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Abstract. The characterization of intermittent, multiscale and transient dynamics using data-
driven analysis remains an open challenge. We demonstrate an application of the Dynamic Mode
Decomposition (DMD) with sparse sampling for the diagnostic analysis of multiscale physics. The
DMD method is an ideal spatiotemporal matrix decomposition that correlates spatial features of
computational or experimental data to periodic temporal behavior. DMD can be modified into a
multiresolution analysis to separate complex dynamics into a hierarchy of multiresolution timescale
components, where each level of the hierarchy divides dynamics into distinct background (slow)
and foreground (fast) timescales. The multiresolution DMD is capable of characterizing nonlinear
dynamical systems in an equation-free manner by recursively decomposing the state of the system
into low-rank spatial modes and their temporal Fourier dynamics. Moreover, these multiresolution
DMD modes can be used to determine sparse sampling locations which are nearly optimal for dynamic
regime classification and full state reconstruction. Specifically, optimized sensors are efficiently chosen
using QR column pivots of the DMD library, thus avoiding an NP-hard selection process. We
demonstrate the efficacy of the method on several examples, including global sea-surface temperature
data, and show that only a small number of sensors are needed for accurate global reconstructions
and classification of El Niño events.
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1. Introduction. The accurate and efficient modeling and computation of mul-
tiscale, spatio-temporal phenomena remains a grand challenge across almost every
physical, biological and engineering discipline. Indeed, the dynamic interactions that
persist across multiple timescales are typical of many complex systems in fluid dy-
namics, material science, atmospheric and ocean interactions, networked systems and
neurobiology. Remarkably, the interactions that occur at various micro- and macro-
scales generate phenomena that are inherently low-rank, i.e. many multiscale systems
manifest dominant coherent patterns (attractors) of activity that can have disparate
times-scales. In such situations, we can leverage dimensionality reduction techniques
to obtain interpretable models directly from data for downstream prediction and con-
trol. However, complex interactions of spatiotemporal scales and limited measure-
ment capabilities confound efforts to separate the various micro- and macro-scale
physics. To alleviate this critical limitation, we develop a multiresolution analysis
(MRA) [14, 16] algorithm for the separation of multiscale, low-rank phenomena by its
intrinsic timescale in order to determine optimal measurement locations. We build
on the multiresolution dynamic mode decomposition (mrDMD) [33] which capitalizes
on a wavelet-like decomposition for MRA and embeds the dynamics at each timescale
using a low-rank feature extraction technique such as principal component analysis
(PCA). Our method further capitalizes on the extracted low-rank features in order to
optimally sample the multiscale physics.
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The measurement of multiscale phenomena is critical for characterizing complex
systems for prediction and control. Specifically, sensor placement is central for esti-
mating the full state dynamics and coherent structures in such applications as ocean
monitoring [52], fluid dynamics [37, 26, 2], neural stimulation in the brain [8], and con-
trol [21]. Given the cost and limitations of measurements in such systems, optimizing
sensor placement is a central mathematical challenge. Of specific concern in this work
is the ability of sensors to respect the multiscale dynamics induced in the complex
system being measured. By taking advantage of the multiscale features extracted
from our mrDMD, we can move to a hyperreduction framework whereby the minimal
placement of sensors is determined through optimization. Thus our methodology si-
multaneously solves a sparse sampling problem by leveraging meaningful features in
data, and also accounts for the different spatiotemporal scales in complex systems.

The workhorse algorithm behind mrDMD is the dynamic mode decomposition
(DMD) [42, 41, 47], a matrix decomposition that identifies low-rank spatial struc-
tures and their corresponding temporal Fourier dynamics [32]. This separation is
contrasted with variance or energy-based reductions such as proper orthogonal de-
composition [31, 4] (POD, alternatively known as PCA, Karhunen-Loève expansion,
Empirical Orthogonal Functions (EOF), etc). POD identifies spatial modal structures
based on temporal correlations and is commonly used as an intermediate low-rank pro-
jection within DMD. DMD can be considered a combination of the Discrete Fourier
Transform and Proper Orthogonal Decomposition for preserving both temporal corre-
lation and frequency information. It further provides interpretable, low-rank features
in data that can directly be used for prediction or for building dynamic models.

The low-rank patterns of DMD can be further exploited for sparse (greedy) sam-
pling of the dynamics. Thus our secondary goal for multiscale characterization is in
determining optimal sensor placement. This requires a principled measurement strat-
egy for spatially sampling the multiscale phenomena of interest. Reduced sensors are
especially desirable for forecasting localized phenomena in high-dimensional data or
in regimes where sensors are costly or limited. However, optimizing discrete sensor
locations for specific downstream tasks involves a combinatorial search over spatial
gridpoints – an intractable NP-hard computation for even moderately sized grids.
Instead, we sample multiscale features using greedy matrix pivoting methods from
reduced order modeling [4], hence bypassing the discrete combinatorial search. In the
reduced order modeling (ROM) context this sampling is also known as hyperreduction,
which is distinct from the feature reduction step. We show that mrDMD correctly
identifies dynamics occurring at different timescales in multiscale data. Secondly,
multiscale sensors derived from QR matrix pivots of mrDMD modes are shown to
spatially cover localized coherent structures exhibiting specific frequencies. We then
leverage resulting mrDMD modes and multiscale sensors to estimate temporal behav-
ior, for which multiscale reductions are demonstrably more accurate than POD-based
reduction.

2. Background. This section develops the background theory of dynamic mode
decomposition and its multiresolution variant mrDMD. Our goal is to construct a spa-
tiotemporal decomposition directly from time snapshots of high-dimensional system
states x ∈ Rn, such that their evolution can be expressed as a linear combination of
r spatial modes φk(ξ) governed by time dynamics a(t)

(1) x(t) =

r∑
k=1

ak(t)φk(ξ).
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When r � n, this is considered a low-rank embedding of the dynamics. For POD, the
modes φk(ξ) are determined from a singular value decomposition of a data matrix,
and the dynamics are then projected into this space [31, 4]. DMD and mrDMD
instead enforce that each mode be further constrained so that ak(t) = bk exp(iωkt).

2.1. Dynamic mode decomposition. The DMD originated as a spectral de-
composition for identifying coherent structures in fluid dynamics [42, 41]. Algorithmic
refinements such as exact DMD [47] and practical developments [32] quickly followed,
establishing DMD as a rigorous data-driven framework for spatiotemporal analysis
and prediction. Many additional variants have been developed that capitalize on
sparse,compressive measurements [25, 9], input-output systems and control [40], im-
proved denoising [1], multiscale structure [33], randomized linear algebra [5, 18], and
streaming data [23, 39].

The DMD separates spatiotemporal dynamics into a linear decomposition of co-
herent structures (DMD eigenmodes) with fixed temporal behavior (DMD eigenval-
ues). In particular, the DMD has connections to the Koopman operator which acts
as the forward operator on scalar observables of a system. Given a discrete-time
dynamical system

(2) xk+1 = F(xk),

the Koopman operator K is defined as the linear forward operator acting on all scalar
observables of the state [27, 28]

(3) Kg(xk) = g(F(xk)) = g(xk+1),

thus linearizing nonlinear dynamics to completely characterize the system. The ap-
proximation of Koopman eigenfunctions and eigenvalues through carefully selected
observables is an active area of research which has given rise to Koopman mode de-
composition [11], extended DMD [50], and kernel DMD [51]. DMD can be considered
a special case of Koopman decomposition which restricts observables g to be point
measurements of state. Thus the inputs to the DMD algorithm are the following data
matrices of the measured state trajectory

X =
[
x1 x2 . . . xm−1

]
X′ =

[
x2 x3 . . . xm

]
,(4)

assumed locally related by a linear forward evolution map A

(5) X′ = AX.

Hence, DMD fits a linear approximation A to the system (2), but without explic-
itly computing A using an expensive pseudoinverse operation. Instead, exact DMD
computes its eigendecomposition AΦ = ΦΛ using low-rank approximations of the
data matrices. Rank truncation is achieved using the singular value decomposition to
obtain r � n eigenvectors and eigenvalues which evolve the system forward in time
– a more efficient and interpretable representation of dynamics than A alone. Each
state can be efficiently computed from a linear combination of DMD eigenvectors
or eigenmodes (columns φk of Φ), DMD eigenvalues (λk = Λkk) and corresponding
modal amplitudes b ∈ Rk

(6) xk = ΦΛkb.
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The equivalent expression in the continuous time setting uses a convenient scaling of
the eigenvalues ωk = log λk

i∆t

(7) x(t) =

r∑
k=1

bkφk(ξ) exp(iωkt).

Remark: The DMD approximation as stated introduces systemic bias in the eigenvalue
computation of noisy data[15, 22]. To correct for this, we construct a weighted approx-
imation of A that incorporates both forward (X′ = AfX) and backward (X = AbX

′)
time evolution, as formulated by Dawson et al [15]

(8) A = (AfA
−1
b )1/2.

This forward-backward DMD method is used throughout our results.
DMD provides a compelling description of many physical systems with low-rank,

periodic temporal behavior, including fluid dynamics [46, 41], ocean sciences [33] and
neuroscience [8]. The DMD approximation fails, however, when approximating inter-
mittent and transient phenomenon, both of which violate the constrained temporal
response in (7). In such cases, Fourier modes in time are insufficient to capture a
richer set of dynamics.

2.2. Multiresolution DMD. The mrDMD method [33, 32, 34] circumvents
some of the common shortcomings of standard DMD. Specifically, mrDMD provides
a hierarchical temporal sampling framework, much like a wavelet decomposition,
whereby disparate timescale phenomena can be characterized recursively. The re-
cursive nature of mrDMD, illustrated in Fig. 1, can readily characterize distinct time
scales by removing micro- and macro-timescale modes at different hierarchical levels.
The mathematical structure of mrDMD accounts for the number of levels (L) of the
decomposition, the number of time bins (J) for each level, and the number of modes
retained at each level (mL). Thus the solution is parametrized by the following three
indices:

` = 1, 2, · · · , L, where L = # of decomposition levels

j = 1, 2, · · · , J # time bins per level (J = 2(`−1))

k = 1, 2, · · · ,mL # of modes extracted at level L.

To formally define the series solution for xmrDMD(t), we propose the following indicator
function

(9) f`,j(t)=

{
1 t ∈ [tj , tj+1]
0 elsewhere

with j = 1, 2, · · · , 2(`−1)

which is only non-zero in the interval, or time bin, associated with the value of j. The
parameter ` denotes the level of the decomposition.

The three indices and indicator function (9) give the mrDMD solution expansion

(10) xmrDMD(t) =

L∑
`=1

J∑
j=1

mL∑
k=1

f`,j(t)b
(`,j)
k φ

(`,j)
k (ξ) exp(iω

(`,j)
k t) .

This is a concise definition of the mrDMD solution that includes the information on
the level, time bin location and number of modes extracted. Figure 1 demonstrates
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Fig. 1: Illustration of the multiresolution analysis and sampling framework. On
the left are the mrDMD modes φ`,jk (ξ) and their position in the hierarchy. The
triplet of integer values, `, j and k, uniquely expresses the time level, bin and mode
of the decomposition. Depicted in the middle is the matrix library of all mrDMD
modes, which are then leveraged to obtain optimal samples (spatial sensors, right) for
downstream estimation and prediction tasks.

the mrDMD decomposition in terms of the solution (10). In particular, each mode
is represented in its respective time bin and level. An alternative interpretation of
this solution is that it generalizes the linear mapping (5) so that at each level ` of the
decomposition one has

(11) x
(`,j)
j+1 = A(`,j)x

(`,j)
j

where the matrix A(`,j) captures the dynamics in a given time bin j at level `.
The indicator function f`,j(t) acts as a sifting function for each time bin. Interest-

ingly, this function acts as the Gabór window of a windowed Fourier transform [31].
Since our sampling bin has a hard cut-off of the time series, it may introduce some
artificial high-frequency oscillations. Time-series analysis, and wavelets in particular,
introduce various functional forms that can be used in an advantageous way. Thus
thinking more broadly, one can imagine using wavelet functions for the sifting opera-
tion, allowing the time function f`,j(t) to take the form of one of the many potential
wavelet basis, i.e. Haar, Daubechies, Mexican Hat, etc.

3. Multiresolution analysis framework. We propose a multiresolution anal-
ysis decomposition and spatial sampling framework for the estimation and prediction
of multiscale dynamics. Localized time-frequency analysis presents difficulties for fu-
ture state prediction as the active modes in a new temporal window are unknown.
Thus additional information is required to estimate temporal coefficients a(t). This
additional information is commonly provided in the form of current state observa-
tions or sensor measurements. In this section we frame future state prediction as
the reconstruction of new high-dimensional states from observations, or equivalently,
estimating the correct temporal coefficients within the mrDMD library of modes.
This is a common problem in engineering applications; the second half of this section
describes how to optimize state measurement locations to minimize prediction error.
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3.1. Mathematical formulation. The mrDMD yields a library of possible dy-
namics which can be arranged in matrix form

(12) Φ =
[
φ

(1,1)
k φ

(2,1)
k φ

(2,2)
k φ

(3,1)
k . . . φ

(3,4)
k φ

(4,1)
k . . . φ

(4,8)
k

]
.

There may be more than mode per level indexed by k in the library Φ, which is now
an n ×M matrix. Thus any state can be approximated by a linear combination of
the columns of Φ with time-dependent coefficients

(13) x(t) = Φa(t).

The challenge with future state prediction is identifying the subset of a’s components
that are active (nonzero) at a future time, because mrDMD modes are localized in
the time-frequency domain and do not enforce globally periodic temporal behavior.

The necessary information is often provided by point observations of the unknown
state vector – an extremely prevalent construct in engineering and controls. Then
there exists a linear relationship between observations, stored in a vector y, and time
coefficients. The components of y result from a linear observation map C applied to
x and there is additive white noise η ∼ N (0, σ2)

y = Cx + η

= CΦa + η.

The following assumptions are made: y ∈ Rp, where p � n, and the measurement
matrix C ∈ Rp×n consists of p rows of the n × n identity matrix which index mea-
surements of the full state. This linear inverse problem for coefficient estimation is
generally ill-posed (underdetermined) without additional regularization. We impose
two forms of regularization:

1. Coefficient sparsity. To reflect the physical constraint that only a few
modes are active at a given time, we impose a sparse structure on a which
minimizes the number of nonzero entries (see below).

2. Designing C. Point observations of states will be optimized to leverage
mrDMD features of interest and eliminate redundancy between point samples.
In engineering settings this is known as sensor placement.

At first glance both pose combinatorial subset selection problems, but as we shall see,
there exist well-known methods to approximate both selections.

3.2. Online estimation and prediction. Assume a fixed C that is already
optimized for estimation. The sparsest coefficients a? can be approximated using a
convex l1 constrained minimization

(14) a? = argmin
a
‖a‖1 subject to y = CΦa.

The convex optimization posed in (14) can be efficiently computed using basis pur-
suit [45], which is available in l1 optimization tools including CVX [20], SPGl1 [48]
and CoSaMP [38]. The full state is subsequently estimated from the active (nonzero)
modal dynamics using x̂ ≈ Φa? (see (13)). A more accurate reconstruction can be
achieved with traditional least-squares approximation using only the active modes.
Explicitly, we first determine which library modes are active by indexing the nonzero
solution coefficients

(15) β := {i ∈ {1, . . . , r} | a?i 6= 0}.
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Once β is known, then state prediction reduces to a least-squares approximation using
the subset of active modes within the library

x̂ ≈ Φβaβ

= Φβ(CΦβ)†y.

When Φ are POD modes, this is widely known as gappy POD, introduced in the early
90s for image reconstruction using eigenfaces [19] and subsequently used for flow field
reconstruction in ROMs [49]. Sparse approximation methods similar to the above
description have applied compressed random measurements in POD mode libraries
to classify different parameter regimes [10, 7]. In recent work [29] classification is
accomplished with sparse measurements in a DMD mode library. However, to our
best knowledge, this is the first known application of sparse estimation using a DMD
mode library samples with optimized measurements.

3.3. Offline measurement design. We now turn to the optimal design of the
measurement operator to obtain a minimal set of non-redundant observations of the
state. The concept of redundancy is implicitly quantified in the multiscale dynamical
library, however, the repetition of modes across multiple time-frequency bins intro-
duces redundancy. Optimal measurement design from this library would then result
in multiple measurement locations with the same dynamics, which is undesirable in
practice. This is remedied by first preprocessing the library and constructing an in-
dex set to filter out redundant modes (this is distinct from the local active set β).
For example, this subset can be selected from modes with dominant spatiotemporal
signatures, by identifying mrDMD modal amplitudes which exceed some threshold T

(16) α := {i ∈ {1, . . . ,m} | |bi| > T}.

Alternatively, depending on the application, modes corresponding to specific time or
frequency bins of the decomposition can be extracted in this step for downstream sen-
sor selection. The mathematical aim is to construct the measurements C to minimize
the least-squares approximation error, a − â. Similar measurement design methods
using the matrix QR factorization have been developed for POD modal bases [17, 36]
and reformulated in the estimation setting [35]. For this step the library Φα and
noise levels are assumed predetermined, but point measurements can be chosen to
minimize some scalar measure of the “size” of the error covariance (Σ):

(17) Σ = Var(a− â) = σ2[(CΦα)TCΦα]−1.

The error covariance Σ characterizes the minimum volume ρ-confidence ellipsoid, ερ,
that contains the least-squares estimation error, a − â, with probability ρ. The D-
optimal design criterion minimizes the volume of ερ

(18) vol(ερ) = δρ,r det Σ
1
2 ,

where δρ,r only depends on ρ and r, by minimizing the determinant, which is the only
sensor dependent term. This optimization is equivalent to maximizing the determi-
nant of the inverse

(19) maximize
C

log det
[
(CΦα)TCΦα

]
.

Here, we are imposing the following structure on the measurement matrix C ∈ Rp×n

(20) C = [eγ1 | eγ2 | . . . | eγp ]T ,
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where γi ∈ {1, . . . , n} indexes the high-dimensional measurement space, and eγi are
the canonical unit vectors consisting of all zeros except for a unit entry at γi. This
guarantees that each row of C only measures from a single spatial location, corre-
sponding to a point sensor.

The optimal design shrinks all components of the reconstruction error via the
associated ellipsoid volume, i.e. the choice that minimizes the determinant of Σ. This
subset optimization is a combinatorial search over

(
n
p

)
possibilities which quickly be-

comes computationally intractable even for moderately large n and p. Fortunately, an
extremely efficient greedy optimization method for (19) is given by the pivoted matrix
QR factorization of ΦT

α. QR pivoting has been extensively used to compute optimal
quadrature and interpolation points [12, 44, 17, 43], which are optimal samples in
polynomial basis modes. QR pivoting is shown to outperform related methods for
optimal selection in either computational accuracy or runtime, sometimes both [35].
Such methods include empirical interpolation methods [3, 13] from ROMs, informa-
tion theoretic criteria [30] and convex optimization [24, 6].

The reduced matrix QR factorization with column pivoting decomposes a matrix
A ∈ Rm×n into a unitary matrix Q, an upper-triangular matrix R and a column
permutation matrix C such that ACT = QR. Recall that the determinant of a
matrix, when expressed as a product of a unitary factor and an upper-triangular
factor, is the product of the diagonal entries in the upper-triangular factor:

(21)
∣∣det ACT

∣∣ = |det Q||det R| =
∏
i

|rii|,

The pivoted QR permutes the matrix ΦT
α with CT to enforce the following diagonal

dominance structure on the diagonal entries of its R factor [17]:

(22) σ2
i = |rii|2 ≥

k∑
j=i

|rjk|2; 1 ≤ i ≤ k ≤ m.

Column pivoting iteratively increments the volume of the pivoted submatrix by se-
lecting a new pivot column with maximal 2-norm, then subtracting from every other
column its orthogonal projection onto the pivot column (see Algorithm 1). In this
manner the QR factorization with column pivoting yields p point measurement indices
(pivots) that best characterize dominant dynamical modes Φα

(23) ΦT
αCT = QR.

The QR pivoting algorithm is summarized in Algorithm 1. The standard pivoting
formulation yields only as many pivots as there are columns of Φα (modes). However,
oversampling, which refers to sampling more observations than modes, promotes ro-
bustness to measurement noise, thus regularizing the state estimation problem (3.2).
We include here a method first introduced in [35] for obtaining p > m samples. These
samples result from the pivoted QR factorization of ΦαΦT

α, based on the observation
that the singular values of the iverted error covariance (CΦα)TCΦα coincide with
the first r singular values of its transpose and the diagonal entries of its R factor.
Thus, the pivoting formulation will automatically condition the desired determinant.

4. Applications. This section demonstrates the application of our multiresolu-
tion analysis and sampling methods on data presenting multiscale temporal scales.
The first example, a manufactured video, presents three spatial modes independently
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Algorithm 1 QR factorization with column pivoting of A ∈ Rn×m
Greedy optimization for placing p sensors γ from multiscale modes.
Usage: QrPivot( ΦT

α , p ) (if p = m)
Usage: QrPivot( ΦαΦT

α , p ) (if p > m)

1: procedure qrPivot( A, p )
2: γ ← [ ]
3: for k = 1, . . . , p do
4: γk = argmaxj /∈γ ‖aj‖2

5: Find Householder Q̃ such that Q̃ ·


akk

...
ank

 =


?
0
...
0

 . ?’s represent
nonzero diagonal
entries in R

6: A← diag(Ik−1, Q̃) ·A . Remove from all columns the orthogonal
projection onto aγk

7: γ ← [γ, γk]
8: end for
9: return γ

10: end procedure

oscillating at different frequencies in overlapping time windows. We empirically quan-
tify the accuracy of our analysis and estimation from optimized samples by comparing
with the known dynamics. By contrast, the second example seeks to identify intermit-
tent warming phenomena from real global satellite data of sea surface temperatures.
Here the accuracy metric is the correct identification of warming events in the val-
idation window based on the same events identified in a separate training window.
For both examples, results from the multiresolution analysis are contextualized with
appropriate comparisons to POD and DMD.

4.1. Multiscale video example. The video data is generated from three spa-
tial modes oscillating at different frequencies in overlapping time intervals, effectively
appearing mixed in time. Mathematically each snapshot is constructed as a linear
combination of Gaussian spatial modes

(24) x(t) =

3∑
i=1

ai(t) exp

(
−

(ξ − ξ0i
)2

wi

)
,

where ξ ∈ Rn is the vectorized planar spatial grid (n = nx × ny) and w is a scalar
width parameter. The challenge with mrDMD is to identify the true modes φi =

exp

(
− (ξ−ξ0i

)2

wi

)
within their respective temporal windows. We list explicitly the

modal components with their time dynamics in Table 1 and Figure 2.
The identification of spatial modes clearly depends on separation by temporal

frequency. Figure 3 compares mrDMD results with proper orthogonal decomposition
(POD), the primary dimensionality reduction tool used in ROMs. The mrDMD time-
frequency analysis successfully isolates the true modes of the system, while POD fails
at this task since it is a variance-based decomposition in which modes are eigenvectors
of data covariances. Hence, the POD spatial modes appear mixed. In addition,
mrDMD outputs the correct frequencies associated with each of these modes. We do
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Table 1: Multiscale video dynamics

Mode Time dynamics frequency (ωi)

φ1 a1(t) =

{
exp(2πiω1t) t ∈ [0, 5]

0 elsewhere
ω1 = 5.55

φ2 a2(t) =

{
exp(2πiω2t) t ∈ [2.5, 7.5]

0 elsewhere
ω2 = 0.9

φ3 a3(t) =

{
exp(2πiω3t) t ∈ [0, 10]

0 elsewhere
ω3 = 0.15

φ1

0 2 4 6 8 10

-1

-0.5

0

0.5

1

a1(t)

φ2

0 2 4 6 8 10

-2

-1

0

1

2

a2(t)

φ3

0 2 4 6 8 10

-1

-0.5

0

0.5

1

a3(t)

mrDMD amplitude map

True dynamics

Fig. 2: Multiscale video. The mrDMD analysis accurately identifies the active
frequencies in each temporal window of the decomposition. The plot on the right
colors each time-frequency bin by mrDMD mode amplitude.

not give results for standard DMD since it will fail by fitting exponentials across the
global time window. Within the multiresolution analysis, active modes are repeated
across the time-frequency bins, so we include only the mode with highest amplitude.
These selected modes describe the feature selection or formation of the index set α
used to train sensors. Similarly, we select the first three POD modes, which explain
99.9% of the variance in the training data, as quantified by the POD eigenvalues.
Interestingly, both decompositions yield the same optimal samples for this example.
This is because the three point sources of diffusion correspond to spatial extrema,
which are indicated by the overlapping contour plots of the first three true, mrDMD
and POD modes respectively.

Even though the same optimal samples are identified, feature selection greatly
affects the quality of reconstruction for future state prediction. To test this, we
generate test data using time coefficients for each mode from a random process in
order to estimate the true coefficients from the three optimal sampling locations.
Further, white noise of variance σ2 = 0.001 is added to the three sampled observations.
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(a) True modes 1-3 (b) mrDMD modes 1-3

(c) DMD modes 1-3 (d) POD modes 1-3

(e) QR sensors, left to right: true, mrDMD, DMD, POD

Fig. 3: Comparison of spatial modes and sensors shows that mrDMD (b) is
ideal for isolating the true windowed dynamics (a), unlike standard DMD (c) or POD
(d). Despite varying degrees of spatial mode separation, QR sensors extracted from
the different basis modes (e) closely agree.

Finally, coefficients estimated from the subselected basis Φα consisting of mrDMD
modes (Figure 3b) are compared to a basis of POD modes (Figure 3d). Here least-
squares estimation is used since the problem is well-posed (three equations and three
unknowns). Results are plotted in Figure 4, where it can be seen that mrDMD-based
estimation (blue) best approximates the true random process (black). By contrast,
POD-based estimation (red) deviates from the true coefficients, particularly in the
second and third modal coefficients.

We quantify this further in a noise study whose results are plotted in Figure 5.
White noise levels σ2 are increased on a logarithmic scale to examine the l2 recon-
struction error trend of the coefficient vectors. Estimation with mrDMD points to an
exponential increase in error until the signal appears saturated by noise at σ2 = 1.
POD-based estimation, however, appears to saturate much earlier at small noise lev-
els, and is thus not as suitable for multiscale estimation and prediction. Specifically,
the full state can now be reconstructed from noisy point observations in any validation
window using estimated coefficients (13).

In this video example, the true spatiotemporal modes were selected based on three
different identified frequencies. For estimation, we leverage these three modes and
associated sensors to reconstruct unseen random dynamics at future time instances.
In many systems, it is not immediately obvious which of the identified dynamics
are active in a new time window. This lack of knowledge of true dynamics typifies
many real-world systems, in which nonlinear, chaotic dynamics and regime switching
limit our ability to predict future states. However, we can harness observations from
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modes and sensors trends several orders of magnitude lower than with POD modes
and sensors for small levels of sensor white noise.

optimally sampled observations (sensors) to classify active dynamics in new time
windows, which is illustrated here for sparse identification of El Niño warming periods
from global ocean temperature data.

4.2. NOAA ocean surface temperature. We apply multiresolution analysis
to real satellite data of weekly ocean surface temperatures from 1990-2017. Here,
the measure of success is accurate identification of intermittent warming and cooling
events that are famously implicated in global weather patterns and climate change -
El Niño and La Niña events. Weekly temperature means are collected on the entire
360x180 spatial grid, with data omitted over continents and land. The dimension
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of each weekly snapshot then reduces from 360 × 180 = 64800 to n = 44219 spatial
gridpoints. We run mrDMD in training windows of 16 years (multiples of 2 facilitate
clean separation of annual scales) up to four decomposition levels so that the fastest
identifiable frequency is biennial, effectively discarding the dominant annual scale
from the analysis. This is done to parse out the El Niño Southern Oscillation (ENSO),
defined as any sustained temperature anomaly above running mean temperature with
a duration of 9 to 24 months.

ye
ar

ly
fr

eq
u

en
cy

(ω
)

ENSO

BSO

weak ENSO weak ENSO ENSO

Fig. 6: MrDMD map of modal amplitudes by level and time window. The
method captures several dynamically significant oscillations occurring slower than
annual dynamics. The identified El Niño (ENSO) and Barents Sea oscillations (BSO)
are both rare events known to exert significant influence on global weather patterns.

Figure 6 visualizes the resulting modal amplitude maps in the time-frequency do-
main, along with oscillatory dynamical modes identified by the decomposition. Each
bin is colored by the average modal amplitude of identified dynamics. An energetic
background mode is identified in both training windows (1990-2006, 2001-2016) cor-
responding to the mean temperature distribution. More importantly, lower-energy
dynamics identified at the biennial scale correspond closely to well-documented ENSO
events, the strongest of which occur in 1997-1999 and 2014-2016. Visual inspection
clearly identifies these as ENSO events which cause a characteristic band of warm
water across the South Pacific near coastal Peru.

We study now the consequences of multiscale analysis on optimal sampling, which
can be readily interpreted as physical sensors in this application. Figure 7 compares
mrDMD and POD in terms of spectral and spatiotemporal information relayed by
mrDMD and POD-based sensors. DMD eigenvalues with nonzero imaginary part
(blue, Figure 7a) identify active oscillations within the 1990-2006 training window.
One of the conjugate frequency pairs confirms the true ENSO yearly frequency with
Im(ω) = 0.5. On the other hand, the POD spectrum characterizes data covari-
ances and exhibits slow decay due to noisy, low-energy dynamics in the system. This
prohibits a low-rank representation of this data using a few POD modes. We now
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Fig. 7: mrDMD vs. POD sensors. QR sensors sampled from the ENSO and BSO
mrDMD modes (see Figure 6) identify the relevant warming region in the South
Pacific, unlike the POD sensors. The time series from mrDMD sensors also display
richer temporal trends compared to the dominant annual trends seen in the POD time
series.

compute sensors from both sets of modes. We form Φα from the oscillatory dynamics
in the mrDMD spectrum, and the first three POD eigenmodes in the POD spectrum.
QR-based sensors are computed for both sets of modes separately. The first observa-
tion is that, unlike the toy video example, mrDMD and POD sensors are different.
One mrDMD sensor is located over the ENSO band, proving that multiscale char-
acterization is crucial for this system. Meanwhile, POD sensors appear sensitive to
temperature extremes occurring along coastlines and inland seas. POD sensor mea-
surements also entirely miss the ENSO phenomenon in the South Pacific. This can
be seen from the time series measured at all sensor locations – mrDMD time series
reflect a richer set of dynamics than those of POD, in which only a dominant annual
scale is present. The comparison with POD-based sampling is particularly valuable
and demonstrates POD’s inability to isolate low-energy intermittent ENSOs in the
training window. POD is unable to obtain a low-rank representation of the dynamics
because the ocean temperature system is driven by many more degrees of freedom
than the toy example. By contrast, mrDMD curtails artificial rank inflation through
localized time-frequency analysis.

Optimal sampling can be exploited in a data assimilation-type framework in which
prediction is accomplished by parameter estimation followed by full state reconstruc-
tion from sensors. We estimate ENSO intensity in a validation window using sparse
estimation of library (Φ) coefficients (14). Figure 8b plots the signal envelope in
both the training and validation windows, then traces temperature anomalies about a
baseline using the mean of upper and lower envelopes. The resulting measure, which
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Fig. 8: ENSO coefficient prediction. Coefficient estimation of ENSO mode from
only 2 sensors accurately predicts El Niño phenomena. Red peaks closely agree with
well-documented strong ENSO events in 1997-99, 2014-2016, as well as with weak
ENSO events in 2002-3, 2006-7 and 2009-10. Cooling events (blue) agree with doc-
umented La Niña events in 2007-8, 2008-9 and 2010. Small discrepancies in the
identified times can be explained by natural variations between the various warming
events.

demarcates events above and below baseline (red and blue respectively), closely agrees
with well-documented El Niño and La Niña events.

Full state snapshots of ocean temperatures may be reconstructed using the iden-
tified coefficients as described in subsection 3.2. In addition, our sampling framework
can be used as a form of multiscale model reduction. Traditionally, ROMs include a
POD Galerkin projection to reduce dimensionality of the original system. However,
in general DMD modes are not orthonormal so the projection cannot be easily in-
verted to lift back to the full state. We show here how a few active mrDMD modes
can be used for global reconstructions of the state from 30 sensors in the tempera-
ture field. Subsection 4.2 displays the number of times a spatial location is selected
as a QR pivot in each temporal window of the decomposition. As expected, spatial
locations corresponding to the ENSO mode are selected with less frequency, reflecting
the intermittency of these dynamics. Finally, Figure 10 displays the results of state
reconstruction at different time windows using optimal samples.
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Fig. 9: Sensor Ensemble. Time-dependent sensor aggregation pinpoints low-energy
locations (i.e. ENSO sensor along coastal Peru) that would have otherwise been
ignored by a global analysis.

(a) mrDMD sensors from QR (b) t1=6/1992 (c) t2=6/1996

t1 t2 t3 t4

(d) mrDMD map 1990-2006 (e) t3=6/1999 (f) t4=6/2002

Fig. 10: Reconstruction from 30 sensors in flow field. MrDMD reconstruction
from sensors is reasonably accurate across snapshots selected from different time win-
dows of the decomposition. Each snapshot of 44219 gridpoints is approximated to
less than 5% relative error.

5. Discussion. Despite significant computational and algorithmic advances, the
modeling and prediction of multiscale phenomena remains exceptionally challenging.
Much of the difficulty arises from our inability to disambiguate the underlying and
diverse set of governing dynamics at various spatiotemporal scales. Additionally, for
large-scale systems, our limited number of sensor measurements can greatly restrict
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model discovery efforts, thus compromising our ability to produce accurate predic-
tions. In this manuscript, we have shown that the multiscale disambiguation and
limited measurement problem can be simultaneously addressed with principled, algo-
rithmic methods. Specifically, combining the multiresolution dynamic mode decom-
position with QR column pivots, a simple greedy algorithm is demonstrated, which
gives accurate spatiotemporal reconstructions and predictions for intermittent multi-
scale phenomena.

In broader context, our algorithmic developments provide a principled framework
for understanding the optimal placement of sensors in complex spatial environments
and/or networked configurations. The greedy QR column pivot selection used for
selecting sensor locations leverages the dominant low-rank features of the multiscale
physics in order to best predict and reconstruct the spatiotemporal dynamics. By
incorporating a multiresolution analysis tool, i.e. the mrDMD, respect is also given to
the diverse temporal phenomena that are often observed in practice. By systematically
accounting for multiscale physics, this placement of sensors performs significantly
better than the same limited number of sensors that do not account for these physics.

The optimized sampling and prediction algorithms developed here have potential
for a wide variety of technological applications. Indeed, with the global increase in
sensor networks and sentinel sites for monitoring, for instance, ocean and atmospheric
dynamics, disease spread across countries, and/or chemical pollutants, new methods
are needed that respect both limited budgets (i.e. limited sensors & cost) and multi-
scale physics. To our knowledge, our algorithms are the first to simultaneously take
into account both of these critical components in an efficient, scalable algorithm.
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[26] E. Kaiser, M. Morzyński, G. Daviller, J. N. Kutz, B. W. Brunton, and S. L. Brun-
ton, Sparsity enabled cluster reduced-order models for control, Journal of Computational
Physics, 352 (2018), pp. 388–409.

[27] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the
National Academy of Sciences, 17 (1931), pp. 315–318.

[28] B. O. Koopman and J.-v. Neumann, Dynamical systems of continuous spectra, Proceedings
of the National Academy of Sciences of the United States of America, 18 (1932), p. 255.

[29] B. Kramer, P. Grover, P. Boufounos, S. Nabi, and M. Benosman, Sparse sensing and
DMD-based identification of flow regimes and bifurcations in complex flows, SIAM Journal
on Applied Dynamical Systems, 16 (2017), pp. 1164–1196.

[30] A. Krause, A. Singh, and C. Guestrin, Near-optimal sensor placements in Gaussian pro-
cesses: Theory, efficient algorithms and empirical studies, Journal of Machine Learning
Research, 9 (2008), pp. 235–284.

[31] J. N. Kutz, Data-Driven Modeling & Scientific Computation: Methods for Complex Systems
& Big Data, Oxford University Press, 2013.

[32] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode Decompo-
sition: Data-Driven Modeling of Complex Systems, SIAM, 2016.

[33] J. N. Kutz, X. Fu, and S. L. Brunton, Multiresolution dynamic mode decomposition, SIAM
Journal on Applied Dynamical Systems, 15 (2016), pp. 713–735.

[34] J. N. Kutz, X. Fu, S. L. Brunton, and N. B. Erichson, Multi-resolution dynamic mode
decomposition for foreground/background separation and object tracking, in 2015 IEEE
International Conference on Computer Vision Workshop (ICCVW), Dec 2015, pp. 921–
929.

[35] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, Data-driven sparse sensor
placement for reconstruction, arXiv preprint arXiv:1701.07569; to appear in IEEE Control
Systems Magazine, (2017).

[36] K. Manohar, S. L. Brunton, and J. N. Kutz, Environment identification in flight using
sparse approximation of wing strain, Journal of Fluids and Structures, 70 (2017), pp. 162–
180.

[37] A. G. Nair and K. Taira, Network-theoretic approach to sparsified discrete vortex dynamics,



OPTIMIZED SAMPLING FOR MULTISCALE DYNAMICS 19

Journal of Fluid Mechanics, 768 (2015), pp. 549–571.
[38] D. Needell and J. A. Tropp, CoSaMP: iterative signal recovery from incomplete and inac-

curate samples, Communications of the ACM, 53 (2010), pp. 93–100.
[39] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton, Streaming GPU singular value and

dynamic mode decompositions, arXiv preprint arXiv:1612.07875, (2016).
[40] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control,

SIAM Journal on Applied Dynamical Systems, 15 (2016), pp. 142–161.
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