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NEMATIC LIQUID CRYSTALS IN LIPSCHITZ DOMAINS

ANUPAM PAL CHOUDHURY, AMRU HUSSEIN, AND PATRICK TOLKSDORF

Abstract. We consider the simplified Ericksen–Leslie model in three dimensional bounded Lipschitz
domains. Applying a semilinear approach, we prove local and global well-posedness (assuming a small-
ness condition on the initial data) in critical spaces for initial data in L

3
σ

for the fluid and W
1,3 for

the director field. The analysis of such models, so far, has been restricted to domains with smooth
boundaries.

1. Introduction

In this article, we establish a well-posedness theory for the isothermal simplified Ericksen–Leslie model
in critical spaces on a bounded Lipschitz domain Ω ⊂ R3. This model describes the flow of nematic liquid
crystals and is given by the following system of equations











∂tu+ (u · ∇)u − ν∆u+∇π = −λdiv([∇d]⊤∇d) in (0, T )× Ω,

∂td+ (u · ∇)d = γ(∆d+ |∇d|2d) in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

(1.1)

with initial data u(0) = a and d(0) = b. Here u : (0, T ) × Ω → R3 denotes the velocity field of the
fluid, π : (0, T ) × Ω → R the pressure, and d : (0, T ) × Ω → R3 denotes the molecular orientation of
the liquid crystal at the macroscopic level (we shall also refer to this as the director field). This physical
interpretation of d imposes the condition

(1.2) |d| = 1 in (0, T )× Ω.

We shall therefore further assume that |d(0)| = |b| = 1 in Ω. The constant ν > 0 represents the viscosity,
the constant γ > 0 represents the microscopic elastic relaxation time for the molecular orientation field d,
and the constant λ > 0 encodes the competition between the kinetic and potential energies. Without loss
of generality, we shall restrict ourselves to the case λ = γ = ν = 1. This system is complemented with
suitable boundary conditions for u and d. The velocity field will always be assumed to satisfy no-slip
boundary conditions

u = 0 on (0, T )× ∂Ω,

and the director field either satisfies homogeneous Neumann boundary conditions

∂nd = 0 on (0, T )× ∂Ω,(1.3)

or it is assumed that the alignment of d on the boundary is prescribed by a constant unit vector e ∈ S2,
i.e.,

d = e on (0, T )× ∂Ω.(1.4)

Here, ∂nd denotes the normal derivative of d to ∂Ω. Notice that both these types of boundary conditions
for d are physically relevant and have been investigated in smooth domains [27], [14], [25], and [28].

2010 Mathematics Subject Classification. Primary: 76A15, 76D03; Secondary: 35Q35, 47D06.
Key words and phrases. Nematic Liquid Crystals, Ericksen–Leslie model, Parabolic equations in Lipschitz domains

This work was partly supported by the DFG International Research Training Group IRTG 1529. The first and third authors
are supported by IRTG 1529 at TU Darmstadt.

1

http://arxiv.org/abs/1709.06384v1


2 ANUPAM PAL CHOUDHURY, AMRU HUSSEIN, AND PATRICK TOLKSDORF

After the continuum theory of liquid crystals was developed by Ericksen [6] and Leslie [24] in the
1960’s, a first simplified model (which is a slightly modified version of (1.1)) was considered by Lin and
Liu [29] in 1995. In the case of bounded and smooth domains the above mentioned system was considered
by Li [25] subject to Dirichlet boundary conditions for d; subject to Neumann boundary conditions it
was investigated by Li and Wang [27] and by Hieber, Nesensohn, Prüss, and Schade [14]. While the two
latter treatments rely both on maximal regularity estimates for the Stokes operator and the Neumann
Laplacian, they differ in their underlying philosophy. Namely, Li and Wang treat it as a semilinear
problem and Hieber et al. advertise the quasilinear approach. Detailed information on liquid crystals
including their history and further references can be found in the books by Sonnet and Virga [32] and
Virga [37]. Recent developments are discussed by Hieber and Prüss in the survey [15].

In this work, we shall view the simplified Ericksen–Leslie model as a semilinear equation and treat it
by the semigroup method presented for example by Giga [11], Giga and Miyakawa [12], and Kato [21].
For instance in the case of Neumann boundary conditions for d, this means that all nonlinear terms are
considered as a “right-hand side” and that we shall construct mild solutions

u(t) = e−tAa−

∫ t

0

e−(t−s)A
P
{

(u(s) · ∇)u(s) + div([∇d(s)]⊤∇d(s))
}

ds,

d(t) = e−tBb−

∫ t

0

e−(t−s)B
{

(u(s) · ∇)d(s) − |∇d(s)|2d(s)
}

ds

by virtue of an iteration scheme. Here, the “fluid equation”, i.e., the first equation of (1.1), is projected
onto the solenoidal vector fields by using the Helmholtz projection P and A denotes the Stokes operator;
−B denotes the Neumann Laplacian. As the underlying domain is only Lipschitz, there are profound
constraints concerning the regularity of the involved operators. For example the Helmholtz projection
on Lp as well as the Stokes semigroup on Lp

σ exist only for 3/2− ε < p < 3 + ε and some ε = ε(Ω) > 0,
see Fabes, Mendez, and Mitrea [7], Shen [31], and Deuring [5]. Another point is, that one cannot expect
the domains of the operators A and B to embed into W 2,p for any p > 1, as this property is in general
wrong for the Laplacian, see Dahlberg [2] and Jerison and Kenig [20]. Firstly, this shows that one cannot
expect an Lp-result for p ≥ 3 + ε and secondly, this directly leads to problems of how to interpret the
mild solutions above, as the Stokes semigroup is applied to two derivatives of d.

To circumvent this problem, we shall write (u(s) · ∇)u(s) as div(u(s)⊗ u(s)) and then consider

e−(t−s)A
Pdiv

as one composite operator on Lp. That this is well-defined for 3/2−ε < p < 3+ε and a bounded Lipschitz
domain Ω, was proven by the third author in [34]. To prove convergence of the iteration scheme, it will be
important that u(s)⊗u(s) and [∇d(s)]⊤∇d(s) exhibit the same decay rate in the time variable, because in
this case, both integrands in the mild formulation of u behave similarly with respect to the time variable.
Since the constructed solutions u and d will be perturbations of the solutions e−tAa and e−tBb to the
linearised equations, we need to impose conditions on b such that ∇e−tBb has the same time decay as

‖e−tAa‖Lq
σ(Ω) ≤ Ct−

3
2 (

1
p−

1
q )‖a‖Lp

σ(Ω) (32 − ε < p ≤ q < 3 + ε).

Since B satisfies the square root property ‖∇f‖Lp ≃ ‖B1/2f‖Lp for 3
2 −ε < p < 3+ε and f ∈ dom(B1/2),

one has the same time decay

‖∇e−tBb‖Lq(Ω)3×3 ≤ Ct−
3
2 (

1
p−

1
q )‖B1/2b‖Lp(Ω)3 (32 − ε < p ≤ q < 3 + ε),

whenever b ∈ dom(B1/2) = W 1,p(Ω)3.
This leads us to an informal formulation of our main results. In Theorems 3.1 and 3.4, we prove

local existence of mild solutions to the simplified Ericksen–Leslie model for initial data a ∈ Lp
σ(Ω) and

b ∈ W 1,p(Ω)3 with |b| = 1 and every 3 ≤ p < 3 + ε for some ε > 0. If a and ∇b are sufficiently small in
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Lp, then the solutions are global. Especially, the solutions satisfy

u ∈ BC([0, T );Lp
σ(Ω)), ∇d ∈ BC([0, T );Lp(Ω)3×3), and d ∈ BC([0, T );L∞(Ω)3)

(actually, d satisfies |d(t)| = 1 for all times). In the case p = 3, the norms of the spaces above are invariant
under the natural scaling of the equation, i.e., if u, d, and π are solutions to (1.1) and α > 0, then so are

uα(t, x) := αu(α2t, αx), dα(t, x) := d(α2t, αx), and πα(t, x) := α2π(α2t, αx)

(on a dilated domain and time interval). Thus, we establish a well-posedness theory for the simplified
Ericksen–Leslie model in critical spaces. Furthermore, we prove that under certain conditions the mild
solutions are unique. Having these solutions at hand, we proceed by regarding the nonlinearities as
“right-hand sides” and use the theory of maximal regularity to prove additional regularity properties of
the solutions. Finally, we would like to stress, that this is the first time that a well-posedness theory for
the simplified Ericksen–Leslie model is established on a bounded Lipschitz domain and that we prove
existence results for certain initial data spaces that are even unknown in the smooth case. To the best
of our knowledge, well-posedness results in critical spaces have been obtained only for the full space R3,
see [16, 17, 26].

The article is organised as follows. In Section 2, we introduce some of the basic tools and notations.
The main results are stated in Section 3 and the iteration scheme (for Neumann boundary conditions
for d) is performed in 4. In Section 5 we prove regularity of the corresponding solutions and then, in
Section 6, we outline the changes of the proof for Dirichlet boundary conditions. We close the article in
Section 7 with a comparison of our results in the smooth setting with previously known results.

2. Preliminaries

In this section, we collect some preliminary results which shall be used time and again in the rest of
the article.

For the whole article, Ω ⊂ R3 will be a bounded Lipschitz domain, by which we mean that the
boundary can locally be described by the graph of a Lipschitz continuous function. The space dimension
of the underlying Euclidean space is always fixed to three. Integration will always be performed with
respect to the Lebesgue measure. For two vectors x, y ∈ R3 we denote by x⊗ y the matrix that arises by
carrying out the matrix multiplication xy⊤, where the superscript ⊤ denotes the transpose of a matrix.
For a linear operator C defined on a Banach space X , we denote its domain by dom(C) ⊂ X and its
range by Rg(C).

Define the space of all solenoidal, smooth, and compactly supported vector fields by C∞
c,σ(Ω). Then,

for 1 < q < ∞, we denote by

Lq
σ(Ω) := C∞

c,σ(Ω)
Lq

and W 1,q
0,σ(Ω) := C∞

c,σ(Ω)
W 1,q

the Lq-space and the first-order Sobolev space of solenoidal vector fields. Moreover, for q′ being the

Hölder conjugate exponent to q, we define W−1,q
σ (Ω) := (W 1,q′

0,σ (Ω))∗, where the ∗ indicates that the

antidual space was taken. Finally, for a Banach space X and an interval I ⊂ R, we denote by BC(I;X)
the space of all bounded and continuous functions endowed with the supremum norm and we will denote
the space of all average-free Lq-functions by

Lq
0(Ω)

3 :=
{

d ∈ Lq(Ω)3 |

∫

Ω

d dx = 0
}

.

Recall that it was proven by Fabes, Mendez, and Mitrea in [7] that for each Lipschitz domain Ω ⊂ R3,
there exists ε > 0 such that the Helmholtz projection P from Lq(Ω)3 onto Lq

σ(Ω) is a bounded operator,
whenever |1/q− 1/2| < 1/6+ ε. In this case, one can canonically identify Lq

σ(Ω) with the antidual space
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(Lq′

σ (Ω))
∗. This means, that for every f ∈ (Lq′

σ (Ω))
∗ there exists a unique g ∈ Lq

σ(Ω) such that

〈f, u〉[Lq′ ]∗,Lq′ =

∫

Ω

g(x) · u(x) dx (u ∈ Lq′

σ (Ω)),

and we denote the corresponding isomorphism by Φ : (Lq′

σ (Ω))
∗ → Lq

σ(Ω).
The Stokes operator and the Neumann Laplacian are defined by means of Kato’s form method as

follows. Define the sesquilinear forms

a : W 1,2
0,σ (Ω)×W 1,2

0,σ (Ω) → C, (u, v) 7→

∫

Ω

∇u · ∇v dx,

b : W 1,2(Ω)3 ×W 1,2(Ω)3 → C, (u, v) 7→

∫

Ω

∇u · ∇v dx,

and let the Stokes operator A2 be the L2
σ(Ω)-realisation of a and the negative Neumann Laplacian B2 be

the L2(Ω)3-realisation of b. For 1 < q < ∞, the Stokes operator Aq is either defined as the part of A2 in
Lq
σ(Ω) (if q > 2) or as the closure of A2 in Lq

σ(Ω) (if q < 2) whenever the closure exists. In the same way,
we define the Neumann Laplacian Bq on Lq(Ω)3. Note that the respective operators are closable in the
case q < 2 if and only if Aq′ (or Bq′) is densely defined, for a proof, see, e.g., [35, Lem. 2.8]. Moreover, if
one of these conditions apply, then

〈Aqu, v〉Lq
σ,L

q′
σ
= 〈u,Aq′v〉Lq

σ ,L
q′
σ

(u ∈ dom(Aq), v ∈ dom(Aq′))

and

〈Bqu, v〉Lq,Lq′ = 〈u,Bq′v〉Lq,Lq′ (u ∈ dom(Bq), v ∈ dom(Bq′ )).

The following result of Shen shows that −Aq generates an exponentially stable analytic semigroup on
Lq
σ(Ω) whenever |1/q − 1/2| < 1/6 + ε, in particular, this implies that the Stokes operator Aq is closed

and densely defined for q is this range.

Proposition 2.1 (see [31]). For every bounded Lipschitz domain Ω ⊂ R
3 there exists ε > 0 such that

for all q satisfying |1/q − 1/2| < 1/6 + ε, the operator −Aq generates an exponentially stable analytic

semigroup on Lq
σ(Ω).

The heat semigroup generated by the Neumann Laplacian has the following properties on bounded
Lipschitz domains.

Proposition 2.2. For all q ∈ (1,∞) the operator −Bq is the generator of a bounded analytic contraction

semigroup (e−tBq )t≥0 on Lq(Ω)3 and for q = ∞, (e−tBq )t≥0 is contractive, i.e.,

‖e−tB∞d‖L∞(Ω)3 ≤ ‖d‖L∞(Ω)3 for all d ∈ L∞(Ω)3.

Proof. By [3, Thm. 1.3.9], B2 satisfies the so-called Beurling–Deny conditions. In this case, [3, Thm. 1.3.3]
implies that (e−tBq )t≥0 is a semigroup of contractions on Lq(Ω)3 for 1 ≤ q ≤ ∞. The analyticity for
q ∈ (1,∞) follows from [3, Thm. 1.4.2]. �

Since the operator domains dom(Aq) and dom(Bq) are nested for decreasing q, the corresponding
semigroups define a consistent family of operators, e−tAq |Lp

σ(Ω) = e−tAp and e−tBq |Lp(Ω)3 = e−tBp for
p > q. Thus, if no ambiguity is expected, we will follow the standard convention and skip the subscript q

henceforth and simply write A and B. The following result characterises the domains of the square roots
of A and B defined above.

Proposition 2.3 (see [34] and [20]). Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then there exists an

ε > 0 such that for all |1/q − 1/2| < 1/6 + ε,

(a) one has with equivalent norms

dom(A
1
2 ) = W 1,q

0,σ(Ω),
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(b) one has

dom(B
1
2 ) = W 1,q(Ω)3

and there exists a constant C > 0 such that

C−1‖∇u‖Lq(Ω)3×3 ≤ ‖B
1
2 u‖Lq(Ω)3 ≤ C‖∇u‖Lq(Ω)3×3 (u ∈ W 1,q(Ω)3).

In the following proposition, we recall and outline the proofs of Lp-Lq-type estimates for the Stokes
and the heat semigroups.

Proposition 2.4. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then there exists ε > 0 such that,

(a) there exists ω > 0 and a constant C > 0 such that for 3
2 − ε < p ≤ q < 3 + ε and t > 0,

‖e−tAf‖Lq
σ(Ω) ≤ Ce−ωtt

−
3
2

(

1
p−

1
q

)

‖f‖Lp
σ(Ω), f ∈ Lp

σ(Ω),

‖e−tA
PdivF‖Lq

σ(Ω) ≤ Ce−ωtt
−

1
2−

3
2

(

1
p−

1
q

)

‖F‖Lp(Ω)3×3 , F ∈ Lp(Ω)3×3,

where e−tAPdiv is the Lp-extension of the respective operator defined a priori on C∞
c (Ω)3×3.

(b) there exists ω > 0 and a constant C > 0 such that for all 1 < p ≤ q ≤ ∞ with p < ∞ and t > 0,

‖e−tBf‖Lq(Ω)3 ≤ Ce−ωtt
−

3
2

(

1
p−

1
q

)

‖f‖Lp(Ω)3 , f ∈ Lp
0(Ω)

3,

using the convention 1
∞

= 0. Moreover, for all 3
2 − ε < p ≤ q < 3 + ε and for t > 0 it holds

‖∇e−tBf‖Lq(Ω)3×3 ≤ Ce−ωtt
−

3
2

(

1
p−

1
q

)

‖∇f‖Lp(Ω)3×3 , f ∈ Lp
0(Ω)

3 ∩W 1,p(Ω)3,

‖∇e−tBf‖Lq(Ω)3×3 ≤ Ce−ωtt
−

1
2−

3
2

(

1
p−

1
q

)

‖f‖Lp(Ω)3 , f ∈ Lp
0(Ω)

3.

Proof. The first estimate in (a) was proven in [34, Thm. 1.2] but without an exponential decay factor.

The exponential decay can be obtained by using the semigroup law e−tA = e−
t
2Ae−

t
2A and then by using

the exponential decay of the semigroup on Lq
σ(Ω) first, followed by the corresponding Lp-Lq-estimate

from [34, Thm. 1.2]. The second estimate in (a) is derived similarly by dualising the gradient estimates
t1/2‖∇e−tAf‖Lp

σ(Ω) ≤ C‖f‖Lp
σ(Ω) and then by employing the semigroup law as above and the first estimate

in (a).
To prove the first estimate in (b), notice that the heat kernel kt(x, y) of the heat semigroup (e−tB)t≥0

admits the following estimate

|kt(x, y)| ≤ C1 max{t−
3
2 , 1}e

−
|x−y|2

C2t

for some constants C1, C2 > 0, see [3, Thm. 3.2.9]. With this and Young’s inequality, it follows

‖e−tBf‖Lq(Ω)3 ≤ C1 max{t−
3
2 , 1}

∥

∥

∥
x 7→ e

−
|x|2

C2t

∥

∥

∥

Lr(R3)
‖f‖Lp(Ω)3 ,

where 1 ≤ r < ∞ is such that 1 + 1
q = 1

r + 1
p . This implies

‖e−tBf‖Lq(Ω)3 ≤ Cmax{t−
3
2 , 1}t

3
2r ‖f‖Lp(Ω)3 ≤ Cmax{1, t

3
2 }t−

3
2 (

1
p−

1
q )‖f‖Lp(Ω)3 .

Now let f ∈ Lp
0(Ω). Using the estimate above and splitting e−tB = e−

t
2Be−

t
2B yields

‖e−tBf‖Lq(Ω)3 ≤ Ce−
t
2ω1 max

{

1,
( t

2

)
3
2
}

t−
3
2 (

1
p−

1
q )‖f‖Lp(Ω)3 ,

for some constant ω1 > 0. The exponential decay is a consequence of the fact that f has average zero. It
is then easy to see that for some constant ω > 0

‖e−tBf‖Lq(Ω)3 ≤ Ce−ωtt−
3
2 (

1
p−

1
q )‖f‖Lp(Ω)3 .

The second and third estimate in (b) follow from the first by using Proposition 2.3. �
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Another important notion that is needed for the proof of the main result as well as regularity consid-
erations of the solutions to (1.1) is the one of maximal regularity.

Let X be a Banach space and C : dom(C) ⊂ X → X be a closed and densely defined operator such
that −C generates a bounded analytic semigroup. Fix 1 < s < ∞ and 0 < T ≤ ∞ and consider for
f ∈ Ls(0, T ;X) and c in the real interpolation space (X, dom(C))1−1/s,s the abstract Cauchy problem

{

u′(t) + Cu(t) = f(t) (0 < t < T ),

u(0) = c.
(2.1)

It is well-known [1, Prop. 3.1.16], that (2.1) admits a unique mild solution u that satisfies

u(t) = e−tCc+

∫ t

0

e−(t−s)Cf(s) ds (0 < t < T ).

We say that C has maximal Ls-regularity if for every f ∈ Ls(0, T ;X) and every c ∈ (X, dom(C))1−1/s,s,
the corresponding mild solution u is differentiable for almost every t, satisfies u(t) ∈ dom(C) for almost
every t, and u′, Cu ∈ Ls(0, T ;X). If T is finite or, if T = ∞ and C is boundedly invertible, then maximal
Ls-regularity is equivalent to the fact that the mild solution to (2.1) lies in the maximal regularity class

u ∈ W 1,s(0, T ;X)∩ Ls(0, T ; dom(C)).

Let us summarise some well-known facts: Maximal Ls-regularity is independent of s, i.e., C has maximal
Ls-regularity for some 1 < s < ∞ if and only if it has maximal Ls-regularity for every 1 < s < ∞, cf. [4].
Because of this, we will henceforth only write maximal regularity instead of maximal Ls-regularity.
Another well-known fact is that it suffices to prove maximal regularity in the special case c = 0, see, e.g.,
the discussion in [33, Sec. 2.2].

For the Stokes operator, maximal regularity was proven by Kunstmann and Weis in [22, Prop. 13], see
also [33, Thm. 5.2.24]. In the case of the negative Neumann Laplacian, maximal regularity follows from
Proposition 2.2 combined with a result of Lamberton [23, Cor. 1.1].

Proposition 2.5. Let Ω ⊂ R3 be a bounded Lipschitz domain and 1 < T ≤ ∞.

(a) There exists ε > 0 such that for every |1/q − 1/2| < 1/6 + ε the Stokes operator on Lq
σ(Ω) has

maximal regularity.

(b) For every 1 < q < ∞, the negative Neumann Laplacian on Lq(Ω)3 has maximal regularity.

We close this section with a final remark concerning the results of this section on smooth domains.

Remark 2.6. If ∂Ω is smooth, then all of the results mentioned in this section are valid on the whole
interval q ∈ (1,∞), see [20] for the corresponding results for the Laplacian and [9], [10], [11], and [8] for
the Stokes operator.

3. Main Result

To begin with, we (formally) apply the Helmholtz projection P to the first equation in (1.1) and
consider the resulting system of equations

{

∂tu+Au = −P(u · ∇)u− Pdiv ([∇d]⊤∇d), in (0, T )× Ω,
∂td+Bd = −(u · ∇)d+ |∇d|2d, in (0, T )× Ω,

(3.1)

with initial conditions u(0) = a and d(0) = b on the space

X = Lq
σ(Ω)× Lq(Ω)3.
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Our aim is to construct a mild solution to (3.1), that is, a solution to the integral equations

u(t) = e−tAa−

∫ t

0

e−(t−s)A
Pdiv

{

u(s)⊗ u(s) + [∇d(s)]⊤∇d(s)
}

ds,

d(t) = e−tBb−

∫ t

0

e−(t−s)B
{

(u(s) · ∇)d(s) − |∇d(s)|2d(s)
}

ds,

(3.2)

and then to show that this solution preserves the condition |d| = 1 if |d(0)| = 1, and therefore (3.1) turns
out to be equivalent to (1.1)-(1.2).

For 0 < T ≤ ∞ and 3 ≤ p < q, the class of solutions considered is defined using

Su
q (T ) :=

{

u ∈ C((0, T );Lq
σ(Ω)) | sup

0<s<T
e

ωs
2 s

3
2

(

1
p−

1
q

)

‖u(s)‖Lq
σ(Ω) < ∞

}

,

Sd
q (T ) :=

{

d ∈ C((0, T );W 1,q(Ω)3) | sup
0<s<T

e
ωs
2 s

3
2

(

1
p−

1
q

)

‖∇d(s)‖Lq(Ω)3×3 < ∞
}

,

where ω > 0 is the minimum of the corresponding constants appearing in Proposition 2.4.

3.1. Neumann boundary condition for the director field. Define for any b ∈ L1(Ω), the average
and the complementary mean value free part

b :=
1

|Ω|

∫

Ω

b dx and bs := b− b, where

∫

Ω

bs dx = 0.(3.3)

The main result reads as follows.

Theorem 3.1. Let Ω ⊂ R3 be a bounded Lipschitz domain, then there exists ε > 0 such that given initial

conditions a ∈ Lp
σ(Ω) and b ∈ W 1,p(Ω)3 ∩ L∞(Ω)3 where 3 ≤ p < 3 + ε, the following hold true for

q ∈ (p, 3 + ε).

(a) There exists T > 0 depending on the initial data such that equation (3.1) with Neumann boundary

conditions (1.3) for d has a local mild solution (u, d) satisfying

u ∈ Su
q (T ) ∩BC([0, T );Lp

σ(Ω)),

ds ∈ Sd
q (T ) ∩BC([0, T );W 1,p(Ω)3) ∩BC([0, T );L∞(Ω)3), d ∈ BC([0, T );R3),

where in the limit s → 0+, one has

‖u(s)− a‖Lp
σ(Ω) → 0, ‖d(s)− b‖L∞(Ω)3 → 0, ‖∇[d(s)− b]‖Lp(Ω)3×3 → 0.

(b) In the limit s → 0+, the solutions satisfy

s
3
2

(

1
p−

1
q

)

‖u(s)‖Lq
σ(Ω) → 0 and s

3
2

(

1
p−

1
q

)

‖∇d(s)‖Lq(Ω)3×3 → 0.

(c) If a and ∇b are sufficiently small, then the solution exists globally in the class

u ∈ Su
q (∞) ∩BC([0,∞);Lp

σ(Ω)),

ds ∈ Sd
q (∞) ∩BC([0,∞);W 1,p(Ω)3) ∩BC([0,∞);L∞(Ω)3), d ∈ BC([0,∞);R3).

(d) The solution is unique in the class given in (a) provided p > 3, and in the case p = 3, it is unique
in the subset of this class satisfying in addition the limit conditions (b).

(e) Equation (3.1) subject to Neumann boundary conditions (1.3) preserves the condition |d| = 1 if

|d(0)| = |b| = 1.
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Remark 3.2. We note that the number ε > 0 is minimum of the corresponding constants appearing in
Section 2.

Furthermore, the smallness condition in Theorem 3.1 (c) can be made precise in the sense that there
exists a constant C > 0 depending only on p, q, and Ω such that if

max{κ, κ2}(1 + ‖b‖L∞(Ω)3) < C, where κ := ‖a‖Lp
σ(Ω) + ‖∇b‖Lp(Ω)3×3 ,

then the solution exists globally.

Theorem 3.3. For every s ∈ (1, 2), the solution in Theorem 3.1 has the following additional regularity

properties

u ∈ W 1,s(0, T ;W
−1,p2
σ (Ω)) ∩ Ls(0, T ;W

1,p2
0,σ (Ω)),

d′, B p
2
d ∈ Ls(0, T ;L

p
2 (Ω)3).

3.2. Dirichlet boundary condition for the director field. In case of Dirichlet boundary condi-
tions (1.4) for the director field, consider the new variable

δ = d− e

with homogeneous Dirichlet boundary conditions. Denoting by B the negative Dirichlet Laplacian, we
construct a mild solution to the transformed equation (6.1), that is, a solution to the integral equations

u(t) = e−tAa−

∫ t

0

e−(t−s)A
Pdiv

{

u(s)⊗ u(s) + [∇δ(s)]⊤∇δ(s)
}

ds,

δ(t) = e−tB b̃−

∫ t

0

e−(t−s)B
{

(u(s) · ∇)δ(s)− |∇δ(s)|2(δ(s) + e)
}

ds,

(3.4)

where b̃ = b− e.

Theorem 3.4. Let Ω ⊂ R3 be a bounded Lipschitz domain, then there exists ε > 0 such that given initial

conditions a ∈ Lp
σ(Ω) and b ∈ W 1,p(Ω)3 ∩L∞(Ω)3 with b = e on ∂Ω for some e ∈ S2 where 3 ≤ p < 3+ε,

the following hold true for q ∈ (p, 3 + ε).

(a) There exists T > 0 depending on the initial data such that equation (3.4) with Dirichlet boundary

conditions (1.4) has a local mild solution (u, δ) satisfying

u ∈ Su
q (T ) ∩BC([0, T );Lp

σ(Ω)),

δ ∈ Sd
q (T ) ∩BC([0, T );W 1,p

0 (Ω)3) ∩BC([0, T );L∞(Ω)3),

where in the limit s → 0+, one has

‖u(s)− a‖Lp
σ(Ω) → 0, ‖δ(s)− b̃‖L∞(Ω)3 → 0, ‖∇[δ(s)− b̃]‖Lp(Ω)3×3 → 0.

(b) In the limit s → 0+, the solutions satisfy

s
3
2

(

1
p−

1
q

)

‖u(s)‖Lq
σ(Ω) → 0 and s

3
2

(

1
p−

1
q

)

‖∇δ(s)‖Lq(Ω)3×3 → 0.

(c) If a and ∇b are sufficiently small, then the solution exists globally in the class

u ∈ Su
q (∞) ∩BC([0,∞);Lp

σ(Ω)),

δ ∈ Sd
q (∞) ∩BC([0,∞);W 1,p

0 (Ω)3) ∩BC([0,∞);L∞(Ω)3).

(d) The solution is unique in the class given in (a) provided p > 3, and in the case p = 3, it is unique
in the subset of this class satisfying in addition the limit conditions (b).

(e) Equation (3.1) subject to Dirichlet boundary conditions (1.4) preserves the condition |d| = 1 if

|d(0)| = |b| = 1.

Concerning ε > 0 and the smallness condition in Theorem 3.4 (c), analogous statements to Remark 3.2
hold.
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Theorem 3.5. For every s ∈ (1, 2), the solution in Theorem 3.4 has the following additional regularity

properties

u ∈ W 1,s(0, T ;W
−1,p2
σ (Ω)) ∩ Ls(0, T ;W

1,p2
0,σ (Ω)),

δ ∈ W 1,s(0, T ;L
p
2 (Ω)3) ∩ Ls(0, T ; dom(B p

2
)).

4. Proof of Theorem 3.1

In this section, we prove first the existence and uniqueness of mild solutions in the case of Neumann
boundary conditions for the director field d, and second using the existence and uniqueness, we prove
that |d(t)| = 1 holds if |d(0)| = 1. The number ε > 0 denotes the minimal ε appearing in Section 2.

4.1. Existence and uniqueness. We note that the semigroup generated by −B is not exponentially
stable on Lq(Ω)3. However, it is exponentially stable on Lq

0(Ω)
3, see Proposition 2.4, the complementary

subspace of which are the constant functions. So, in order to achieve the global well-posedness result
a change of coordinates is useful to split the exponentially stable part of −B from the constant part,
compare [30] for a far more general method.

Note that (3.3) defines bounded projections in all Lp-spaces, p ∈ [1,∞], defined by

Pcd = d and Psd = ds.

Now, using (3.3) we can define the new variables

x = d− b and y = ds,

where x(0) = 0 and y(0) = bs. Since

∆x = 0, ∇x = 0, ∆y = ∆d, ∇y = ∇d

and

Pc(u · ∇)y =
1

|Ω|

∫

Ω

(u · ∇)y dx =
1

|Ω|

(
∫

Ω

u · ∇yk dx

)

1≤k≤3

= 0 for u ∈ Lp
σ(Ω), y ∈ W 1,p(Ω)3,

one obtains as a reformulation of (3.1)







∂tu+Au = −P(u · ∇)u − Pdiv ([∇y]⊤∇y), in Ω× (0, T ),

∂ty +By = −(u · ∇)y + Ps|∇y|2(x + y + b), in Ω× (0, T ),

∂tx = Pc|∇y|2(x+ y + b), in Ω× (0, T ),

which defines a system in the space

Lq
σ(Ω)× Lq

0(Ω)
3 × R

3.

The nonlinear terms are comprised, using the representation (u · ∇)u = div u⊗ u for div u = 0, by the
notation

Fu(u,∇y) = −Pdiv (u⊗ u+ [∇y]⊤∇y),

Fy(u,∇y, y, x, b) = −(u · ∇)y + Ps|∇y|2(x+ y + b),

Fx(∇y, y, x, b) = Pc|∇y|2(x+ y + b).
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Starting with the mild formulation of the problem, we can now define the iteration scheme as follows.
For j ∈ N0, define

u0 := e−tAa, uj+1 := u0 +

∫ t

0

e−(t−s)AFu(uj(s),∇yj(s)) ds,

y0 := e−tBbs, yj+1 := y0 +

∫ t

0

e−(t−s)BFy(uj(s),∇yj(s), yj(s), xj(s), b) ds,

x0 = 0, xj+1 :=

∫ t

0

Fx(∇yj(s), yj(s), xj(s), b) ds.

We break down the proof in several steps. To begin with, we derive some estimates for the approximating
sequences (uj)j∈N, (yj)j∈N, and (xj)j∈N. In the following, the constant C > 0 will be generic and
independent of time.

4.1.1. Estimates. For 0 < T ≤ ∞ and ω > 0 being the minimum ω appearing in Proposition 2.4, let us
define the quantities

kuj (T ) := sup
0<s<T

e
ωs
2 s

3
2

(

1
p−

1
q

)

‖uj(s)‖Lq
σ(Ω), kyj (T ) := sup

0<s<T
‖yj(s)‖L∞(Ω)3 ,

k∇y
j (T ) := sup

0<s<T
e

ωs
2 s

3
2

(

1
p−

1
q

)

‖∇yj(s)‖Lq(Ω)3×3 , kxj (T ) := sup
0<s<T

|xj(s)|.

In the following, we will inductively show that all of these four quantities are finite and we will derive
recursive inequalities relating these quantities at step j+1 with the ones at step j and zero. The finiteness
for j = 0 is proven in the following lemma.

Lemma 4.1. For all 3 ≤ p ≤ q < 3 + ε, there exists a constant C > 0 such that for all 0 < T ≤ ∞,

(4.1) ku0 (T ) + k∇y
0 (T ) ≤ C

(

‖a‖Lp
σ(Ω) + ‖∇b‖Lp(Ω)3×3

)

.

Moreover, kx0 (T ) = 0 and ky0 (T ) ≤ 2‖b‖L∞(Ω)3 .

Proof. We note that by Proposition 2.4

e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tAa‖Lq

σ(Ω) ≤ Ce−
ωt
2 ‖a‖Lp

σ(Ω) ≤ C‖a‖Lp
σ(Ω),

and hence

ku0 (T ) ≤ C‖a‖Lp
σ(Ω).

Concerning the heat semigroup, we use the square root property of the Laplacian first, cf. Proposition 2.3,

apply then Proposition 2.4 together with the fact that Rg(B
1
2 ) ⊂ Lp

0(Ω)
3, and finally Proposition 2.3

again to deduce

e
ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tBbs‖Lq(Ω)3×3 ≤ Ce

ωt
2 t

3
2 (

1
p−

1
q )‖e−tBB

1
2 bs‖Lq(Ω)3 ≤ C‖∇bs‖Lp(Ω)3×3 .

Therefore, recalling that ∇bs = ∇b, we have

k∇y
0 (T ) ≤ C‖∇b‖Lp(Ω)3×3 .

It is clear that kx0 (T ) vanishes by its very definition. Moreover, for ky0 (T ) we find by Proposition 2.2

‖e−tBbs‖L∞(Ω)3 ≤ ‖bs‖L∞(Ω)3 ≤ 2‖b‖L∞(Ω)3 . �

Notice that the choice of W 1,p(Ω)3 ∩ L∞(Ω)3 as the initial data space for d is crucial for proving
Lemma 4.1.
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For 3 ≤ p < q < 3+ ε, we derive the following estimate for the sequence (uj)j∈N using Proposition 2.4
(a) for q and q

2 , and Hölder’s inequality for 2
q = 1

q + 1
q

‖uj+1‖Lq
σ(Ω) ≤ ‖u0‖Lq

σ(Ω) +
∥

∥

∥

∫ t

0

e−(t−s)A
Pdiv (uj ⊗ uj) + e−(t−s)A

Pdiv ([∇yj ]
⊤∇yj) ds

∥

∥

∥

Lq
σ(Ω)

≤ ‖u0‖Lq
σ(Ω) + C

∫ t

0

e−(t−s)ω(t− s)
−

1
2−

3
2q
(

‖uj ⊗ uj‖Lq/2
σ (Ω)

+ ‖[∇yj ]
⊤∇yj‖Lq/2(Ω)3×3

)

ds

≤ ‖u0‖Lq
σ(Ω) + C

∫ t

0

e−tω(t− s)
−

1
2−

3
2q s−3( 1

p−
1
q )

{(

e
sω
2 s

3
2 (

1
p−

1
q )‖uj‖Lq

σ(Ω)

)2

+
(

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)2}

ds

≤ ‖u0‖Lq
σ(Ω) + C

(

e−tω

∫ t

0

(t− s)−
1
2−

3
2q s−3( 1

p−
1
q ) ds

)

[kuj (T )
2 + k∇y

j (T )2]

which implies, multiplying by the factor e
ωt
2 t

3
2 (

1
p−

1
q ) and taking sup0<t<T , that

(4.2) kuj+1(T ) ≤ ku0 (T ) + C
(

sup
0<t<T

e−
ωt
2 t

3
2 (

1
p−

1
q )

∫ t

0

(t− s)−
1
2−

3
2q s−3( 1

p−
1
q ) ds

)

[kuj (T )
2 + k∇y

j (T )2].

Since 3 ≤ p < q < 3 + ε, it follows that 1
2 − 3

2p ≥ 0, 1− 3( 1p − 1
q ) > 0, 1

2 − 3
2q > 0, and hence

sup
0<t<T

e−
ωt
2 t

3
2 (

1
p−

1
q )

∫ t

0

(t− s)−
1
2−

3
2q s−3( 1

p−
1
q ) ds =

(

sup
0<t<T

e−
ωt
2 t

1
2−

3
2p

)

B
(

1− 3
(

1
p − 1

q

)

, 1
2 − 3

2q

)

,

where B(x, y) denotes the beta function for x, y > 0. Therefore, setting C1(T ) := sup0<t<T e−
ωt
2 t

1
2−

3
2p ,

equation (4.2) turns into

(4.3) kuj+1(T ) ≤ ku0 (T ) + CC1(T )B
(

1− 3
(

1
p − 1

q

)

, 1
2 − 3

2q

)

[kuj (T )
2 + k∇y

j (T )2].

Similarly, for ∇yj+1, but now using Proposition 2.4 (b) and Hölder’s inequality we obtain
(4.4)

‖∇yj+1‖Lq(Ω)3×3 ≤ ‖∇y0‖Lq(Ω)3×3 +
∥

∥

∥

∫ t

0

∇e−(t−s)B
(

(uj · ∇)yj − Ps|∇yj |
2(xj + yj + b)

)

ds
∥

∥

∥

Lq(Ω)3×3

≤ ‖∇y0‖Lq(Ω)3×3 + C

∫ t

0

e−(t−s)ω(t− s)
−

1
2−

3
2q

(

‖(uj · ∇)yj‖Lq/2(Ω)3 + ‖|∇yj |
2‖Lq/2(Ω)(|xj |+ ‖yj‖L∞(Ω)3+|b|)

)

ds

≤ ‖∇y0‖Lq(Ω)3×3 + C

∫ t

0

e−tω(t− s)−
1
2−

3
2q s−3( 1

p−
1
q ) ds

{(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖uj‖Lq

σ(Ω)

)(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)

+
(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)2

( sup
0<s<T

|xj(s)|+ sup
0<s<T

‖yj‖L∞(Ω)3 + |b|)
}

.

Proceeding as in the previous case, we obtain

k∇y
j+1(T ) ≤ k∇y

0 (T ) + CC1(T )B
(

1− 3
(

1
p − 1

q

)

, 1
2 − 3

2p

)

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

.
(4.5)

Now, let us also consider analogous estimates for r where 3 ≤ max{p, q2} ≤ r ≤ q < 3+ ε. Taking q close
enough to p, we can assure that q

2 ≤ p and thus, that the choice r = p is possible.
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For the sequence (uj)j∈N, we obtain similar to the above by Proposition 2.4 (a)

‖uj+1‖Lr
σ(Ω) ≤ ‖u0‖Lr

σ(Ω) + C

∫ t

0

e−tω(t− s)−
1
2−

3
2 (

2
q−

1
r )s−3( 1

p−
1
q )

{(

e
sω
2 s

3
2 (

1
p−

1
q )‖uj‖Lq

σ(Ω)

)2

+
(

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)2 }

ds,

and this implies

(4.6)

sup
0<t<T

e
ωt
2 t

3
2 (

1
p−

1
r )‖uj+1‖Lr

σ(Ω) ≤ sup
0<t<T

e
ωt
2 t

3
2 (

1
p−

1
r )‖u0‖Lr

σ(Ω)

+ C

(

sup
0<t<T

e−
ωt
2 t

1
2−

3
2p

)

B
(

1− 3
(

1
p − 1

q

)

, 1
2 − 3

2

(

2
q − 1

r

))

[kuj (T )
2 + k∇y

j (T )2].

Similarly, it follows for ∇yj+1, that
(4.7)

sup
0<t<T

e
ωt
2 t

3
2 (

1
p−

1
r )‖∇yj+1‖Lr(Ω)3×3 ≤ sup

0<t<T
e

ωt
2 t

3
2 (

1
p−

1
r )‖∇y0‖Lr(Ω)3×3

+ C
(

sup
0<t<T

e−
ωt
2 t

1
2−

3
2p

)

B
(

1− 3
(

1
p − 1

q

)

, 1
2 − 3

2

(

2
q − 1

r

))

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

.

Next we estimate ‖yj+1‖L∞(Ω)3 , by virtue of Propositions 2.2 and 2.4 (b) and Hölder’s inequality, as
(4.8)

‖yj+1‖L∞(Ω)3 ≤ ‖y0‖L∞(Ω)3 +
∥

∥

∥

∫ t

0

e−(t−s)B
(

(uj · ∇)yj − Ps|∇yj |
2(xj + yj + b)

)

ds
∥

∥

∥

L∞(Ω)3

≤ ‖y0‖L∞(Ω)3 + C

∫ t

0

e−(t−s)ω(t− s)−
3
q

(

‖uj‖Lq
σ(Ω)‖∇yj‖Lq(Ω)3×3 + ‖∇yj‖

2
Lq(Ω)3×3(|xj |+ ‖yj‖L∞(Ω)3 + |b|)

)

ds

≤ ‖y0‖L∞(Ω)3 + C

∫ t

0

e−tω(t− s)−
3
q s−3( 1

p−
1
q ) ds

{(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖uj‖Lq

σ(Ω)

)(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)

+
(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)2
(

sup
0<s<T

|xj(s)|+ sup
0<s<T

‖yj‖L∞(Ω)3 + |b|
)

}

,

and hence, setting C2(T ) := sup0<t<T e−ωtt1−
3
p , we have

(4.9)

kyj+1(T ) ≤ ky0 (T ) + CC2(T )B
(

1− 3
(

1
p − 1

q

)

, 1− 3
q

)

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

.

Finally for |xj+1| one obtains using Hölder’s inequality and the embedding Lq(Ω) →֒ L2(Ω)
(4.10)

|xj+1| ≤

∫ t

0

∣

∣

∣

1

|Ω|

∫

Ω

|∇yj |
2(xj + yj + b)

∣

∣

∣
ds ≤

1

|Ω|

∫ t

0

‖∇yj‖
2
L2(Ω)3×3(|xj |+ ‖yj‖L∞(Ω)3 + |b|) ds

≤ C

∫ t

0

‖∇yj‖
2
Lq(Ω)3×3(|xj |+ ‖yj‖L∞(Ω)3 + |b|) ds

≤ C

∫ t

0

e−sωs−3( 1
p−

1
q ) ds

(

sup
0<s<T

e
sω
2 s

3
2 (

1
p−

1
q )‖∇yj‖Lq(Ω)3×3

)2
(

sup
0<s<T

|xj |+ sup
0<s<T

‖yj‖L∞(Ω)3 + |b|
)

and therefore with C3(T ) := sup0<t<T

∫ t

0 e−sωs−3( 1
p−

1
q ) ds

(4.11) kxj+1(T ) ≤ CC3(T )k
∇y
j (T )2(kxj (T ) + kyj (T ) + |b|).



NEMATIC LIQUID CRYSTALS IN LIPSCHITZ DOMAINS 13

For 0 < T ≤ ∞, set C̃T := max{C1(T ), C2(T ), C3(T )}.

Remark 4.2. Note that Ci(T ), i = 1, 2, 3, are continuous as functions in T , uniformly bounded on
(0,∞), and monotonically increasing. In particular,

(a) for T = +∞, Ci(T ) are well-defined constants, and
(b) for p > 3, limT→0 Ci(T ) = 0.

Notice that C̃T inherits these properties.

Summarising the estimates (4.3), (4.5), (4.9), and (4.11), we arrive at the inequalities

(4.12)

kuj+1(T ) ≤ ku0 (T ) + CC̃T [k
u
j (T )

2 + k∇y
j (T )2],

k∇y
j+1(T ) ≤ k∇y

0 (T ) + CC̃T

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

,

kyj+1(T ) ≤ ky0(T ) + CC̃T

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

,

kxj+1(T ) ≤ CC̃Tk
∇y
j (T )2(kxj (T ) + kyj (T ) + |b|).

By virtue of Lemma 4.1 this proves by induction that kuj+1(T ), k
∇y
j+1(T ), k

y
j+1(T ), and kxj+1(T ) are finite.

Let us introduce the notations

kqj := kuj + k∇y
j , k∞j := kyj + kxj .

4.1.2. Estimates on the differences. Next, let us define

Wj(t) := uj+1(t)− uj(t), Zj(t) := ∇yj+1(t)−∇yj(t),

Yj(t) := yj+1(t)− yj(t), Xj(t) := xj+1(t)− xj(t),

and the corresponding time-weighted quantities

δuj (T ) := sup
0<s<T

e
ωs
2 s

3
2

(

1
p−

1
q

)

‖Wj(s)‖Lq
σ(Ω), δ∇y

j (T ) := sup
0<s<T

e
ωs
2 s

3
2

(

1
p−

1
q

)

‖Zj(s)‖Lq(Ω)3×3 ,

δyj (T ) := sup
0<s<T

‖Yj(s)‖L∞(Ω)3 , δxj (T ) := sup
0<s<T

|Xj(s)|.

Now, using the bi-linearity of the tensor product

Wj(t) = −

∫ t

0

e−(t−s)A
Pdiv

[

(Wj−1 ⊗ uj + uj−1 ⊗Wj−1) + (Z⊤
j−1∇yj + [∇yj−1]

⊤Zj−1)
]

ds

and therefore proceeding as in the derivation of (4.2) and (4.12), we arrive at

(4.13) δuj (T ) ≤ CC̃T

[

δuj−1(T )(k
q
j (T ) + kqj−1(T )) + δ∇y

j−1(T )(k
q
j (T ) + kqj−1(T ))

]

.

To estimate Zj, we write

Zj =

∫ t

0

∇e−(t−s)B [Wj−1 · ∇yj + uj−1 · Zj−1]− Ps

[{

(|∇yj | − |∇yj−1|)|∇yj |

+ |∇yj−1|(|∇yj | − |∇yj−1|)
}

(xj + yj + b) + |∇yj−1|
2{(xj − xj−1 + yj − yj−1)}

]

ds

and estimate analogously to (4.4) and (4.12) using in addition
∣

∣|∇yj | − |∇yj−1|
∣

∣ ≤ |Zj−1|. This yields
the inequality

(4.14)
δ∇y
j (T ) ≤ CC̃T

[

δuj−1(T )k
q
j (T ) + kqj−1(T )δ

∇y
j−1(T )

+
(

δ∇y
j−1(T )k

q
j (T ) + kqj−1(T )δ

∇y
j−1(T )

)

(2k∞j (T ) + |b|) + kqj−1(T )
2
(

δxj−1(T ) + δyj−1(T )
)

]

.
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The term Yj can be written similarly to Zj but without the gradient in front of the semigroup. Thus,
following (4.8) and the derivation of (4.12) it follows

(4.15)
δyj (T ) ≤ CC̃T

[

δuj−1(T )k
q
j (T ) + kqj−1(T )δ

∇y
j−1(T )

+
(

δ∇y
j−1(T )k

q
j (T ) + kqj−1(T )δ

∇y
j−1(T )

)

(2k∞j (T ) + |b|) + kqj−1(T )
2
(

δxj−1(T ) + δyj−1(T )
)

]

.

In order to deal with the term Xj , we observe that

Xj(t) =

∫ t

0

1

|Ω|

∫

Ω

{

(|∇yj | − |∇yj−1|)|∇yj |+ |∇yj−1|(|∇yj | − |∇yj−1|)
}

(xj + yj + b)

+ |∇yj−1|
2(xj − xj−1 + yj − yj−1) dx ds

and hence by proceeding as in (4.10) and the derivation of (4.12), we deduce

(4.16)
δxj (T ) ≤ CC̃T

[

(

δ∇y
j−1(T )k

q
j (T ) + kqj−1(T )δ

∇y
j−1(T )

)

(2k∞j (T ) + |b|)

+ kqj−1(T )
2
(

δxj−1(T ) + δyj−1(T )
)

]

.

Using the first two inequalities in (4.12), an estimate for kqj+1 in terms of kq0 , k
q
j , and k∞j can be deduced

by Young’s inequality and by absorbing the factors into the constant C > 0 as follows

(4.17)

kqj+1(T ) ≤ kq0(T ) + CC̃T

[

kuj (T )
2 + kuj (T )k

∇y
j (T ) + k∇y

j (T )2(1 + k∞j (T ) + |b|)
]

≤ kq0(T ) + CC̃T

[

kqj (T )
2 + kqj (T )

2(1 + k∞j (T ) + |b|)
]

≤ kq0(T ) + CC̃T

[

kqj (T )
2(1 + k∞j (T ) + |b|)

]

.

Similarly, by virtue of the last two inequalities in (4.12), we obtain

(4.18)
k∞j+1(T ) ≤ k∞0 (T ) + CC̃T

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(k∞j (T ) + |b|)
]

≤ k∞0 (T ) + CC̃T

[

kqj (T )
2(1 + k∞j (T ) + |b|)

]

.

Let us denote δj(T ) := δuj (T )+δ∇y
j (T )+δyj (T )+δxj (T ). Now, suppose that there are constantsK1,K2 > 0

(possibly depending on T ), without loss of generality let K2 ≥ 1, satisfying

kq0(T ) ≤
K1

2
, kqj (T ) < K1, k∞0 (T ) ≤

K2

2
, k∞j (T ) < K2, |b| ≤ K2.(4.19)

Then, (4.13) implies

(4.20) δuj (T ) ≤ CC̃T (k
q
j (T ) + kqj−1(T ))δj−1(T ) < 2K1CC̃T δj−1(T ).

From (4.14), we have

(4.21)
δ∇y
j (T ) ≤ CC̃T

[

(kqj (T ) + kqj−1(T )) + (kqj (T ) + kqj−1(T ))(2k
∞
j (T ) + |b|) + kqj−1(T )

2
]

δj−1(T )

< CC̃T [2K1 + 6K1K2 +K2
1 ]δj−1(T ).

Similarly, (4.15) implies

(4.22) δyj (T ) < CC̃T [2K1 + 6K1K2 +K2
1 ]δj−1(T )

and (4.16) implies

(4.23) δxj (T ) < CC̃T [6K1K2 +K2
1 ]δj−1(T ).

Combining (4.20)-(4.23), we obtain

(4.24) δj(T ) < 6CC̃T [2K1 + 6K1K2 +K2
1 ]δj−1(T ).
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Therefore, if we can show that 6CC̃T [2K1 + 6K1K2 +K2
1 ] < 1, then (4.24) gives us a contraction, i.e.,

for some θ ∈ (0, 1)

δj < θδj−1 (j ∈ N).(4.25)

Next, note that if 6CC̃TK1K2 < 1, then (4.17) together with (4.19) implies

kqj+1(T ) ≤ kq0(T ) + 3CC̃TK
2
1K2 <

K1

2
+

K1

2
= K1.

Similarly, if 6CC̃TK
2
1 < 1, then (4.18) together with (4.19) implies

k∞j+1(T ) ≤ k∞0 (T ) + 3CC̃TK
2
1K2 <

K2

2
+

K2

2
= K2.

We further note that both of the conditions above are also fulfilled if 6CC̃T [2K1 + 6K1K2 + K2
1 ] < 1.

Let us define

K1 := 2kq0(T ) and K2 := max{2k∞0 (T ), |b|}.(4.26)

We already know by Lemma 4.1 that k∞0 ≤ 2‖b‖L∞(Ω)3 so that K2 ≤ 4‖b‖L∞(Ω)3 . Now,

6CC̃T

[

2K1 + 6K1K2 +K2
1

]

≤ 6CC̃T

[

3K + 24K‖b‖L∞(Ω)3

]

= 144CC̃TK(1 + ‖b‖L∞(Ω)3),

where K := max{K1,K
2
1}. Therefore, if

(4.27) 144CC̃TK(1 + ‖b‖L∞(Ω)3) < 1,

then all the conditions are fulfilled and we have a contraction in terms of δj in the sense of (4.25).

4.1.3. Conditions on the initial data and global existence. In the following, we show that (4.27) is valid
under the present hypotheses of the theorem. The following lemma is crucial for the validity of (4.27)
for small times T .

Lemma 4.3. If q > p, the term kq0(T ) admits the following behaviour

(4.28) kq0(T ) → 0 as T → 0.

In the following lemma, we recall that a Sobolev function with average zero can be approximated by
a sequence of smooth functions with average zero. This short proof is left for the reader.

Lemma 4.4. Let b ∈ W 1,p(Ω)3 be a function with average zero. Then there exists a sequence (bn)n∈N ⊂
C∞(Ω)3 such that

bn → b in W 1,p(Ω)3

as n → ∞ and bn has average zero for every n ∈ N.

Proof of Lemma 4.3. Let (aj)j∈N be a sequence in C∞
c,σ(Ω) such that aj → a in Lp

σ(Ω). Then,

e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tAa‖Lq

σ(Ω) ≤ e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tA(a− aj)‖Lq

σ(Ω) + e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tAaj‖Lq

σ(Ω).

Estimate by virtue of Proposition 2.4

e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tA(a− aj)‖Lq

σ(Ω) ≤ Ce−
ωt
2 t

3
2 (

1
p−

1
q ) · t−

3
2 (

1
p−

1
q )‖a− aj‖Lp

σ(Ω) ≤ C‖a− aj‖Lp
σ(Ω),

and use that the Stokes semigroup is exponentially stable on Lq
σ(Ω) to deduce

e
ωt
2 t

3
2 (

1
p−

1
q )‖e−tAaj‖Lq

σ(Ω) ≤ Ce−
ωt
2 t

3
2 (

1
p−

1
q )‖aj‖Lq

σ(Ω).

Similarly, choosing an approximating sequence of smooth functions (bjs)j∈N to bs (cf. Lemma 4.4), we can
write

e
ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tBbs‖Lq(Ω)3×3 ≤ e

ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tB(bs − bjs)‖Lq(Ω)3×3 + e

ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tBbjs‖Lq(Ω)3×3 .
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Now, by Proposition 2.4 (b)

e
ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tBbjs‖Lq(Ω)3×3 ≤ Ct

3
2 (

1
p−

1
q )‖∇bjs‖Lq(Ω)3×3 ,

and also

e
ωt
2 t

3
2 (

1
p−

1
q )‖∇e−tB(bs − bjs)‖Lq(Ω)3×3 ≤ C‖∇(bs − bjs)‖Lp(Ω)3×3 .

Therefore, choosing simultaneously j ∈ N sufficiently large and T sufficiently small, we can conclude the
result. �

We give a short summary of the conditions that provide the validity of (4.27).

Remark 4.5. (a) By virtue of Remark 4.2, we conclude in the case T = +∞ that if ‖a‖Lp
σ(Ω) +

‖∇b‖Lp(Ω)3×3 is small enough, the validity of (4.27) can be inferred by Lemma 4.1. This implies
eventually the global existence under a suitable smallness condition on the initial data a and ∇b.

(b) If p > 3, then (4.27) follows by using the previous Lemma 4.1 and the fact that limT→0 C̃T = 0,
cf. Remark 4.2. This will imply local existence of solutions without any smallness assumptions
on the initial data.

(c) If p = 3, then (4.27) follows from Lemma 4.3 for small times T . Again this will imply local
existence of solutions without any smallness assumption on the initial data.

4.1.4. Continuity with respect to time. We shall next prove the continuity with respect to time of uj, yj,
∇yj , and xj considered earlier. In this direction, let 3 ≤ max{p, q

2} ≤ r ≤ q < 3 + ε and we shall begin
our consideration with the sequence (uj)j∈N.

Let t0 ∈ (0, T ). Then, for h > 0 small enough, we have

(4.29) ‖u0(t0 + h)− u0(t0)‖Lr
σ(Ω) = ‖e−(t0+h)Aa− e−t0Aa‖Lr

σ(Ω) ≤ Ct
− 3

2 (
1
p−

1
r )

0 ‖e−hAa− a‖Lp
σ(Ω)

which tends to 0 as h → 0 by strong continuity of (e−tA)t≥0 on Lp
σ(Ω). Similarly,

(4.30)
‖u0(t0 − h)− u0(t0)‖Lr

σ(Ω) = ‖e−(t0−h)Aa− e−t0Aa‖Lr
σ(Ω) = ‖e−(t0−h)A[Id− e−hA]a‖Lr

σ(Ω)

≤ C(t0 − h)−
3
2 (

1
p−

1
r )‖e−hAa− a‖Lp

σ(Ω),

which tends to 0 as h → 0.
Next, let h be small enough so that 0 < h < T − t0. We want to show that

(4.31)
∥

∥

∥

∫ t0+h

0

e−(t0+h−s)AFu(uj ,∇yj) ds−

∫ t0

0

e−(t0−s)AFu(uj ,∇yj) ds
∥

∥

∥

Lr
σ(Ω)

converges to 0 as h → 0. To see this, we note that (4.31) can be majorised by

(4.32)

∫ t0+h

t0

‖e−(t0+h−s)AFu(uj,∇yj)‖Lr
σ(Ω) ds+

∫ t0

0

‖[e−hA − Id]e−(t0−s)AFu(uj ,∇yj)‖Lr
σ(Ω) ds.

The first term in (4.32) can be dominated as in (4.6) by

(4.33)

C

∫ t0+h

t0

e−(t0+h)ω(t0 + h− s)−
1
2−

3
2 (

2
q−

1
r )s−3( 1

p−
1
q ) ds

[

kuj (T )
2 + k∇y

j (T )2
]

≤ Ce−(t0+h)ω(t0 + h)
1
2−3( 1

p−
1
2r )

∫ 1

t0
t0+h

(1 − s̃)−
1
2−

3
2 (

2
q−

1
r )s̃−3( 1

p−
1
q ) ds̃

[

kuj (T )
2 + k∇y

j (T )2
]

,

which converges to 0 since t0
t0+h → 1 as h → 0.

To deal with the second term of (4.32), we note that

‖e−(t0−s)AFu(uj ,∇yj)‖Lr
σ(Ω) ≤ Ce−t0ω(t0 − s)−

1
2−

3
2 (

2
q−

1
r )s−3( 1

p−
1
q )
[

kuj (T )
2 + k∇y

j (T )2
]

,
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which is integrable as seen in (4.6). Thus, by the dominated convergence theorem together with the
strong continuity of the semigroup this term converges to zero as well. The left-continuity can be proved
in a similar manner. Consequently, we have for 3 ≤ max{p, q

2} ≤ r ≤ q < 3 + ε,

e
ωs
2 s

3
2 (

1
p−

1
r )uj ∈ BC((0, T );Lr

σ(Ω)),

the boundedness being already proved in (4.6). Next, if r > p, then (4.6), (4.19), (4.26), and Lemma 4.3
imply

lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
r )‖uj(s)‖Lr

σ(Ω) = 0,

which yields e
ωs
2 s

3
2 (

1
p−

1
r )uj ∈ BC([0, T );Lr

σ(Ω)). Finally, if r = p, choose q close enough to p such that
q ≤ 2p, then one derives similarly to (4.6) the estimate

sup
0<t<T

e
ωt
2 ‖uj − u0‖Lp

σ(Ω) ≤ Ckqj−1(T )
2

for some constant C > 0. This, combined with (4.19), (4.26), Lemma 4.3, and the strong continuity of
the Stokes semigroup proves

lim
s→0

‖uj(s)− a‖Lp
σ(Ω) = 0

and thus, uj ∈ BC([0, T );Lp
σ(Ω)).

We shall next consider the continuity for ∇yj . Let t0 ∈ (0, T ) and h > 0 be small enough. Then,

(4.34) ‖∇y0(t0 + h)−∇y0(t0)‖Lr(Ω)3×3 ≤ Ct
− 1

2−
3
2 (

1
p−

1
r )

0 ‖e−hBbs − bs‖Lp(Ω)3 ,

which converges to 0 as h → 0, by the strong continuity of the semigroup. The left-continuity follows
similarly.

Now, let h be small enough so that 0 < h < T − t0. Then
(4.35)

∥

∥

∥

∫ t0+h

0

∇e−(t0+h−s)BFy(uj,∇yj , yj , xj , b) ds−

∫ t0

0

∇e−(t0−s)BFy(uj ,∇yj , yj , xj , b) ds
∥

∥

∥

Lr(Ω)3×3

≤

∫ t0+h

t0

‖∇e−(t0+h−s)BFy(uj,∇yj , yj , xj , b)‖Lr(Ω)3×3 ds

+

∫ t0

0

‖∇[e−hB − Id]e−(t0−s)BFy(uj ,∇yj , yj, xj , b)‖Lr(Ω)3×3 ds.

We note that by Proposition 2.4

∫ t0+h

t0

‖∇e−(t0+h−s)BFy(uj,∇yj , yj , xj , b)‖Lr(Ω)3×3 ds

≤ Ce−(t0+h)ω(t0 + h)
1
2−3( 1

p−
1
2r )

∫ 1

t0
t0+h

(1 − s̃)−
1
2−

3
2 (

2
q−

1
r )s̃−3( 1

p−
1
q ) ds̃

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

and this converges to 0 as h → 0 since t0
t0+h → 1. To deal with the second term, we estimate by virtue

of Proposition 2.3 (b)

‖∇[e−hB − Id]e−(t0−s)BFy(uj ,∇yj, yj , xj , b)‖Lr(Ω)3×3

≤ C‖[e−hB − Id]B
1
2 e−(t0−s)BFy(uj ,∇yj , yj , xj , b)‖Lr(Ω)3 .
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Now, by Propositions 2.3 and 2.4 and standard estimates for fractional powers applied to analytic semi-
groups

‖B
1
2 e−(t0−s)BFy(uj,∇yj , yj , xj , b)‖Lr(Ω)3 ≤ Ce−(t0−s)ω(t0 − s)−

1
2−

3
2 (

2
q−

1
r )‖Fy(uj ,∇yj , yj , xj , b)‖L

q
2 (Ω)3

and
∫ t0

0

e−(t0−s)ω(t0 − s)−
1
2−

3
2 (

2
q−

1
r )‖Fy(uj,∇yj , yj , xj , b)‖L

q
2 (Ω)3

ds

≤ C

∫ t0

0

(t0 − s)−
1
2−

3
2 (

2
q−

1
r )s−3( 1

p−
1
q ) ds

[

kuj (T )k
∇y
j (T ) + k∇y

j (T )2(kxj (T ) + kyj (T ) + |b|)
]

which is finite. Hence, we can use the dominated convergence theorem together with the strong continuity
of the semigroup to infer that the second term in (4.35) converges to zero as well, thus proving right-
continuity. The left-continuity can be studied in a similar fashion. Therefore, for 3 ≤ max{p, q

2} ≤ r ≤
q < 3 + ε, we find by (4.7)

e
ωs
2 s

3
2 (

1
p−

1
r )∇yj ∈ BC((0, T );Lr(Ω)3×3).

If r > p, then (4.7), (4.19), (4.26), Lemma 4.1, and Lemma 4.3 imply

lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
r )‖∇yj(s)‖Lr(Ω)3×3 = 0,

yielding e
ωs
2 s

3
2 (

1
p−

1
r )∇yj ∈ BC([0, T );Lr(Ω)3×3). In the case p = r choose q close enough to p such that

q ≤ 2p. Then, a similar calculation to (4.7) yields

sup
0<t<T

e
ωt
2 t

3
2 (

1
p−

1
r )‖∇[yj − y0]‖Lr(Ω)3×3 ≤ C

[

kqj−1(T )
2 + kqj−1(T )

2(k∞j−1(T ) + |b|)
]

,

for some constant C > 0. This, combined with (4.19), (4.26), Lemma 4.1, Lemma 4.3, and Proposi-
tion (2.3)

lim
s→0

‖∇[yj(s)− b]‖Lp(Ω)3×3 ≤ lim
s→0

‖∇[yj(s)− y0(s)]‖Lp(Ω)3×3 + lim
s→0

‖B
1
2 [e−sBb− b]‖Lp(Ω)3×3 = 0.

Altogether, it follows ∇yj ∈ BC([0, T );Lp(Ω)3×3).
Finally, the continuity of yj with respect to the L∞-norm and the continuity of xj follows by similar

calculations, which are omitted here.

4.1.5. Summing up the discussions above, and using the fact that by (4.25) the sequence (δj)j∈N gives
rise to a contraction, we conclude the convergence of the sequences (uj)j∈N, (yj)j∈N, and (xj)j∈N to
functions u, y, and x such that

(4.36)
u ∈ Su

q (T ), d := y + x ∈ BC([0, T );L∞(Ω)3), and ∇d ∈ Sd
q (T ),

lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
q )‖u(s)‖Lq

σ(Ω) = 0, lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
q )‖∇d(s)‖Lq(Ω)3×3 = 0.

Here, q is any number satisfying p < q < 3+ε. If q is close enough to p, i.e., if q ≤ 2p, then one can derive
similar inequalities to (4.6) and (4.7) for the differences of uj and ul and of ∇yj and ∇yl for j, l ∈ N and
for r = p. This proves that (uj)j∈N is a Cauchy sequence in BC([0, T );Lp

σ(Ω)) and that (∇yj)j∈N is a
Cauchy sequence in BC([0, T );Lp(Ω)3×3) whenever

(

e
ωt
2 t

3
2 (

1
p−

1
q )uj

)

j∈N
⊂ BC([0, T );Lq

σ(Ω)),
(

e
ωt
2 t

3
2 (

1
p−

1
q )∇yj

)

j∈N
⊂ BC([0, T );Lq(Ω)3×3),

(

yj
)

j∈N
⊂ BC([0, T );L∞(Ω)3), and

(

xj

)

j∈N
⊂ BC([0, T );R3)

are Cauchy sequences. Consequently, u ∈ BC([0, T );Lp
σ(Ω)) and d ∈ BC([0, T );W 1,p(Ω)3) and thus u

and d give rise to a mild solution satisfying properties (a), (b), and (c) of Theorem 3.1.
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4.1.6. Uniqueness. Let u1, u2 ∈ BC([0, T );Lp
σ(Ω)) and d1, d2 ∈ BC([0, T );W 1,p(Ω)3) be such that

(u1, d1) and (u2, d2) are two mild solutions satisfying (4.36) for some q ∈ (p, 3 + ε).
We consider the differences u1 − u2 and d1 − d2 and proceed as in the estimation of the sequence

(δj)j∈N to infer that an analogous version of (4.25) is valid for the differences. Now, on the left-hand side
as well as on the right-hand side of this analogous version of (4.25) the differences of u1 and u2 and of
d1 and d2 appear. This already implies the uniqueness. The only major point to note in this regard is
that if p > 3, the conditions

(4.37)
lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
q )‖ui(s)‖Lq

σ(Ω) = 0,

lim
s→0

e
ωs
2 s

3
2 (

1
p−

1
q )‖∇di(s)‖Lq(Ω)3×3 = 0, i = 1, 2,

are not required since we can use the fact that the constant C̃T → 0 as T → 0. But for p = 3, the
conditions (4.37) need to be assumed in addition.

4.2. Retrieving the |d| = 1 condition. Let u and d be mild solutions to (3.1) with Neumann boundary
conditions for d. Moreover, assume that the initial conditions satisfy a ∈ Lp

σ(Ω) and b ∈ W 1,p(Ω)3 with
|b| = 1 in Ω for some 3 ≤ p < 3 + ε. Without loss of generality let T < ∞ and assume further, that for
every p ≤ q < 3 + ε,

t 7→ e
ωt
2 t

3
2 (

1
p−

1
q )u(t) ∈ BC([0, T );Lq

σ(Ω)),

t 7→ e
ωt
2 t

3
2 (

1
p−

1
q )∇d(t) ∈ BC([0, T );Lq(Ω)3×3),

d ∈ BC([0, T );L∞(Ω)3).

These are precisely the properties of the solutions constructed in Subsection 4.1. Especially, the second
equation of (1.1) shows that d is a solution to the linear heat equation with right-hand side

−(u · ∇)d+ |∇d|2d ∈ Ls(0, T ;L
p
2 (Ω)3)

and with initial value b ∈ W 1,p(Ω)3 ⊂ (L
p
2 (Ω)3, dom(B p

2
))1−1/s,s for every 1 < s < 2. The inclu-

sion follows from the following observations. First of all, W 1,p(Ω)3 ⊂ W 1, p2 (Ω)3 is a consequence of

Hölder’s inequality. Next, the equality dom(B
1
2

p/2) = W 1, p2 (Ω)3 follows from Proposition 2.3 and finally

dom(B
1
2 ) ⊂ (X, dom(B))1/2,∞ is valid for every sectorial operator B of angle less than π/2, see [13,

Cor. 6.6.3]. The embedding (X,Y )1/2,∞ ⊂ (X,Y )1−1/s,s is a standard embedding in the theory of real

interpolation whenever Y ⊂ X . In our case X = L
p
2 (Ω)3 and Y = dom(B p

2
).

Now, B has maximal regularity, cf. Proposition 2.5. This means that whenever d is a mild solution to
the equation

{

d
′ +Bd = f (0 < t < T )

d(0) = ad

with f ∈ Ls(0, T ;L
p
2 (Ω)3) and ad ∈ (L

p
2 (Ω)3, dom(B p

2
))1−1/s,s, then d is already a strong solution, i.e.,

d ∈ W 1,s(0, T ;L
p
2 (Ω)3) ∩ Ls(0, T ; dom(B p

2
))

and d solves the equation above pointwise almost everywhere.
As we have shown, for 1 < s < 2 the function d solves exactly such an equation so that by maximal

regularity d lies in the maximal regularity space stated in the previous equation. Especially, d′(t) exists
for almost every t ∈ (0, T ) and d(t) ∈ dom(B p

2
) for almost every t ∈ (0, T ). Moreover, the second equation

of (1.1) holds for almost every t ∈ (0, T ) in the strong sense. More precisely, this means

d′(t) +Bd(t) = −(u(t) · ∇)d(t) + |∇d(t)|2d(t) a.e. t ∈ (0, T ).
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The sense in which this equality has to be read is the following. As the Laplacian is defined via a
sesquilinear form and since dom(B p

2
) ⊂ W 1,p/2(Ω)3 by Proposition 2.3 it holds for every ϑ ∈ C∞(Ω)3

∫

Ω

d′(t) · ϑ dx+

∫

Ω

∇d(t) · ∇ϑ dx = −

∫

Ω

(u(t) · ∇)d(t) · ϑ dx+

∫

Ω

|∇d(t)|2d(t) · ϑ dx.(4.38)

Clearly, by density this identity holds for all ϑ ∈ W 1,( p
2 )

′

(Ω)3. Next, define

ϕ := |d|2 − 1.

The aim is to show that under the present conditions, ϕ is identically zero. To do so, we derive an
equation for ϕ by employing (4.38). However, note first that by assumption ϕ(t) ∈ L∞(Ω) for every
t ∈ (0, T ) and that

∂kϕ(t) = 2d(t) · ∂kd(t) ∈ Lp(Ω) and ϕ′(t) = 2d(t) · d′(t) ∈ L
p
2 (Ω).(4.39)

Thus, let w be a test function in C∞(Ω). Then, by (4.39) and the product rule

∫

Ω

ϕ′w dx+

∫

Ω

∇ϕ · ∇w dx = 2

∫

Ω

d′ · (dw) dx+ 2

3
∑

k,l=1

∫

Ω

∂kdl∂k(dlw) dx− 2

3
∑

k,l=1

∫

Ω

∂kdl(∂kdl)w dx.

Now, we use (4.38) with dw as the test function and the fact that ϕ = |d|2 − 1. Note that this is possible

as d(t) ∈ L∞(Ω)3 and since p ≥ 3, ∇d(t) ∈ Lp(Ω)3×3 ⊂ L
p

p−2 (Ω)3×3 = L(p
2 )

′

(Ω)3×3. Consequently, it
holds

∫

Ω

ϕ′w dx+

∫

Ω

∇ϕ · ∇w dx = −2

∫

Ω

(u · ∇)d · (dw) dx+ 2

∫

Ω

|∇d|2ϕw dx.

Finally, note that

(u · ∇)d · d =

3
∑

k,l=1

uk∂kdldl =
1

2
u · ∇|d|2 =

1

2
u · ∇ϕ,

so that
∫

Ω

ϕ′w dx+

∫

Ω

∇ϕ · ∇w dx = −

∫

Ω

u · ∇ϕw dx+ 2

∫

Ω

|∇d|2ϕw dx(4.40)

holds true for all w ∈ C∞(Ω). Since u(t) ∈ Lp(Ω)3, ϕ(t) ∈ L∞(Ω), and ∇d(t) ∈ Lp(Ω)3×3, (4.39) implies

ϕ′(t), ∇ϕ(t), u(t) · ∇ϕ(t), |∇d|2ϕ ∈ L
p
2 (Ω).

Summarising, by density (4.40) remains valid for w ∈ W 1,(p
2 )

′

(Ω). Moreover, for p ≥ 3, (4.39) implies also

that for almost every t ∈ (0, T ) we have ϕ(t) ∈ W 1,p(Ω) ⊂ W 1,(p
2 )

′

(Ω). Thus, ϕ itself is an admissible
test function so that (4.40) turns into

∫

Ω

ϕ′ϕ dx+

∫

Ω

|∇ϕ|2 dx = −

∫

Ω

u · ∇ϕϕ dx+ 2

∫

Ω

|∇d|2ϕ2 dx.(4.41)

Moreover, note that
∫ t

0

∫

Ω

ϕ′ϕ dx ds =
1

2

∫

Ω

ϕ(t)2 dx

since ϕ(0) = 0 and that
∫

Ω

u · ϕ∇ϕ dx =
1

2

∫

Ω

u · ∇ϕ2 dx = 0
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since u is divergence free and vanishes on the boundary. After integrating (4.41) with respect to time
one finds

1

2

∫

Ω

ϕ(t)2 dx+

∫ t

0

∫

Ω

|∇ϕ(s)|2 dx ds = 2

∫ t

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds.(4.42)

To show that (4.42) implies that ϕ is zero we show that Gronwall’s lemma is applicable to the function
ϕ2. To do so, let t0 ∈ (0, t) be a number to be determined and split the integral on the right-hand side
of (4.42) as

∫ t

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds =

∫ t0

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds+

∫ t

t0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds =: I + II.

We estimate the term II first: For p < q < 3 + ε one estimates by means of Hölder’s and Sobolev’s
inequality as well as the decay estimates of ∇d,
∫ t

t0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds ≤

∫ t

t0

‖∇d(s)‖2Lq‖ϕ(s)‖2
L2·(

q
2
)′ ds ≤ Ct

−3( 1
p−

1
q )

0

∫ t

t0

‖ϕ(s)‖2−2α
L2 ‖ϕ(s)‖2αW 1,2 ds,

where α = 3/q. Continuing the estimate above with Young’s inequality delivers

Ct
−3( 1

p−
1
q )

0

∫ t

t0

‖ϕ(s)‖2−2α
L2 ‖ϕ(s)‖2αW 1,2 ds ≤ C(t0, q)

∫ t

0

‖ϕ(s)‖2L2 ds+
1

8

∫ t

0

∫

Ω

|∇ϕ(s)|2 dx ds.

Next, we estimate the term I: Recall that the initial value for d is denoted by b. Let (bn)n∈N ⊂ C∞(Ω)3

be such that bn → b in W 1,p(Ω)3. Using the triangle inequality, Hölder’s inequality, and Sobolev’s
embedding in a row, we estimate for p < q < 3 + ε

∫ t0

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds

≤ 2

∫ t0

0

∫

Ω

|∇[d(s) − bn]|
2ϕ(s)2 dx ds+ 2

∫ t0

0

∫

Ω

|∇bn|
2ϕ(s)2 dx ds

≤ 2

∫ t0

0

‖∇[d(s)− bn]‖
2
Lp‖ϕ(s)‖2L2·(p/2)′ ds+ ‖∇bn‖

2
Lq

∫ t0

0

‖ϕ(s)‖2
L2·(q/2)′ ds

≤ C sup
0<s<t0

‖∇[d(s)− bn]‖
2
Lp

∫ t0

0

‖ϕ(s)‖2W 1,2 ds+ C‖∇bn‖
2
Lq

∫ t0

0

‖ϕ(s)‖2−2α
L2 ‖ϕ(s)‖2αW 1,2 ds,

where α is chosen as in the estimate of term II. Employing Young’s inequality implies
∫ t0

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ≤
{

C sup
0<s<t0

‖∇[d(s)− bn]‖
2
Lp + C(q, ‖∇bn‖

2
Lq)

}

∫ t

0

‖ϕ(s)‖2L2 ds

+
{ 1

16
+ C sup

0<s<t0

‖∇[d(s)− bn]‖
2
Lp

}

∫ t

0

‖∇ϕ(s)‖2L2 ds.

Finally,

sup
0<s<t0

‖∇[d(s)− bn]‖
2
Lp ≤ 2 sup

0<s<t0

‖∇[d(s)− b]‖2Lp + 2‖∇[b− bn]‖
2
Lp .

Choose t0 small enough, such that

2 sup
0<s<t0

‖∇[d(s)− b]‖2Lp <
1

32C

and n large enough, such that

2‖∇[b− bn]‖
2
Lp <

1

32C
.
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For these fixed numbers t0 and n, we finally find
∫ t

0

∫

Ω

|∇d(s)|2ϕ(s)2 dx ds

≤ 2

{

{

C(t0, q) + C sup
0<s<t0

‖∇[d(s)− bn]‖
2
Lp + C(q, ‖∇bn‖

2
Lq)

}

∫ t

0

‖ϕ(s)‖2L2 ds

+
2

8

∫ t

0

∫

Ω

|∇ϕ(s)|2 dx ds

}

.

By virtue of (4.42), we can absorb the term involving ∇ϕ from the right-hand side to the left-hand side,
delivering the estimate

‖ϕ(t)‖2L2 +

∫ t

0

∫

Ω

|∇ϕ(s)|2 dx ds

≤ 4
{

C(t0, q) + C sup
0<s<t0

‖∇[d(s)− bn]‖
2
Lp + C(q, ‖∇bn‖

2
Lq )

}

∫ t

0

‖ϕ(s)‖2L2 ds.

Since t 7→ ‖ϕ(t)‖2L2 is continuous on [0, T ), Gronwall’s inequality can be applied and reveals ϕ ≡ 0. �

5. A digression on the weak Stokes operator and the proof of Theorem 3.3

Now, that we have constructed a mild solution to (3.1) in the sense of (3.2), we use the theory of
maximal regularity, cf. Section 2, in order to gain some additional regularity properties of the solutions.
For this purpose, a suitable functional framework is needed.

In this section, let p be such that |1/p− 1/2| < 1/6 + ε, and p′ always denotes the Hölder conjugate

exponent to p, i.e. 1
p + 1

p′ = 1. Recall that W−1,p
σ (Ω) = [W 1,p′

0,σ (Ω)]∗ is defined as dual space, and denote

the duality pairing by

w(v) = 〈w, v〉
W−1,p

σ ,W 1,p′

0,σ

, w ∈ W−1,p
σ (Ω), v ∈ W 1,p′

0,σ (Ω).

Moreover, let Φ : [Lp′

σ (Ω)]∗ → Lp
σ(Ω) denote the canonical isomorphism between [Lp′

σ (Ω)]∗ and Lp
σ(Ω)

introduced in Section 2, and the duality pairing is

(Φ−1u)(v) = 〈Φ−1u, v〉
[Lp′

σ ]∗,Lp′
σ

= 〈u, v〉
Lp

σ ,L
p′
σ
=

∫

Ω

u · v dx, u ∈ Lp
σ(Ω), v ∈ Lp′

σ (Ω).

We regard Φ−1 also as the canonical inclusion of Lp
σ(Ω) into W−1,p

σ (Ω) by

〈Φ−1u, v〉
W−1,p

σ ,W 1,p′

0,σ

= 〈u, v〉
Lp

σ ,L
p′
σ
, u ∈ Lp

σ(Ω), v ∈ W 1,p′

0,σ (Ω).

In this sense, we define the weak Stokes operator Ap in W−1,p
σ (Ω) by dom(Ap) := Φ−1W 1,p

0,σ (Ω) and

(5.1) Ap : dom(Ap) ⊂ W−1,p
σ (Ω) → W−1,p

σ (Ω), w 7→
[

v 7→

∫

Ω

∇Φw · ∇v dx
]

.

Recall that, by Proposition 2.3, the square root of the Stokes operator satisfiesA
1
2

p′ ∈ Isom(W 1,p′

0,σ (Ω), Lp′

σ (Ω))
and hence

[

A
1
2

p′

]∗
Φ−1 ∈ Isom(Lp

σ(Ω),W
−1,p
σ (Ω)).(5.2)

We now show that the following representations of Ap are valid.

Lemma 5.1. For |1/p− 1/2| < 1/6 + ε the operator Ap is given by

Ap =
[

A
1
2

p′

]∗
Φ−1 ◦Ap ◦A

− 1
2

p Φ =
[

A
1
2

p′

]∗
Φ−1 ◦Ap ◦ Φ

[

A
− 1

2

p′

]∗
.(5.3)
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Proof. By definition, we find for any u ∈ dom(Ap), i.e., Φu ∈ W 1,p
0,σ (Ω), and v ∈ W 1,p′

0,σ (Ω) that

〈

[A
1
2

p′ ]
∗Φ−1 ◦Ap ◦A

− 1
2

p Φu, v
〉

W−1,p
σ ,W 1,p′

0,σ

=
〈

Φ−1A
1
2
p Φu,A

1
2

p′v
〉

[Lp′
σ ]∗,Lp′

σ

=

∫

Ω

A
1
2
p Φu ·A

1
2

p′v dx =

∫

Ω

∇Φu · ∇v dx,

where one verifies directly that dom(
[

A
1
2

p′

]∗
Φ−1 ◦Ap ◦A

− 1
2

p Φ) = dom(Ap). This proves the first identity.
To prove the second identity, notice that

dom
(

[

A
1
2

p′

]∗
Φ−1 ◦Ap ◦ Φ

[

A
− 1

2

p′

]∗
)

= {w ∈ W−1,p
σ (Ω) | Φ

[

A
− 1

2

p′

]∗
w ∈ dom(Ap)}.(5.4)

To prove inclusions of domains suppose that w ∈ dom(Ap). Then for any v ∈ Lp′

σ (Ω)
〈

Φ
[

A
− 1

2

p′

]∗
w, v

〉

Lp
σ,L

p′
σ
=

〈[

A
− 1

2

p′

]∗
w, v

〉

[Lp′
σ ]∗,Lp′

σ
=

〈

w,A
− 1

2

p′ v
〉

W−1,p
σ ,W 1,p′

0,σ

=
〈

Φw,A
− 1

2

p′ v
〉

Lp
σ,L

p′
σ

=
〈

A
− 1

2
p Φw, v

〉

Lp
σ,L

p′
σ
,

(5.5)

and since A
− 1

2
p Φw ∈ dom(Ap), it follows that w is in the set (5.4).

The other way round, suppose that w is in the set (5.4). Then for any v ∈ W 1,p′

0,σ (Ω)

〈

w, v
〉

W−1,p
σ ,W 1,p′

0,σ

=
〈[

A
1
2

p′

]∗[

A
− 1

2

p′

]∗
w, v

〉

W−1,p
σ ,W 1,p′

0,σ

=
〈

Φ
[

A
− 1

2

p′

]∗
w,A

1
2

p′v
〉

Lp
σ,L

p′
σ

=
〈

A
1
2
p Φ

[

A
− 1

2

p′

]∗
w, v

〉

Lp
σ,L

p′
σ

=
〈

Φ−1A
1
2
p Φ

[

A
− 1

2

p′

]∗
w, v

〉

W−1,p
σ ,W 1,p′

0,σ

.

By assumption Φ
[

A
− 1

2

p′

]∗
w ∈ dom(Ap), hence, setting u = A

1
2
p Φ

[

A
− 1

2

p′

]∗
w, one finds u ∈ W 1,p

0,σ (Ω) with
Φu = w, whence the equality of the domains follows.

Finally, the representation (5.3) follows from the identity (5.5) together with the first identity estab-
lished in this proof. �

Since Ap is related to Ap by a similarity transform, we can carry spectral properties of Ap over to Ap,
and we obtain the following proposition as a corollary of Lemma 5.1, compare e.g. [4].

Proposition 5.2. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then there exists ε > 0 such that for

|1/p− 1/2| < 1/6 + ε, it holds ρ(Ap) = ρ(Ap),

(a) −Ap generates a bounded analytic semigroup on W−1,p
σ (Ω), and for u ∈ W−1,p

σ (Ω) and f ∈ Lp
σ(Ω)

the following two identities hold

(1) e−tApu =
[

A
1
2

p′

]∗
Φ−1e−tApΦ

[

A
− 1

2

p′

]∗
u, (2) Φ−1e−tApf = e−tApΦ−1f ;

(b) Ap has the maximal regularity property.

Now, we come to the proof of Theorem 3.3.

Proof of Theorem 3.3. Fix 3 ≤ p < 3+ ε and let u and d be mild solutions corresponding to Theorem 3.1
on [0, T ). In the following, we show that Φ−1u and d are mild solutions to the (weak) linear Stokes and
heat equations with the respective right-hand sides

Fu = −Pdiv(u⊗ u+ [∇d]⊤∇d) and Fd = −(u · ∇)d+ |∇d|2d.

Since for d this has been proven in Subsection 4.2, we concentrate on Φ−1u. Recall that e−tAp/2P div, for
t > 0, a priori defines a bounded operator on a dense subset of Lp/2(Ω)3×3 containing C∞

c (Ω)3×3, and
its closure defines a bounded operator from Lp(Ω)3×3 to Lp

σ(Ω).
Furthermore, P divF for F ∈ Lp/2(Ω)3×3 is identified with an element in W−1,p

σ (Ω) by
〈

P divF, v
〉

W−1,p
σ ,W 1,p′

0,σ

=
〈

F,∇v
〉

Lp,Lp′ , v ∈ W 1,p′

0,σ (Ω).
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Combining this together with Proposition 5.2, Φ−1u satisfies

Φ−1u(t) = e−tAΦ−1a−

∫ t

0

e−(t−s)A
P div(u⊗ u+ [∇d]⊤∇d) ds.

Now, since by Theorem 3.1

t 7→ e
ωt
2 u(t) ∈ BC([0, T );Lp

σ(Ω)), t 7→ d(t) ∈ BC([0, T );L∞(Ω)3),

t 7→ e
ωt
2 ∇d(t) ∈ BC([0, T );Lp(Ω)3×3)

for some ω > 0, we deduce that for all s ∈ [1,∞] we have

Fu = −Pdiv(u ⊗ u+ [∇d]⊤∇d) ∈ Ls(0, T ;W
−1,p2
0,σ (Ω)),

Fd = −(u · ∇)d+ |∇d|2d ∈ Ls(0, T ;L
p
2 (Ω)3).

Now, if for some 1 < s < ∞ the initial conditions Φ−1a and b satisfy

Φ−1a ∈
(

W
−1, p2
σ (Ω),Φ−1W

1, p2
0,σ (Ω)

)

1− 1
s ,s

and b ∈ (L
p
2 (Ω)3, dom(B p

2
))1− 1

s ,s
,(5.6)

then the maximal regularity of A p
2
(see Proposition 5.2) and B p

2
(see Proposition 2.5) implies that Φ−1u

and d satisfy

Φ−1u ∈ W 1,s(0, T ;W
−1,p2
σ (Ω)) ∩ Ls(0, T ; Φ−1W

1, p2
0,σ (Ω)),

d′, B p
2
d ∈ Ls(0, T ;L

p
2 (Ω)3)

(5.7)

and that they solve the respective equations (3.1) for almost every 0 < t < T . Thus, in order to gain this
regularity property, it remains to prove (5.6). For b, we have by Proposition 2.3 followed by [13, Cor. 6.6.3],
and [36, p. 25]

b ∈ W 1,p(Ω)3 ⊂ W 1, p2 (Ω)3 = dom(B
1
2

p/2) ⊂
(

L
p
2 (Ω)3, dom(B p

2
)
)

1
2 ,∞

⊂
(

L
p
2 (Ω)3, dom(B p

2
)
)

1− 1
s ,s

for any 1 < s < 2. For the weak Stokes operator a similar calculation works on the L
p
2
σ -scale instead

of the W 1, p2 -scale once we know that dom(A
1
2

p/2) = Φ−1L
p
2
σ (Ω). Notice that since 0 ∈ ρ(A p

2
) we find by

Proposition 5.2 that 0 ∈ ρ(A p
2
). Thus, by definition

dom(A
1
2

p/2) = Rg(A
− 1

2

p/2)

and the special structure of the similarity transform proven in Lemma 5.1 shows that

dom(A
1
2

p/2) = Φ−1(L
p
2
σ (Ω)) = [L

(p
2 )

′

σ (Ω)]∗.

Finally, we deduce by the same reasoning as for the Laplacian that

Φ−1a ∈ [Lp′

σ (Ω)]∗ ⊂ [L
( p
2 )

′

σ (Ω)]∗ = dom(A
1
2

p/2) ⊂
(

W
−1, p2
σ (Ω),Φ−1W

1, p2
0,σ (Ω)

)

1
2 ,∞

⊂
(

W
−1, p2
σ (Ω),Φ−1W

1, p2
0,σ (Ω)

)

1− 1
s ,s

,

for any 1 < s < 2. This proves (5.6). �
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6. Proofs of Theorems 3.4 and 3.5

In this section, we discuss the existence, uniqueness, and regularity of mild solutions when the Dirichlet
boundary data for the director field is a constant vector e.

Let us denote δ = d− e. Then, the system (1.1) is equivalent to

(6.1)















































∂tu+ (u · ∇)u−∆u+∇π = −div([∇δ]⊤∇δ) in (0, T )× Ω,

∂tδ −∆δ + (u · ∇)δ = |∇δ|2δ + |∇δ|2e in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

|δ + e| = 1 in (0, T )× Ω,

(u, δ) = (0, 0) on (0, T )× ∂Ω,

(u, δ)
∣

∣

∣

t=0
= (a, b̃) in Ω,

where b̃ = b − e. We would like to emphasise that the system (6.1) in (u, δ) has homogeneous Dirichlet
boundary conditions and ∇δ = ∇d.

Dropping the condition |δ + e| = 1 for a moment, we reformulate the problem as
{

∂tu+Au = −P(u · ∇)u − Pdiv ([∇δ]⊤∇δ), in (0, T )× Ω,
∂tδ +Bδ = −(u · ∇)δ + |∇δ|2(δ + e), in (0, T )× Ω,

which defines a system in the space

Lq
σ(Ω)× Lq(Ω)3,

where B now denotes the negative Dirichlet Laplacian which is defined similarly to the Neumann Lapla-
cian using the form

b : W 1,2
0 (Ω)3 ×W 1,2

0 (Ω)3 → C, (u, v) 7→

∫

Ω

∇u · ∇v dx.

Note that due to the availability of heat kernel estimates [3, Cor. 3.2.8] and the validity of the square root
property [19, Thm. 7.5] the counterparts of Propositions 2.3 and 2.4 are valid for the Dirichlet Laplacian.
Especially, the Lp-Lq-estimates hold on all of Lp(Ω)3, i.e., average free spaces need not be considered.
Furthermore, the maximal regularity of the negative Dirichlet Laplacian follows by [23, Cor. 1.1].

Denoting the nonlinear terms as

Fu(u,∇δ) = −Pdiv (u⊗ u+ [∇δ]⊤∇δ),

Fδ(u,∇δ, δ) = −(u · ∇)δ + |∇δ|2(δ + e),

we define the iteration scheme corresponding to the mild formulation (3.4) as follows. For j ∈ N0, define

u0 := e−tAa, uj+1 := u0 +

∫ t

0

e−(t−s)AFu(uj(s),∇δj(s)) ds,

δ0 := e−tB b̃, δj+1 := δ0 +

∫ t

0

e−(t−s)BFδ(uj(s),∇δj(s), δj(s)) ds.

The analysis towards the proof of existence and uniqueness follows verbatim the proof for the case of
Neumann boundary conditions since |e| = 1 (which replaces the b in the previous case). Also note that
in this case we do not need to split the equation for the director field as the Dirichlet Laplacian generates
an exponentially stable semigroup on all of Lq(Ω)3.

Once the existence and uniqueness of u and δ have been established, we can then return to the original
variable d = δ + e and retrieve the condition |d| = 1 by following the same arguments as in the previous
case and by noting that |d|2 − 1 = |e|2 − 1 = 0 on the boundary (0, T )× ∂Ω. Finally, the discussion in
Section 5 stays literally the same.
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7. Concluding remarks

We would like to conclude by discussing other results and techniques.
First, in the case of a smooth domain Ω our approach yields similar results as has been obtained by

Hieber et al. in [14] using quasilinear techniques.
More concretely, the approach in [14] requires initial data in Besov spaces

a ∈ B2µ−2/p
qp (Ω)3 ∩ Lp

σ(Ω), b ∈ B2µ−2/p
qp (Ω)3, 2

p + 3
q < 1, 1

2 + 1
p + 3

2q < µ ≤ 1,

using the fact that the embedding B
2µ−2/p
qp (Ω) →֒ C1(Ω) holds. These initial data are much more regular

than the ones assumed by us.
Recall that for Ω smooth, our results are valid for 3 ≤ p < q < ∞, cf. Remark 2.6. Now suppose

that we have initial data (a, d) ∈ W
1, p2
σ (Ω)×W 1,p(Ω)3 for some p > 9. This choice ensures that a and d

are bounded functions. Now we can repeat our arguments as before (see Section 5) to first obtain that

B p
2
d ∈ Ls(0, T ;L

p
2 (Ω)3) and then u ∈ Ls(0, T ;W

1,p2
0,σ (Ω)) for s ∈ (1, 2). Since dom(B p

2
) is a subspace of

W 2, p2 (Ω)3 for smooth domains, it is possible to control two derivatives of d. But now, since ‖u‖Lp
σ
and

‖∇d‖Lp are also bounded in time, we observe that the right-hand side in the fluid equation is actually in

Ls(0, T ;L
p
3
σ (Ω)) and hence we infer that

u ∈ W 1,s(0, T ;L
p
3
σ (Ω)) ∩ Ls(0, T ; dom(A p

3
)), d′, B p

2
d ∈ Ls(0, T ;L

p
2 (Ω)3)

and thus u and d are strong solutions. Especially, u(t) ∈ dom(A p
3
) and d(t) ∈ dom(B p

2
) for almost every

t ∈ (0, T ) so that both lie in C1(Ω) in the spatial variables as used in [14].
Note that there are also other versions of the simplified Ericksen–Leslie model. For instance, some

authors, see, e.g., [18, 29] and the references therein, drop the assumption |d| = 1 and replace the
dynamical equation for the director field d by

∂td−∆d+ (u · ∇)d = −γf(d), γ > 0,

for a bounded vector valued penalty function f . In particular, Hu and Wang considered in [18] the case
f = 0. The method we presented here can be adapted for this setting as well.

Finally, we would like to remark that our approach, based on the iteration scheme, has been crucially
based upon the fact that the right-hand side (nonlinearities) in the fluid equation can be written in a
divergence form. Since the same remains true for more general models arising in nematic liquid crystals,
we are hopeful that this method shall turn out to be fruitful even in such general situations.

Acknowledgement. We would like to thank Matthias Hieber for introducing us to this interesting field
of research.
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