deleting these flawed pixels may be possible but costly. The S-GaSP calibration is
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Figure 8. Predictions by the GaSP and S-GaSP models for the first interferogram. The predictions of the
calibrated geophysical model by the GaSP and S-GaSP calibration are graphed in the upper left and upper right
panel, respectively. The predictions of the calibrated geophysical model and discrepancy function are graphed in
the lower panels.

more robust than the GaSP calibration using the imperfect data.
As shown in the lower panels in Figure 8 and Figure 9, for both the GaSP and S-GaSP,

the predictions by the calibrated geophysical model and discrepancy are better than using
the calibrated computer model alone. The predictive mean squared errors by the GaSP
calibration are 3.4 × 10−6 and 7.4 × 10−6, while the predictive mean squared errors by the
S-GaSP calibration are 3.5 × 10−6 and 7.4 × 10−6 for the first and second interferograms,
respectively. The predictive errors by both models are very small, compared to the errors by
the calibrated geophysical model alone.

6. Concluding remarks. We have introduced a new approach, called the scaled Gaussian
stochastic process (S-GaSP), for modeling the discrepancy function in calibrating imperfect
computer models. The new approach bridges the gap between the L2 calibration and GaSP
calibration. Unlike the GaSP model, the calibrated computer model can predict the reality
reasonably well, even when the field data are strongly correlated. We also show numerically
that the S-GaSP model is as good as the GaSP model in prediction by combining the calibrated
computer model and discrepancy function. Under the Bayesian framework, a computationally
feasible approach is proposed for the S-GaSP calibration and its computational complexity is
shown to be the same as the GaSP calibration. Both simulated and real examples demonstrate
the benefits of using S-GaSP in calibration and prediction.

Appendix A. Proofs.
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Figure 9. Predictions by the GaSP and S-GaSP models for the second interferogram. The predictions of the
calibrated geophysical model by the GaSP and S-GaSP calibration are graphed in the upper left and upper right
panel, respectively. The predictions of the calibrated geophysical model and discrepancy function are graphed in
the lower panels.

proof of Lemma 2.1. First by Karhunen-Loève expansion, one has

(32)
δ(x)− µ(x)

σ
=

∞∑
i=1

√
λiZiφi(x),

where Zi is a mean-zero unit-variance normal random variable, λi and φi are the ith eigen-
value and normalized eigenfunction of the kernel c(·, ·) with regard to Lebesgue measure,
respectively. {φi}∞i=1 is the orthonormal basis functions of the space of L2 integrable functions
defined on X . As ||µ(·)||L2(X ) <∞, one has

(33) µ(x) =

∞∑
i=1

µiφi(x),

for some coefficients µi, since

〈µ(·), φi(·)〉L2(X ) =

〈 ∞∑
i=1

µiφi(·), φi(·)

〉
L2(X )

= µi〈φi(·), φi(·)〉L2(X )

= µi,(34)
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where 〈f(·), g(·)〉L2(X ) =
∫
X f(x)g(x)dx for any L2 integrable function f(·) and g(·) on X . The

last two equalities are due to the linearity of L2-inner product and orthonormality of {φi}∞i=1,
respectively.

Plugging (33) into (32), one has

(35) δ(x) = σ

∞∑
i=1

(√
λiZiφi(x) +

µiφi(x)

σ

)
=σ

∞∑
i=1

√
λiφi(x)

(
Zi +

µi√
λiσ

)
,

where µi is given in (34). The result thus follows.

proof of Lemma 2.2. Assume fZ(z) = fZ(z|Θ) = C > 0, then (14) becomes

(36) pδz(z | Θ) =
C · pδ (Z = z | Θ)∫∞

0 C · pδ (Z = t | Θ) dt
= pδ

(∫
ξ∈X δ(ξ)2dξ = z | Θ

)
.

Plugging (36) into (11), one has

pδz(δz | Θ) = pδ(δz | Θ)

∫ ∞
0

pδ (Z = z | δz,Θ)

pδ (Z = z | Θ)
pδ

(∫
ξ∈X δ(ξ)2dξ = z | Θ

)
dz

= pδ(δz | Θ)

∫ ∞
0

pδ (Z = z | δz,Θ) dz

= pδ(δz | Θ),(37)

from which the results follow.

proof of Lemma 2.3. Since δ(·) | δz,Θ ∼ GaSP(µ∗δ(·), σ2δc∗δ(·, ·)), from Lemma 2.1 one
has

(38)

∫
x∈X

δ(x)2dx | δz,Θ ∼ σ2δ
∞∑
i=1

λ∗iχ
2
a∗i

(1),

where a∗i = (µ∗i )
2/(λ∗iσ

2
δ ) with µ∗i =

∫
x∈X µ

∗δ(x)φ∗i (x)dx. Denote MX(t) as the moment

generating function for X, i.e., MX(t) = E
[
etX
]
. Assume Xi follows a non-central chi-squared

distribution with 1 degree of freedom and the non-central parameter a∗i , then MXi(t) =
(1− 2t)−1/2ea

∗
i t/(1−2t) for t < 1/2. Moreover, let S = σ2δ

∑∞
i=1 λ

∗
iXi, then

(39) MS(t) = E
[
eσ

2
δ t

∑∞
i=1 λ

∗
iXi
]

=
∞∏
i=1

E
[
eσ

2
δ tλ
∗
iXi
]

=
∞∏
i=1

MXi(σ
2
δ tλ
∗
i ).

Let λ̃ = λ/(2σ2δVol(X )). Using (39), b1(δz,Θ) can be computed as follows

b1(δz,Θ) =

∫ ∞
0

pδ (Z = z midδz,Θ) λ̃e−λ̃zdz

= λ̃MS(−λ̃)

= λ̃
∞∏
i=1

MXi(−σ2δ λ̃λ∗i )

= λ̃

[ ∞∏
i=1

(1 + 2σ2δ λ̃λ
∗
i )
−1/2

]
e
−

∑∞
i=1

a∗i σ
2
δ λ̃λ
∗
i

1+2σ2
δ
λ̃λ∗
i .(40)
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For the following term in (40), one has

a∗iσ
2
δλ
∗
i =

[∫
x∈X

µ∗δ(x)φ∗i (x)dx

]T [∫
x∈X

µ∗δ(x)φ∗i (x)dx

]
=

[∫
x∈X

rδ(x)T
(
Rδ
)−1

δzφ
∗
i (x)dx

]T [∫
x∈X

rδ(x)T
(
Rδ
)−1

δzφ
∗
i (x)dx

]
= δTz

(
Rδ
)−1 [∫

x∈X
rδ(x)φ∗i (x)dx

] [∫
x∈X

rδ(x)φ∗i (x)dx

]T (
Rδ
)−1

δz,(41)

where the first equality is by a∗i = (µ∗i )
2/(λ∗iσ

2
δ ) and µ∗i =

∫
x∈X µ

∗δ(x)φ∗i (x)dx; the second
equality follows from (12).

From (15), (40) and (41), one has

pδz(δz | Θ) ∝ exp

{
−1

2
δTz

[
σ−2δ B +

(
σ2δR

δ
)−1]

δz

}
= exp

{
− 1

2σ2δ
δTz

[
B +

(
Rδ
)−1]

δz

}
,

(42)

where
(43)

B = (Rδ)−1

{ ∞∑
i=1

λ

Vol(X ) + λ∗iλ

(∫
x∈X

rδ(x)φ∗i (x)dx

)(∫
x∈X

rδ(x)φ∗i (x)dx

)T}
(Rδ)−1,

Hence, δz follows a multivariate normal distribution

(44) δz | Θ ∼MN
(
0, σ2δRz

)
,

with Rz =
[
B +

(
Rδ
)−1]−1

.

proof of Lemma 2.4. For (22), one has

(45) pδaz (δaz | Θ) =
ba1(δaz ,Θ)

ba0(Θ)
pδ(δ

a
z | Θ),

where

ba0(Θ) =

∫ ∞
0

pδ

(
NC∑
i=1

δ(xCi )2∆x = t | Θ

)
fZ(t | Θ)dt,(46)

ba1(δaz ,Θ) =

∫ ∞
0

pδ

(
NC∑
i=1

δ(xCi )2∆x = z | δz,Θ

)
fZ(z | Θ)dz.(47)

Applying equations (12) and (13) on xC1 , . . . ,x
C
NC

, we have

(48)
(
δ(xC1 ), . . . , δ(xCNC )

)T | δz,Θ ∼MN(µ∗C , σ2δR
∗C),
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where

(49) µ∗C = rC
(
Rδ
)−1

δz,

and

(50) R∗C = RC − rC
(
Rδ
)−1 (

rC
)T
.

Denote the eigen-decomposition of R∗C as R∗C = UCΛC
(
UC
)T

, where the i-th diagonal
element of ΛC is λCi . From the proof of Lemma 2.1, one has

(51)

NC∑
i=1

δ
(
xCi
)2 | δz,Θ ∼ σ2δ NC∑

i=1

λCi χ
2
aCi

(1),

where aCi =
[(

UC
i

)T
µ∗C

]2
/
(
λCi σ

2
δ

)
and UC

i is the i-th column of UC . Similar to the proof

in Lemma 2.3, defining λ̃C = ∆xλ̃ = λ/(2σ2δNC), we can write ba1(δaz ,Θ) as

(52) ba1(δaz ,Θ) = λ̃CMSC (−λ̃C) =
λ

2σ2δNC

[
NC∏
i=1

(
1 +

λ

NC
λCi

)−1/2]
e
−

∑NC
i=1

aCi λλ
C
i

2(NC+λλC
i

) ,

where SC = σ2δ
∑NC

i=1 λ
C
i X

C
i with XC

i following a non-central chi-squared distribution with 1
degree of freedom and the non-central parameter aCi .

Define a diagonal matrix Λ∗C with elements

(53)
[
Λ∗C

]
ii

=
λ

NC + λλCi
,

then the following term in (52) becomes

(54) −
NC∑
i=1

aCi λλ
C
i

2(NC + λλCi )
= − 1

2σ2δ

(
µ∗C

)T
UCΛ∗C

(
UC
)T
µ∗C .

Combining (45), (49), (52) and (54), it is easy to see that
(55)

pδz(δ
a
z | Θ) ∝ exp

{
− 1

2σ2δ
δTz

[(
Rδ
)−1 (

rC
)T

UCΛ∗C
(
UC
)T

rC
(
Rδ
)−1

+
(
Rδ
)−1]

δz

}
.

Applying Woodbury matrix identity gives[(
Rδ
)−1 (

rC
)T

UCΛ∗C
(
UC
)T

rC
(
Rδ
)−1

+
(
Rδ
)−1]−1

= Rδ −
(
rC
)T

UC

[(
Λ∗C

)−1
+
(
UC
)T

rC
(
Rδ
)−1 (

rC
)T

UC

]−1 (
UC
)T

rC .(56)

This manuscript is for review purposes only.



26 MENGYANG GU AND LONG WANG

Note that
(
Λ∗C

)−1
= NCINC/λ+ ΛC . Hence, (56) becomes

Rδ −
(
rC
)T

UC

[
NC

λ
INC + ΛC +

(
UC
)T

rC
(
Rδ
)−1 (

rC
)T

UC

]−1 (
UC
)T

rC

= Rδ −
(
rC
)T

UC

[
NC

λ
INC +

(
UC
)T (

R∗C + rC
(
Rδ
)−1 (

rC
)T)

UC

]−1 (
UC
)T

rC

= Rδ −
(
rC
)T

UC

[
NC

λ
INC +

(
UC
)T

RCUC

]−1 (
UC
)T

rC

= Rδ −
(
rC
)T [

UC

(
NC

λ
INC +

(
UC
)T

RCUC

)(
UC
)T]−1

rC

= Rδ −
(
rC
)T (NC

λ
INC + RC

)−1
rC

= Ra
z(57)

Therefore, we conclude that

(58) δaz | Θ ∼MN(0, σ2δR
a
z).
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