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SECOND-ORDER KKT OPTIMALITY CONDITIONS FOR

MULTI-OBJECTIVE OPTIMAL CONTROL PROBLEMS

BUI TRONG KIEN1,2, NGUYEN VAN TUYEN3, AND JEN-CHIH YAO4

Abstract. In this paper, we study second-order necessary and sufficient optimality condi-

tions of Karush–Kuhn–Tucker-type for locally optimal solutions in the sense of Pareto to a

class of multi-objective optimal control problems with mixed pointwise constraint. To deal

with the problems, we first derive second-order optimality conditions for abstract multi-

objective optimal control problems which satisfy the Robinson constraint qualification. We

then apply the obtained results to our concrete problems. The proofs of obtained results

are direct, self-contained without using scalarization techniques.

1. Introduction

Let Lj : [0, 1] × R
n × R

l → R with j = 1, 2, . . . , m, ϕ : [0, 1] × R
n × R

l → R
n, and

g : [0, 1]×R
n ×R

l → R be given functions. We consider the multi-objective optimal control

problem of finding a control vector u ∈ L∞([0, 1],Rl) and the corresponding state x ∈

C([0, 1],Rn) which solve

MinRm

+
I(x, u) (1)

s.t. x(t) = x0 +

∫ t

0

ϕ(s, x(s), u(s))ds for a.e. t ∈ [0, 1], (2)

g(t, x(t), u(t)) ≤ 0 for a.e. t ∈ [0, 1]. (3)

Here x0 is a given vector in R
n and the multi-objective function I is given by

I(x, u) = (I1(x, u), I2(x, u), . . . , Im(x, u)),

where

Ij(x, u) :=

∫ 1

0

Lj(t, x(t), u(t))dt.

We denote by (MCP) the problem (1)–(3) and by Φ its feasible set, that is, Φ consists of

couples (x, u) ∈ C([0, 1],Rn)× L∞([0, 1],Rl) which satisfy constraints (2)–(3).
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The multi-objective optimal control problems are important in mechanics and economy.

For example, when we want to minimize energy and time of a system, we need to use two-

objective optimal control which has a form like (1)–(3) (see for instance [14]). Recently,

problem (MCP) has been studied by several mathematicians. For papers which have a close

connection to the present work, we refer the readers to [2, 3, 7, 14, 15, 17, 19, 20, 21, 27]

and the references therein. In these papers, the authors mainly studied numerical meth-

ods and first-order necessary optimality conditions for multi-objective optimal control prob-

lems. However, to the best of our knowledge, so far there have been no papers investigating

second-order optimality conditions for multi-objective optimal control problems. The study

of second-order optimality conditions for optimization problems as well as for multi-objective

optimal control problems is a fundamental topic in optimization theory. The second-order

optimality conditions play an important role in solution stability and numerical methods of

finding optimal solutions.

In this paper, we will focus on deriving second-order necessary optimality conditions and

second-order sufficient optimality conditions of Karush–Kuhn–Tucker (KKT) type for the

multi-objective optimal control problem (MCP). In order to establish second-order KKT

optimality conditions for the (MCP), we first derive second-order optimality conditions for

abstract multi-objective optimal control problems which satisfy the Robinson constraint

qualification. We then apply the obtained results to our concrete problem.

In contrast with multi-objective optimal control problems, there have been some papers

dealing with second-order KKT optimality conditions for vector optimization problems re-

cently. For papers of this topic, we refer the reader to [6, 10, 11, 18] and references given

therein. In [6, 18], the second-order KKT optimality conditions were derived by scalariza-

tion method via the so-called oriented distance function which was used by Ginchev et al.

in [8] for the first time. However, this approach has also some certain limits because the

oriented distance function is often nonsmooth. In [10, 11], by using Motzkin’s theorem of the

alternative, Jiménez et al. presented some second-order KKT optimality conditions for vec-

tor optimization problems under suitable constraint qualification conditions. Although the

constraint qualification conditions used in [10, 11] are weaker than the Robinson constraint

qualification, the “sigma” terms in the obtained second-order conditions do not vanish. In

addition, those results can not apply to the (MCP) directly as the Robinson constraint

qualification does not hold for the (MCP).

In the present paper, we derive second-order KKT optimality conditions for vector op-

timization directly via separation theorems. We then establish second-order KKT condi-

tions without sigma terms for an abstract multi-objective optimal control problem under

the Robinson constraint qualification. It is worth pointing out that our method is natural
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and intrinsic. The obtained results approach a theory of no-gap second-order optimality

conditions for multi-objective optimal control problems.

The paper is organized as follows. In Section 2, we set up notation and terminology, and

state main results. Section 3 is intended to derive second-order KKT optimality conditions

for a class of vector optimization problems. In Section 4, we establish second-order KKT

necessary optimality conditions for an abstract multi-objective optimal control problem,

which is based on the obtained result of Section 3. The proofs of the main results will be

provided in Section 5. In Section 6, we give some examples to illustrate the main results.

2. Assumptions and statements of the main results

In this section, C([0, 1],Rn) is the Banach space of continuous vector-valued functions

x : [0, 1] → R
n with the norm ‖x‖0 = max

t∈[0,1]
|x(t)| and R

n is the Euclidean space of n-tuples

ξ = (ξ1, . . . , ξn) with the norm |ξ| = (
∑n

i=1 ξ
2
i )

1

2 . For each 1 ≤ p ≤ ∞, Lp([0, 1],Rl) stands

for the Lebesgue spaces with the norms ‖ ·‖p. For convenience, we put X = C([0, 1],Rn) and

U = L∞([0, 1],Rl). In the sequel, L and φ stand for (L1, . . . , Lm) and (ϕ, g), respectively.

Define

Q = {v ∈ L∞ ([0, 1],R) | v(t) ≤ 0, a.e. t ∈ [0, 1]} .

Let us impose the following assumptions on L and φ.

(H1) The function L is a Carathéodory function and φ is a continuous mapping. For a.e.

t ∈ [0, 1], L(t, ·, ·) is of class C2 while φ(t, ·, ·) is of class C2 for all t ∈ [0, 1] . Besides,

for each M > 0, there exist numbers kLM > 0 and kφM > 0 such that

|L(t, x1, u1)− L(t, x2, u2)|+ |∇L(t, x1, u1)−∇L(t, x2, u2)|+

+ |∇2L(t, x1, u1)−∇2L(t, x2, u2)| ≤ kLM(|x1 − x2|+ |u1 − u2|)

for a.e. t ∈ [0, 1] and for all xi ∈ R
n, ui ∈ R

l satisfying |xi| ≤ M , |ui| ≤ M with

i = 1, 2, and

|φ(t, x1, u1)− φ(t, x2, u2)|+ |∇φ(t, x1, u1)−∇φ(t, x2, u2)|+

+
∣

∣∇2φ(t, x1, u1)−∇2φ(t, x2, u2)
∣

∣ ≤ kφM(|x1 − x2|+ |u1 − u2|)

for all t ∈ [0, 1], xi ∈ R
n, ui ∈ R

l satisfying |xi| ≤ M , |ui| ≤ M with i = 1, 2.

Moreover, we require that the functions

L(t, 0, 0), |∇L(t, 0, 0)|,
∣

∣∇2L(t, 0, 0)
∣

∣ , φ(t, 0, 0), |∇φ(t, 0, 0)|,
∣

∣∇2φ(t, 0, 0)
∣

∣

belong to L∞([0, 1],R).
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(H2) Given a couple (x̄, ū) ∈ Φ, there exist i0 ∈ {1, 2, . . . , l} and α > 0 such that

|gui0
(t, x̄(t), ū(t))| ≥ α for a.e. t ∈ [0, 1].

Hereafter, L[t], ϕ[t], g[t], Lx[t], ϕu[t], gu[t] and so on, stand for

L(t, x̄(t), ū(t)), ϕ(t, x̄(t), ū(t)), g(t, x̄(t), ū(t)),

Lx(t, x̄(t), ū(t)), ϕu(t, x̄(t), ū(t)), gu(t, x̄(t), ū(t)), . . .

We denote by R
m
+ the nonnegative orthant of Rm, where m ∈ N := {1, 2, . . .}. The interior

of Rm
+ is denoted by intRm

+ .

Definition 2.1. Assume that z̄ = (x̄, ū) is a feasible point of the (MCP). We say that:

(i) z̄ is a locally weak Pareto solution of the (MCP) if there exists ǫ > 0 such that for

all (x, u) ∈ (B(x̄, ǫ)× B(ū, ǫ)) ∩ Φ, one has

I(x, u)− I(x̄, ū) /∈ −intRm
+ .

(ii) z̄ is a locally Pareto solution of the (MCP) if there exists ǫ > 0 such that for all

(x, u) ∈ (B(x̄, ǫ)×B(ū, ǫ)) ∩ Φ, one has

I(x, u)− I(x̄, ū) /∈ −R
m
+ \ {0}.

Let us denote by C0(z̄) the set of vectors z = (x, u) ∈ C([0, 1],Rn) × L∞([0, 1],Rl) such

that the following conditions hold:

(c1)
∫ 1

0
(Lx[t]x(t) + Lu(t)u(t)) dt ∈ −R

m
+ ;

(c2) x(·) =
∫ (·)

0

(

ϕx[s]x(s) + ϕu[s]u(s)
)

ds;

(c3) gx[·]x+ gu[·]u ∈ cone(Q− g(·, x̄, ū)).

Let C(z̄) be the closure of C0(z̄) in C([0, 1],Rn) × L∞([0, 1],Rl). We call C(z̄) the critical

cone of the (MCP) at z̄. Each vector z ∈ C(z̄) is called a critical direction to the (MCP) at

z̄. It is easily seen that C(z̄) is a closed convex cone containing 0.

The following theorem gives necessary optimality conditions for the (MCP).

Theorem 2.1. Suppose that assumptions (H1) and (H2) are valid and z̄ is a locally weak

Pareto solution of the (MCP). Then, for each z ∈ C(z̄), there exist a vector λ ∈ R
m
+ with

|λ| = 1, an absolutely continuous function p̄ : [0, 1] → R
n and a function θ ∈ L1([0, 1],R)

such that the following conditions are fulfilled:

(i) θ ∈ N(Q, g[·]);

(ii) (the adjoint equation)






˙̄p(t) = −λTLx[t]− ϕx[t]p̄(t)− θ(t)gx[t] a.e. t ∈ [0, 1],

p̄(1) = 0;
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(iii) (the stationary condition in u)

λTLu[t] + p̄Tϕu[t] + θ(t)gu[t] = 0 a.e. t ∈ [0, 1];

(iv) (the non-negative condition)

∫ 1

0

(

m
∑

j=1

λj∇
2Lj [t]z(t), z(t)

)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]z(t), z(t)
)

dt

+

∫ 1

0

(

θ(t)∇2g[t]z(t), z(t)
)

dt ≥ 0.

A point z̄ ∈ Φ satisfying conditions (i)–(iii) of Theorem 2.1 w.r.t (λ, p̄, θ) is called a KKT

point of the (MCP).

In multi-objective optimization problems, the critical cone for second-order sufficient con-

ditions is often required bigger than the one for second-order necessary conditions. Therefore,

we need to enlarge C(z̄) to deal with second-order sufficient conditions. We denote by C′(z̄)

the set of vectors (x, u) ∈ C([0, 1],Rn)×L2([0, 1],Rl) which satisfy the following conditions:

(c′1)
∫ 1

0
(Lx[t]x(t) + Lu[t]u(t)) dt ∈ −R

m
+ ;

(c′2) x(·) =
∫ (·)

0

(

ϕx[s]x(s) + ϕu[s]u(s)
)

ds;

(c′3) gx[t]x(t) + gu[t]u(t) ∈ T ((−∞, 0]; g[t]) for a.e. t ∈ [0, 1].

Obviously, C′(z̄) is a closed convex cone and C(z̄) ⊂ C′(z̄).

We now introduce the concept of locally strong Pareto solution for the multi-objective

optimal control problem (MCP).

Definition 2.2. Let z̄ = (x̄, ū) ∈ Φ be a feasible point of the (MCP). We say that z̄ is

a locally strong Pareto solution of the (MCP) if there exist a number ǫ > 0 and a vector

c ∈ intRm
+ such that for all (x, u) ∈ (BX(x̄, ǫ)× BU(ū, ǫ)) ∩ Φ, one has

I(x, u)− I(x̄, ū)− c‖u− ū‖22 /∈ −R
m
+ \ {0}.

Clearly, every locally strong Pareto solution of the (MCP) is also a locally Pareto solution

of this problem. Note that in Definition 2.2 we use two norms to define locally strong Pareto

solutions. Here BU(ū, ǫ)) is a ball in L∞([0, 1],Rl) while ‖u− ū‖2 is the norm in L2([0, 1],Rl).

The following theorem provides sufficient conditions for locally strong Pareto solutions.

Theorem 2.2. Suppose that assumptions (H1) and (H2) are valid and z̄ ∈ Φ. Suppose that

there exist a vector λ ∈ R
m
+ with |λ| = 1, an absolutely continuous function p̄ : [0, 1] → R

n

and a function θ ∈ L2([0, 1],R) satisfy conditions (i), (ii) and (iii) of Theorem 2.1 and the
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strict second-order condition
∫ 1

0

(

λT∇2Lj [t]z(t), z(t)
)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]z(t), z(t)
)

dt

+

∫ 1

0

(

θ(t)∇2g[t]z(t), z(t)
)

dt > 0 (4)

for all z = (x, u) ∈ C′(z̄) \ {0}. Furthermore, there is a number γ0 > 0 such that

λTLuu[t](ξ, ξ) ≥ γ0|ξ|
2 ∀ξ ∈ R

l. (5)

Then, (x̄, ū) is a locally strong Pareto solution of the (MCP).

3. Abstract multi-objective optimization

Assume that Z and E are Banach spaces with the dual spaces Z∗ and E∗, respectively.

We consider the following multi-objective optimization problem:

MinRm

+
f(z) = (f1(z), . . . , fm(z)) (MP1)

s.t. G(z) ∈ Q,

where f : Z → R
m and G : Z → E are of class C2, and Q is a nonempty closed convex subset

in E. We denote by Σ the feasible set of the (MP1), that is,

Σ = {z ∈ Z | G(z) ∈ Q}.

To derive optimality conditions for the (MP1) we need some concepts of variational analysis.

Let X be a Banach space with the dual X∗, BX and BX(x, r) stand for the closed unit ball

and the closed ball with center x and radius r, respectively. Given a subset A of X , we

denote the interior and the closure of A respectively by intA and A.

Let Ω be a nonempty and closed subset in X and x̄ ∈ Ω. The sets

T ♭(Ω; x̄) :=
{

h ∈ X | ∀tk → 0+, ∃hk → h, x̄+ tkhk ∈ Ω ∀k ∈ N
}

,

T (Ω; x̄) :=
{

h ∈ X | ∃tk → 0+, ∃hk → h, x̄+ tkhk ∈ Ω ∀k ∈ N
}

,

are called the adjacent tangent cone and the contingent cone to Ω at x̄, respectively. It is

well-known that when Ω is convex, then

T ♭(Ω; x̄) = T (Ω; x̄) = Ω(x̄),

where Ω(z̄) is defined as follows

Ω(x̄) := cone (Ω− x̄) = {λ(h− x̄) | h ∈ Ω, λ > 0}.
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Let x̄ ∈ Ω and h ∈ X . The sets

T 2♭(Ω; x̄, h) :=

{

w ∈ X | ∀tk → 0+, ∃wk → w, x̄+ tkh +
1

2
t2kwk ∈ Ω ∀k ∈ N

}

,

T 2(Ω; x̄, h) :=

{

w ∈ X | ∃tk → 0+, ∃wk → w, x̄+ tkh +
1

2
t2kwk ∈ Ω ∀k ∈ N

}

,

are called the second-order adjacent tangent set and the second-order contingent tangent set

to Ω at x̄ in the direction h, respectively. Clearly, T 2♭(Ω; x̄, h) and T 2(Ω; x̄, h) are closed sets

and

T 2♭(Ω; x̄, h) ⊂ T 2(Ω; x̄, h), T 2♭(Ω; x̄, 0) = T ♭(Ω; x̄), T 2(Ω; x̄, 0) = T (Ω; x).

It is noted that if Ω is convex, then so is T 2♭(Ω; x̄, h). However, T 2(Ω; x̄, h) may not be

convex when Ω is convex (see, for example, [1]). In the case that Ω is a convex set, the

normal cone to Ω at x̄ is defined by

N(Ω; x̄) := {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0 ∀x ∈ Ω},

or, equivalently,

N(Ω; x̄) = {x∗ ∈ X∗ | 〈x∗, h〉 ≤ 0 ∀h ∈ T (Ω; x̄)}.

Definition 3.1. We say that z̄ ∈ Σ is a locally weak Pareto solution of the (MP1) if there

exists ǫ > 0 such that for all z ∈ BZ(z̄, ǫ) ∩ Σ, one has f(z)− f(z̄) /∈ −intRm
+ .

We say that the Robinson constraint qualification holds at z̄ ∈ Σ if the following condition

is verified

0 ∈ int [∇G(z̄)(BZ)− (Q−G(z̄)) ∩ BE ] .

According to [25, Theorem 2.1], the Robinson constraint qualification is equivalent to the

following condition:

E = ∇G(z̄)Z − cone(Q−G(z̄)).

When the Robinson constraint qualification holds at z̄, we say z̄ is a regular point of the

(MP1). Hereafter we always assume that z̄ is a feasible regular point of the (MP1).

Let us define the following critical cones

C1(z̄) = {d ∈ Z | ∇f(z̄)d ∈ −R
m
+ ,∇G(z̄)d ∈ T (Q;G(z̄))},

C01(z̄) = {d ∈ Z | ∇f(z̄)d ∈ −R
m
+ ,∇G(z̄)d ∈ cone (Q−G(z̄))},

C1∗(z̄) = C01(z̄).

For each d ∈ C(z̄), put

I(z̄, d) = {i ∈ I | ∇fi(z̄)d = 0},

where I := {1, . . . , m}.
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Lemma 3.1. If z̄ is a locally weak Pareto solution of the (MP1), then

C1(z̄) = {d ∈ Z | ∇f(z̄)d ∈ −R
m
+ \ (−intRm

+),∇G(z̄)d ∈ T (Q;G(z̄))}.

Consequently, the following set

{d ∈ Z | ∇f(z̄)d ∈ −intRm
+ ,∇G(z̄)d ∈ T (Q;G(z̄))}

is empty.

Proof. Thanks to [12, Theorem 3.1], we have

∇G(z̄)−1(T (Q;G(z̄))) = T (G−1(Q); z̄) = T (Σ; z̄).

Take d ∈ C1(z̄), then d ∈ T (Σ; z̄). Hence there exists a sequence {(tk, dk)} converging to

(0+, d) such that z̄ + tkdk ∈ Σ for all k ∈ N. Since z̄ is a locally weak Pareto solution of the

(MP1), we may assume that

f(z̄ + tkdk)− f(z̄) ∈ R
m \ (−intRm

+)

for all k ∈ N. From Mean Value Theorem for differentiable functions, we have

tk∇f(z̄)dk + o(tk) ∈ R
m \ (−intRm

+),

or, equivalently,

∇f(z̄)dk +
o(tk)

tk
∈ R

m \ (−intRm
+ )

for all k ∈ N. Letting k → ∞, by the closedness of Rm \ (−intRm
+ ), we get

∇f(z̄)d ∈ R
m \ (−intRm

+ ).

The proof is complete. �

Lemma 3.2. Let z̄ be a locally weak Pareto solution of the (MP1) and Λ1(z̄) be the set of

normalized Karush–Kuhn–Tucker multipliers of the (MP1) at z̄, that is,

Λ1(z̄) := {(λ, e∗) ∈ R
m
+ × E∗ | 〈λ,∇f(z̄)〉+∇G(z̄)∗e∗ = 0, |λ| = 1, e∗ ∈ N(Q;G(z̄))}.

Then Λ1(z̄) is a nonempty bounded and compact set in R
m × E∗ with respect to topology

τRm × τ(E∗, E), where τ(E∗, E) is the weakly star topology in E∗.

Proof. We first claim that Λ1(z̄) is nonempty. Indeed, put

Ψ = {(∇f1(z̄)d+ r1, . . . ,∇fm(z̄)d+ rm,∇G(z̄)d− v) | d ∈ Z, v ∈ T (Q;G(z̄)), ri ≥ 0, i ∈ I}.

Then, Ψ is a convex subset in R
m×E. By the Robinson constraint qualification, there exists

ρ > 0 such that

BE(0, ρ) ⊂ ∇G(z̄)(BZ)− (Q−G(z̄)) ∩ BE. (6)
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This implies that

BE(0, ρ) ⊂ ∇G(z̄)(BZ)− T (Q;G(z̄)) ∩ BE .

For each i ∈ I, put

αi = ‖∇fi(z̄)‖ = sup
d∈BZ

|∇fi(z̄)d|.

It is easily seen that

(α1,+∞)× . . .× (αm,+∞)× B(0, ρ) ⊂ Ψ.

Thus, Ψ has a nonempty interior. We show that (0, 0) /∈ intΨ. If otherwise, there exist

ǫ1 > 0, . . ., ǫm > 0 such that

(−ǫ1, ǫ1)× . . .× (−ǫm, ǫm)× {0} ⊂ Ψ.

This implies that there exist d ∈ Z, v ∈ T (Q;G(z̄)), and ri ≥ 0, i ∈ I such that






∇fi(z̄)d+ ri < 0, i ∈ I,

∇G(z̄)d− v = 0.

Consequently, the system






∇fi(z̄)d < 0, i ∈ I,

∇G(z̄)d ∈ T (Q;G(z̄)),

has at least one solution d ∈ Z, which contradicts the conclusion of Lemma 3.1. We now

can separate (0, 0) from Ψ by a hyperplane, i.e., there exists a functional (λ, e∗) ∈ (Rm ×

E∗) \ {(0, 0)} such that

m
∑

i=1

λi(∇fi(z̄)d+ ri) + 〈e∗,∇G(z̄)d− v〉 ≥ 0 (7)

for all d ∈ Z, v ∈ T (Q;G(z̄)), ri ≥ 0, i ∈ I. From (7) it follows that λi ≥ 0 for all i ∈ I,

that is, λ ∈ R
m
+ . Putting v = 0 and ri = 0, i ∈ I into (7), we get

(〈λ,∇f(z̄)〉+∇G(z̄)∗e∗)d ≥ 0 ∀d ∈ Z.

Thus, 〈λ,∇f(z̄)〉+∇G(z̄)∗e∗ = 0. Putting this equation and ri = 0, i ∈ I, into (7), one has

e∗(v) ≤ 0 ∀v ∈ T (Q;G(z̄)).

Hence, e∗ ∈ N(Q;G(z̄)). We now show that λ 6= 0. Indeed, if otherwise, then we have

〈e∗,∇G(z̄)d− v〉 ≥ 0 (8)

for all d ∈ Z, v ∈ T (Q;G(z̄)). Again by the Robinson constraint qualification, one has

E = ∇G(z̄)(Z)−Q(G(z̄)).
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This and (8) imply that e∗ = 0, a contradiction. Put (λ̄, ē∗) =
(

λ
|λ|
, e∗

|λ|

)

. Then we have

(λ̄, ē∗) ∈ Λ1(z̄), as required.

We now claim that Λ1(z̄) is bounded. Indeed, fix (λ0, e
∗
0) ∈ Λ1(z̄). Then, for any (λ, e∗)

belonging to Λ1(z̄), we have






〈λ0,∇f(z̄)〉+∇G(z̄)∗e∗0 = 0, e∗0 ∈ N(Q;G(z̄)),

〈λ,∇f(z̄)〉+∇G(z̄)∗e∗ = 0, e∗ ∈ N(Q;G(z̄)).

Since (6), for each y ∈ BE(0, ρ), there exist z ∈ BZ and w ∈ (Q − G(z̄)) ∩ BE such that

y = ∇G(z̄)z − w. It follows that

〈e∗0 − e∗, y〉 = 〈e∗0 − e∗,∇G(z̄)z − w〉

= 〈∇G(z̄)∗(e∗0 − e∗), z〉 − 〈e∗0 − e∗, w〉

= 〈(λ− λ0)∇f(z̄), z〉 − 〈e∗0, w〉+ 〈e∗, w〉

≤ 2‖∇f(z̄)‖+ ‖e∗0‖.

Thus,

〈−e∗, y〉 ≤ 2‖∇f(z̄)‖+ ‖e∗0‖+ ‖e∗0‖‖y‖

≤ 2‖∇f(z̄)‖+ ‖e∗0‖+ ‖e∗0‖ρ.

Replacing y by ρy with ‖y‖ ≤ 1, we get

‖e∗‖ρ ≤ 2‖∇f(z̄)‖+ ‖e∗0‖(1 + ρ).

Consequently,

‖e∗‖ ≤
2

ρ
‖∇f(z̄)‖+

1 + ρ

ρ
‖e∗0‖.

Thus, Λ1(z̄) is bounded. It is easy to check that the set Λ1(z̄) is closed with respect to

topology τRm × τ(E∗, E). Thanks to [4, Theorem 3.16], Λ1(z̄) is compact. �

To derive second-order necessary conditions for the (MP1), we need the following result.

Lemma 3.3. Let z̄ ∈ Σ and d ∈ C1(z̄). If z̄ is a locally weak Pareto solution of the (MP1),

then the following system

∇fi(z̄)z +∇2fi(z̄)d
2 < 0, ∀i ∈ I(z̄, d), (9)

∇G(z̄)z +∇2G(z̄)d2 ∈ T 2♭(Q;G(z̄),∇G(z̄)d), (10)

has no solution z ∈ Z.

10



Proof. Arguing by contradiction, assume that the system (9)–(10) admits a solution, say z.

From (10) it follows that

z ∈ ∇G(z̄)−1
[

T 2♭(Q;G(z̄),∇G(z̄)d)−∇2G(z̄)d2
]

.

By the Robinson constraint qualification and [12, Theorem 3.1], we have

T 2♭(Σ; z̄, d) = ∇G(z̄)−1
[

T 2♭(Q;G(z̄),∇G(z̄)d)−∇2G(z̄)d2
]

.

Thus, z ∈ T 2♭(Σ; z̄, d). Let {tk} be an arbitrary sequence converging to 0+. Then, there

exists a sequence {zk} tending to z such that

wk := z̄ + tkd+
1

2
t2kzk ∈ Σ ∀k ∈ N.

For each i ∈ I(z̄, d) and k ∈ N, we have

fi(wk)− fi(z̄) = [fi(wk)− fi(z̄ + tkd)] + [fi(z̄ + tkd)− fi(z̄)− tk〈∇fi(z̄), d〉]

=
1

2
t2k〈∇fi(z̄ + tkd), zk〉+

1

2
t2k∇

2fi(z̄)d
2 + o(t2k).

Therefore,

lim
k→∞

fi(wk)− fi(z̄)
1
2
t2k

= 〈∇fi(z̄), z〉+∇2fi(z̄)d
2.

This and (9) imply that

fi(wk) < fi(z̄)

for all i ∈ I(z̄, d) and k large enough. For each i ∈ I \ I(z̄, d), we have 〈∇fi(z̄), d〉 < 0. From

this and the fact that

lim
k→∞

fi(wk)− fi(z̄)

tk
= 〈∇fi(z̄), d〉,

it follows that

fi(wk) < fi(z̄)

for all k large enough. Thus there exists k large enough such that

fi(wk) < fi(z̄) ∀i ∈ I,

which contradicts the fact that z̄ is a locally weak Pareto solution of the (MP1). �

Problem (MP1) is associated with the Lagrangian L1(z, λ, e
∗) = λTf(z) + e∗G(z). The

following theorem gives some second-order necessary optimality conditions for the (MP1).

Theorem 3.1. Suppose that z̄ is a locally weak Pareto solution of the (MP1). Then, for

each d ∈ C1∗(z̄), there exists (λ, e
∗) ∈ Λ1(z̄) such that the following non-negative second-order

condition is valid:

∇2
zzL1(z̄, λ, e

∗)(d, d) ≥ 0.

11



Proof. We first prove the theorem for d ∈ C01(z̄). We claim that 0 ∈ T 2♭(Q;G(z̄),∇G(z̄)d).

Indeed, since ∇G(z̄)d ∈ cone (Q−G(z̄)), there exists µ > 0 such that µ∇G(z̄)d ∈ Q−G(z̄).

From 0 ∈ Q−G(z̄) and the convexity of Q−G(z̄), for any 0 < α < µ, we get

α

µ
µ∇G(z̄)d+

(

1−
α

µ

)

.0 ∈ Q−G(z̄).

This implies that G(z̄) + α∇G(z̄)d ∈ Q for all α ∈ (0, µ). Hence, 0 ∈ T 2♭(Q;G(z̄),∇G(z̄)d)

as required. We consider the following set

Π :=
{

(∇2f1(z̄)d
2 +∇f1(z̄)z + r1, ...,∇

2fm(z̄)d
2 +∇fm(z̄)z + rm,∇

2G(z̄)d2 +∇G(z̄)z − v)|

z ∈ Z, v ∈ T 2♭(Q;G(z̄),∇G(z̄)d), ri ≥ 0, i ∈ I
}

.

Thanks to Lemma 3.1, the set I(z̄, d) is nonempty. Thus, by choosing λi = 0 and removing

the component i-th of Π for i ∈ I \ I(z̄, d), we may assume that I(z̄, d) = I. We claim that

Π is a convex set with a nonempty interior and (0, 0) /∈ int Π. The convexity of Π follows

directly from the convexity of T 2♭(Q;G(z̄),∇G(z̄)d) and R
m
+ . By the Robinson constraint

qualification, there exists ρ > 0 such that

BE(0, ρ) ⊂ ∇G(z̄)[BZ ]− T ♭(Q;G(z̄)) ∩ BE .

Since 0 ∈ T 2♭(Q;G(z̄),∇G(z̄)d) and [12, Proposition 3.1], we have

T 2♭(Q;G(z̄),∇G(z̄)) = T ♭(T ♭(Q;G(z̄)),∇G(z̄)).

Putting V = ∇G(z̄) +BE(0, ρ) and ρ1 = 1 + ‖∇G(z̄)d‖, we have

V ⊂ ∇G(z̄)[BZ ]−
[

T ♭(Q;G(z̄)) ∩BE −∇G(z̄)
]

⊂ ∇G(z̄)[BZ ]−
[

T ♭(Q;G(z̄))−∇G(z̄)
]

∩BE(0, ρ1)

⊂ ∇G(z̄)[BZ ]− T ♭(T ♭(Q;G(z̄)),∇G(z̄)) ∩BE(0, ρ1)

= ∇G(z̄)[BZ ]− T 2♭(Q;G(z̄),∇G(z̄)) ∩ BE(0, ρ1).

By the Robinson constraint qualification,

E = ∇G(z̄)[Z]−Q(G(z̄)) = ∇G(z̄)[Z]− T 2♭(Q;G(z̄),∇G(z̄)d). (11)

For each i ∈ I, we put

αi = ∇2fi(z̄)d
2 + sup {∇fi(z̄)z | z ∈ BZ(0, ρ1)} < +∞.

We then have

(α1,+∞)× (α2,+∞)× . . .× (αm,+∞)× V̂ ⊂ Π,
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where V̂ := ∇2G(z̄)d2 + V . This implies that the interior of Π is nonempty. We now show

that (0, 0) /∈ int Π. If otherwise, there exist ǫ1 > 0, ǫ2 > 0, . . ., ǫm > 0 such that

(−ǫ1, ǫ1)× (−ǫ2, ǫ2)× . . .× (−ǫm, ǫm)× {0} ⊂ Π.

This implies that there exist z ∈ Z, v ∈ T 2♭(Q;G(z̄),∇G(z̄)d), ri ≥ 0, i ∈ I, satisfying






∇2fi(z̄)d
2 +∇fi(z̄)z + ri < 0, i ∈ I,

∇2G(z̄)d2 +∇G(z̄)z − v = 0.

Consequently, z is a solution of the following system






∇2fi(z̄)d
2 +∇fi(z̄)z < 0, i ∈ I,

∇2G(z̄)d2 +∇G(z̄)z ∈ T 2♭(Q;G(z̄),∇G(z̄)d),

contrary to Lemma 3.3. Since (0, 0) /∈ int Π, we can separate (0, 0) from Π by a hyperplane,

i.e., there exists a functional (λ, e∗) ∈ (Rm × E∗) \ {(0, 0)} such that

m
∑

i=1

λi(∇
2fi(z̄)d

2 +∇fi(z̄)z + ri) + 〈e∗,∇2G(z̄)d2 +∇G(z̄)z − v〉 ≥ 0 (12)

for all ri ≥ 0, i ∈ I, z ∈ Z, and v ∈ T 2♭(Q;G(z̄),∇G(z̄)d). By (12), we have λi ≥ 0 for all

i ∈ I, i.e., λ ∈ R
m
+ . We claim that λ is a nonzero vector. If otherwise, then we have

〈e∗,∇2G(z̄)d2 +∇G(z̄)z − v〉 ≥ 0

for all z ∈ Z, and v ∈ T 2♭(Q;G(z̄),∇G(z̄)d), or, equivalently,

〈e∗,∇2G(z̄)d2 + w〉 ≥ 0

for all w ∈ ∇G(z̄)(Z)− T 2♭(Q;G(z̄),∇G(z̄)d). This and (11) imply that e∗ = 0, contrary to

the fact that (λ, e∗) 6= (0, 0). We now rewrite (12) as follows

〈∇zL1(z̄, λ, e
∗), z〉 +∇2

zzL1(z̄, λ, e
∗)(d, d) +

m
∑

i=1

λiri − 〈e∗, v〉 ≥ 0 (13)

for all ri ≥ 0, i ∈ I, z ∈ Z, and v ∈ T 2♭(Q;G(z̄),∇G(z̄)d). It follows that ∇zL1(z̄, λ, e
∗) = 0.

Putting ∇zL1(z̄, λ, e
∗) = 0 and ri = 0, i ∈ I, into (13), we get

∇2
zzL1(z̄, λ, e

∗)(d, d) ≥ 〈e∗, v〉

for all v ∈ T 2♭(Q;G(z̄),∇G(z̄)d). Thus,

∇2
zzL1(z̄, λ, e

∗)(d, d) ≥ σ(e∗, T 2♭(Q;G(z̄),∇G(z̄)d)) ≥ 0. (14)

By dividing both sides of (14) by |λ|, we obtain that

sup
(λ,e∗)∈Λ1(z̄)

∇2
zzL(z̄, λ, e

∗)(d, d) ≥ 0.
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We now take any d ∈ C1∗(z̄). Then, there exists a sequence {dk} ⊂ C01(z̄) converging to

d. From what has already been proved, we have

sup
(λ,e∗)∈Λ1(z̄)

∇2
zzL(z̄, λ, e

∗)(dk, dk) ≥ 0. (15)

Since the set Λ1(z̄) is compact in topology τRm × τ(E∗, E), the function

ψ(d) := sup
(λ,e∗)∈Λ1(z̄)

∇2
zzL1(z̄, λ, e

∗)(d, d)

is continuous. Letting k → ∞ in (15), we get

sup
(λ,e∗)∈Λ1(z̄)

∇2
zzL1(z̄, λ, e

∗)(d, d) ≥ 0.

Again, by the compactness of Λ1(z̄), there exists (λ, e∗) ∈ Λ1(z̄) such that

∇2
zzL1(z̄, λ, e

∗)(d, d) ≥ 0.

The proof is complete. �

From Theorem 3.1 we want to ask whether the conclusion is still true if C1∗(z̄) is replaced

by C1(z̄). Clearly, C1∗(z̄) ⊆ C1(z̄). In the case of single-objective (m = 1) under assumptions

that Q is polyhedric at G(z̄) and ∇G(z̄) is surjective, [1, Proposition 3.54] showed that

C1(z̄) = C1∗(z̄). However, when m > 1, the proof of Proposition 3.54 in [1] is collapsed. The

reason is that the condition 〈λ,∇f(z̄)〉 = 0 with λ 6= 0 does not imply ∇f(z̄) = 0. We do

not know whether the equality C1(z̄) = C1∗(z̄) is valid. Therefore, we leave here the following

conjecture.

• Conjecture: Suppose that ∇G(z̄) : Z → E is surjective and Q is polyhedric at G(z̄). If z̄

is a locally weak Pareto solution of the (MP1), then C1(z̄) = C1∗(z̄).

4. Abstract multi-objective optimal control problems

Let E0, E,X and U be Banach spaces and Q be a nonempty closed convex set in E. Define

Z = X × U and assume that

I : X × U → R
m,

F : X × U → E0,

G : X × U → E

14



are given mappings. We consider the following multi-objective optimal control problem of

finding a control u ∈ U and the corresponding state x ∈ X which solve

Min Rm

+
I(x, u),

s.t. F (x, u) = 0, (MP2)

G(x, u) ∈ Q.

We denote by Φ the feasible of the (MP2) and put

D = {(x, u) ∈ Z | F (x, u) = 0}.

Fix z0 = (y0, u0) ∈ Φ. We denoted by Λ2(z0) the set of multipliers (λ, v∗, e∗) ∈ R
m
+ ×E∗

0 ×E
∗

with |λ| = 1, which satisfies the following conditions

∇zL2(z, λ, v
∗, e∗) = 0, e∗ ∈ N(Q,G(z, w0)),

where L2(z, λ, v
∗, e∗) is the Lagrangian which is given by

L2(z, v
∗, e∗) = 〈λ, I(z)〉+ 〈v∗, F (z)〉+ 〈e∗, G(z)〉.

We also denote by C2(z0) the closure of C02(z0) in Z, where

C02(z0) :=
{

d ∈ Z | ∇I(z0)d ∈ −R
m
+ , ∇F (z0)d = 0, ∇G(z0)d ∈ cone(Q−G(z0)

}

.

The set C2(z0) is called the critical cone of the (MP2) at z0.

Let us introduce the following assumptions:

(A1) There exist positive numbers r1, r
′
1 such that the mapping I(·, ·), F (·, ·) and G(·, ·)

are twice continuously Fréchet differentiable on BX(x0, r1)× BU(u0, r
′
1);

(A2) The mapping Fx(z0) is bijective;

(A3) ∇G(z0)(T (D; z0)) = E.

From assumptions (A1) and (A3), we have that F (·, ·) is continuously differentiable on

BX(x0, r1) × BU(u0, r
′
1) and Fx(z0) is bijective. By the implicit function theorem (see [26,

Theorem 4.E]), there exist balls BX(x0, r2), BU(u0, r
′
2) with r2 < r1, r

′
2 < r′1 such that for

each u ∈ BU(u0, r
′
2), the equation

F (x, u) = 0

has a unique solution x = ζ(u) ∈ BX(x0, r2). Moreover, the mapping

ζ : BU (u0, r
′
2) → BX(x0, r2)

is of class C2 and ζ(u0) = x0. Thus,

F (ζ(u), u) = 0 ∀u ∈ BU(u0, r
′
2). (16)
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We now define the following mappings:

J : U → R
m, J(u) := J(ζ(u), u),

H : U → E, H(u) := G(ζ(u), u). (17)

Then we can show that (x0, u0) is a locally weak Pareto solution of the (MP2) if and only if

u0 is a locally weak Pareto solution of the following problem:

Min Rm

+
J(u) (MP3)

s.t. H(u) ∈ Q.

Problem (MP3) is associated with the Lagrangian

L3(u, λ, e
∗) = λJ(u) + e∗H(u).

Given a feasible point u0 of the (MP3), we define

C03(u0) = {u ∈ U | ∇J(u0)u ∈ −R
m
+ ,∇H(u0)u ∈ cone(Q−H(u0))}

and C3(u0) = C03(u0) the interior critical cone and the critical cone at u0, respectively.

The following theorem provides second-order necessary optimality conditions for the (MP2).

Theorem 4.1. Suppose that z0 is a feasible point of the (MP2) and assumptions (A1)−(A3)

are satisfied. If z0 is a locally weak Pareto solution of the (MP2), then, for each d ∈ C2(z0),

there exists a nonzero triple (λ, v∗, e∗) ∈ Λ2(z0) such that

∇2
zL2(z0, e

∗, v∗)(d, d) = 〈λJzz(z0)d, d〉+ 〈v∗Fzz(z0)d, d〉+ 〈e∗Gzz(z0)d, d〉 ≥ 0.

Proof. Since z0 = (x0, u0) is a locally weak Pareto solution to the (MP2), u0 is a locally

weak Pareto solution of the (MP3). By assumption (A2), ∇F (z0) is surjective. Indeed,

for any v ∈ E0, there exists x ∈ X such that Fx(z̄)x = v. Hence, (x, 0) ∈ X × U and

∇F (z̄)(x, 0) = v. This means that ∇F (z̄) is surjective. From this and [16, Lemma 2.2], it

follows that

T (D; z0) = {(x, u) ∈ Z | Fx(z0)x+ Fu(z0)u = 0} = {(ζ ′(u0)u, u) | u ∈ U} .

Combining this with (A3), we get

E ⊆ {∇xG(z0)ζ
′(u0)u+∇uG(z0)u | u ∈ U}

⊆ ∇H(u0)(U)− cone(Q−H(u0)),

where H is defined by (17). Hence the Robinson constraint qualification for the (MP3) is

satisfied at u0.

Fix any d = (x, u) ∈ C2(z0). Then there exists a sequence {dk} = {(xk, uk)} ⊂ C02(z0)

such that dk → d. Since Fx(z0)xk+Fu(z0)uk = 0, we have xk = ζ ′(u0)uk and so uk ∈ C03(u0).
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Consequently, u ∈ C3(u0). By Theorem 3.1, there exists a multipliers (λ, e∗) ∈ Λ∗(u0) such

that the following conditions hold:

(a) λ∇J(u0) +∇e∗H(u0) = 0, e∗ ∈ N(Q,H(u0)),

(b) 〈λ∇2J(u0)u, u〉+ 〈e∗∇2H(u0)u, u〉 ≥ 0.

Note that from (16), we have

F (ζ(v), v) = 0 ∀v ∈ BU(u0, r
′
3). (18)

Taking first-order derivative on both sides, we get

Fx(z0)ζ
′(u0) + Fu(z0) = 0

and so

ζ ′(u0)
∗ = −Fu(z0)

∗(F ∗
x (z0))

−1. (19)

From (a), we have

λIx(z0)ζ
′(u0) + λIu(z0) + e∗Gx(z0)ζ

′(u0) + e∗Gu(z0) = 0,

or, equivalently,

ζ ′(u0)
∗(λIx(z0) + e∗Gx(z0)) = −(λIu(z0) + e∗Gu(z0)). (20)

Let us put

φ = (λIx(z0) + e∗Gx(z0)), v
∗ = −(F ∗

x (z0))
−1φ. (21)

Then, from (19) and (20), we have

−Fu(z0)
∗(F ∗

x (z0))
−1φ = −(λIu(z0) + e∗Gu(z0)).

Consequently,






Fu(z0)
∗v∗ + λIu(z0) + e∗Gu(z0) = 0

Fx(z0)
∗v∗ = −(λIx(z0) + e∗Gx(z0)).

This is equivalent to

∇I(z0)
∗λT +∇F (z0)

∗v∗ +∇G(z0)
∗e∗ = 0.

Hence we have (λ, v∗, e∗) ∈ Λ2(z0).

Let us define the following function

ψ(t) := L3(u0 + tu, λ, e∗) = λJ(u0 + tu) + e∗H(u0 + tu), −1 < t < 1, u ∈ C3(u0).

Then, by (b), we have

ψ′′(0) = ∇2
uL3(u0)(u, u) = 〈λ∇2J(u0)u, u〉+ 〈e∗∇2H(u0)u, u〉 ≥ 0.
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On the other hand, by simple calculation, we get

ψ′′(0) =〈λIxx(z0)ζ
′(u0)u, ζ

′(u0)u〉+ 〈λIxu(z0)ζ
′(u0)u, u〉+ 〈λIux(z0)u, ζ

′(u0)u〉

+ 〈λIuu(z0)u, u〉+ 〈e∗Gxx(z0)ζ
′(u0)u, ζ

′(u0)u〉+ 〈e∗Gxu(z0)ζ
′(u0)u, u〉

+ 〈e∗Gux(z0)u, ζ
′(u0)u〉+ 〈e∗Guu(z0)u, u〉+ 〈(λIx(z0) + e∗Gx(z0))ζ

′′(u0)u, u〉

=〈λIxx(z0)x, x〉+ 〈λIxu(z0)x, u〉+ 〈λIux(z0)u, x〉+ 〈λIuu(z0)u, u〉

+ 〈e∗Gxx(z0)x, x〉+ 〈e∗Gxu(z0)x, u〉+ 〈e∗Gux(z0)u, x〉+ 〈e∗Guu(z0)u, u〉

+ 〈(ζ ′′(u0)u)
∗(λIx(z0) + e∗Gx(z0)), u〉. (22)

Taking second-order derivatives on both sides of (18) at u0 and acting on u ∈ C′′(u0) and

v ∈ U , we obtain

〈Fx(z0)ζ
′′(u0)u, v〉+ 〈Fxx(z0)ζ

′(u0)u, ζ
′(u0)v〉+ 〈Fxu(z0)ζ

′(u0)u, v〉+

+ Fux(z0)(u, ζ
′(z0)v) + Fuu(z0)(u, v) = 0.

This is equivalent to

〈Fx(z0)ζ
′′(u0)u,v〉 =

−
[

〈Fxx(z0)x, ζ
′(u0)v〉+ 〈Fxu(z0)x, v〉+ 〈Fux(z0)u, ζ

′(z0)v〉+ 〈Fuu(z0)u, v〉
]

.

It follows that

(ζ ′′(u0)u)
∗ = −[Fxx(z0)xζ

′(u0) + Fxu(z0)x+ Fux(z0)uζ
′(z0) + Fuu(z0)u]

∗(Fx(z0)
∗)−1.

Combining this with formula (21), we have

(ζ ′′(u0)u)
∗(λIx(z0) + e∗Gx(z0)) = −(ζ ′′(u0)u)

∗φ

= −[Fxx(z0)xζ
′(u0) + Fxu(z0)x+ Fux(z0)uζ

′(z0) + Fuu(z0)u]
∗(Fx(z0)

∗)−1φ

= −[Fxx(z0)xζ
′(u0) + Fxu(z0)x+ Fux(z0)uζ

′(z0) + Fuu(z0)u]
∗v∗.

Hence,

〈(ζ ′′(u0)u)
∗(λIx(z0) + e∗Gx(z0)), u〉 =

= 〈v∗Fxx(z0)x, ζ
′(u0)u〉+ 〈v∗Fxu(z0)x, u〉+ 〈Fux(z0)u, ζ

′(z0)u〉+ 〈v∗Fuu(z0)u, u〉

= 〈v∗Fxx(z0)x, x〉+ 〈v∗Fxu(z0)x, u〉+ 〈Fux(z0)u, x〉+ 〈v∗Fuu(z0)u, u〉.

Inserting this term into (22), we obtain

〈λ∇2J(u0)u, u〉+ 〈e∗∇2H(u0)u, u〉 =

= 〈λ∇2I(z0)d, d〉+ 〈v∗∇2F (z0)d, d〉+ 〈e∗∇2G(z0)d, d〉 ≥ 0.

The proof is complete. �
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5. Proofs of main results

5.1. Proof of Theorem 2.1. For the proof, we first put

X = C([0, 1],Rn), U = L∞([0, 1],Rl),

E0 = C([0, 1],Rn), E = L∞([0, 1],R),

and define the following mappings

F : X × U → E0, F (x, u) := x− x0 −

∫ (·)

0

ϕ(s, x(s), u(s))ds,

G : X × U → E, G(x, u) := g(·, x(·), u(·)).

The problem (MCP) can be formulated in the form of the problem (MP3). Therefore, we

can apply Theorem 4.1 for the (MCP) in order to derive necessary optimality conditions.

Step 1. Verification of assumptions (A1)–(A3).

• Verification of (A1). From (H1) we see that the mapping I, F and G are of class C2

around z̄. Hence, (A1) is valid. Here ∇Ij(z̄), ∇
2I(z̄), ∇F (z̄), ∇2F (z̄), ∇G(z̄) and ∇2G(z̄)

are defined by:

Ijx(z̄)x =

∫ 1

0

Ljx[s]x(s)ds, Iju(z̄)u =

∫ 1

0

Lju[s]u(s)ds,

Fx(z̄)x = x−

∫ (·)

0

ϕx[s]x(s)ds, Fu(z̄)u = −

∫ (·)

0

ϕu[s]u(s)ds),

∇G(z̄) = (Gx(z̄), Gu(z̄)) = (gx[·], gu[·]),

〈∇2Ij(z̄)z, z〉 =

∫ 1

0

(∇2Lj [s]z(s), z(s))ds,

〈∇2F (z̄)z, z〉 = −

∫ (·)

0

(∇2ϕ[s]z(s), z(s))ds

for all z = (x, u) ∈ Z, and

∇2G(z̄) =

[

gxx[·] gxu[·]

gux[·] guu[·]

]

.

• Verification of (A2). Taking any v ∈ E0, we consider equation Fx(z̄)x = v. This equation

is equivalent to

x =

∫ (·)

0

ϕx[s]x(s)ds+ v.

By assumption (H1), we have ϕx[·] ∈ L∞([0, 1],Rn). By [9, Lemma 1, p. 51], the equation

has a unique solution x ∈ X . Hence (A2) is valid.
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• Verification of (A3). Let D := {(x, u) ∈ Z | F (z) = 0}. Under assumption (A2), the

mapping ∇F (z̄) : X × U → E0 is surjective. This implies that

T (D; z̄) = {(x, u) ∈ Z | Fx(z̄)x+ Fu(z̄)u = 0}.

Therefore, assumption (A3) is amount to saying that for each v ∈ E, there exists (x, u) ∈ Z

satisfying

Fx(z̄)x+ Fu(z̄)u = 0, (23)

Gx(z̄)x+Gu(z̄)u = v. (24)

We will find u in the form u = (0, 0, . . . , ui0, 0, . . . , 0). Consider the following equation

Fx(z̄)x+ Fu(z̄)
v −Gx(z̄)x

gi0u[·]
= 0.

This equation is equivalent to

x =

∫ (·)

0

(

ϕx[s] + ϕu[s]
gx[s]

gi0u[·]

)

x(s)ds+

∫ (·)

0

ϕu[s]
v

gi0u[s]
ds.

By (H2), ϕu[·]
gx[·]
gi0u[·]

and ϕu[·]
v

gi0u[·]
belong to L∞([0, 1],Rn). Thanks to [9, Lemma 1, p. 51],

the above equation has a unique solution x ∈ X . Choosing u = (0, 0, . . . , ui0, 0, . . . , 0) with

ui0 =
v −Gx(z̄)x

gi0u[·]
.

We see that (x, u) satisfies equations (23)-(24). Hence assumption (A3) is fulfilled.

Step 2. Deriving optimality conditions.

Let L(z, λ, v∗, e∗) = λI(x, u) + v∗F (x, u) + e∗G(x, u) be the Lagrangian associated with

the (MCP). According to Theorem 4.1, for each z = (x̃, ũ) ∈ C(z̄), there exist multipliers

λ ∈ R
m
+ with |λ| = 1, v∗ ∈ E∗

0 and e∗ ∈ E∗ such that the following conditions are valid:

e∗ ∈ N(Q,G(z̄)), (25)

λIx(z̄) + v∗Fx(z̄) + e∗Gx(z̄) = 0, (26)

λIu(z̄) + v∗Fu(z̄) + e∗Gu(z̄) = 0, (27)

〈λ∇2I(z̄)z, z〉 + 〈v∗∇2F (z̄)z, z〉 + 〈e∗∇2G(z̄)z, z〉 ≥ 0. (28)

Here v∗ is a signed Radon measure and e∗ is a signed and finite additive measure on [0, 1]

which is absolutely continuous w.r.t the Lebesgue measure | · | on [0, 1]. By Riesz’s Repre-

sentation (see [9, Chapter 01, p. 19] and [13, Theorem 3.8, p. 73]), there exists a vector

function of bounded variation ν, which is continuous from the right and vanish at zero such

that

〈v∗, y〉 =

∫ 1

0

y(t)dν(t) ∀y ∈ E0,
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where
∫ 1

0
y(t)dν(t) is the Riemann-Stieltjes integral.

Define p̄ : [0, 1] → R
n by setting

p̄(t) = ν((t, 1]) = ν(t)− ν(1).

Clearly, p̄(1) = 0 and the function p̄ is of bounded variation. By the Fubini Theorem, for

each x ∈ C ([0, 1],Rn), we have

〈v∗Fx(z̄), x〉 =

〈

v∗, x−

∫ (·)

0

ϕx[s]x(s)ds

〉

=

∫ 1

0

xT (t)dν(t)−

∫ 1

0

∫ t

0

ϕx[s]x(s)dsdν(t)

=

∫ 1

0

xT (t)dν(t)−

∫ 1

0

ϕx[s]x(s)ds

∫ 1

s

dν(t)

=

∫ 1

0

xT (t)dν(t) +

∫ 1

0

ϕx[s]x(s)p̄(s)ds. (29)

Similarly, for any u ∈ L∞([0, 1],Rl), we get

〈v∗Fu(z̄), u〉 =

∫ 1

0

∫ t

0

ϕu[s]u(s)dsdν(t) =

∫ 1

0

p̄(s)Tϕu[s]u(s)ds (30)

and
〈

v∗∇2F (z̄)z, z
〉

=

∫ 1

0

(

p̄(t)T∇2ϕ[s]z(s), z(s)
)

ds. (31)

From (27) and (30), we have
∫ 1

0

λLu[s]u(s)ds+

∫ 1

0

p̄(s)Tϕu[s]u(s)ds+ 〈e∗, Gu(z̄)u〉 = 0 ∀u ∈ U. (32)

Let us claim that e∗ can be represented by a density in L1([0, 1],R). Indeed, let d̄ be an

arbitrary element of T (Q;G(z̄)). Then, by assumption (H2), we have

|ωgu[t]|
2 + [(ωd̄(t))+]2 ≥ |ωgu[t]|

2

≥ ω2|gui0
[t]|2

≥ α2ω2

for all ω ∈ R and for a.e. t ∈ [0, 1]. Thanks to [24, Theorem 3.2], there exist measurable

mappings a : [0, 1]× R → R
l, c : [0, 1]× R → [0,∞) and a constant R > 0 such that

Gu(z̄)a(t, ω) = gu[t]a(t, ω) = ω + c(t, ω)d̄(t)

and

|a(t, ω)| ≤ R|ω|, |c(t, ω)| ≤ R|ω|
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for all ω ∈ R. We now take any v ∈ E and put u(t) = a(t, v(t)). Then u ∈ U and we have

〈e∗, Gu(z̄)a(·, v(·))〉 = 〈e∗, v〉+ 〈e∗, c(·, v)d̄〉 ≤ 〈e∗, v〉

because e∗ ∈ N(Q,G(z̄)) and c(·, v)d̄ ∈ T (Q;G(z̄)). Inserting u(t) = a(t, v(t)) into (32), we

get
∫ 1

0

λLu[s]a(s, v(s))ds+

∫ 1

0

p̄(s)Tϕu[s]a(s, v(s))ds+ 〈e∗, v〉 ≥ 0 ∀v ∈ E.

This implies that

|〈e∗, v〉| ≤ R

∫ 1

0

|λLu[s]||v(s)|ds+R

∫ 1

0

|p̄(s)Tϕu[s]||v(s)|ds.

From this and [9, Proposition 5, p. 348], there is a function θ ∈ L1([0, 1],R) such that

〈e∗, v〉 =

∫ 1

0

θ(t)v(t)dt ∀v ∈ E. (33)

Therefore the claim is justified.

Based on the representation of e∗, (25), and (32), we obtain assertions (i) and (iii). Also,

from (33), (29) and (26), we get
∫ 1

0

λTLx[s]x(s)ds +

∫ 1

0

xT (t)dν(t) +

∫ 1

0

p̄(t)Tϕx[s]x(s)ds+

∫ 1

0

θ(s)Tgx[s]x(s)ds = 0

for all x ∈ X . This is equivalent to

−

∫ 1

0

xT (t)dν(t) =

∫ 1

0

(

λTLx[s] + p̄(s)Tϕx[s] + θ(s)Tgx[s]
)

x(s)ds ∀x ∈ X. (34)

We now fix any vector ξ ∈ R
n and t ∈ [0, 1]. Define xt(s) = ξχ(t,1](s), where χ(t,1](·) is the

indicator function of (t, 1]. Let us define

ϑ(s) = λTLx[s] + p̄(t)Tϕx[s] + θ(s)Tgx[s].

Then, ϑ(·) ∈ L1([0, 1],Rn) and so are the functions ϑ(s) and sϑ(s). By the Lebesgue Differ-

entiation Theorem (see [23, Theorem 7.15]), these functions have Lebesgue points for a.e. on

[0, 1]. Let us denote by P and P ′ the sets of Lebesgue points of ϑ(s) and sϑ(s), respectively.

Then |P ∩ P ′| = 1 and we have the following key lemma.

Lemma 5.1. For each t ∈ P ∩ P ′, the following equality is valid:

−

∫ 1

0

xTt (s)dν(s) =

∫ 1

0

(

λTLx[s] + p̄(s)Tϕx[s] + θ(s)Tgx[s]
)

xt(s)ds.

Proof. Note that any function with bounded variation as well as any signed Radon mea-

sure can be represented as the difference of two increasing functions, and the difference of

two positive Radon measures, respectively (see [23, Corollary 2.7] and [22, Lemma 13.6]).

Therefore, we can assume that ν is increasing, right continuous and of bounded variation.
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For each ǫ with t < ǫ < 1, we define a function xǫ as follows.

xǫ(s) =



















ξ if s ∈ [ǫ, 1],

ξ(s−t)
ǫ−t

if s ∈ [t, ǫ],

0 if s ∈ [0, t].

Then, xǫ ∈ C([0, 1],Rn). By (34), we have

−

∫ 1

0

xTǫ (s)dν(s) =

∫ 1

0

(

λTLx[s] + p̄(t)Tϕx[s] + θ(s)Tgx[s]
)

xǫ(s)ds,

or, equivalently,

−

∫ ǫ

t

ξ(s− t)

ǫ− t
dν(s)−

∫ 1

ǫ

ξdν(s) =

∫ ǫ

t

ξ(s− t)

ǫ− t
ϑ(s)ds+

∫ 1

ǫ

ξϑ(s)ds. (35)

By Mean Value Theorem (see [23, Theorem 2.27, p. 33]), there is a point t′ ∈ [t, ǫ] such that
∫ ǫ

t

ξ(s− t)

ǫ− t
dν(s) =

ξ(t′ − t)

ǫ− t
(ν(ǫ)− ν(t)).

Hence
∣

∣

∣

∣

∫ ǫ

t

ξ(s− t)

ǫ− t
dν(s)

∣

∣

∣

∣

=
|ξ||(t′ − t)|

ǫ− t
(ν(ǫ)− ν(t))

≤
|ξ||ǫ− t)|

ǫ− t
(ν(ǫ)− ν(t))

≤ |ξ|(ν(ǫ)− ν(t)).

By letting ǫ→ t+ and using the right continuity of ν, we see that
∣

∣

∣

∣

∫ ǫ

t

ξ(s− t)

ǫ− t
dν(s)

∣

∣

∣

∣

→ 0 as ǫ→ t+. (36)

Also, we have
∣

∣

∣

∣

∫ 1

t

ξdν(s)ds−

∫ 1

ǫ

ξdν(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ǫ

t

ξdν(s)

∣

∣

∣

∣

≤ |ξ|(ν(ǫ)− ν(t)) → 0 as ǫ→ t+.

Consequently,
∫ 1

ǫ

ξdν(s)ds→

∫ 1

t

ξdν(s) as ǫ→ t+.

For the first term of (35), we have from the Lebesgue Differentiation Theorem (see [23,

Theorem 7.16]) that
∣

∣

∣

∣

∫ ǫ

t

ξ(s− t)

ǫ− t
ϑ(s)ds

∣

∣

∣

∣

≤ |ξ|
1

ǫ− t

∫ ǫ

t

|(s− t)ϑ(s)|ds

≤ |ξ|
1

ǫ− t

∫ ǫ

t

|sϑ(s)− tϑ(t)|ds + |ξ|
t

ǫ− t

∫ ǫ

t

|ϑ(t)− ϑ(s)|ds→ 0
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as ǫ→ t+. Hence
∣

∣

∣

∣

∫ ǫ

t

ξ(s− t)

ǫ− t
ϑ(s)ds

∣

∣

∣

∣

→ 0 as ǫ→ t+.

The convergence
∫ 1

ǫ

ξTϑ(s)ds→

∫ 1

t

ξTϑ(s)ds as ǫ→ t+ (37)

is straightforward. Passing the limit both sides of (35) and using (36)–(37), we obtain

−

∫ 1

t

ξTdν(s) =

∫ 1

t

ξTϑ(s)ds.

The proof of the lemma is complete. �

From Lemma 5.1, we have for a.e. t ∈ [0, 1] that

−

∫ 1

t

ξTdν(s) =

∫ 1

t

(

λTLx[t] + p̄(t)Tϕx[t] + θ(t)gx[t]
)

ξds

or, equivalently,

ξT p̄(t) =

∫ 1

t

ξT
(

λTLx[t] + p̄(t)Tϕx[t] + θ(t)gx[t]
)

ds.

Since ξ is arbitrary, we obtain

˙̄p(t) = −λTLx[t]− p̄(t)Tϕx[t]− θ(t)gx[t] a.e. t ∈ [0, 1],

p̄(1) = 0,

which is assertion (ii) of Theorem 2.1. Finally, from (31) and (28), we have

∫ 1

0

(

m
∑

j=1

λj∇
2Lj [t]z(t), z(t)

)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]z(t), z(t)
)

dt

+

∫ 1

0

(

θ(t)∇2g[t]z(t), z(t)
)

dt ≥ 0,

which is assertion (iv) of the theorem. The proof of Theorem 2.1 is complete.

5.2. Proof of Theorem 2.2. In this proof, we will use the Sobolev space W 1,2([0, 1],Rn)

which consists of absolutely continuous functions x with ẋ ∈ L2([0, 1],Rn).

Let us define the Lagrangian L(z, λ, p̄, θ) associated with the (MCP) by setting

L(z, λ, p̄, θ) := λT I(z) + p̄TF (z) + θG(z),
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where

λT I(z) =

∫ 1

0

λTL(s, x(s), u(s))ds,

p̄TF (z) =

∫ 1

0

˙̄p(s)x(s)ds+

∫ 1

0

p̄(s)ϕ(s, x(s), u(s))ds,

θG(z) =

∫ 1

0

θ(s)g(s, x(s), u(s))ds.

Then, from conditions (ii) and (iii) of Theorem 2.1, we can show that

∇zL(z̄, λ, p̄, θ) = 0. (38)

We now return to the proof of the theorem. Suppose the the theorem was false. Then, we

could find sequences {(xk, uk)} ⊂ Φ and {ck} ⊂ intRm
+ such that (xk, uk) → (x̄, ū), ck → 0

and

I(xk, uk)− I(x̄, ū)− ck‖uk − ū‖22 ∈ −R
m
+ \ {0}. (39)

Clearly, (xk, uk) 6= (x̄, ū) for all k ∈ N. By replacing the sequence {(xk, uk)} by a subsequence

we may assume that uk = ū or uk 6= ū for all k ∈ N. If uk = ū for all k ∈ N, then we have

xk(t) = x0 +

∫ t

0

ϕ(s, xk(s), ū(s))ds

and

x̄(t) = x0 +

∫ t

0

ϕ(s, x̄(s), ū(s))ds.

Hence,

xk(t)− x̄(t) =

∫ t

0

(ϕ(s, xk(s), ū(s))− ϕ(s, x̄(s), ū(s)))ds.

From this and (H1), there exist numbers M > 0 and kϕM > 0 such that for k large enough,

we have

|ϕ(s, xk(s), ū(s))− ϕ(s, x̄(s), ū(s))| ≤ kϕM |xk(t)− x̄(t)|.

Hence,

|xk(t)− x̄(t)| ≤

∫ t

0

kϕM |xk(s)− x̄(s)|ds.

Using the Gronwall Inequality (see [5, 18.1.i, p. 503]), we get xk = x̄, a contradiction.

Therefore, we have that uk 6= ū for all k ∈ N.

Define tk = ‖uk − ū‖2, x̂k = xk−x̄
tk

and ûk = uk−ū
tk

. Then tk → 0+ and ‖ûk‖2 = 1. Since

L2([0, 1],Rl) is reflexive, we may assume that ûk ⇀ û. From the above, we have

λT I(zk)− λT I(z̄) ≤ t2kλ
T ck ≤ t2k|λ||ck| ≤ o(t2k). (40)
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We claim that x̂k converges uniformly to some x̂ in C([0, 1],Rn). In fact, since (xk, uk) ∈ Φ,

we have

xk(t) = x0 +

∫ t

0

ϕ(s, xk(s), uk(s))ds.

Since xk = x̄+ tkx̂k, we have

tkx̂k(t) =

∫ t

0

(ϕ(s, xk(s), uk(s))− ϕ(s, x̄(s), ū(s))ds. (41)

Since xk → x̄ uniformly and uk → ū in L∞([0, 1],Rl), there exists a constant ̺ > 0 such that

‖xk‖0 ≤ ̺, ‖uk‖∞ ≤ ̺. By assumption (H1), there exists kϕ,̺ > 0 such that

|ϕ(s, xk(s), uk(s))− ϕ(s, x̄(s), ū(s))| ≤ kϕ,̺(|xk(s)− x̄(s)|+ |uk(s)− ū(s)|)

for a.e. s ∈ [0, 1]. Hence we have from (41) that

|x̂k(t)| ≤

∫ t

0

kϕ,̺(|x̂k(s)|+ |ûk(s)|)ds

and

| ˙̂xk(t)| ≤ kϕ,̺(|x̂k(t)|+ |ûk(t)|). (42)

It follows that

|x̂k(t)| ≤

∫ t

0

kϕ,̺|x̂k(s)|ds+

∫ 1

0

kϕ,̺|ûk(s)|ds

≤

∫ t

0

kϕ,̺|x̂k(s)|ds+ kϕ,̺

(
∫ 1

0

|ûk(s)|
2ds

)1/2

≤

∫ t

0

kϕ,̺|x̂k(s)|ds+ kϕ,̺, (‖ûk‖2 = 1).

Using the Gronwall Inequality, we have

|x̂k(t)| ≤ kϕ,̺ exp(kϕ,̺).

From this and (42), we see that

| ˙̂xk(t)|
2 ≤ 2k2ϕ,̺

(

|x̂k(t)|
2 + |ûk(t)|

2
)

≤ 2k2ϕ,̺(k
2
ϕ,̺ exp(2kϕ,̺) + |ûk|

2).

Hence,
∫ 1

0

| ˙̂xk(t)|
2dt ≤ 2k2ϕ,̺(k

2
ϕ,̺ exp(2kϕ,̺) + 1).

Consequently, {x̂k} is bounded in W 1,2([0, 1],Rn). By passing subsequence, we can as-

sume that x̂k ⇀ x̂ weakly in W 1,2([0, 1],Rn). Thanks to [4, Theorem 8.8], the embedding

W 1,2([0, 1],Rn) →֒ C([0, 1],Rn) is compact. Hence we have that x̂k → x̂ uniformly on [0, 1].

The claim is justified. The remains of the proof is divided into some steps.

Step 1. Showing that (x̂, û) ∈ C′(z̄).
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By a Taylor expansion, we have from (39) that

Ix(z̄)x̂k + Iu(z̄)ûk +
o(tk)

tk
∈ −R

m
+ . (43)

Note that Lju[·] ∈ L∞([0, 1],Rl) and Iju(z̄) : L
2([0, 1],Rl) → R is a continuous linear map-

ping, where

〈Iju(z̄), u〉 :=

∫ 1

0

Lju[s]u(s)ds ∀u ∈ L2([0, 1],Rl).

By [4, Theorem 3.10], Iju(z̄) is weakly continuous on L2([0, 1],Rl). By letting k → ∞ in

(43), we get

Ix(z̄)x̂+ Iu(z̄)û ∈ −R
m
+ . (44)

Since F (z̄) = 0, F (xk, uk) = 0 and by a Taylor expansion, we have

Fx(z̄)x̂k + Fu(z̄)ûk +
o(tk)

tk
= 0.

By the same arguments as the above and letting k → ∞, we obtain

Fx(z̄)x̂+ Fu(z̄)û = 0. (45)

Since G(xk, uk)−G(x̄, ū) ∈ Q−G(x̄, ū) and by a Taylor expansion, we have

Gx(z̄)x̂k +Gu(z̄)ûk +
o(tk)

tk
∈ cone(Q−G(x̄, ū)) ⊂ T (Q;G(x̄, ū)),

where T (Q;G(x̄, ū)) is the tangent cone to Q at G(x̄, ū) in L∞([0, 1],R). It is easily seen

that

T (Q;G(x̄, ū)) ⊆ {v ∈ L∞([0, 1],R) | v(t) ∈ T ((−∞, 0]; g[t]) a.e.}

⊆
{

v ∈ L2([0, 1],R) | v(t) ∈ T ((−∞, 0]; g[t]) a.e.
}

.

Hence,

Gx(z̄)x̂k +Gu(z̄)ûk +
o(tk)

tk
∈
{

v ∈ L2([0, 1],R) | v(t) ∈ T ((−∞, 0]; g[t]) a.e.
}

. (46)

Note that

{

v ∈ L2([0, 1],R) | v(t) ∈ T ((−∞, 0]; g[t]) a.e.
}

= TL2(Q;G(x̄, ū)),

where TL2(Q;G(x̄, ū)) is the tangent cone to the set Q at G(x̄, ū) in L2([0, 1],R). Since

TL2(Q;G(x̄, ū)) is a closed convex set in L2([0, 1],R), it is also a weakly closed set in

L2([0, 1],R). Since

Gu(z̄) : L
2([0, 1],Rl) → L2([0, 1],R)

27



is a continuous linear mapping, [4, Theorem 3.10] implies that it is continuous from weakly

topology of L2([0, 1],Rl) to weakly topology of L2([0, 1],R). By passing the limit in (46)

when k → ∞, we obtain

Gx(z̄)x̂+Gu(ū)û ∈
{

v ∈ L2([0, 1],R) | v(t) ∈ T ((−∞, 0]; g[t]) a.e.
}

.

Combining this with (44) and (45), we get (x̂, û) ∈ C′(z̄).

Step 2. Showing that (x̂, û) = 0.

By a second-order Taylor expansion for L and (38), we get

L(zk, λ, p̄, θ)− L(z̄, λ, p̄, θ) =
t2k
2
∇2

zzL(z̄, λ, p̄, θ)(ẑk, ẑk) + o(t2k), (ẑk = (x̂k, ûk)).

On the other hand from (40), we have

L(zk, λ, p̄, θ)− L(z̄, λ, p̄, θ) = λT (I(zk)− I(z̄)) + 〈θ, G(zk)−G(z̄)〉 ≤ o(t2k).

Here we used the fact that θ ∈ N(Q,G(z̄)) and F (zk) = F (z̄) = 0. Therefore, we have

t2k
2
∇2

zzL(z̄, λ, p̄, θ)(ẑk, ẑk) + o(t2k) ≤ o(t2k),

or, equivalently,

∇2
zzL(z̄, λ, p̄, θ)(ẑk, ẑk) ≤

o(t2k)

t2k
. (47)

By letting k → ∞, we obtain

∇2
zzL(z̄, λ, p̄, θ)(ẑ, ẑ) ≤ 0.

By a simple calculation, we have

∫ 1

0

(

λT∇2L[t]ẑ(t), ẑ(t)
)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]ẑ(t), ẑ(t)
)

dt+

∫ 1

0

(

θ(t)∇2g[t]ẑ(t), ẑ(t)
)

dt

= ∇2
zzL(z̄, λ, p̄, θ)(ẑ, ẑ) ≤ 0.

Combining this with (4), we must have ẑ = 0.

Step 3. Showing a contradiction.
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From (5) and (47), we have

o(t2k)

t2k
≥∇2

zzL(z̄, λ, p̄, θ)(ẑk, ẑk)

=

∫ 1

0

(

λT∇2L[t]ẑk(t), ẑk(t)
)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]ẑk(t), ẑk(t)
)

dt

+

∫ 1

0

(

θ(t)∇2g[t]ẑk(t), ẑk(t)
)

dt

=

∫ 1

0

λTLuu[t]û
2
k(t)dt+ 2

∫ 1

0

λTLxu[t]x̂k(t)ûk(t)dt+

∫ 1

0

λTLxx[t]x̂
2
k(t)dt+

+

∫ 1

0

(

p̄(t)T∇2ϕ[t]ẑk(t), ẑk(t)
)

dt+

∫ 1

0

(

θ(t)∇2g[t]ẑk(t), ẑk(t)
)

dt

≥γ0 + 2

∫ 1

0

λTLxu[t]x̂k(t)ûk(t)dt+

∫ 1

0

λTLxx[t]x̂
2
k(t)dt+

+

∫ 1

0

(

p̄(t)T∇2ϕ[t]ẑk(t), ẑk(t)
)

dt+

∫ 1

0

(

θ(t)∇2g[t]ẑk(t), ẑk(t)
)

dt.

By letting k → ∞ and using the fact ẑ = 0, we obtain 0 ≥ γ0, which is impossible. The

proof of Theorem 2.2 is complete.

6. Examples

In this section, we give some examples to illustrate the main results. The first example

shows us how to use Theorem 2.1 and Theorem 2.2 to obtain solutions of the (MCP). The

second one indicates the important role of the second-order necessary optimality conditions

in checking optimal solutions.

Example 6.1. Consider the problem (MCP), where

L(t, x(t), u(t)) = (x21(t) + u21(t), x
2
2(t) + u22(t)),

ϕ(t, x(t), u(t)) = (u1(t), u2(t)),

x0 = (0, 0),

g(t, x(t), u(t)) = x1(t) + x2(t)− u1(t)− u2(t)

for all x(t) = (x1(t), x2(t)), u(t) = (u1(t), u2(t)) and t ∈ [0, 1]. Then, the feasible solution set

of the (MCP) is

Φ =

{

(x, u) ∈ C([0, 1],R2)× L∞([0, 1],R2) | x(t) =

∫ t

0

u(s)ds,

x1(t) + x2(t)− u1(t)− u2(t) ≤ 0 a.e. t ∈ [0, 1]

}

.
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It is easy to see that conditions (H1) and (H2) are valid. We will use conditions (i)–(iii) of

Theorem 2.1 to find out KKT points of the (MCP) which are good candidates for optimal

solutions. Assume that z̄ = (x̄, ū) is a feasible solution of the (MCP) and satisfies conditions

(i)–(iii) of Theorem 2.1 with respect to (λ, p̄, θ). By simple computations, we have

L1x[t] = (2x̄1, 0)
T , L2x[t] = (0, 2x̄2)

T , ϕ1x[t] = ϕ2x[t] = (0, 0)T , gx[t] = (1, 1)T ,

L1u[t] = (2ū1, 0)
T , L2u[t] = (0, 2ū2)

T , ϕ1u[t] = (1, 0)T , ϕ2u[t] = (0, 1)T , gu[t] = (−1,−1)T .

From conditions (ii) and (iii), we get


















˙̄p1 = −2λ1x̄1 − θ,

˙̄p2 = −2λ2x̄2 − θ,

p̄1(1) = p̄2(1) = 0,

(48)

and






2λ1ū1 + p̄1 − θ = 0,

2λ2ū2 + p̄2 − θ = 0.
(49)

Combining (48) and (49) yields






˙̄p1 = −2λ1x̄1 − 2λ1ū1 − p̄1,

˙̄p2 = −2λ2x̄2 − 2λ2ū2 − p̄2.
(50)

By condition (2), one has






˙̄x1 = ū1,

˙̄x2 = ū2.
(51)

Then inserting these equations into (50), we obtain






˙̄p1 = −2λ1x̄1 − 2λ1 ˙̄x1 − p̄1,

˙̄p2 = −2λ2x̄2 − 2λ2 ˙̄x2 − p̄2,
⇔







˙̄p1 + 2λ1 ˙̄x1 = −p̄1 − 2λ1x̄1,

˙̄p2 + 2λ2 ˙̄x2 = −p̄2 − 2λ2x̄2.

This implies that






p̄1 + 2λ1x̄1 = c1 exp (−t),

p̄2 + 2λ2x̄2 = c2 exp (−t),
(52)

where c1, c2 ∈ R are constants. Hence,

p̄1 − p̄2 + 2λ1x̄1 − 2λ2x̄2 = c3 exp (−t), (53)

where c3 := c1 − c2. From (49) and (51), we have

p̄1 − p̄2 = −2λ1 ˙̄x1 + 2λ2 ˙̄x2.
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Inserting this equation into (53), we get

− 2λ1 ˙̄x1 + 2λ2 ˙̄x2 + 2λ1x̄1 − 2λ2x̄2 = c3 exp (−t), (54)

Let α = 2λ1x̄1 − 2λ2x̄2. Then equation (54) becomes

−α̇ + α = c3 exp(−t).

From this equation and α(0) = 0, it is easily seen that

α(t) =
1

2
c3 exp(−t)−

1

2
c3 exp(t) ∀t ∈ [0, 1].

This and (51) imply that






2λ1x̄1 − 2λ2x̄2 =
1
2
c3 exp(−t)−

1
2
c3 exp(t),

2λ1ū1 − 2λ2ū2 = −1
2
c3 exp(−t)−

1
2
c3 exp(t).

(55)

We see that, for each λ ∈ R
2
+ \ {0}, every solution (x̄, ū) of system (55) is a KKT point of

the (MCP). To illustrate Theorem 2.1, let us verify condition (iv) at a solution of the system

(55). Let x̄ = (0, 0), ū = (0, 0)T . By (52) and p̄(1) = (0, 0), we have c1 = 0, c2 = 0, and

p̄(t) = (0, 0) for all t ∈ [0, 1]. Consequently, c3 = 0 and θ(t) = 0 for all t ∈ [0, 1]. Thus, (x̄, ū)

is a solution of the system (55) for every λ ∈ R
2
+ \ {0}. By simple calculation, we get

∫ 1

0

(

m
∑

j=1

λj∇
2Lj [t]z(t), z(t)

)

dt = 2λ1

∫ 1

0

(

x21(t) + u21(t)
)

dt+ 2λ2

∫ 1

0

(

x22(t) + u22(t)
)

dt ≥ 0

for all z = (x, u) ∈ X × U and λ ∈ R
2
+ \ {0}. Hence, condition (iv) is satisfied.

We now use Theorem 2.2 to show that (x̄, ū) is a locally strong Pareto solution of the

(MCP). Let λ = (1
2
, 1
2
), p̄ = (0, 0) and θ = 0. Then, we have

∫ 1

0

(

m
∑

j=1

λj∇
2Lj [t]z(t), z(t)

)

dt =

∫ 1

0

(

x21(t) + u21(t)
)

dt+

∫ 1

0

(

x22(t) + u22(t)
)

dt > 0

for all z = (x, u) ∈ X × U \ {(0, 0)}. Hence condition (4) is satisfied. Furthermore, we see

that

λTLuu[t](ξ, ξ) = |ξ|2

for all ξ ∈ R
2. This implies that condition (5) holds at z̄ with respect to γ0 = 1. Thanks to

Theorem 2.2, z̄ is a locally strong Pareto solution of the (MCP).

Example 6.2. Let ϕ and g be as in Example 6.1 and L be defined by

L(t, x(t), u(t)) = (x21(t)− u21(t), x
2
2(t)− u22(t))

for all x(t) = (x1(t), x2(t)), u(t) = (u1(t), u2(t)) and t ∈ [0, 1]. Clearly, (x̄, ū) = ((0, 0), (0, 0))

is a feasible point of the (MCP). We claim that (x̄, ū) is not a locally weak Pareto solution
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of the (MCP). Indeed, if otherwise, then due to Theorem 2.1, for each critical direction

z ∈ C(z̄), there exist multipliers λ, p̄ and θ such that conditions (i)–(iv) are fulfilled. Let

x̃(t) = (t, t)T and ũ(t) = (1, 1)T for all t ∈ [0, 1]. It is easy to check that z := (x̃, ũ) is a

critical direction of the (MCP) at z̄. By conditions (ii) and (iii) of Theorem 2.1, we get


















˙̄p = −θ(1, 1)T ,

p(1) = 0,

p̄+ θ(−1,−1)T = 0,

⇔



















˙̄p1 = ˙̄p2 = −θ,

p(1) = 0,

p̄1 = p̄2 = θ.

This implies that p̄1(t) = p̄2(t) = θ(t) = 0 for all t ∈ [0, 1]. Since λ ∈ R
2
+ \ {0}, p̄ = (0, 0)T

and θ = 0, we have
∫ 1

0

(

λ1∇
2L1[t]z(t) + λ2∇

2L2[t]z(t), z(t)
)

dt+

∫ 1

0

(

p̄(t)T∇2ϕ[t]z(t), z(t)
)

dt

+

∫ 1

0

(

θ(t)∇2g[t]z(t), z(t)
)

dt

=

∫ 1

0

(

λ1∇
2L1[t]z(t) + λ2∇

2L2[t]z(t), z(t)
)

dt

=

∫ 1

0

(λ1 + λ2)(2t
2 − 2)dt = −

4

3
(λ1 + λ2) < 0,

which does not satisfy condition (iv) of Theorem 2.1. Hence, (x̄, ū) is not a locally weak

Pareto solution of the (MCP).
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