
NUMERICAL APPROXIMATION OF THE BEST DECAY RATE FOR
SOME DISSIPATIVE SYSTEMS
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Abstract. In this paper we propose a numerical method to approximate the best decay
rate for some dissipative systems that are bounded perturbation of unbounded skew-
adjoint operators. We also give some numerical examples and applications to illustrate
the efficiency of this approach.
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1. Introduction

Given an evolution dissipative system on a Hilbert space H with norm ‖ · ‖ we define
the best decay rate as

inf{ω : ∃C(ω) > 0 s.t. ‖u(t)‖ ≤ C‖u(0)‖eωt, for every finite energy solution}. (1.1)

The characterization of this best decay rate is a difficult problem and has not a complete
answer in the general case. In the particular case of a hyperbolic system perturbed with a
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damping term this question has been addressed by many authors with different techniques
(see [1, 2, 7, 10, 11, 13], and the references therein). These references correspond to one-
dimensional problems for which the best decay rate is usually associated to the spectral
abscissa of the generator of the semigroup, i.e. the supremum of the real part of its
corresponding eigenvalues. For higher dimension the spectral abscissa also plays a role.
In [18] G. Lebeau characterized the value of the best decay rate for the damped wave
equation in terms of two quantities: the spectral abscissa and the mean value of the
damping coefficient along the rays of geometrical optics.

In principle, the spectral abscissa should be easier to compute than the best decay rate,
since the latter requires a characterization of the asymptotic behavior of all possible so-
lutions. However, when considering distributed systems (as wave or beam models) the
numerical approximation of the spectrum is not an easy task. For example, if we con-
sider natural approaches based on computing the spectral abscissa of finite elements or
finite difference approximations the method fails. This is due to the numerical dispersion
introduced by these methods at the high frequencies that, in particular, affects severely
to the approximation of large eigenvalues. This phenomenon has been largely studied in
different contexts specially related with the numerical approximation of control and stabi-
lization problems for hyperbolic models (see for example [23], [15], [12], [14]). Most of the
cures proposed so far are based on Tychonoff regularization (see [15]), filtering techniques
for the high frequencies (see [17]), multigrid techniques (see [20]) or mixed finite element
methods (see [8] and [9]). However, none of these techniques seem to provide a uniform
approximation of the whole spectrum, required to approximate the spectral abscissa.

Note however that, even if the whole spectrum of the discrete approximation is not
close to the continuous one, we can derive an strategy to obtain a partial approximation,
by removing the high frequencies from the finite element model (or the finite differences
one). This was the idea followed by M. Asch and G. Lebeau in [6] for the 2-D damped
wave equation. But, how many frequencies do we have to remove in order to have a good
approximation? This is completely unclear in general. To have an idea, we consider the
simplest example of the 1-D undamped wave equation in the interval x ∈ (0, 1). The
associated eigenvalues are λk = ikπ, k ∈ Z∗, while the finite elements approximation with
uniform mesh provides λk = i2N sin( kπ

2N
), where N is the number of elements. Assume

that we want a ε−approximation of the k frequency, i.e.∣∣∣∣ikπ − i2N sin

(
kπ

2N

)∣∣∣∣ ≤ ε.

Then, using a Taylor expansion of the sin(x) near x = 0, we easily obtain an estimate of
N ,

N ∼ k3/2π3/2

2
√

6
√
ε
.

In particular, N grows as k3/2. For example, for the lower 20 frequencies i.e. |k| ≤ 10, with
ε = 0.1 we have to compute the eigenvalues of a matrix with size around (2N) × (2N) ∼
440× 440.
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Here we propose a more efficient method to approximate the spectrum of dissipative
systems which are bounded perturbation of unbounded skew-adjoint operators. Roughly
speaking, it consists in a projection method on finite dimensional subspaces generated by
the first eigenfunctions of the unperturbed operator. As far as we know, the convergence of
this projection method in this context has been considered for the first time by J. Osborn
to approximate a finite number of eigenvalues when the unperturbed operator is selfadjoint
(see [21]). In the present situation, we deal with perturbations of skew-adjoint operators
but the result is easily generalized. We show that, under certain hypotheses, this analysis
can be adapted to give a uniform approximation of almost the whole spectra and therefore
it can be used to approximate the spectral abscissa of the continuous model from the
discrete one. In particular, we give an algorithm to approximate this spectral abscissa.
The main drawback of the method is that it requires to compute the eigenfunctions of the
unperturbed operator. However, this is well-known for one dimensional problems or higher
dimensional ones in special domains (intervals or balls), where this method can be easily
applied.

As an application of this method we give some numerical experiments where we show the
behavior of the spectral abscissa for different operators under different damping locations.

The rest of the paper is divided as follows: In section 2 we describe an abstract setting for
some dissipative systems where, under certain conditions, the decay rate can be described
by the spectral abscissa. In section 3 we describe the numerical projection method and
prove the main result stated in Theorem 3.1, i.e. the uniform convergence of the spectra up
to a small number of frequencies. We also show how this result can be used to approximate
the spectral abscissa. In section 4 we describe a matrix formulation for the numerical
method. Finally, in section 5 we give several examples.

2. Abstract setting

Let A be an unbounded operator on a Hilbert space H with norm ‖·‖H . We assume that
A is self-adjoint, positive and with compact inverse. We denote its domain by D(A) ⊂ H.

Associated to A we consider H 1
2

= D(A
1
2 ) the scaled Hilbert space with the norm ‖z‖ 1

2
=

‖A 1
2 z‖H , ∀z ∈ H 1

2
.

We set H := H 1
2
×H, endowed with the inner product:〈

[f, g] , [u, v]
〉
H

:= 〈A
1
2f, A

1
2u〉H + 〈g, v〉H , for all [f, g], [u, v] in H,

and consider the first order differential equation,{
Ẏ (t) = ABY (t),
Y (0) = Y0 ∈ H,

(2.1)

where AB := A0 − B : D(AB) = D(A0) ⊂ H → H, with

A0 =

(
0 I
−A 0

)
: D(A0) = D(A)×H 1

2
⊂ H → H,
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and B ∈ L(H) is a bounded operator satisfying〈
BY, Y

〉
H
≥ 0, ∀Y ∈ H.

The operator A0 is skew-adjoint on H hence it generates a strongly continuous group
of unitary operators on H, denoted by

(
S0(t)

)
t∈R. Since AB is dissipative and onto, it

generates a contraction semi-group on H, denoted by
(
SB(t)

)
t∈R+ . Therefore system (2.1)

is well-posed. Moreover, it is easy to prove that

1

2
‖Y (0)‖2H −

1

2
‖Y (t)‖2H =

∫ t

0

〈
BY (s), Y (s)

〉
H
ds ≥ 0, ∀ t ≥ 0. (2.2)

In particular, this means that the mapping t 7→ ‖Y (t)‖2H is not increasing. In many
applications it is important to know if this mapping decays exponentially when t→ +∞,
i.e. if the system (2.1) is exponentially stable, and if so, what is the minimal rate. This
motivates the definition of best decay rate given in (1.1),

A natural way to characterize this optimal decay rate is through the spectrum of AB,
denoted by σ(AB), since particular solutions associated to a single eigenfunction of AB will
decay as the real part of the associated eigenvalue. Thus, if we define the spectral abscissa
of the generator AB by

µ(AB) = sup
{

Re(λ); λ ∈ σ(AB)
}
, (2.3)

then clearly

µ(AB) ≤ ω(B). (2.4)

Weather this spectral abscissa characterizes the optimal decay rate or not is an interesting
question that can be answered in some particular situations. For example, this is true when
the eigenfunctions associated to the operator AB constitutes a Riesz basis for H, since in
this case all solutions can be written as a series of eigenfunctions.

Let us mention a particular example where this can be proved under certain hypotheses.
Consider the damped second order system,{

ẍ(t) + Ax(t) +BB∗ẋ(t) = 0,(
x(0), ẋ(0)

)
= (x0, x1) ∈ H,

(2.5)

with B a bounded operator from U to H, where
(
U, ‖ · ‖U

)
is another Hilbert space which

will be identified with its dual.

By considering Y (t) = T
(
x(t), ẋ(t)

)
we can write system (2.5) in the form (2.1) with

B =

(
0 0
0 BB∗

)
∈ L(H).

The above system was considered in [5], and a sufficient condition to ensure the existence
of Riesz basis constituted by generalized eigenvectors of AB was given. The condition
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concerns the high frequencies of A. Let us denote the spectrum of A, σ(A), by {µj}j≥1
with

0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . ≤ µn ≤ . . .→ +∞.
For k ∈ N∗, we define δ±k := | ± i(

√
µk+1 −

√
µk)| =

√
µk+1 −

√
µk. We introduce the

following assumptions:

(A1) lim
k→+∞

δk = +∞,

and

(A2)

(
δk+1

δ2k

)
k≥1
∈ l2(N∗), where l2(N∗) is the space of square integrable sequences.

Remark 2.1. Observe the following:

(i) The assumption (A1) implies that the high frequencies of A0 are simple.
(ii) Assumption (A2) implies

lim
k→+∞

(
δk+1

δ2k

)
= 0. (2.6)

(iii) Note that, in general, assumption (A2) does not imply hypothesis (A1).

Theorem 2.2 (Ammari-Dimassi-Zerzeri [5]). Assume (A1) and (A2) hold. Then,

(i) The eigenvectors of the associated operator AB corresponding to system (2.5) form
a Riesz basis in the energy space H.

(ii)
ω(B) = µ(AB). (2.7)

For the abstract-Schrödinger equation:{
ż(t) + iAz(t) +BB∗z(t) = 0, ∀ t > 0,
z(0) = z0.

(2.8)

we have the same result as in Theorem 2.2 (see [5]):

Corollary 2.3. Assume

(A3) lim
k→+∞

δ′k := µk+1 − µk = +∞,

and

(A4)

(
δ′k+1

(δ′k)
2

)
k≥1
∈ l2(N∗).

Then,

(i) The eigenvectors of the associated operator AB := −iA − BB∗ corresponding to
system (2.8) form a Riesz basis in the energy space H.



6 K. AMMARI AND C. CASTRO

(ii)
ω(B) = µ(AB). (2.9)

3. Numerical aproximation of the spectrum

In this section we consider a projection method to approximate numerically the spec-
tral abscissa of AB, i.e. µ(AB). This projection method has been used previously to
approximate a single eigenvalue, or a fixed number of them, in [21], when AB is a bounded
perturbation of a selfadjoint operator. In the present situation, AB = A0 − B with A0

skew-adjoint and B bounded, but the result is easily adapted to this case. We claim that,
under certain hypotheses, this analysis provides a uniform approximation of almost the
whole spectra and therefore it can be used to approximate the spectral abscissa of the
continuous model from the discrete one. In fact, we give below an algorithm to obtain this
approximation.

Along this section we assume that all the eigenvalues of A, that we denote by {µk}k≥1,
are simple and ordered increasingly. We also denote by {vk}k≥1 the associated eigenvectors,
that we assume normalized in the norm of H. In this case, the eigenvalues of A0 and the
corresponding eigenvectors are given by:

A0Vk = λkVk, where Vk =
vk√

2

[ 1

λk
, 1
]
, for all k ∈ Z∗, (3.1)

and v−n = vn, λ±n = ±i√µn, for n ∈ N∗. Moreover, the family
(
V±k
)
k∈N∗ is an orthonormal

basis of the energy space H.

Let us consider the finite dimensional approximation of H spanned by the first eigen-
functions of A0 i.e.

HN = span{Vk}k∈Z∗N
where Z∗N = {k ∈ Z∗, |k| ≤ N} and PN : H → HN the associated orthogonal projection.

We define the following Galerkin approximation of the eigenvalue problem (3.1): find
λ ∈ C such that there exists a solution WN ∈ HN , WN 6= 0 of the system

PNABWN = λWN . (3.2)

The spectrum of PNAB is denoted by σ(PNAB) and contains 2N eigenvalues counting
multiplicity. Associated to this finite dimensional spectral problem we define the spectral
abscissa,

µ(PNAB) = max
{

Re(λ); λ ∈ σ(PNAB)
}
. (3.3)

Our main objective is to relate µ(PNAB) with µ(AB). Obviously the most we can expect is
that µ(PNAB) approximates the spectral abscissa of the lower N frequencies of AB. This
is basically the statement in Theorem 3.1 below. Note, however, that this is not enough to
approximate the spectral abscissa AB, unless this is given by one of the first N frequencies.

In practice, there are a number of situations where the large frequencies of AB exhibit
an asymptotic behavior, in such a way that their real part approaches to a specific value
as the frequencies grow. In this case, we only have to consider N sufficiently large to reach
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this asymptotic regime. Based on this idea we propose below an algorithm to approximate
µ(AB).

Before giving the main result of this section we introduce some notation that is used
in the rest of the paper. We denote by {(νk, Uk)}k∈Z∗ (respectively {(ηNk ,WN

k )}k∈Z∗) the
eigenvalues and associated eigenvectors of AB (respectively PNAB), that we assume or-
dered in such a way that Im(νk) ≤ Im(νk+1) and, when equal, |νk+1| ≤ |νk| (respectively
Im(ηNk ) ≤ Im(ηNk+1)). Note that this is the same ordering chosen for the eigenvalues
{λk}k∈Z∗ of A0. We also assume that the above eigenvectors are normalized.

Finally, to simplify the notation, in this section we omit the space in the norms when
there is no confusion, i.e. we consider ‖ · ‖ = ‖ · ‖H and ‖ · ‖ = ‖ · ‖L(H).

Theorem 3.1. Assume that the following hypotheses are satisfied:

H1- A0 : D(A0) ⊂ H → H is skew-adjoint with simple eigenvalues {λn}n∈Z∗.
H2- The eigenvalues of A0 satisfy the following:

|λj+1 − λj| > 2‖B‖, for all j ∈ Z∗.
H3- ‖B‖ ≤ |λ1|.
H4- The eigenvectors of AB = A0 + B constitute a Riesz basis of H, i.e. there exist

constants m,M > 0 such that

m
∑
j∈Z∗
|cj|2 ≤

∥∥∥∥∥∑
j∈Z∗

cjUj

∥∥∥∥∥
2

H

≤M
∑
j∈Z∗
|cj|2, for all {cj} ∈ l2 (3.4)

H5- For each ε > 0 there exists r1 > 0 such that

max
|i|≤p

∑
|j|≥p+r1

| < BVi, Vj > |2 < ε, for all p > 0. (3.5)

Then, given ε > 0 there exists r > 0 independent of N , such that for all N > r

min
j
|ηNp − νj| ≤ 2ε, for all |p| ≤ N − r, (3.6)

min
j
|ηNj − νp| ≤ 2ε, for all |p| ≤ N − r. (3.7)

Remark 3.2. Theorem 3.1 establishes the uniform convergence of the discrete spectrum,
as N →∞, up to the highest 2r ones. As we show in the proof below, the value of r in the
statement of Theorem 3.1 depends on the value r1 in hypotheses H5 and the assymptotic gap
of the eigenvalues of the unperturbed operator, i.e. |λj+1−λj| for large |j|. Therefore, it can
be computed without knowing the eigenvectors of AB. It can be also estimated numerically
for each specific example. In practice (at least in the experiments considered below) this
value is small and only a few frequencies must be removed to have uniform convergence. In
Figure 1 we show an example for the damping wave equation. In this example r is around
4 and we observe that this value does not increase for larger values of N .
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Figure 1. Numerical approximation of the spectrum of the 1-D damped
wave equation in the interval x ∈ (0, 1) with a constant damping term
a(x) = 10χ(0.1,0.5)(x), the characteristic function of the interval (0.1, 0.5),
when considering N = 50 (left) and N = 100 (right). The eigenvalue that
provides the spectral abscissa is circled. We observe that the highest fre-
quencies exhibit a clear deviation from the continous ones. However this
only happens for a fixed number of frequencies that does not depend on N .

Remark 3.3. Hypotheses H2 and H3 in Theorem 3.1 concern the unperturbed operator so
that we can check them without knowing the spectrum of AB. On the other hand, they are
used in a technical part of the proof and can be probably relaxed, as checked in the numerical
experiments. Hypotheses H4 is more involved since it usually requires some information
of the spectrum of AB. However, the standard technique to prove such property for one-
dimensional problems requires basically the asymptotics of the spectrum (see for instance
[10]), that is usually known in a number of cases. Finally, hypotheses H5 is a measure of
the nondiagonality of the operator B with respect to the basis of eigenvectors for A0, and
can be computed easily.

Before giving the proof of Theorem 3.1 we show how this result can be used to approxi-
mate µ(AB) from µ(PNAB).

Corollary 3.4. Assume that the hypotheses H1-H5 in Theorem 3.1 are satisfied, together
with the following one:

H6- Given ε > 0, there exists N1 and α ∈ R such that

| Re (νk)− α| ≤ ε, for all |k| > N1 (3.8)
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Let us define the following modified spectral abscissa, where we remove the highest frequen-
cies,

µr(P
NAB) = max

|j|≤N−r
Re(ηNj ). (3.9)

Then, for each ε > 0 there exists N1 and r, independent of N , such that

|µ(AB)− µr(PNAB)| ≤ ε, for all N > N1. (3.10)

From this result we can easily implement an algorithm to obtain an approximation of
the spectral abscissa:

Step 1. Choose ε > 0 and take N1 from hypotheses H6 above. This value N1 may change
from one case to other and we do not know any a priori criteria to compute it. In
practice we can give a numerical estimate by chosing N sufficiently large in order
to have that the real part of the last frequencies are sufficiently close.

Step 2. Compute the value r given by Theorem 3.1. As we have said, this can be computed
without knowing the spectrum ofAB. Alternatively, it can be estimated numerically
for each specific example too. For example, we choose N0, not too large, and
compare the spectra σ(PN0AB) with σ(P 2N0AB). Then we can estimate r by the
smallest value for which

|ηN0
i − η

2N0
i | ≤ ε, for all |i| ≤ N − r

Step 3. Take N > N1 + r and compute µr(P
NAB) by removing the highest frequencies in

µ(PNAB). According to Corollary 3.4, this satifies (3.10).

In the rest of this section we prove Theorem 3.1.

Proof. (of Theorem 3.1). We divide the proof in several steps.

Step 1. Basic estimates. Here we prove a rough estimate of the eigenvalues. Let

Cm = {λ ∈ C such that |λ− λm| < ‖B‖}.
By hypothesis H2, Cm are disjoint. On the other hand, following the perturbation argument
in [21], one can prove that the number of eigenvalues, counting with algebraic multiplicity,
of A0,AB and PNAB in Cm coincide. In particular, Cm contains only one eigenvalue of
A0,AB and PNAB, i.e.

|λk − νk|, |λk − ηNk | < ‖B‖, for all k. (3.11)

As a consequence, estimates (3.6) and (3.7) can be deduced one from the other. We
focus on the proof of (3.6).

Step 2. We prove the following estimate,

min
j∈Z∗
|νj − ηNp | ≤

√
M

m
‖(I − PN)BWN

p ‖, for all |p| ≤ N (3.12)

where the constants M and m are those given in (3.4).
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As {Uj}j∈Z∗ constitutes a Riesz Basis for H we can write

WN
p =

∑
j∈Z∗

αp,jUj, αp,j ∈ C.

We have,∑
j∈Z∗

αp,jUj(η
N
p − νj) = PNABWN

p −ABWN
p = PN(A0 − B)WN

p − (A0 − B)WN
p

= (I − PN)BWN
p .

From this identity we have on one hand,∥∥∥∥∥∑
j∈Z∗

αp,jU
N
j (ηNp − νj)

∥∥∥∥∥ ≤ ∥∥(PN − I)BWN
p

∥∥ , (3.13)

and on the other hand∥∥∥∥∥∑
j∈Z∗

αp,jU
N
j (ηNp − νj)

∥∥∥∥∥
2

≥ m
∑
j∈Z∗
|αp,j|2|ηNp − νj|2 ≥ mmin

j∈Z∗
|ηNp − νj|2

∑
j∈Z∗
|αp,j|2

=
m

M
min
j∈Z∗
|ηNp − νj|2,

where we have taken into account the normalization of WN
p . Combining this inequality

with (3.13) we easily obtain (3.12).

Step 3. To estimate the right hand side of (3.12) we look at the contribution of the
large Fourier coefficients of WN

p in the basis {Vj}j∈Z∗ . In particular we prove that given
r, p0 > 0 such that N − r < p0 < N , the following holds

‖(I − P p0)WN
p ‖ ≤

‖B‖
|λp0+1 − λN−r| − ‖B‖

, for all |p| ≤ N − r. (3.14)

In fact, we have

‖(I − P p0)WN
p ‖2 =

∑
|j|≥p0+1

| < WN
p , Vj > |2. (3.15)

Now observe that

(ηNp − λj)
〈
WN
p , Vj

〉
=

〈
PNABWN

p , Vj

〉
−
〈
WN
p , (A0)

TVj

〉
=
〈

(PNAB −A0)W
N
p , Vj

〉
=

〈
(PN(A0 − B)−A0)W

N
p , Vj

〉
= −

〈
PNBWN

p , Vj

〉
,

and taking modulus in this inequality,

∣∣∣〈WN
p , Vj

〉∣∣∣2 ≤
∣∣∣〈PNBWN

p , Vj

〉∣∣∣2
|ηNp − λj|2

≤

∣∣∣〈PNBWN
p , Vj

〉∣∣∣2
|ηNp0+1 − λN−r|2

≤

∣∣∣〈PNBWN
p , Vj

〉∣∣∣2
(|λp0+1 − λN−r| − ‖B‖)2

,

(3.16)
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where we have used that |p| ≤ N − r < p0, and estimate (3.11) for ηNp0 , since N − r ≥ m0.
Therefore, substituting (3.16) into (3.15),

∑
|j|≥p0+1

| < WN
p , Vj > |2 ≤

∑
|j|≥p0+1

∣∣∣〈PNBWN
p , Vj

〉∣∣∣2
(|λp0+1 − λN−r| − ‖B‖)2

≤
‖PNBWN

p ‖2

(|λp0+1 − λN−r| − ‖B‖)2
≤ ‖B‖2

(|λp0+1 − λN−r| − ‖B‖)2
,

which combined with (3.15) gives the desired estimate (3.14).

Step 4. Here we obtain (3.6). First of all, note that for p0 satisfying N − r > p0 ≥ m0,
we have

‖(I − PN)BWN
p ‖ ≤ ‖(I − PN)BP p0WN

p ‖+ ‖(I − PN)B(I − P p0)WN
p ‖

≤ max
|i|≤p0

‖(I − PN)BVi‖+ ‖B‖ ‖(I − P p0)WN
p ‖. (3.17)

Given ε > 0, we choose p0 such that the first term in the right hand side of (3.17) is lower
than ε/2. From hypothesis H5 this can be done for p0 satisfying

N − p0 ≥ r1, for some r1 independent of N. (3.18)

Now we choose r such that the second term in the right hand side of (3.17) is lower than
ε/2 too. From (3.14) and hipothesis H2 this can be done as long as

p0 − (N − r) ≥ r2, for some r2 independent of N. (3.19)

Therefore, if we take r ≥ r1+r2, estimate (3.6) follows directly from (3.17). This concludes
the proof of Theorem 3.1. �

4. Matrix formulation of the numerical method

In this section we reduce the finite dimensional approximation of the eigenvalue prob-
lem (3.2) to a matrix eigenvalue problem, that we use later to implement the algorithm
described in the previous section to approximate the spectral abscissa.

In order to write the finite dimensional eigenvalue problem (3.2) in matrix form we write

WN =
∑
k∈Z∗N

ckVk

for some Fourier coefficients ck. A straightforward computation shows that if we define

an =
cn
λn

+
c−n
λ−n

, aN+n = cn + c−n, n = 1, 2, ..., N

then the eigenvalue problem (3.2) can be reduced to the equivalent matrix eigenvalue
problem

MNU
N = λNUN , UN = (a1, a2, ...a2N)t, (4.1)
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where IN is the N-dimensional identity matrix,

MN =

(
0 IN
−ΛN ΩN

)
, ΛN =


µ1 0 0 0
0 µ2 0 0
· · · · · · · · · · · ·
0 0 0 µN

 , ΩN = (ωij) ,

and
ωij = − < BB∗vi, vj >H .

The discrete spectral abscissa is defined as

µ(PNAB) = sup{ReλN ; λN ∈ σ(MN)}. (4.2)

5. Some applications

We give here some examples of dissipative systems which satisfy or not assumptions
(A1) and (A2) but for which we can deduce that the best decay rate can be identified
to spectral abscissa. Also, not all the examples satisfy the hypotheses of Theorem 3.1 but
the numerical algorithm presented before provides good result in all them.

5.1. Damped wave equation. We consider the following system:

∂2t u(x, t)− ∂2xu(x, t) + 2a(x)∂tu(x, t) = 0, 0 < x < 1, t > 0, (5.1)

u(0, t) = u(1, t) = 0, t > 0, (5.2)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), 0 < x < 1, (5.3)

where a ∈ BV (0, 1) is non-negative satisfying the following condition:

∃ c > 0 s.t., a(x) ≥ c, a.e., in a non-empty open subset I of (0, 1). (5.4)

We define the energy of the solution u of (5.1)-(5.3), at time t, as

E
(
u(t)

)
=

1

2

∫ 1

0

(∣∣∂tu(x, t)
∣∣2 +

∣∣∂xu(x, t)
∣∣2) dx . (5.5)

U = L2(0, 1), H = L2(0, 1), H 1
2

= H1
0 (0, 1),

D(A) = H2(0, 1) ∩H1
0 (0, 1),

H = H1
0 (0, 1)× L2(0, 1),

A = − d2

dx2
, Bφ = B∗φ =

√
2a(x)φ, ∀φ ∈ L2(0, 1).

So,

A0 =

(
0 I
d2

dx2
0

)
, AB =

(
0 I
d2

dx2
−2a(x)

)
.

The operator A0 is skew-adjoint, with compact inverse and the spectrum is given by
σ(A0) = {±ikπ, k ∈ N∗} . Therefore, the hypotheses (A1) and (A2) are not fulfilled for
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this problem. However, according to [16], if a satisfies (5.4) then ω(B) < 0. Moreover, in
this case it is well-known that the spectral abscissa coincides with the decay rate (see [10]).

To approximate the spectral abscissa we follow the algorithm described above. This
requires to check the hypotheses H1-H6. H1 is clearly true, while H2-H3 depend on the
norm of B. In this case,

‖B‖ ≤ 2‖a‖L∞(0,1),

and this is satisfied as soon as ‖a‖L∞(0,1) < π/2. We consider below some examples where
this condition is not satisfied but the algorithm works fine. This constitutes a numerical
evidence of the non optimality of hypotheses H2-H3. Hypotheses H4 and H6 were proved
for this damped wave equation in [10] under condition (5.4). Finally, hypotheses H5 has
to be checked for each specific example but, in general, it is easy to establish when a(x)
is a characteristic function of a subinterval ω ⊂ (0, 1) or a finite linear combination of the
eigenvectors of A0.

The eigenvalue problem is reduced to the matrix eigenvalue problem (4.1) for N = 100
that we solve with MATLAB. In this case, µk = k2π2 and

ωjk = −2

∫ 1

0

a(x) sin(jπx) sin(kπx)dx. (5.6)

In order to see how the distribution of the damping affects to the spectral abscissa we
consider several experiments. We take for a(x) characteristic functions, so that (5.6) can

be computed explicitly, with
∫ 1

0
a(s)ds = 1 to maintain the same amount of damping. In

this way we consider the following two parametric family of dampings,

a(x) =
1

α
χ(x0−α/2,x0+α/2)(x), x0 ∈ (0, 1/2), α ∈ (0, 2x0]. (5.7)

Here x0 ∈ (0, 1/2] is the center of the support and α ∈ (0, 2x0] its length. For x0 fixed and
α ∈ (0, 2x0] we illustrate the effect of concentrating the damping around a single point.
When α approaches zero we formally obtain a Dirac mass concentrated at x0. In Figure 2
we show the dependence of the spectral abscissa on α when x0 = 1/2. In particular this
spectral abscissa becomes larger as α → 0 and smaller when α → 1 which corresponds to
the constant case a(x) = 1. We also observe that the spectral abscissa is not monotone
and that there are some values, around α = 0.4 and α = 0.6 for example, where it is not
a differentiable function with respect to α. In the case α = 0.4 this corresponds to the
case where the spectral abscissa changes from the first to the second eigenvalue. We also
observe the presence of several local minima.

Now, we fix the parameter α = 1/8 and move the point x0 ∈ [1/4, 1/2]). Once again, the
damping is a one-parametric family of characteristic functions with support in a segment
of length 1/8 that we move through the interval (0, 1). The idea is to understand how
the location of the damping affects to its efficiency. In Figure 3 we show the dependence
of the decay on α. Note that lower spectral abscissa are obtained around the values
α = 0.2, 0.4, 0.6 and 0.8.
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Figure 2. Spectral abscissa versus α for the wave equation when a(x) is
given by (5.7) and x0 = 0.5.

Figure 3. Spectral abscissa versus x0 for the wave equation when when
a(x) is given by (5.7) and α = 1/8.

In Figure 4 we show the behavior of the spectral abscissa when we move both parameters.
We see that the lower value corresponds to (x0, α) = (1/2, 1) which is when the damping
is uniformly distributed in the interval (0, 1).

Another interesting example appears when the damping is a one-parametric family of a
finite number of characteristic functions of the form

a(x) =

β∑
i=1

1

2
χ( 2i−1

2β
− 1

4iβ
, 2i−1

2β
− 1

4iβ
)(x), β ∈ N. (5.8)

Note that for larger β we consider a damping supported in an increasing number of intervals
with lower length in such a way that we still conserve the total mass 1. In this way we try
to understand the influence of an oscillating damping in the spectral abscissa. In Figure
5 we show the dependence of the spectral abscissa on β. We see that as we increase the
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Figure 4. Spectral abscissa versus (x0, α) for the wave equation when a(x)
is given by (5.7).

number of intervals the spectral abscissa becomes larger. Thus, this can be considered as
a poor strategy to distribute the damping.

Figure 5. Spectral abscissa versus β (number of subientervals where the
damping is supported) for the wave equation when a(x) is given by (5.8).

5.2. Damped Euler-Bernoulli beam equation. We consider the following system:

∂2t u(x, t) + ∂4xu(x, t) + 2a(x)∂tu(x, t) = 0, 0 < x < 1, t > 0, (5.9)

u(0, t) = u(1, t) = 0, ∂2xu(0, t) = ∂2xu(1, t) = 0, t > 0, (5.10)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), 0 < x < 1, (5.11)

where a ∈ L∞(0, 1) is non-negative satisfying the following condition:

∃ c > 0 s.t., a(x) ≥ c, a.e., in a non-empty open subset I of (0, 1). (5.12)

We define the energy of a solution u of (5.9)-(5.11), at time t, as

E
(
u(t)

)
=

1

2

∫ 1

0

(∣∣∂tu(x, t)
∣∣2 +

∣∣∂2xu(x, t)
∣∣2) dx . (5.13)
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U = L2(0, 1), H = L2(0, 1), H 1
2

= H2(0, 1) ∩H1
0 (0, 1),

D(A) =

{
u ∈ H4(0, 1) ∩H1

0 (0, 1);
d2u

dx2
(0) =

d2u

dx2
(1) = 0

}
,

H = [H2(0, 1) ∩H1
0 (0, 1)]× L2(0, 1),

A =
d4

dx4
, Bφ = B∗φ =

√
2a(x)φ, ∀φ ∈ L2(0, 1).

So,

A0 =

(
0 I

− d4

dx4
0

)
, AB =

(
0 I

− d4

dx4
−2a(x)

)
.

The operator A0 is skew-adjoint and with compact inverse and the spectrum is given by
σ(A0) = {±ik2π2, k ∈ N∗} , then Assumptions (A1) and (A2) are satisfied. As a direct
implication of Theorem 2.2, we have that the best decay rate is given by the spectral
abscissa (this result was proved in [4]).

To approximate the spectral abscissa we introduce the numerical algorithm described
above, where the eigenvalue problem is reduced to the matrix eigenvalue problem (4.1). In
this case, µk = −k4π4, λk = ±ik2π2 and the hypotheses of Theorem 3.1 are satisfied for
sufficiently small a(x). More precisely, it is enough to consider ‖a‖L∞(0,1) < π2/2.

Following the idea of the experiments for the wave equation we have considered the same
damping functions a(x). The results are completely analogous as it can be seen in Figure
6.

5.3. Damped Schrödinger equation. We consider the following system:

∂tu(x, t)− i ∂2xu(x, t) + a(x)u(x, t) = 0, 0 < x < 1, t > 0, (5.14)

u(0, t) = u(1, t) = 0, t > 0, (5.15)

u(x, 0) = u0(x), 0 < x < 1, (5.16)

where a ∈ L∞(0, 1) is non-negative satisfying the following condition: ∃ c > 0 s.t., a(x) ≥
c, a.e., in a non-empty open subset I of (0, 1).

We define the energy of a solution u of (5.14)-(5.16), at time t, as

E
(
u(t)

)
=

1

2

∫ 1

0

∣∣u(x, t)
∣∣2 dx . (5.17)

In this case, we have

H = L2(0, 1), A = − d2

dx2
, B =

√
a(x) I

The operator iA is skew-adjoint and with compact inverse and the spectrum is given by
σ(iA) = {±ik2π2, k ∈ N∗} , then Assumptions (A3) and (A4) are satisfied. As a direct
implication of Corollary 2.3, we have that the best decay rate is given by the spectral
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Figure 6. Spectral abscissa of the beam equation versus α for x0 = 1/2
(upper left), versus x0 for α = 1/8 (upper right), versus (α, x0) (lower left),
when a(x) is given by (5.7), and versus the number of intervals β (lower
right) when a(x) is given by (5.8).

abscissa. As in the previous example, the hypotheses of Theorem 3.1 are satisfied for small
enough damping terms a(x). Following the idea of the experiments for the wave equation
we considered the same damping functions a(x). The results are almost identical to the
previous cases (see Figure 6) and we omit them.

5.4. 2D damped wave equation. We consider the square Ω = (0, 1)×(0, 1) with bound-
ary ∂Ω, and the the following system:

∂2t u(x, t)−∆u(x, t) + 2a(x)∂tu(x, t) = 0, x ∈ Ω, t > 0, (5.18)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (5.19)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω, (5.20)

where a ∈ BV (Ω) is non-negative satisfying the following condition:

∃ c > 0 s.t., a(x) ≥ c, a.e., in a non-empty open subset I of Ω. (5.21)

We define the energy of the solution u of (5.18)-(5.20), at time t, as

E
(
u(t)

)
=

1

2

∫ 1

0

(∣∣∂tu(x, t)
∣∣2 +

∣∣∇u(x, t)
∣∣2) dx . (5.22)

U = L2(Ω), H = L2(Ω), H 1
2

= H1
0 (Ω),
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D(A) = H2(Ω) ∩H1
0 (Ω), H = H1

0 (Ω)× L2(Ω),

A = −∆, Bφ = B∗φ =
√

2a(x)φ, ∀φ ∈ L2(Ω).

So,

A0 =

(
0 I
∆ 0

)
, AB =

(
0 I
∆ −2a(x)

)
.

The operator A0 is skew-adjoint and with compact inverse and the spectrum is given
by σ(A0) =

{
±i
√
k2 + l2π, k, l ∈ N∗

}
. Note that in this case the properties (A1)-(A2) are

not satisfied. However, the spectral abscissa still provides an insight in the decay rate, at
least when the support of the damping satisfies the so-called Optics Geometric Condition
CGO (see [18]).

The hypotheses of Theorem 3.1 are not satisfied in this case, but we try the numerical
method anyway. Following the idea of the experiments for the 1-D wave equation we
analyze the spectral abscissa for damping terms a(x) that are characteristic functions of
the form

a(x) =
1

α2
χDα(x). (5.23)

where Dα = (0.5 − α/2, 0.5 + α/2) × (0.5 − α/2, 0.5 + α/2), and α ∈ (0, 1]. Note that
this is a characteristic function of a square that coincides with the domain for α = 1 and
approaches a Dirac as α → 0. The results are given in Figure 7. Note that in this case
the support of the damping does not satisfy the CGO condition and the decay rate at the
continuous level can be larger than the spectral abscissa.

Figure 7. Spectral abscissa versus α for the 2-D damped wave equation
when a(x) = 1

α2χDα(x).
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We observe that in this case, in contrast with the one-dimensional case, the spectral
abscissa is monotone increasing when approaching the Dirac. In Figure 8 we show the
spectrum in different cases.

Figure 8. Spectrum of the 2-D damped wave equation when a(x) =
1
α2χDα(x) for different values of α from α = 100 (upper left) to α = 1
(lower right).

Now we consider a two-parametric family of the form

a(x) = 64χD(α1,α2)
(x), α1, α2 ∈ (1/16, 15/16).

where D(α1,α2) is the characteristic function of the 1
8
× 1

8
square centered at (α1, α2). Note

that now the support of a(x) is a square that we move through the domain Ω, along the
two variables, and that we maintain the total mass to 1. The idea is to understand how
the location of the damping affects to the spectral abscissa. In Figure 9 we show the
dependence on α. Note that it shows an oscillating behavior similar to the 1D case.

6. Conclussions

We have introduced a projection method to approximate the spectrum of a dissipative
system which is a bounded perturbation of a skew-adjoint operator. We show that the as-
sociated discrete spectra approximate the frequencies of the continuous problem uniformly
with respect to the discretization parameter, up to a fixed number that can be estimated a
priori. Based on this result we introduce an algorithm to approximate the spectral abscissa,



20 K. AMMARI AND C. CASTRO

Figure 9. Spectral abscissa versus α for the 2-D damped wave equation
when a(x) = 64χD(α1,α2)

(x), α1, α2 ∈ (1/16, 15/16). Here, α = (α1, α2)
is the center of the support of the damping.

and therefore the decay rate, for a large class of dissipative systems. As an applications we
analyze the dependence of the damping location in several hyperbolic damped systems.
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