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OPTIMAL CONTROL OF NONLINEAR ELLIPTIC PROBLEMS WITH

SPARSITY

AUGUSTO C. PONCE AND NICOLAS WILMET

ABSTRACT. We study the minimization of the cost functional

F (µ) = ‖u− ud‖Lp(Ω) + α‖µ‖
M(Ω),

where the controls µ are taken in the space of finite Borel measures and u ∈

W
1,1
0 (Ω) satisfies the equation −∆u+ g(u) = µ in the sense of distributions in

Ω for a given nondecreasing continuous function g : R → R such that g(0) = 0.

We prove that F has a minimizer for every desired state ud ∈ L1(Ω) and every

control parameter α > 0. We then show that when ud is nonnegative or bounded,

every minimizer of F has the same property.

1. INTRODUCTION AND MAIN RESULTS

Let N ≥ 2 and Ω ⊂ R
N be a smooth bounded open set. Inspired by recent

works of Casas, Clason and Kunisch [10–12], we investigate an optimal control

problem with sparsity involving the nonlinear problem
{
−∆u+ g(u) = µ in Ω,

u = 0 on ∂Ω,
(1.1)

where g : R → R is a nondecreasing continuous function such that g(0) = 0.

More precisely, we consider the minimization of the cost functional F : L1(Ω) →

[0,∞], defined for µ ∈ L1(Ω) by

F (µ) = ‖u− ud‖Lp(Ω) + α‖µ‖L1(Ω),

where u is the unique solution of (1.1) corresponding to µ. Here, p is any exponent

satisfying 1 ≤ p ≤ ∞, ud ∈ L1(Ω) is the given ideal (or desired) state and α > 0

is the control parameter.

Stadler observed in [22] that—in contrast with the usual Hilbert-space L2

setting—the use of the L1 norm in the cost functional leads in many cases to op-

timal controls which are concentrated in a small region of the domain (sparsity

phenomenon). This property is, for example, relevant in determining the optimal

placement of actuators in distributed parameter systems, where control devices
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cannot be put all over the domain; see [9] for a recent review on sparsity in optimal

control of partial differential equations.

When µ ∈ L2(Ω), the solution of (1.1) belongs to W 1,2
0 (Ω) and can be obtained

by standard minimization of the associated energy functional; see e.g. [20]. The

existence of a solution of (1.1) for any µ ∈ L1(Ω) is due to Brezis and Strauss [8]

and follows from approximation of µ by a sequence of L2 functions. In this case,

the unique solution of (1.1) is a function u ∈ W 1,1
0 (Ω) such that g(u) ∈ L1(Ω) for

which the equation

−∆u+ g(u) = µ in Ω

holds in the sense of distributions.

Due to the lack of weak compactness, the space L1(Ω) is not suitable in dis-

cussing the existence of minimizers of F . It is therefore natural to enlarge the

minimization class to the entire family of finite Borel measures, thus recovering

weak compactness. Another advantage of such an extension is that controls µ con-

centrated on small sets with Lebesgue measure zero are also allowed.

In the sequel, we denote by M(Ω) the Banach space of finite Borel measures

on Ω equipped with the total variation norm

‖µ‖M(Ω) = |µ|(Ω).

Since the L1 norm and the total variation norm coincide on L1(Ω), we extend the

functional F to M(Ω) by setting

F (µ) = ‖u− ud‖Lp(Ω) + α‖µ‖M(Ω)

when the Dirichlet problem (1.1) with datum µ ∈ M(Ω) is solvable. When (1.1)

does not have a solution for a certain µ ∈ M(Ω), we let F (µ) = ∞.

The optimal control problem considered in this paper is henceforth the follow-

ing:

To find µ∗ ∈ M(Ω) such that F (µ∗) = inf
µ∈M(Ω)

F (µ). (1.2)

This minimization problem is only relevant when F 6≡ ∞. Throughout the paper,

we thus restrict our attention to ideal states ud such that

F 6≡ ∞ in M(Ω). (1.3)

This happens for example when ud ∈ Lp(Ω) since F (0) = ‖ud‖Lp(Ω), but such an

assumption is not necessary for (1.3) to hold. For instance, if N
N−2 ≤ p ≤ ∞ and

the nonlinearity g satisfies the growth assumption

|g(t)| ≤ C(|t|q + 1), (1.4)

where 1 ≤ q < p, then there exist ideal states ud ∈ L1(Ω) with ud 6∈ Lp(Ω)

satisfying a Lavrentiev phenomenon:

inf
µ∈M(Ω)

F (µ) < inf
µ∈L1(Ω)

F (µ) = ∞;
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see Propositions 8.1 and 8.2 below.

One of our main results concerning an arbitrary nondecreasing continuous func-

tion g is

Theorem 1. The optimal control problem (1.2) has a solution for every 1 ≤ p ≤

∞, ud ∈ L1(Ω) and α > 0.

Problem (1.2) has been studied in [11] for nonlinearities g which are subcritical

in the sense that (1.4) is satisfied for some exponent 1 ≤ q < N
N−2 . For such

a nonlinearity g, Bénilan and Brezis [3] proved that (1.1) is solvable for every

µ ∈ M(Ω), and solutions of (1.1) are compactly embedded in Lq(Ω); see also [20,

Proposition 21.1]. One then deduces the lower semicontinuity of F with respect to

weak* convergence in M(Ω).

In the supercritical case q ≥ N
N−2 for N ≥ 3, the functional F is no longer lower

semicontinuous with respect to weak* convergence in M(Ω) when 1 ≤ p ≤ q.

The reason is that if (µn)n∈N is a sequence in M(Ω) converging weakly* to µ

in M(Ω) and if the sequence (un)n∈N of solutions of (1.1) corresponding to µn

converges strongly to some function u in L1(Ω), then u need not be a solution

of (1.1) involving µ. For example—in the spirit of [3, Remark A.4]—take Ω =

B(0; 1) the unit ball in R
N , g(t) = |t|p−1t and a sequence of mollifiers µn = ρn.

In this case, the sequence (ρn)n∈N∗
converges weakly* to the Dirac mass δ0, but

one has F (δ0) = ∞ while lim sup
n→∞

F (µn) < ∞; see Proposition 9.2 below.

To handle Theorem 1 in full generality, we propose a different approach based

on a lower semicontinuity property of the reduced limit that we establish in

Section 2 below. The concept of reduced limit associated to sequences of mea-

sures in connection with (1.1) has been introduced in [17].

In what follows, let µ∗ be any solution of the minimization problem (1.2). In

optimal control theory, such a solution is called an optimal control. The optimal

state u∗ associated to µ∗ is the unique solution of (1.1) corresponding to µ∗. We

show that u∗ shares many properties with ud. For example, one has

Theorem 2. If ud is nonnegative, then u∗ is also nonnegative.

Similarly, if ud is bounded, then the same is true for u∗. More precisely,

Theorem 3. If ud ∈ L∞(Ω), then u∗ ∈ L∞(Ω) and

‖u∗‖L∞(Ω) ≤ ‖ud‖L∞(Ω).

By standard interpolation, one deduces from Theorem 3 that u∗ ∈ W 1,2
0 (Ω);

see [11, Theorem 5.1] in the subcritical case.

The paper is organized as follows. In Section 2, we recall the notion of reduced

limit from [17] and we prove a new property concerning the lower semicontinuity

of the total variation norm with respect to the reduced limit. Theorem 1 is then
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proved in Section 3. In Section 4, we show that given a solution u of (1.1) corre-

sponding to µ, its truncation min {u,w} with a nonnegative supersolution w yields

a finite Borel measure whose total variation is ≤ ‖µ‖M(Ω). We use this property

in Section 5 to prove Theorems 2 and 3. Section 6 is dedicated to the regulariza-

tion of the desired state ud and the stability of the minimization problem (1.2). In

Sections 7 and 8, we show that µ∗ need not be a summable function when ud is un-

bounded. In Section 9, we discuss the lack of convexity and lower semicontinuity

of F with respect to weak* convergence in M(Ω). In Section 10, we show that the

Lavrentiev phenomenon cannot occur if g = |t|p−1t and ud ∈ Lp(Ω).

2. REDUCED LIMITS FOR NONLINEAR EQUATIONS WITH MEASURES

In this section, we recall the notion of reduced limit introduced in [17]. We

also prove a new property of the reduced limit which is central in our proof of

Theorem 1; see Proposition 2.2. To motivate the concept of reduced limit, let

us consider a bounded sequence (µn)n∈N of finite measures on Ω. By the weak

compactness property of bounded sequences of measures, we may extract from

(µn)n∈N a subsequence (µnk
)k∈N converging weakly* to some finite measure µ in

M(Ω)—that is,

lim
k→∞

∫

Ω
φdµnk

=

∫

Ω
φdµ,

for every continuous function φ : Ω → R with φ = 0 on ∂Ω; see e.g. [20, Propo-

sition 2.8]. To simplify the notation, we assume in the following that the whole

sequence (µn)n∈N converges weakly* to µ in M(Ω).

We now suppose that (1.1) with datum µn has a solution for each n ∈ N and we

denote this unique solution by un. In the literature, measures for which (1.1) has a

solution are referred to as good measures. One has the following estimate:

‖un‖W 1,1
0 (Ω) ≤ C‖µn‖M(Ω), (2.1)

for some constant C > 0 depending on N and Ω. This estimate can be deduced

from elliptic estimates due to Littman, Stampacchia and Weinberger [16, Theo-

rem 5.1] and the following absorption estimate for solutions of (1.1) with measure

data [6, Proposition 4.B.3]:

‖g(u)‖L1(Ω) ≤ ‖µ‖M(Ω). (2.2)

By virtue of (2.1) and the Rellich–Kondrashov compactness theorem, taking a sub-

sequence if necessary, we may thus assume that (un)n∈N converges strongly in

L1(Ω) to some function u. In general, u is not a solution of (1.1) involving µ; see

e.g. [6, Example 4.1].

The situation is, however, not as dramatic as it seems:
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Proposition 2.1. The sequence (un)n∈N converges strongly in L1(Ω) to some func-

tion u# such that g(u#) ∈ L1(Ω) and there exists µ# ∈ M(Ω) such that u# is

the unique solution of (1.1) corresponding to µ#.

In this case, we say that µ# is the reduced limit of (µn)n∈N. This is Theorem 1.1

in [17] regarding the existence of the reduced limit, whose proof is rather straight-

forward. A striking fact—much more difficult to prove—is that the reduced limit

does not depend on the Dirichlet boundary condition; see [17, Theorem 1.2]. In the

sequel, whenever a sequence of finite measures (µn)n∈N is said to have a reduced

limit, it is implicitly assumed that each measure µn is a good measure.

Given a sequence (µn)n∈N of nonnegative measures in M(Ω) with weak* limit

µ in M(Ω) and reduced limit µ#, a straightforward application of Fatou’s lemma

gives the estimate

µ# ≤ µ.

A deeper property actually holds: if (µn)n∈N and (νn)n∈N are sequences in M(Ω)

with reduced limits µ# and ν#, respectively, and if for every n ∈ N,

νn ≤ µn,

then

ν# ≤ µ#; (2.3)

see [17, Theorem 7.1]. In particular, if every measure µn is nonnegative, then the

reduced limit µ# is also nonnegative.

The inequalities appearing above are meant in the sense of measures: given two

finite measures µ and ν on Ω, one has

ν ≤ µ (2.4)

in the sense of measures if, for every Borel set A ⊂ Ω, ν(A) ≤ µ(A). In fact,

inequality (2.4) also holds in the sense of distributions in Ω:
∫

Ω
ϕdν ≤

∫

Ω
ϕdµ,

for every nonnegative function ϕ ∈ C∞
c (Ω); see [20, Proposition 6.12] for the

equivalence between the two notions.

We now prove the lower semicontinuity of the total variation norm with respect

to the reduced limit. Once this new property is established, Theorem 1 can be

proved along the lines of the direct method of the calculus of variations.

Proposition 2.2. For every bounded sequence (µn)n∈N in M(Ω) with reduced

limit µ#, we have

‖µ#‖M(Ω) ≤ lim inf
n→∞

‖µn‖M(Ω).
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For the proof of Proposition 2.2, we rely on the following property of good

measures: if µ ∈ M(Ω) is a good measure, then µ+ and −µ− are also good

measures; see [6, Theorem 4.9]. Here, µ+ and µ− are the unique nonnegative

measures given by the Jordan decomposition theorem such that

µ = µ+ − µ−

and

‖µ‖M(Ω) = ‖µ+‖M(Ω) + ‖µ−‖M(Ω). (2.5)

Proof of Proposition 2.2. By definition, the sequence (µn)n∈N converges weakly*

to some finite measure µ in M(Ω). Taking a subsequence if necessary, we may

assume that

lim
n→∞

‖µn‖M(Ω) = lim inf
n→∞

‖µn‖M(Ω).

In particular, the value of the limit does not change by taking a further subse-

quence of (µn)n∈N. By the property of good measures mentioned above, we have

that µ+
n and −µ−

n are good measures for every n ∈ N. Since the sequence (µn)n∈N

is bounded in M(Ω), one deduces from (2.5) that the sequences (µ+
n )n∈N and

(−µ−
n )n∈N are also bounded in M(Ω). Passing to a subsequence if necessary, we

may thus assume that (µ+
n )n∈N and (−µ−

n )n∈N have weak* limits µ⊕ and µ⊖ in

M(Ω), and reduced limits µ#
⊕ and µ#

⊖ , respectively. On the one hand, the mono-

tonicity of the reduced limit (2.3) implies that

µ#
⊖ ≤ µ# ≤ µ#

⊕ .

On the other hand, we deduce from Fatou’s lemma that

µ⊖ ≤ µ#
⊖ and µ#

⊕ ≤ µ⊕.

Hence we have

µ⊖ ≤ µ# ≤ µ⊕.

This estimate implies that

‖µ#‖M(Ω) ≤ ‖µ⊕‖M(Ω) + ‖µ⊖‖M(Ω).

It then follows from the lower semicontinuity of the total variation norm with re-

spect to weak* convergence in M(Ω) and identity (2.5) that

‖µ#‖M(Ω) ≤ lim inf
n→∞

‖µ+
n ‖M(Ω) + lim inf

n→∞
‖µ−

n ‖M(Ω) ≤ lim inf
n→∞

‖µn‖M(Ω).

This concludes the proof of the proposition. �
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3. PROOF OF THEOREM 1

We first prove that F is lower semicontinuous with respect to the reduced limit:

if the sequence of measures (µn)n∈N in M(Ω) has a reduced limit µ# and satisfies

F (µn) < ∞ for each n ∈ N, then

F (µ#) ≤ lim inf
n→∞

F (µn). (3.1)

Taking a subsequence if necessary, we may assume that the limit inferior in the

right-hand side of (3.1) is an actual limit. Denote by un the unique solution of

(1.1) corresponding to µn. By definition, the sequence (un)n∈N converges strongly

in L1(Ω) to the unique solution u# of (1.1) with datum µ#. Taking a further

subsequence if needed, we can assume that (un)n∈N converges almost everywhere

to u# in Ω. On the one hand, we have u# − ud ∈ Lp(Ω) and

‖u# − ud‖Lp(Ω) ≤ lim inf
n→∞

‖un − ud‖Lp(Ω). (3.2)

In the case where 1 ≤ p < ∞, this estimate is a consequence of Fatou’s lemma.

When p = ∞, we have

|u# − ud| = lim
n→∞

|un − ud| ≤ lim inf
n→∞

‖un − ud‖L∞(Ω)

almost everywhere in Ω. Hence (3.2) holds for every 1 ≤ p ≤ ∞. On the other

hand, Proposition 2.2 implies that

‖µ#‖M(Ω) ≤ lim inf
n→∞

‖µn‖M(Ω). (3.3)

Combining (3.2) and (3.3) we obtain (3.1).

Now, let (µn)n∈N be a minimizing sequence of F—that is, a sequence in M(Ω)

such that

lim
n→∞

F (µn) = inf
µ∈M(Ω)

F (µ).

Since F 6≡ ∞, we may assume that each µn is a good measure satisfying F (µn) <

∞. Taking a subsequence if necessary, we may also assume that (µn)n∈N has a

reduced limit µ#. The lower semicontinuity of F with respect to the reduced limit

then implies that

F (µ#) ≤ lim inf
n→∞

F (µn) = inf
µ∈M(Ω)

F (µ).

This proves that µ# is a solution of (1.2). The proof of the theorem is thus com-

plete.

4. TRUNCATION WITH NONNEGATIVE SUPERSOLUTIONS

Let ν ∈ M(Ω) and let v be the unique solution of the linear Dirichlet problem
{
−∆v = ν in Ω,

v = 0 on ∂Ω.
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Then, for every κ ≥ 0, the distribution ∆min {u, κ} is a finite measure on Ω and

‖∆min {u, κ}‖M(Ω) ≤ ‖∆u‖M(Ω);

see [7, Theorem 1.2]. The goal of this section is two-fold: to extend this result to

the case where κ is not a constant and to find a counterpart of the estimate for the

operator −∆+ g with an absorption term.

Let us define

X(Ω) :=
{
v ∈ W 1,1(Ω) : ∆v ∈ M(Ω)

}

and

X0(Ω) := X(Ω) ∩W 1,1
0 (Ω).

The main result of this section is the following:

Proposition 4.1. Let µ ∈ M(Ω) be a good measure and let u be the unique

solution of (1.1) with datum µ. Then, for every nonnegative function w ∈ X(Ω)

such that g(w) ∈ L1(Ω) and

−∆w + g(w) ≥ 0 in the sense of distributions in Ω,

the function z := min {u,w} satisfies z ∈ X0(Ω), g(z) ∈ L1(Ω) and

‖−∆z + g(z)‖M(Ω) ≤ ‖−∆u+ g(u)‖M(Ω).

We recall that the equation

−∆w + g(w) ≥ 0

holds in the sense of distributions in Ω if

−

∫

Ω
w∆ϕ+

∫

Ω
g(w)ϕ ≥ 0,

for every nonnegative function ϕ ∈ C∞
c (Ω).

Proposition 4.1 is a straightforward consequence of

Lemma 4.2. For i ∈ {1, 2}, let ui ∈ X(Ω) and ai ∈ L1(Ω). If u1 ≤ u2 on ∂Ω

and −∆u2 + a2 ≥ 0 in Ω, then the functions

u := min {u1, u2} and a :=




a1 in {u1 ≤ u2},

a2 in {u2 < u1},

satisfy u ∈ X(Ω), a ∈ L1(Ω) and
∫

Ω
|−∆u+ a| ≤

∫

Ω
|−∆u1 + a1|+

∫

{u1>u2}
(a2 − a1).

Proof of Lemma 4.2. We divide the proof of Lemma 4.2 into three steps.

Step 1. The conclusion holds if ui, ai ∈ C∞(Ω) and the set {u1 = u2} is a smooth

compact manifold without boundary.
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The assumption u1 ≤ u2 on ∂Ω implies that ∂{u1 > u2} = {u1 = u2}. By the

Divergence theorem, for every ϕ ∈ C∞
c (Ω), we have

∫

{u1>u2}
(u1 − u2)∆ϕ =

∫

{u1>u2}
ϕ∆(u1 − u2)−

∫

{u1=u2}
ϕ

∂

∂n
(u1 − u2) dσ,

where n is the unit normal vector on {u1 = u2} pointing outwards with respect to

{u1 > u2} and σ denotes the surface measure of {u1 = u2} that coincides with

the Hausdorff measure HN−1⌊{u1=u2}. The equation

∆(u1 − u2)
+ = χ{u1>u2}∆(u1 − u2)−

∂

∂n
(u1 − u2)H

N−1⌊{u1=u2}

thus holds in the sense of distributions in Ω. Since

u = u1 − (u1 − u2)
+

and the set {u1 = u2} is negligible for the Lebesgue measure, one has

−∆u+ a = χ{u1<u2}(−∆u1 + a1) + χ{u1>u2}(−∆u2 + a2)

−
∂

∂n
(u1 − u2)H

N−1⌊{u1=u2}

in the sense of distributions in Ω; thus in the sense of measures on Ω. Notice that

the minimum of the function u1 − u2 in {u1 ≥ u2} is achieved on {u1 = u2};

whence we have ∂
∂n(u1 −u2) ≤ 0 on {u1 = u2}. Computing the total variation of

−∆u+ a yields
∫

Ω
|−∆u+ a| ≤

∫

{u1<u2}
|−∆u1 + a1|+

∫

{u1>u2}
|−∆u2 + a2|

−

∫

{u1=u2}

∂

∂n
(u1 − u2) dσ. (4.1)

On the other hand, by the Divergence theorem, we have

−

∫

{u1=u2}

∂

∂n
(u1 − u2) dσ = −

∫

{u1>u2}
∆(u1 − u2)

=

∫

{u1>u2}
(−∆u1 + a1)−

∫

{u1>u2}
(−∆u2 + a2) +

∫

{u1>u2}
(a2 − a1).

(4.2)

Since −∆u2 + a2 ≥ 0, we also have
∫

{u1>u2}
(−∆u2 + a2) =

∫

{u1>u2}
|−∆u2 + a2|. (4.3)

Combining (4.1), (4.2) and (4.3) we obtain
∫

Ω
|−∆u+ a| ≤

∫

Ω
|−∆u1 + a1|+

∫

{u1>u2}
(a2 − a1).

Step 2. The conclusion holds if ui and ai are as in the statement and the set {u1 =

u2} has Lebesgue measure zero.
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Let ω ⋐ Ω be an open subset and let (ρn)n∈N∗
be a sequence of mollifiers in

C∞
c (RN ) such that ω − suppρn ⋐ Ω. Fubini’s theorem implies that

−∆(ρn ∗ ui) + ρn ∗ ai = ρn ∗ µi in the sense of distributions in ω; (4.4)

see e.g. the proof of Proposition 2.7 in [20]. We seek to apply Step 1 to the regu-

larized functions ρn ∗ ui and ρn ∗ ai. For this purpose, as 0 need not be a regular

value of ρn ∗ (u1 − u2), we use the Morse–Sard theorem [23, Theorem 7.4.3] to

deduce that for each n ∈ N∗ there exists a regular value tn of ρn ∗ (u1 − u2) such

that 0 ≤ tn ≤ 1/n. Let us then define the functions

zn := min {ρn ∗ u1, ρn ∗ u2 + tn}

and

bn :=




ρn ∗ a1 in {ρn ∗ u1 ≤ ρn ∗ u2 + tn},

ρn ∗ a2 in {ρn ∗ u2 + tn < ρn ∗ u1}.

Applying Step 1 to the functions ρn ∗ u1 and ρn ∗ u2 + tn in ω we obtain

∫

ω
|−∆zn + bn| ≤

∫

ω
|−∆(ρn ∗ u1) + ρn ∗ a1|

+

∫

{ρn∗u1>ρn∗u2+tn}∩ω
ρn ∗ (a2 − a1). (4.5)

Since the sequence (ρn ∗ (a2 − a1))n∈N∗
converges strongly to a2 − a1 in L1(Ω),

by the partial converse of the Dominated convergence theorem, passing to a subse-

quence if necessary, there exists f ∈ L1(Ω) such that

|ρn ∗ (a2 − a1)| ≤ f almost everywhere in Ω;

see e.g. [23, Proposition 4.2.10]. Taking a further subsequence if needed, we

may assume that the sequences (ρn ∗ (a2 − a1))n∈N∗
and (ρn ∗ ui)n∈N∗

con-

verge almost everywhere in Ω to the functions a2 − a1 and ui, respectively. Since

{u1 = u2} has Lebesgue measure zero, it thus follows that the characteristic func-

tions χ{ρn∗u1>ρn∗u2+tn} converge almost everywhere to χ{u1>u2} in Ω as n tends

to infinity. By the Dominated convergence theorem, we then have

lim
n→∞

∫

{ρn∗u1>ρn∗u2+tn}∩ω
ρn ∗ (a2 − a1) =

∫

{u1>u2}∩ω
(a2 − a1).

On the other hand, it follows from (4.4) that

lim
n→∞

∫

ω
|−∆(ρn ∗ u1) + ρn ∗ a1| = ‖−∆u1 + a1‖M(ω);

see also [20, Proposition 2.7]. Estimate (4.5) then implies that
∫

ω
|−∆u+ a| ≤ ‖−∆u1 + a1‖M(ω) +

∫

{u1>u2}∩ω
(a2 − a1).
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Let us now take a nondecreasing sequence (ωk)k∈N of open subsets of Ω such that

∞⋃

k=0

ωk = Ω.

Applying the previous estimate with ω := ωk and letting k tend to infinity, the

conclusion follows from the Monotone set lemma.

Step 3. Proof of Lemma 4.2 completed.

Let S := {s ∈ R : |{u1 − u2 = s}| 6= 0}. Since the set S is countable, its

complement is dense in R. Hence, there exists a sequence (sk)k∈N of nonnegative

numbers in R \ S converging to 0. Applying Step 2 with the function u2 + sk

instead of u2 and taking the limit as k tends to infinity in the given estimate, the

conclusion follows from the Dominated convergence theorem. The proof of the

lemma is complete. �

We now proceed with the

Proof of Proposition 4.1. Let w ∈ X(Ω) be a nonnegative function such that

g(w) ∈ L1(Ω) and

−∆w + g(w) ≥ 0 in the sense of distributions in Ω.

The function z := min {u,w} belongs to W 1,1
0 (Ω). We then deduce from the

preceding lemma that z ∈ X0(Ω), g(z) ∈ L1(Ω) and
∫

Ω
|−∆z + g(z)| ≤

∫

Ω
|−∆u+ g(u)| +

∫

{u>w}
(g(w) − g(u)).

Since g is a nondecreasing function, the last integral is nonpositive; whence
∫

Ω
|−∆z + g(z)| ≤

∫

Ω
|−∆u+ g(u)|,

and the proof is complete. �

Remark 4.3. Proposition 4.1 has an immediate counterpart for truncation with non-

positive subsolutions of the operator −∆ + g. More precisely, if w ∈ X(Ω) is a

nonpositive function such that g(w) ∈ L1(Ω) and

−∆w + g(w) ≤ 0 in the sense of distributions in Ω,

then the function z := max {u,w} satisfies z ∈ X0(Ω), g(z) ∈ L1(Ω) and

‖−∆z + g(z)‖M(Ω) ≤ ‖−∆u+ g(u)‖M(Ω).

This property follows from Proposition 4.1 applied to −u, −w and g̃(t) = −g(−t).
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5. PROOFS OF THEOREMS 2 AND 3

Theorems 2 and 3 can be deduced from the following statement:

Proposition 5.1. Let w ∈ X(Ω) be a nonnegative function such that g(w) ∈

L1(Ω) and

−∆w + g(w) ≥ 0 in the sense of distributions in Ω.

If ud ≤ w almost everywhere in Ω, then u∗ ≤ w almost everywhere in Ω.

Indeed, if a is a nonnegative number such that ud ≤ a, then we have u∗ ≤ a.

Similarly, if b is a nonpositive number such that ud ≥ b, then u∗ ≥ b. Hence, when

the desired state ud is nonnegative, we have that u∗ is also nonnegative, which is

precisely the statement of Theorem 2. One also deduces Theorem 3 when ud is

bounded by taking a = ‖ud‖L∞(Ω) and b = −‖ud‖L∞(Ω). We are thus left with

the

Proof of Proposition 5.1. By Proposition 4.1, the function v := min {u∗, w} satis-

fies v ∈ X0(Ω), g(v) ∈ L1(Ω) and

‖−∆v + g(v)‖M(Ω) ≤ ‖−∆u∗ + g(u∗)‖M(Ω).

Observe that v solves (1.1) with datum µ = −∆v + g(v); whence

F (−∆v + g(v)) = ‖v − ud‖Lp(Ω) + α‖−∆v + g(v)‖M(Ω).

Since ud ≤ w almost everywhere in Ω, one has

‖v − ud‖Lp(Ω) ≤ ‖u∗ − ud‖Lp(Ω).

Hence

F (−∆v + g(v)) ≤ F (µ∗).

Since µ∗ minimizes F , equality must hold and one then deduces that

‖v − ud‖Lp(Ω) = ‖u∗ − ud‖Lp(Ω).

By assumption, we have |w− ud| < |u∗ − ud| almost everywhere in {u∗ > w}. It

then follows from the equality above that {u∗ > w} must have Lebesgue measure

zero. Thus, u∗ ≤ w almost everywhere in Ω, and the proof is complete. �

6. REGULARIZATION OF THE IDEAL STATE AND STABILITY ANALYSIS

Throughout this section, we assume for convenience that ud ∈ Lp(Ω). We

begin by studying the convergence of optimal states u∗ as the control parameter α

converges to 0. As we shall see, such a consideration allows one to approximate

ud by solutions of (1.1) in the Lp-scale. The use of the cost functional F can thus

be seen as a penalization strategy aimed at obtaining a new function u∗ close to ud

with, hopefully, better properties.
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Proposition 6.1. Assume that 1 ≤ p < ∞ and ud ∈ Lp(Ω). Given a sequence

of positive numbers (αn)n∈N converging to 0, let Fαn be the cost functional with

control parameter αn, let µ∗
n be a minimizer of Fαn and let u∗n be the optimal state

associated to µ∗
n. Then, we have

(i) (u∗n)n∈N converges to ud in Lp(Ω);

(ii) (µ∗
n)n∈N is bounded in M(Ω) if and only if ud solves (1.1) with some datum

µ#.

Proof. Since p < ∞ and ud ∈ Lp(Ω), we have

lim
n→∞

inf
µ∈M(Ω)

Fαn(µ) = 0. (6.1)

Indeed, as µ∗
n minimizes Fαn , for every ϕ ∈ C∞

c (Ω), we have

Fαn(µ
∗
n) ≤ Fαn(−∆ϕ+ g(ϕ)) = ‖ϕ− ud‖Lp(Ω) + αn‖−∆ϕ+ g(ϕ)‖M(Ω).

Letting n tend to infinity, we obtain

lim sup
n→∞

Fαn(µ
∗
n) ≤ ‖ϕ− ud‖Lp(Ω).

Since p < ∞, by density of C∞
c (Ω) in Lp(Ω), the left-hand side must vanish.

Hence (6.1) holds. In particular, the sequence (un)n∈N satisfies Property (i).

For the second part of the proposition, first assume that the sequence (µ∗
n)n∈N

is bounded in M(Ω). Taking a subsequence if necessary, we may assume that

(µ∗
n)n∈N has a reduced limit µ#. By definition of the reduced limit and Property (i),

‖u# − ud‖Lp(Ω) = 0;

whence ud satisfies (1.1) with datum µ#. This proves the direct implication in

Property (ii). The reverse implication readily follows from

‖µ∗
n‖M(Ω) ≤

Fαn(µ
∗
n)

αn
≤

Fαn(−∆ud + g(ud))

αn
= ‖−∆ud + g(ud)‖M(Ω).

This concludes the proof of the proposition. �

Remark 6.2. Proposition 6.1 is false when p = ∞ for an arbitrary ud ∈ L∞(Ω).

Indeed, observe that for each n ∈ N the precise representative ûn of un is a quasi-

continuous function with respect to the Newtonian or (∆, L1) capacity (see p. 14).

If (un)n∈N converges to ud in L∞(Ω), then ud must be equal almost everywhere

to the quasi-continuous function lim
n→∞

ûn. However, such a property does not hold

for an arbitrary function in L∞(Ω).

We now focus on the stability of (1.2) with respect to the ideal state ud. More

precisely, we prove

Proposition 6.3. Assume that 1 ≤ p ≤ ∞ and ud ∈ Lp(Ω). Given a sequence

(ud,n)n∈N of functions in Lp(Ω) converging strongly to ud in Lp(Ω), let Fud,n
be

the cost functional with ideal state ud,n, let µ∗
n be a minimizer of Fud,n

and let u∗n
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be the optimal state associated to µ∗
n. If the sequence (µ∗

n)n∈N has a reduced limit

µ#, then µ# is a solution of (1.2).

Proof. The triangle inequality implies that, for every n ∈ N,

Fud
(µ∗

n) ≤ Fud,n
(µ∗

n) + ‖ud,n − ud‖Lp(Ω).

Let µ∗ be a minimizer of Fud
with associated state u∗. Since µ∗

n minimizes Fud,n
,

we deduce from the previous inequality that

Fud
(µ∗

n) ≤ Fud,n
(µ∗) + ‖ud,n − ud‖Lp(Ω).

Since (µ∗
n)n∈N has reduced limit µ#, the sequence (u∗n)n∈N converges strongly in

L1(Ω) to some function u# which is the unique solution of (1.1) corresponding

to µ#. It then follows from the lower semicontinuity of Fud
with respect to the

reduced limit (see the proof of Theorem 1) that

Fud
(µ#) ≤ lim inf

n→∞
Fud

(µ∗
n) ≤ Fud

(µ∗).

This implies that µ# is a minimizer of Fud
. �

In Proposition 6.3, the requirement that (µ∗
n)n∈N has a reduced limit is not re-

strictive since this is true up to the extraction of a subsequence. Indeed, since µ∗
n

minimizes Fud,n
,

‖µ∗
n‖M(Ω) ≤

‖ud,n‖Lp(Ω)

α
.

The assumption that (ud,n)n∈N converges strongly in Lp(Ω) thus implies that

(µ∗
n)n∈N is bounded in M(Ω) and one can extract a subsequence having a reduced

limit.

7. STUDY OF THE CONCENTRATED PART OF µ∗

In this section, we assume that ud ∈ L1(Ω) and ∆ud ∈ M(Ω). The latter

property means that there exists a finite measure ν on Ω such that

∆ud = ν in the sense of distributions in Ω.

We then identify ∆ud with ν. Our main goal is to show that every µ ∈ M(Ω) such

that F (µ) < ∞ agrees with −∆ud on every sufficiently small subset of Ω. The

notion of smallness is measured in terms of the following capacity depending on

p > 1: for every compact set K ⊂ Ω, the (∆, Lp′) capacity of K relative to Ω is

defined by

cap(∆,Lp′ )(K; Ω) = inf
{
‖∆ζ‖p

′

Lp′(Ω)
: ζ ∈ C∞

0 (Ω) is nonnegative and ζ > 1 in K
}
,

where p′ is the conjugate exponent of p and C∞
0 (Ω) denotes the space of functions

ζ ∈ C∞(Ω) such that ζ = 0 on ∂Ω.

We then extend the (∆, Lp′) capacity to Borel sets using a standard regularity

procedure: the capacity of an open set U ⊂ Ω is defined as the supremum of the
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capacity of compact sets K ⊂ Ω contained in U , and the capacity of a Borel set

A ⊂ Ω is defined as the infimum of the capacity of open sets U ⊂ Ω containing A.

When 1 < p < ∞, one deduces from the Caldéron–Zygmund Lp′ estimates [14,

Corollary 9.10] that the (∆, Lp′) capacity vanishes on the same sets as the Sobolev

(or Bessel) W 2,p′ capacity. More precisely, for every Borel set A ⊂ Ω, one has

cap(∆,Lp′)(A; Ω) = 0 if and only if capW 2,p′ (A) = 0. (7.1)

In the case where p = ∞, the same property holds with respect to the W 1,2 (or

Newtonian) capacity; see [6, Theorem 4.E.1].

The space C∞
0 (Ω) provides an alternative formulation of the concept of solution

of (1.1). Indeed, one shows that u is a solution of (1.1) with datum µ ∈ M(Ω) if

and only if u ∈ L1(Ω), g(u) ∈ L1(Ω) and, for every ζ ∈ C∞
0 (Ω),

−

∫

Ω
u∆ζ +

∫

Ω
g(u)ζ =

∫

Ω
ζ dµ ;

see e.g. [20, Proposition 6.3]. This latter formulation of (1.1) has been introduced

by Littman, Stampacchia and Weinberger [16, Definition 5.1] and implicitly en-

codes the zero boundary condition.

In the case where the ideal state ud belongs to Lp(Ω), every solution of (1.1)

with datum µ ∈ M(Ω) such that F (µ) < ∞ also belongs to Lp(Ω). This implies

that the measure µ is diffuse with respect to the (∆, Lp′) capacity, where by diffuse

we mean that for every Borel set A ⊂ Ω such that cap(∆,Lp′)(A; Ω) = 0, we

have µ(A) = 0. When ud 6∈ Lp(Ω), a concentrated part might appear. Such a

phenomenon can be quantified by the main result of this section:

Proposition 7.1. Assume that N
N−2 ≤ p ≤ ∞ and ∆ud ∈ M(Ω). If µ ∈ M(Ω) is

such that F (µ) < ∞, then

µc = (−∆ud)c,

where the subscript c denotes the concentrated part of the measure with respect to

the (∆, Lp′) capacity. In particular, µ∗
c is uniquely determined in terms of ∆ud.

We recall that a measure ν ∈ M(Ω) is concentrated with respect to the (∆, Lp′)

capacity if there exists a Borel set F ⊂ Ω such that cap(∆,Lp′)(F ; Ω) = 0 and

|ν|(Ω \ F ) = 0.

By a counterpart of the Lebesgue decomposition theorem involving capacities,

each finite Borel measure has a unique decomposition as a sum of diffuse and

concentrated measures; see [18; 20, Proposition 14.12].

Proof of Proposition 7.1. Let u be the unique solution of (1.1) with datum µ. Since

F (µ) < ∞, the function u−ud belongs to Lp(Ω). We then deduce from the Hölder

inequality that, for every ϕ ∈ C∞
c (Ω), the following estimate holds:

∣∣∣∣
∫

Ω
ϕ∆(u− ud)

∣∣∣∣ =
∣∣∣∣
∫

Ω
(u− ud)∆ϕ

∣∣∣∣ ≤ ‖u− ud‖Lp(Ω)‖∆ϕ‖Lp′(Ω). (7.2)
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We show that the finite measure ∆(u− ud) is diffuse with respect to the (∆, Lp′)

capacity. Indeed, let K ⊂ Ω be a compact set such that cap(∆,Lp′ )(K; Ω) = 0.

Take a sequence (ϕn)n∈N in C∞
c (Ω) such that

(a) (ϕn)n∈N converges pointwise to the characteristic function χK ;

(b) (ϕn)n∈N is bounded in L∞(Ω);

(c) (∆ϕn)n∈N converges to 0 in Lp′(Ω);

see [21, Proposition 3.1]. Applying estimate (7.2) to the sequence (ϕn)n∈N and

letting n tend to infinity, we deduce from the Dominated convergence theorem that

∆(u− ud)(K) =

∫

K
∆(u− ud) = 0.

Hence

∆u(K) = ∆ud(K).

Since K has Lebesgue measure zero, one also has
∫

K
g(u) = 0.

On the other hand, we have

−∆u+ g(u) = µ in the sense of measures on Ω.

Hence

µ(K) = −∆u(K) = −∆ud(K).

We have thus proved that

µc = (−∆ud)c

on every compact subset of Ω. This equality also holds on every Borel subset of Ω

by inner regularity. The proof of the proposition is complete. �

We also have the following property without restriction on the exponent p:

Proposition 7.2. Let v ∈ X(Ω). If |ud| ≤ v almost everywhere in Ω, then

|µ∗|c ≤ |−∆v|c,

where the subscript c denotes the concentrated part of the measure with respect to

the (∆, L1) capacity.

The proof of Proposition 7.2 relies on several ingredients. The first one is the

following weak maximum principle: if u ∈ L1(Ω) is such that

−

∫

Ω
u∆ζ ≥ 0,

for every nonnegative function ζ ∈ C∞
0 (Ω), then u ≥ 0 almost everywhere in Ω;

see [20, Proposition 6.1]. The second ingredient is an analogue of Proposition 5.1
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for nonnegative superharmonic functions. More precisely, if w ∈ W 1,1(Ω) is a

nonnegative function such that ∆w ∈ M(Ω) and

−∆w ≥ 0 in the sense of distributions in Ω,

and if ud ≤ w almost everywhere in Ω, then u∗ ≤ w almost everywhere in Ω.

This result also has a natural counterpart for nonpositive subharmonic functions

(cf. Remark 4.3). The third and last ingredient is the inverse maximum princi-

ple [13, Theorem 3]: if u ∈ L1(Ω) is such that ∆u ∈ M(Ω) and u ≥ 0 almost

everywhere in Ω, then the concentrated part of −∆u with respect to the (∆, L1)

capacity satisfies

(−∆u)c ≥ 0;

see also [20, Proposition 6.13].

Proof of Proposition 7.2. The unique solution w of the linear Dirichlet problem
{
−∆w = (−∆v)+ in Ω,

w = 0 on ∂Ω.

satisfies

−

∫

Ω
(w − v)∆ζ ≥ 0,

for every nonnegative function ζ ∈ C∞
0 (Ω). It thus follows from the weak maxi-

mum principle that v ≤ w almost everywhere in Ω. Since ud ≤ v almost every-

where in Ω, we deduce that u∗ ≤ w almost everywhere in Ω (cf. Proposition 5.1).

The inverse maximum principle then implies that

(−∆u∗)c ≤ (−∆w)c;

whence

µ∗
c ≤ (−∆w)c = (−∆v)+c ≤ |−∆v|c.

The same argument as above applied to the unique solution of the linear Dirichlet

problem {
−∆w = −(−∆v)− in Ω,

w = 0 on ∂Ω,

yields the estimate

−µ∗
c ≤ (−∆v)− ≤ |−∆v|c.

Combining the last two inequalities, we obtain the conclusion. �

As a direct consequence of Proposition 7.2, we see that if ud ∈ L∞(Ω), then

µ∗ is diffuse with respect to the (∆, L1) capacity; see [11, Theorem 5.1] in the

subcritical case. The same conclusion holds when ud ∈ X(Ω) and ∇ud ∈ L2(Ω),

since in this case we have ∆ud ∈ (W 1,2
0 (Ω))′ and it is known that measures in this

dual space are diffuse; see [15, Proposition 1].
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8. OPTIMAL CONTROLS WHICH ARE NOT SUMMABLE FUNCTIONS

Our goal in this section is to show that solutions of (1.2) need not be in L1(Ω).

For this purpose, we rely on Proposition 7.1 above and we assume that N
N−2 ≤ p ≤

∞. We begin by justifying the example given in the introduction, namely

Proposition 8.1. Assume that N ≥ 3, N
N−2 ≤ p < ∞ and g satisfies

|g(t)| ≤ C(|t|q + 1)

for some constant C > 0 and 1 ≤ q < p. Then there exists ud ∈ Lq(Ω) such that

the cost functional F with desired state ud satisfies

F 6≡ ∞ in M(Ω) and F ≡ ∞ in L1(Ω).

In particular, the Lavrentiev phenomenon occurs:

inf
µ∈M(Ω)

F (µ) < inf
µ∈L1(Ω)

F (µ).

One of the main ingredients in the proof of Proposition 8.1 is the method of

sub and supersolutions: if (1.1) with datum µ ∈ M(Ω) has a subsolution u and a

supersolution u such that u ≤ u almost everywhere in Ω, then (1.1) with datum

µ has a unique solution u which satisfies u ≤ u ≤ u almost everywhere in Ω;

see [20, Proposition 20.5]. By a supersolution of (1.1) with datum µ ∈ M(Ω), we

mean a function u ∈ W 1,1
0 (Ω) such that g(u) ∈ L1(Ω) and

−∆u+ g(u) ≥ µ in the sense of distributions in Ω.

Similarly, one also defines a subsolution of (1.1).

Another ingredient involved in the proof of Proposition 8.1 is the connection

between Bessel capacities and Hausdorff measures. More precisely, if K ⊂ Ω is a

compact set such that HN−d(K) < ∞, where 2 < d ≤ N , then capW 2,s(K) = 0

for every 1 < s ≤ d/2; see [1, Theorem 5.1.9]. The converse is not true, but if

capW 2,s(K) = 0 for 1 < s ≤ N/2, then Hα(K) = 0 for every α > N − 2s;

see [1, Theorem 5.1.13]. By virtue of (7.1), the same properties hold with respect

to the (∆, Ls) capacity.

Proof of Proposition 8.1. Assume that q ≥ N
N−2 ; the case q < N

N−2 will be ex-

plained afterwards. Let K ⊂ Ω be a Cantor set such that

0 < HN−2p′(K) < ∞. (8.1)

Since p′ < q′, we have cap(∆,Lp′ )(K; Ω) = 0 and cap(∆,Lq′)(K; Ω) > 0. Using

the Riesz representation theorem and the Hahn–Banach theorem, one shows as

in the proof of Proposition A.17 in [20] that there exists a nonnegative finite Borel

measure µ supported in K such that µ(K) = 1 and, for every nonnegative function

ϕ ∈ C∞
c (Ω),

0 ≤

∫

Ω
ϕdµ ≤ C1‖∆ϕ‖Lq′ (Ω).
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This estimate implies that µ is a diffuse measure with respect to the (∆, Lq′) ca-

pacity; see [21, Proposition 3.1]. Since µ has compact support, one also has, for

every ζ ∈ C∞
0 (Ω), ∣∣∣∣

∫

Ω
ζ dµ

∣∣∣∣ ≤ C2‖∆ζ‖Lq′ (Ω). (8.2)

Indeed, it suffices to apply the previous estimate with ϕ = ζφ, where φ ∈ C∞
c (Ω)

is some fixed function such that φ = 1 in K .

Let u be the unique solution of the linear Dirichlet problem
{
−∆u = µ in Ω,

u = 0 on ∂Ω.

By (8.2) we have ∣∣∣∣
∫

Ω
u∆ζ

∣∣∣∣ ≤ C3‖∆ζ‖Lq′(Ω).

We then deduce from the Riesz representation theorem that u ∈ Lq(Ω), and then

g(u) ∈ L1(Ω). Since µ is a nonnegative measure, the weak maximum principle

implies that u ≥ 0 almost everywhere in Ω; see [20, Proposition 6.1]. Thus, u is a

supersolution of (1.1) with datum µ. Since 0 is a subsolution of the same problem,

it follows from the method of sub and supersolutions that (1.1) with datum µ has a

solution ud.

Let F be the cost functional associated to this desired state ud and let µ∗ be an

optimal control. In particular,

F (µ∗) ≤ F (µ) = α‖µ‖M(Ω) < ∞.

By Proposition 7.1, we then have

(µ∗)c = (−∆ud)c = µc 6= 0;

whence µ∗ is not diffuse with respect to the (∆, Lp′) capacity. In particular, µ∗ 6∈

L1(Ω). The same argument shows that if ν ∈ M(Ω) is such that F (ν) < ∞, then

νc = µc 6= 0. Hence, F ≡ ∞ in L1(Ω). The proof of the proposition is complete

when q ≥ N
N−2 .

In the case where 1 ≤ q < N
N−2 , every nonempty set has positive (∆, Lq′)

capacity. Since (1.1) is solvable for every datum µ ∈ M(Ω), it thus suffices to

take ud as the unique solution of (1.1) corresponding to µ = HN−2p′⌊K , where K

is any compact subset of Ω that satisfies (8.1). The proof is thus complete. �

When p = ∞ and g is an arbitrary nondecreasing continuous function, there

always exists an ideal state ud which depends on g such that µ∗ 6∈ L1(Ω). More

precisely, we have

Proposition 8.2. Assume that p = ∞. Then there exists ud ∈ L1(Ω) such that the

cost functional F with desired state ud satisfies the conclusion of Proposition 8.1.
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Proof. Let µ ∈ M(Ω) be a nonnegative good measure which is not diffuse with

respect to the (∆, L1) capacity; see [19, Theorem 1]. Let ud be the unique solution

of (1.1) corresponding to µ and denote by F the cost functional with desired state

ud. It follows from Proposition 7.1 that, for every ν ∈ M(Ω) such that F (ν) < ∞,

we have

νc = (−∆ud)c = µc,

where the subscript c denotes the concentrated part of the measure with respect

to the (∆, L1) capacity. Since µ is not diffuse, we have νc 6≡ 0. In particular,

ν 6∈ L1(Ω). Hence, F ≡ ∞ in L1(Ω). The proof is complete. �

9. LACK OF CONVEXITY AND LOWER SEMICONTINUITY

In this section, we show that the cost functional F need not be convex or lower

semicontinuous with respect to the total variation norm. For this purpose, we con-

sider polynomial nonlinearities.

Proposition 9.1. Assume that 1 ≤ p < ∞ and g(t) = |t|p−1t. Let ud be the unique

solution of (1.1) corresponding to some positive measure µ ∈ M(Ω) and let F be

the cost functional with desired state ud. Then F is not convex.

By a positive measure, we mean that µ ≥ 0 and µ 6≡ 0. The proof of

Proposition 9.1 relies on the fact that the set of nonnegative good measures for

g as above is a convex cone; see [6, Proposition 4.3].

Proof. Let θ > 1. To prove that F is not convex, if suffices to show that

F (µ) + F (θµ)

2
< F

(
1 + θ

2
µ

)
. (9.1)

On the one hand,
∥∥∥∥
1 + θ

2
µ

∥∥∥∥
M(Ω)

=
‖µ‖M(Ω) + ‖θµ‖M(Ω)

2
. (9.2)

On the other hand—denoting by v and w the solutions of (1.1) with data 1+θ
2 µ and

θµ, respectively—the convexity of g on [0,∞[ implies that ud+w
2 is a subsolution

of (1.1) with datum 1+θ
2 µ. It then follows from the weak maximum principle that

0 ≤
ud + w

2
≤ v almost everywhere in Ω.

By strict convexity of g, equality cannot hold almost everywhere. Since

0 ≤
w − ud

2
≤ v − ud almost everywhere in Ω,

and equality fails on a set of positive measure, we have

‖w − ud‖Lp(Ω)

2
< ‖v − ud‖Lp(Ω). (9.3)

Combining (9.2) and (9.3) we obtain (9.1), from which the conclusion follows. �
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We now develop the example given in the introduction. Namely, we prove

Proposition 9.2. Assume that ud ∈ Lp(Ω) and g(t) = |t|q−1t for some q ≥
N

N−2 . If 1 ≤ p ≤ q, then F is not lower semicontinuous with respect to weak*

convergence in M(Ω).

Proof. Let a ∈ Ω, let (ρn)n∈N∗
be a sequence of translated mollifiers in C∞

c (RN )

such that suppρn ⊂ B(a; 1/n) and let un be the unique solution of the Dirichlet

problem
{
−∆un + |un|

q−1un = ρn in Ω,

un = 0 on ∂Ω.

One shows that the sequence (ρn)n∈N∗
converges weakly* to the Dirac mass δa in

M(Ω). However, in dimension N ≥ 3, the Dirichlet problem above with datum

δa has no solution if q ≥ N
N−2 ; see [3, Remark A.4]. Hence F (δa) = ∞. Our goal

is to show that

lim sup
n→∞

F (ρn) < ∞. (9.4)

On the one hand, it follows from [4, Theorem 4] that the sequence (un)n∈N∗
con-

verges strongly to 0 in L1(Ω). On the other hand, the absorption estimate (2.2)

implies that

‖un‖
q
Lq(Ω)

= ‖g(un)‖L1(Ω) ≤ ‖ρn‖L1(Ω) ≤ 1.

Since p ≤ q and Ω is bounded, we deduce from Hölder’s inequality that

F (ρn) ≤ ‖un‖Lp(Ω) + ‖ud‖Lp(Ω) + α‖ρn‖M(Ω) ≤ |Ω|
1
p
− 1

q + ‖ud‖Lp(Ω) + α.

This yields (9.4) and the conclusion follows. �

Using the classical interpolation inequality in Lebesgue spaces, one can show

that for p < q,

lim
n→∞

F (ρn) = ‖ud‖Lp(Ω) + α.

The case p = q can be handled with the Brezis–Lieb lemma [5; 23, Theorem 4.2.7],

which gives

lim
n→∞

F (ρn) =
(
‖ud‖Lp(Ω) + 1

)1/p
+ α.

In the case where p > q ≥ N
N−2 , the sequence (un)n∈N∗

cannot be bounded

in Lp(Ω). Indeed, if that were the case, then it would follow from the classical

interpolation inequality in Lebesgue spaces that the sequence (g(un))n∈N∗
con-

verges strongly to 0 in L1(Ω), contradicting the fact that such a sequence converges

weakly* to δa in M(Ω).
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10. REMARK ON THE LAVRENTIEV PHENOMENON

In contrast with Proposition 8.1 above, we show that the Lavrentiev phenome-

non cannot occur if g(t) = |t|p−1t and ud ∈ Lp(Ω) for some 1 ≤ p < ∞. This is

the content of

Proposition 10.1. Assume that 1 ≤ p < ∞ and g(t) = |t|p−1t. If ud ∈ Lp(Ω),

then

inf
µ∈M(Ω)

F (µ) = inf
µ∈L1(Ω)

F (µ).

In dimension N ≥ 3, we rely on a strong approximation property of diffuse

measures based on the Hahn–Banach theorem [21, Proposition 2.1]. The proof in

dimension N = 2 is simpler due to the fact that solutions of (1.1) are continuously

embedded in Lq(Ω) for every 1 ≤ q < ∞.

Proof. We assume that N ≥ 3. The case N = 2 will be explained afterward.

Let µ ∈ M(Ω) be such that F (µ) < ∞ and let u be the unique solution of (1.1)

corresponding to µ. We shall prove the existence of a sequence (µn)n∈N in L1(Ω)

satisfying

lim
n→∞

F (µn) = F (µ). (10.1)

For this purpose, we first assume that µ is a nonnegative measure compactly sup-

ported in Ω such that ∣∣∣∣
∫

Ω
ζ dµ

∣∣∣∣ ≤ C‖∆ζ‖Lp′ (Ω), (10.2)

for every ζ ∈ C∞
0 (Ω). In this case, we show that the sequence (ρn∗µ)n∈N∗

satisfies

(10.1). Let us denote by un the unique solution of (1.1) with datum µn. Taking

a subsequence if necessary, we may assume that (un)n∈N∗ converges strongly to

some function v in L1(Ω). Since

lim
n→∞

‖ρn ∗ µ‖L1(Ω) = ‖µ‖M(Ω), (10.3)

we are left to prove that (un)n∈N∗
converges strongly to u in Lp(Ω). To this end,

we extend µ by zero in R
N \Ω and we let Nµ : RN → [0,∞] denote the Newtonian

potential generated by µ: for every x ∈ R
N ,

Nµ(x) =
1

(N − 2)σN

∫

Ω

dµ(y)

|x− y|N−2
,

where σN is the surface measure of the unit sphere in R
N . One shows that Nµ

belongs to L1(Ω) and satisfies the Poisson equation

−∆Nµ = µ in the sense of distributions in R
N ;

see e.g. [20, Example 2.12]. We first claim that the convolution ρn ∗ Nµ is a

supersolution of (1.1) with datum ρn ∗ µ. On the one hand, Fubini’s theorem

implies that

−∆(ρn ∗Nµ) = ρn ∗ µ in R
N .
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Since ρn ∗Nµ ≥ 0 on ∂Ω, by the Divergence theorem we have

−

∫

Ω
(ρn ∗ v)∆ζ ≥

∫

Ω
ζ(ρn ∗ µ),

for every nonnegative function ζ ∈ C∞
0 (Ω). Hence

−

∫

Ω
(ρn ∗Nµ)∆ζ +

∫

Ω
g(ρn ∗Nµ)ζ ≥

∫

Ω
ζ(ρn ∗ µ).

By the weak maximum principle, we thus have

0 ≤ un ≤ ρn ∗Nµ almost everywhere in Ω.

We now claim that Nµ ∈ Lp(Ω). For this purpose, let w be the unique solution of

the Dirichlet problem {
−∆w = µ in Ω,

w = 0 on ∂Ω.

Using the Riesz representation theorem, one deduces from estimate (10.2) that

w ∈ Lp(Ω). Since

−∆(Nµ−w) = 0 in the sense of distributions in Ω,

the function Nµ − w is harmonic in Ω, which implies that Nµ ∈ Lp
loc(Ω). Since

Nµ is harmonic in R
N \ suppµ, we thus have Nµ ∈ Lp(Ω). Taking a further sub-

sequence if needed, we may assume that the sequence (un)n∈N∗
converges almost

everywhere to v in Ω. We then deduce from the Dominated convergence theorem

that (un)n∈N∗
converges strongly to v in Lp(Ω). Since (g(un))n∈N∗

converges

strongly to g(v) is L1(Ω), it follows by uniqueness that v = u.

We now assume that µ is a signed measure such that |µ| satisfies (10.2). Ap-

plying the previous case to the positive and negative parts of µ, one shows that

N|µ| ∈ Lp(Ω) and

0 ≤ |un| ≤ ρn ∗N|µ| almost everywhere in Ω.

Then, passing to a subsequence if necessary, (10.1) follows from (10.3) and the

Dominated convergence theorem.

In the case of an arbritrary measure µ ∈ M(Ω) such that F (µ) < ∞, we rely

on a characterization of good measures for polynomial nonlinearities due to Baras

and Pierre [2]. More precisely, we have that good measures must be diffuse with

respect to the (∆, Lp′) capacity; see [2, Théorème 4.1]. In particular, µ is diffuse

and there exists a sequence (µn)n∈N of compactly supported measures in M(Ω)

such that |µn| satisfies (10.2) and

lim
n→∞

‖µn − µ‖M(Ω) = 0;

see [21, Proposition 2.1]. Let un denote the unique solution of (1.1) with datum

µn. One shows that the sequences (un)n∈N and (g(un))n∈N converge strongly in
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L1(Ω) to the functions u and g(u), respectively; see [6, Proposition 4.2]. Thus,

(un)n∈N converges strongly to u in Lp(Ω), which implies that

lim
n→∞

F (µn) = F (µ).

For every j ∈ N∗ and every k ∈ N, we have

|F (ρj ∗ µk)− F (µ)| ≤ |F (ρj ∗ µk)− F (µk)|+ |F (uk)− F (µ)|.

Let (nk)k∈N be an increasing sequence of indices such that, for every k ∈ N∗,

|F (ρnk
∗ µk)− F (µk)| ≤ 1/k.

Then the sequence (ρnk
∗ µk)k∈N∗

is contained in L1(Ω) and satisfies (10.1). The

proof is complete when N ≥ 3.

In the case where N = 2, the solution u of (1.1) corresponding to µ ∈ M(Ω)

belongs to Lq(Ω) for every 1 ≤ q < ∞ and satisfies the estimate

‖v‖Lq(Ω) ≤ C‖ν‖M(Ω),

for some constant C > 0 depending on q and Ω. Hence, letting un denote the

unique solution of (1.1) with datum ρn ∗ µ, taking a subsequence if necessary, we

directly deduced from the interpolation inequality in Lebesgue spaces and from the

uniqueness of u that (un)n∈N∗
converges strongly to u in Lp(Ω). From this, (10.1)

follows and the proof of the proposition when N = 2 is complete. �
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