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Abstract. We consider primal-dual mixed finite element methods for the solution of the elliptic Cauchy
problem, or other related data assimilation problems. The method has a local conservation property. We derive
a priori error estimates using known conditional stability estimates and determine the minimal amount of weakly
consistent stabilization and Tikhonov regularization that yields optimal convergence for smooth exact solutions.
The effect of perturbations in data is also accounted for. A reduced version of the method, obtained by choosing
a special stabilization of the dual variable, can be viewed as a variant of the least squares mixed finite element
method introduced by Dardé, Hannukainen and Hyvönen in An Hdiv-based mixed quasi-reversibility method for
solving elliptic Cauchy problems, SIAM J. Numer. Anal., 51(4) 2013. The main difference is that our choice
of regularization does not depend on auxiliary parameters, the mesh size being the only asymptotic parameter.
Finally, we show that the reduced method can be used for defect correction iteration to determine the solution of
the full method. The theory is illustrated by some numerical examples.
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1. Introduction. Let Ω ∈ Rd, d ∈ {2, 3}, be a convex polygonal/polyhedral domain, with
boundary ∂Ω and outward pointing unit normal ν. We consider the following elliptic Cauchy
problem,

∇ · (A∇u) + µu = f +∇ · F in Ω
u = g on Σ

(A∇u) · ν = ψ on Σ,
(1.1)

where Σ ⊂ ∂Ω. The problem data is given by f ∈ L2(Ω), F ∈ [L2(Ω)]d, g ∈ H 1
2 (Σ), ψ ∈ H− 1

2 (Σ),
µ ∈ R. The diffusivity matrix A ∈ Rd×d is assumed to be symmetric positive definite. Observe
that the second term in the right-hand side is well defined only in the weak sense, see (1.2) below
for the precise formulation. For the physical problem, the function F will be assumed to be zero,
but it will play a role for the numerical analysis.

Contrary to a typical boundary value problem, the data g, ψ is available only on the portion
Σ of the domain boundary. Observe that on this portion, on the other hand, both the Dirichlet
and the Neumann data are known. For simplicity we only consider the case of unperturbed
Dirichlet boundary conditions. We will assume that ψ is some measured Neumann data, possibly
with perturbations δψ. We also assume that the unperturbed data has at least the additional
regularity g ∈ H

3
2 (Σ) and ψ ∈ H

1
2 (Σ) and that there exists a solution u ∈ H2(Ω) to (1.1) for

the given f, ψ and g. The elliptic Cauchy problem is severly ill-posed [3] and even when a unique
solution u exists, small perturbations of data in the computational model can have a strong impact
on the result.

The computational approximation of ill-posed problems is a challenging topic. Indeed the lack
of stability of the physical model under study typically prompts Tikhonov regularization on the
continuous level [31, 37] in order to obtain a well-posed problem, which then allows for standard
approximation techniques to be applied. Although convenient, this approach comes with the price
of having to estimate both the perturbation error induced by adding the regularization and the
approximation error due to discretization, in order to assess the quality of the solution. For early
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works on finite element approximation of the elliptic Cauchy problem and ill-posed problems we
refer to [29, 26, 25, 36].

Herein we will advocate a different approach based on discretization of the ill-posed physical
model in an optimization framework, followed by regularization of the discrete problem. This
primal-dual approach was first introduced by Burman in the papers [11, 13, 12, 14], drawing on
previous work by Bourgeois and Dardé on quasi reversibility methods [4, 5, 7, 8] and further
developed for elliptic data assimilation problems [17], for parabolic data reconstruction problems
in [20, 18] and finally for unique continuation for Helmholtz equation [19]. For a related method
using finite element spaces with C1-regularity see [22] and for methods designed for well-posed,
but indefinite problems, we refer to [9] and for second order elliptic problems on non-divergence
form see [38] and [39]. Recently approaches similar to those discussed in this work were proposed
for the approximation of well-posed convection–diffusion problems [27] or porous media flows [32].

The idea is to cast the ill-posed problem on the form of an optimization problem under the
constraint of the satisfaction of the partial differential equation, and look for the solution of the
discrete form of the partial differential equation that allows for the best matching of the data.
This problem is unstable also on the discrete level and to improve the stability properties we
use stabilization techniques known from the theory of stabilized finite element methods. Typical
stabilizers are least squares penalty terms on fluctuations of discrete quantities over element faces,
or Galerkin least squares term on the residual, in the elements. Since both a forward and a
dual problem must be solved, this approach doubles the number of degrees of freedom in the
computation.

The objective of the present work is to revisit the primal-dual stabilized method for the Cauchy
problem but in the context of mixed finite element methods. This means that we use one variable
to discretize the flux variable and another for the primal variable. In this framwork, the primal
stabilizer, that typically is based on the penalization of fluctuations, can be formulated as the
difference between the flux variable and the flux evaluated using the primal variable. Our method
is designed by minimizing this fluctuation quantity under the constraint of the conservation law.
The use of the mixed finite element formulation allows us to choose discrete spaces in such a way
that the conservation law is satisfied exactly on each cell of the mesh. The resulting system is
large, but we show that a special choice of the adjoint stabilizer allows for the elimination of the
multiplier and a reduction of the system to a symmetric least squares formulation, at the price of
exact local conservation. For the reduced case local conservation is only satisfied asymptotically.

The reduced method is identified as a variant of the method proposed by Dardé, Hannukainen
and Hyvönen in [23]. In this work the elliptic Cauchy problem was considered and a discrete solu-
tion was sought using Raviart-Thomas finite elements for the flux variable and standard Lagrange
elements for the primal variable. Additional stability was obtained through Tikhonov regulariza-
tion on both the primal and the flux variable. Contrary to [23], our choice of regularization does
not depend on auxiliary parameters, the mesh size being the only asymptotic parameter. This
allows us to carry out a complete analysis of the rate of convergence of the method.

The convergence analysis is based on known conditional stability estimates for the elliptic
Cauchy problem, see e.g. [1]. We prove estimates for the mixed FEMs that in a certain sense
can be considered optimal with respect to the approximation order of the space, the stability
properties of the ill-posed problem and perturbations in data. For the analysis using conditional
stability estimates, we need an a priori bound on the discrete solution. This naturally leads to
the introduction of a Tikhonov regularization on the primal variable. The dependence of the
regularization parameter on the mesh-size is chosen so that optimal convergence is obtained for
unperturbed solutions, depending on the approximation order of the space and the regularity of
the exact solution. The analysis is illustrated with some numerical examples.

1.1. The elliptic Cauchy problem. The problem (1.1) can be cast on weak form by in-
troducing the spaces

VΣ := {v ∈ H1(Ω) : v|Σ = g}
2



and, using Σ′ := ∂Ω \ Σ,

VΣ′ := {v ∈ H1(Ω) : v|Σ′ = 0}.

We also introduce the bilinear forms

a(u, v) :=

∫
Ω

(−A∇u · ∇v + µuv) dx, l(v) :=

∫
Σ

ψv ds+

∫
Ω

fv dx+

∫
Ω

F · ∇v dx.

The weak formulation then reads: find u ∈ VΣ such that

a(u, v) = l(v) ∀v ∈ VΣ′ . (1.2)

Observe that this problem is severely ill posed (see e.g. [3]). Moreover, if f and ψ are chosen
arbitrarily, it may fail to have a solution. We will assume below that we have at our disposal
perturbed data,

ψ̃ := ψ + δψ, δψ ∈ L2(Σ)

and

f̃ = f + δf, δf ∈ L2(Ω),

such that, in the unperturbed case (δψ = 0, δf = 0), there is a solution u ∈ H2(Ω) of (1.2). We
then arrive to the following perturbed problem, find u ∈ VΣ such that

a(u, v) = l̃(v), ∀v ∈ VΣ′ ,

where the perturbed right hand side is given by

l̃(v) :=

∫
Σ

ψ̃v ds+

∫
Ω

f̃v dx.

Here we have omitted the contribution from F since this term is assumed to be zero for the physical
problem. The problem posed with the perturbed data most likely does not have a solution.

We define for k ≥ 0,

Hk
div,ψ := {q ∈ Hk(Ω) : ∇ · q ∈ Hk(Ω) and q · ν|Σ = ψ}.

Assuming f ∈ L2(Ω), the flux variable p := A∇u is in Hdiv,ψ := H0
div,ψ. We will write also

Hdiv = Hdiv,0. For the finite element method we will use the equation (1.1) written on mixed
form, that is, find u ∈ VΣ, p ∈ Hdiv,ψ such that

p−A∇u = 0 in Ω, (1.3)

∇ · p+ µu = f in Ω. (1.4)

The method that we will propose below will be based on minimizing the left hand side of (1.3)
under the constraint of (1.4).

In the analysis below we will use the following notation for the L2-scalar products and norms
on ω ⊂ Rd and σ ⊂ Rd−1,

(u, v)ω :=

∫
ω

uv dx, with norm ‖u‖ω = (u, u)
1
2
ω

and

〈u, v〉σ :=

∫
σ

uv ds, with norm ‖u‖σ = 〈u, u〉
1
2
σ .

With some abuse of notation we will not distinguish between the norms of vector valued and scalar
quantities.
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1.2. Stability properties of the Cauchy problem. The literature on the stability prop-
erties of the elliptic Cauchy problem spans more than a hundred years, see for instance [28, 34,
35, 2, 3, 1, 6]. The results known as quantitative unique continuation or quantitative uniqueness
are useful for numerical analysis. For our analysis we will use the results in [1], and we refer the
reader to this review paper by Allessandrini and his co-authors for background on the analysis of
the Cauchy problem. To keep down the technical detail we will here present their main results on
a simplified form suitable for our analysis. In particular, we do not track the constants related to
the geometry of the domain. For the complete results, as well as full proofs, we refer to [1]. First
we introduce the following bounds on the data. Assume that there exists η, ε > 0 such that

‖g‖H1/2(Σ) + ‖ψ‖H−1/2(Σ) ≤ η (1.5)

and ‖f‖Ω + ‖F ‖Ω ≤ ε or equivalently, the right hand side l(v) satifies the following bound

‖l‖(VΣ′ )
′ ≤ ε (1.6)

Theorem 1.1. (Conditional stability of the Cauchy problem, local bound) Assume that u ∈
H1(Ω) is a solution to (1.2), with data satisfying (1.5) and (1.6). Assume that the following a
priori bound holds

‖u‖Ω ≤ E0. (1.7)

Let G ⊂ Ω be such that dist(G,Σ′) > 0. Then there exists a constant C > 0 and τ ∈ (0, 1)
depending only on the geometry of Ω and G such that

‖u‖G ≤ C(ε+ η)τ (E0 + ε+ η)(1−τ). (1.8)

Observe that compared to Theorem 1.7 in [1], we have omitted the assumption that dist(G,Σ)
is small. This is because estimates for u can be propagated in the interior of Ω, at the cost of
making the constants C and τ worse, see Section 5 in [1]. It is important, however, that G does
not touch Σ′. If it does, the optimal estimate is of logarithmic type.

Theorem 1.2. (Conditional stability of the Cauchy problem, global bound) Assume that
u ∈ H1(Ω) is a solution to (1.2), with data satisfying (1.5) and (1.6). Assume that the following
a priori bound holds

‖u‖H1(Ω) ≤ E. (1.9)

Then there exists a constant C > 0 and τ ∈ (0, 1) depending only on the geometry of Ω such that

‖u‖Ω ≤ C(E + ε+ η)ω

(
ε+ η

E + ε+ η

)
(1.10)

where

ω(t) ≤ 1

log(t−1)τ
, for t < 1.

2. The mixed finite element framework. Let {T }h be a family of conforming, quasi
uniform meshes consisting of shape regular simplices T = {K}. The index h is the mesh parameter
h, defined as the largest diameter of any element K in T . For each simplex K we let nK be the
outward pointing unit normal. We assume that the boundary faces of T fits the zone Σ so that
∂Σ nowhere cuts through a boundary face. The set of faces of the elements in T will be denoted
by F and the set of faces in F whose union coincides with Σ by FΣ.
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We introduce the space of functions in L2(Ω) that are piecewise polynomial of order k on each
element

Xk
h := {xh ∈ L2(Ω) : xh|K ∈ Pk(K), ∀K ∈ T },

where Pk(K) denotes the set of polynomials of degree less than or equal to k on the simplex K.
We define the L2-projection πX,k : L2(Ω) 7→ Xk

h by, πX,ky ∈ Xk
h such that

(πX,ky − y, vh)Ω = 0, ∀vh ∈ Xk
h .

The L2-projection on a face F of some simplex K ∈ T , will also be used in the analysis. We define
πF,l : L2(F ) 7→ Pl(F ) such that, for φ ∈ L2(F ), πF,lφ satisfies

〈φ− πF,lφ, ph〉F = 0, ∀ph ∈ Pl(F ).

For functions in Xk
h we introduce the broken norms,

‖x‖h :=

(∑
K∈T

‖x‖2K

) 1
2

and ‖x‖1,h :=
(
‖∇x‖2h + ‖h− 1

2πF,l[[x]]‖2F\FΣ

) 1
2

(2.1)

where ‖x‖2F :=
∑
F∈F ‖x‖2F and

[[u]]|F (x) :=

{
limε→0+(u(x− εnF )− u(x+ εnF )) for F ∈ Fi
u(x) for F ∈ FΣ′

where nF is a fixed unit normal to the face F and Fi is the set of interior faces. Note that we do
not need to define the jump on Σ. Also recall the discrete Poincaré inequality [10],

‖x‖L2(Ω) . ‖x‖1,h, ∀x ∈ Xk
h ,

which guarantees that the right expression of (2.1) is a norm. Here and below we use the notation
a . b for a ≤ Cb where C is a constant independent of h. Occasionally, we will also use the
notation a ∼ b meaning a . b and b . a.

To formulate the method we write the standard H1-conforming finite element space

Lkh := {vh ∈ H1(Ω) ∩Xk
h}.

For the primal variable it is convenient to introduce the spaces

V kg := {vh ∈ Lkh : vh = gh on Σ}, V k0 := {vh ∈ Lkh : vh = 0 on Σ}.

We let gh denote the nodal interpolant of g on the trace of functions in Vh on Σ, so that defining
the nodal interpolant ih : C0(Ω̄) 7→ Lkh, there holds ih : VΣ 7→ V kg . The following approximation

estimate is satisfied by ih, see e.g. [24]. For v ∈ Hk+1(Ω) there holds

‖v − ihv‖Ω + h‖∇(v − ihv)‖Ω . hk+1|v|Hk+1(Ω), k ≥ 1. (2.2)

The flux variable will be approximated in the Raviart-Thomas space

RT l := {qh ∈ Hdiv(Ω) : qh|K ∈ Pl(K)d ⊕ x(Pl(K) \ Pl−1(K)) for all K ∈ T }

with x ∈ Rd being the spatial variable. We recall the Raviart-Thomas interpolant Rh : Hdiv(Ω) 7→
RT l and its approximation properties [24]. For q ∈ H l

div(Ω) and Rhq ∈ RT l there holds

‖q −Rhq‖Ω + ‖∇ · (q −Rhq)‖Ω . hl(|∇ · q|Hl(Ω) + |q|Hl(Ω)). (2.3)
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Then assuming that the Neumann data ψ̃ is in L2(Σ) we define the discretized Neumann
boundary data by the L2-projection, for F ∈ Σ, ψ̃h|F := πF,lψ̃. A space for the flux variable, with
the satisfaction of the Neumann condition built in, takes the form

Dl
ψ̃

:= {qh ∈ RT l : qh · ν = ψ̃h on Σ}, Dl
0 := {qh ∈ RT l : qh · ν = 0 on Σ}.

Given a function xh ∈ Xk
h we define a reconstruction ηh(xh) of the gradient of xh in Dl

0. By
the properties of the Raviart-Thomas element there exists ηh(xh) ∈ Dl

0 such that for all F ∈ F\FΣ

〈ηh(xh) · nF , wh〉F =
〈
h−1
F [[xh]], wh

〉
F
, for all wh ∈ Pl(F ) (2.4)

where hF is the diameter of F , and if l ≥ 1, for all K ∈ T ,

(ηh(xh), qh)K = −(∇xh, qh)K , for all qh ∈ [Pl−1(K)]d. (2.5)

The stability of ηh with respect to data is crucial in the analysis below and we therefore prove it
in a proposition.

Proposition 2.1. There exists a unique ηh ∈ Dl
0 such that (2.4)-(2.5) hold for every face

F ∈ F \ FΣ and every element in the mesh. More over ηh satisfies the stability estimate

‖ηh‖Ω ≤ Cds(‖πX,l−1∇xh‖2h + ‖h− 1
2πF,l[[xh]]‖2F\FΣ

)
1
2 , (2.6)

here Cds > 0 is a constant depending only on the element shape regularity that will appear in the
constant of the stability estimate, see Proposition 2.1 below.

Proof. The unique existence of ηh is an immediate consequence of the definition and uni-
solvence of the Raviart-Thomas space. Observe that the left hand side of equations (2.4)-(2.5)
coincides exactly with the degrees of freedom defining the Raviart-Thomas element.

For the stability estimate (2.6) we notice that since by definition πK,l−1ηh|K = πK,l−1∇xh|K
and ηh · nK |∂K = h−1

F πF,l[[xh]]|K it is enough to prove the estimate

‖ηh‖2K . ‖πK,l−1ηh‖2K + h‖ηh · nK‖2∂K .

To this end let K̂ be a fixed reference element. Then we have the bound

‖η̂h‖2K̂ . ‖πK̂,l−1η̂h‖
2
K̂

+ ‖η̂h · n̂K̂‖
2
∂K̂

(2.7)

by finite dimensionality and unisolvence of the Raviart-Thomas element.
Next let Φ(x̂) = b + Bx̂ be an affine mapping such that Φ : K̂ → K is a bijection and the

determinant |B| of B is positive. Define the mappings w = ŵ ◦ Φ−1 and q = |B|−1Bq̂ ◦ Φ−1.
Then we have identities (q ·nK , w)∂K = (q̂ · n̂K̂ , ŵ)∂K̂ , (∇·q, w)K = (∇̂ · q̂, ŵ)K̂ , and (∇w, q)K =

(∇̂ŵ, q̂)K̂ . Since B is a constant matrix it follows that q ∈ [Pl−1(K)]d ⇐⇒ q̂ ∈ [Pl−1(K̂)]d, and
thus for q ∈ [Pl−1(K)]d we have

(πK̂,l−1η̂h, q̂)K̂ = (∇̂ŵ, q̂)K̂ = (∇w, q)K = (πK,l−1∇w, q)K = (πK,l−1η, q)K .

Furthermore, we have the estimates

‖q‖2K . |B|−1‖B‖2‖q̂‖2
K̂
, ‖q̂‖2

K̂
. |B|‖B−1‖2‖q‖2K . (2.8)

Moreover, denoting by (Φ|F̂ )′ the derivative of the restriction of Φ on a face F̂ of the reference

element K̂, and by |B|∂K the maximum of |(Φ|F̂ )′| over all the faces F̂ , it holds that

‖q̂ · n̂K̂‖
2
∂K̂

. |B|∂K‖q · nK‖2∂K . (2.9)

To verify (2.9) we note that

sup
ŵ∈L2(K̂)

(q̂ · n̂K , ŵ)∂K̂
‖ŵ‖∂K̂

= sup
w∈L2(K)

(q · nK , w)∂K
‖w‖∂K

‖w‖∂K
‖ŵ‖∂K̂

. max
F̂
|(Φ|F̂ )′|‖q · nK‖∂K .

6



Recall that we have assumed that the meshes are quasi uniform. In particular, they are shape
regular, and therefore the diameter ρK of the largest ball in K satisfies ρK ∼ h. The projection of
this ball onto the plane containing a face F of K is a (d− 1)-dimensional ball of the same radius
ρK . But this ball is contained in F , and therefore the volume of F is proportional to hd−1. This
again implies that |B|∂K ∼ hd−1. Also,

‖B‖ . h, ‖B−1‖ . h−1, |B| ∼ hd.

Finally, using (2.7), (2.8), and (2.9) and the above geometric bounds we obtain

‖ηh‖2K . |B|−1‖B‖2‖η̂h‖2K̂
. |B|−1‖B‖2(‖πK̂,l−1η̂h‖

2
K̂

+ ‖η̂h · n̂K‖2∂K̂)

. |B|−1‖B‖2(|B|‖B−1‖2‖πK,l−1ηh‖2K + |B|∂K‖ηh · nK‖2∂K)

. ‖πK,l−1ηh‖2K + h‖ηh · nK‖2∂K .

To measure the effect of the perturbed data we introduce the corrector function δp ∈ Dl
δψ,

〈δp · nF , ph〉F =

{
〈δψ, ph〉F for all ph ∈ Pl(F ) for F ∈ FΣ

0 for all ph ∈ Pl(F ) for F ∈ F \ FΣ
(2.10)

and if k ≥ 1, for any K ∈ T , (δp, qh)K = 0, for all qh ∈ [Pl−1(K)]d. For δp we may also show the

bound ‖δp‖Ω . h
1
2 ‖δψ‖Σ.

We will frequently use the following inverse and trace inequalities, for all v ∈ Pk(K),

‖∇v‖K . h−1‖v‖K , (2.11)

and for all v ∈ H1(K)

‖v‖∂K . h−
1
2 ‖v‖K + h

1
2 ‖∇v‖K . (2.12)

For a proof of (2.11) we refer to Ciarlet [21], and for (2.12) see for instance [33].

2.1. Deriving finite element methods in an optimization framework. The method to
solve ill-posed problems proposed in [14] is based on discretization in an optimization framework
where some quantity is minimized under the constraint of the partial differential equation. The
quantity to be minimized is typically either some least squares fit of data or some weakly consistent
regularization term acting on the discrete space, or both. Introducing the Lagrange multiplier
space Wm := Xm

h , this problem then takes the form of finding the critical point of a Lagrangian
L : V kg ×Dl

ψ̃
×Wm → R defined by

L[vh, qh, yh] :=
1

2
s[(vh, qh), (vh, qh)]− 1

2
s∗(yh, yh) + b(qh, vh, yh)− (f̃ , yh)Ω. (2.13)

Here yh ∈ Wm is the Lagrange multiplier, s(·, ·) denotes the primal stabilizer, s∗(·, ·) the dual
stabilizer and b(·, ·) the bilinear form defining the partial differential equation, in our case the
conservation law

b(qh, vh, yh) := (∇ · qh + µvh, yh)Ω.

As a first step to ensure that the kernel of the system is trivial we propose the primal stabilizer

s[(v, q), (v, q)] :=
1

2
‖A∇v − q‖2Ω + t(v, v) (2.14)

where t(·, ·) is a symmetric positive semi-definite form related to Tikhonov regularization. However
here we will design t so that it is weakly consistent to the right order. This should be compared

7



with the jump of the gradient used in [11]. Observe that in this case the first term of s forces ph
and A∇uh to be close, connecting the flux variable to the primal variable. In that way introducing
an effect similar to the penalty on the gradient of [11].

Computing the Euler-Lagrange equations of (2.13) we obtain the following linear system. Find
uh,ph, zh ∈ V kg ×Dl

ψ̃
×Wm such that

s[(uh,ph), (vh, qh)] + b(qh, vh, zh) = 0 (2.15)

b(ph, uh, wh)− (f̃ , wh)Ω − s∗(zh, wh) = 0 (2.16)

for all vh, qh, wh ∈ V k0 ×Dl
0×Wm. The system (2.15)-(2.16) is of the same form as that proposed in

[12, 14]. To ensure that the system is well-posed, the spaces V kg ×Dl
ψ̃
×Wm and the stabilizations

t and s∗ must be carefully balanced. If we restrict the discussion to k− 1 ≤ l ≤ k and l ≤ m ≤ k,
k ≥ 1, a stable system is obtained by choosing{

t(vh, vh) := 1
2µ

2h2‖(1− πW )vh‖2Ω + γTh
2k‖∇vh‖2Ω,

s∗(yh, yh) := γ∗ 1
2‖(1− πX,l−1)∇yh‖2Ω,

(2.17)

where πW : L2(Ω) 7→Wm denotes the standard L2-projections on Wm. We also define πX,−1 ≡ 0.
Alternatively for any choice of k, l,m one may use the regularizing terms:{

t(vh, vh) := 1
2γTh

2k‖∇vh‖2Ω,
s∗(yh, yh) := 1

2‖yh‖
2
Ω.

(2.18)

For simplicity we limit the discussion to H1 conforming approximation of the primal variable,
i.e. V kh ⊂ H1(Ω). The extension to non-conforming methods is immediate, for instance by adding
a penalty on the solution jump over element faces and a penalty on the solution on the boundary
Σ. The contribution ‖h− 1

2 [[uh]]‖2Fi∪FΣ
is then added to (2.14) . Such alternative methods can then

be analysed using the arguments below together with elements of [16, 15]. We leave the details to
the reader.

We end this section by detailing some different choices of polynomial orders for the spaces
and associated stabilizers s, s∗, that result in stable and optimally convergent methods.

2.2. Inf-sup stable finite element formulation. If for fixed k ≥ 1 we take l = m = k
then the primal-dual method is stable with minimal stabilization. It is obvious that for this choice
the first term of t is always zero as well as s∗. Considering equation (2.16) we see that for every
cell K ∈ Th we have by taking wh = χK , with χ denoting the characteristic function,∫

∂K

ph · nK ds =

∫
K

(f − µuh) dx (2.19)

expressing the cell-wise satisfaction of the conservation law. This method however has a very
large number of degrees of freedom and it is not obvious how to eliminate the Lagrange multiplier
in order to reduce the size of the system. Moreover the spaces are not matched with respect to
accuracy, optimal estimates are obtained also if l = k − 1.

2.3. Well balanced method with local H1 dual stabilizer. For fixed k take l = k − 1
and m = k, then as we shall see below, the primal and dual spaces are well balanced in the sense
that they produce the same order of approximation error O(hk) for a sufficiently smooth solution.
Since V kg ⊂ Xm

h the first term of t in (2.17) is zero. On the other hand with this choice of spaces
the method is not inf-sup stable for s∗ ≡ 0. The dual stabilizer in (2.17) is however completely
local to each element. In the case l = 0, the dual stabilizer (2.17), becomes

s∗(yh, yh) :=
1

2

∑
K∈T

‖∇yh‖2K .
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Since s∗ is zero for constant functions the relation (2.19) still holds. Thanks to the local character,
all the degrees of freedom of the Lagrange multiplier, except the cell-wise average value, can be
eliminated from the system using static condensation.

For the choice l = k − 1 and m = k − 1, we take t defined by (2.17) and s∗ ≡ 0, which
results in an inf-sup stable well balanced method. If µ = 0, the first term of t can be omitted, i.e.
t(vh, vh) := 1

2γTh
2k‖∇vh‖2Ω. This method can easily be analysed using the approach below and

has similar convergence order as the previous well-balanced method.

2.4. mixed L2-least squares finite element formulation. The choice of spaces and sta-
bilizers proposed above lead to methods that have optimal convergence properties up to physical
stability and that satisfy the conservation law exactly on each cell. These properties however come
at a price: the number of degrees of freedom is large. Indeed compared to the method introduced
in [11], using piecewise affine conforming approximation for both the primal and dual variable the
number of degrees of freedom increases at least by a factor of three if this formulation is used.
This large increase can be reduced to a factor of two by using the dual stabilizer (2.18) as we shall
see below, but the price is that local conservation only holds weakly.

If we define s∗(zh, wh) := (zh, wh)Ω we immediately get from (2.16) that zh = ∇·ph+µuh−fh
where fh is the L2-projection of f onto Wm. Reinjecting this expression for zh into (2.15) and
defining s by (2.14), with t as in (2.18), we obtain the equation: find (uh,ph) ∈ V kg × Dl

ψ̃
such

that

s[(uh,ph), (vh, qh)] + (µuh +∇ · ph, µvh +∇ · qh)Ω = (f̃ ,∇ · qh + µvh)Ω, (2.20)

for all (vh, qh) ∈ V k0 × Dl
0. This method, which coincides with the one proposed in [23] up to

Tikhonov regularization, can be derived directly from the minimization of the following functional
Jh : V kg ×Dl

ψ̃
→ R,

Jh(uh,ph) := s[(uh,ph), (uh,ph)] +

∫
Ω

(∇ · ph + µuh − f̃)2 dx.

There is one Tikhonov regularization term added in s, where the parameter γT is independent of
the mesh size. Our discrete method can now be written: find (uh,ph) ∈ V kg ×Dl

ψ̃
such that

(uh,ph) = arg min
V kg ×Dlψ̃

Jh(uh,ph). (2.21)

We conclude that the solution of (2.15)-(2.16) coincides with the minimizer of (2.21) for the dual
stabilizer of the left relation of (2.18). Compared to the method proposed in [23] the regularization
has been reduced to only one term. Indeed this term is all that we need to prove optimal error
estimates and its only role is to ensure a uniform apriori estimate on the discrete solution in H1.
As we shall see below, an iteration based on the method (2.20) can be used to solve one of the
previous, larger systems, thus recovering the local conservation and optimal error estimates.

2.5. Stability and continuity of the forms. For the analysis we introduce norms on
VΣ ×Hdiv(Ω),

|||(v, q)|||−ζ :=
(
s[(v, q), (v, q)] + ‖hζ(∇ · q + µv)‖2Ω

) 1
2 ,

|||(v, q)|||] := |||(v, q)|||−ζ + µ‖v‖Ω + ‖h 1
2 q‖F + ‖q‖Ω,

where, depending on the choice of the spaces and stabilizers, either ζ = 0 or ζ = 1. Using the
approximation properties (2.2), (2.3) and the trace inequality (2.12) it is straightforward to prove
the following approximation result for the triple norms, we omit the details,

|||(v − ihv, q −Rhqh)|||] . hk‖u‖Hk+1(Ω) + hl+1(|q|Hl+1(Ω) + |∇ · q|Hl+1−ζ(Ω)). (2.22)
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The system (2.15)-(2.16) can be written on the compact form: find (uh,ph, zh) ∈ V kg ×Dl
ψ̃
×Wm

such that

A[(uh,ph, zh), (vh, qh, wh)] = l(wh), ∀(vh, qh, yh) ∈ V k0 ×Dl
0 ×Wm, (2.23)

where

A[(uh,ph, zh), (vh, qh, yh)] := b(qh, vh, zh) + b(ph, uh, yh)− s∗(zh, yh) + s[(uh,ph), (vh, qh)],

with s and s∗ given by (2.14) and (2.17), and the right hand side given by

l(wh) := (f̃ , wh)Ω.

We will also use the following compact notation for the reduced method (2.20): find (uh,ph) ∈
V kg ×Dl

ψ̃
such that

AR[(uh,ph, zh), (vh, qh, xh)] = lR(qh), ∀(vh, qh) ∈ V k0 ×Dl
0, (2.24)

where,

AR[(uh,ph), (vh, qh)] := (∇ · ph + µuh,∇ · qh + µvh)Ω + s[(uh,ph), (vh, qh)], (2.25)

with s defined by (2.14) and (2.18), and

lR(qh, vh) := (f̃ ,∇ · qh + µvh)Ω.

Observe that for the exact solution (u,p) there holds

A[(u,p, 0), (vh, qh, wh)] = l(wh)− (δf, wh)Ω + t(u, vh) (2.26)

and, similarly for the reduced method,

AR[(u,p), (vh, qh)] = lR(qh, vh)− (δf,∇ · qh + µvh)Ω + t(u, vh).

We will now prove a stability result that is the cornerstone of both the methods. The method
(2.23) requires an inf-sup argument and the symmetric method (2.24) is coercive.

Proposition 2.1. For the formulation (2.23) with k − 1 ≤ l ≤ m and l ≤ m ≤ k and, when
l < m, γ∗ > 0 small enough, there exists α > 0 such that for all vh, qh, xh ∈ V k0 ×Dl

0×Wm there
exists wh,yh, rh ∈ V k0 ×Dl

0 ×Wm such that

α(|||(vh, qh)|||2−1 + ‖xh‖21,h) ≤ A[(vh, qh, xh), (wh,yh, rh)] (2.27)

and

|||(wh,yh)|||−1 + ‖rh‖1,h . |||(vh, qh)|||−1 + ‖xh‖1,h. (2.28)

For the reduced method (2.24) the following coercivity holds. For all (v, q) ∈ H1(Ω)×Hdiv(Ω)

|||(v, q)|||20 = AR[(v, q), (v, q)]. (2.29)

Proof. The relation (2.29) is immediate by the definition of AR (2.25). We now consider the
first claim. Let ξh := h2(∇ · qh + µπW vh) ∈Wm. Then

b(qh, vh, ξh) = (∇ · qh + µvh, h
2(∇ · qh + µπW vh))Ω

≥ 1

2
‖h(∇ · qh + µvh)‖2Ω −

1

2
µ2h2‖(1− πW )vh‖2,
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and using Cauchy-Schwarz inequality, the stability of the L2-projection and the inverse inequality
(2.11),

s∗(xh, xh − ξh) ≥ 1

2
s∗(xh, xh)− 1

2
γ∗Ci‖h(∇ · qh + µvh)‖2Ω.

It follows from the above bounds that assuming γ∗ < (2Ci)
−1 there holds

1

4
‖h(∇ · qh + µvh)‖2Ω + ‖A∇vh − qh‖2Ω +

1

2
t(vh, vh) +

1

2
s∗(xh, xh)

≤ A[(vh, qh, xh), (vh, qh,−xh + ξh)]. (2.30)

We recall that when l < m, the dual stabilizer s∗ is defined by the second equation of (2.17) and
when l = m, s∗ ≡ 0.

To prove stability of the multiplier, that is, to obtain the term ‖xh‖1,h on the left hand side
of (2.27), we consider the test function ηh = ηh(xh) as defined in (2.4)-(2.5). It then follows by
the definition of A that

A[(vh, qh, xh), (0,ηh, 0)] = (A∇vh − qh,−ηh)Ω + (∇ · ηh, xh)Ω.

Using elementwise integration by parts in the second term on the right hand side yields,

(∇ · ηh, xh)Ω =
∑
K∈T

[〈ηh · nK , xh〉∂K − (ηh,∇xh)K ] .

For the second term of the right hand side we obtain using (2.5),

−(ηh,∇xh)K ≥ ‖πX,l−1∇xh‖2K −
γ∗

4
‖(1− πX,l−1)∇xh‖2K −

1

γ∗
‖ηh‖2K .

Observe that by combining the contributions from the two neighbouring elements sharing a face
F we have ∑

K∈T
〈ηh · nK , xh〉∂K =

∑
F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F ,

where we used (2.4) and the fact that ηh · nK = 0 on Σ. Consequently,

A[(vh, qh, xh), (0, εηh, 0)] ≥ (A∇vh − qh,−εηh)Ω + ε‖πX,l−1∇xh‖2Ω

+ ε
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F −

γ∗

4
‖(1− πX,l−1)∇xh‖2Ω −

ε2

γ∗
‖ηh‖2Ω.

We obtain

A[(vh, qh, xh), (0, εηh, 0)]

≥ −1

4
‖A∇vh − qh‖2Ω − ε2

(
1 +

1

γ∗

)
‖ηh‖2Ω + ε‖πX,l−1∇xh‖2Ω + ε

∑
F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F

− γ∗

4
‖(1− πX,l−1)∇xh‖2Ω

≥ −1

4
‖A∇vh − qh‖2Ω −

γ∗

4
‖(1− πX,l−1)∇xh‖2Ω

+ ε(1− ε(1 + γ∗−1)C2
ds)

‖πX,l−1∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F

 .
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Here we used the stability (2.6) of ηh. Choosing ε = C−2
ds 2−1γ∗(1 + γ∗)−1 we see that

A[(vh, qh, xh), (0, εηh, 0)] (2.31)

≥ −1

4
‖A∇vh − qh‖2Ω +

ε

2

‖πX,l−1∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F


− γ∗

4
‖(1− πX,l−1)∇xh‖2Ω.

By combining the bounds (2.30) and (2.31), and using that

‖xh‖1,h = ‖πX,l−1∇xh‖2Ω + ‖(1− πX,l−1)∇xh‖2Ω +
∑

F∈F\FΣ

‖h− 1
2πF,l[[xh]]‖2F ,

we obtain

1

4
|||(vh, qh)|||2 +

1

4
min(ε, γ∗)‖xh‖21,h ≤ A[(vh, qh, xh), (vh, qh + εηh,−xh + ξh)],

which proves (2.27), with α = 1/2 min(1, ε, γ∗) and with the test partners wh = vh, yh = qh+ εηh
and rh = −xh + ξh.

For the second inequality (2.28), we observe that by the triangle inequality there holds

|||(wh,yh)|||−1 + ‖rh‖1,h ≤ |||(vh, qh)|||−1 + ‖xh‖1,h + |||(0, εηh)|||−1 + ‖ξh‖1,h.

To bound the second to last term on the right hand side, we use the inverse inequality

|||(0, εηh)|||−1 = ε(‖ηh‖Ω + ‖h∇ · ηh‖Ω) . ‖ηh‖Ω . ‖xh‖1,h.

Using an inverse inequality (2.11) and a trace inequality (2.12) in the last term of the right hand
side, we obtain

‖ξh‖1,h . ‖h(∇ · qh + µvh)‖Ω + hµ‖(1− πW )vh‖Ω.

Since it follows that |||(wh,yh)|||−1 + ‖rh‖1,h . |||(vh, qh)|||−1 + ‖xh‖1,h the proof is complete.
Using the previous result, we now show that the discrete solution will exist, regardless of the

choice of the parameter γT ≥ 0.
Proposition 2.2. (Invertibility of system matrix.) The linear system defined by (2.23),

with spaces and dual stabilizations as in Proposition 2.1, admits a unique solution (uh,ph, zh) in
V kg ×Dl

ψ̃
×Wm. The linear system defined by (2.24) admits a unique solution (uh,ph) in V kg ×Dk

ψ̃
.

Proof. Since existence and uniqueness are equivalent for square, finite dimensional linear
systems we only need to show uniqueness. We consider a difference (uh,p, zh) ∈ V k0 ×Dl

0 ×Wm

of two solutions, and show that it is zero if

A[(uh,ph, zh), (vh, qh, xh)] = 0 ∀(vh, qh, xh) ∈ V k0 ×Dl
0 ×Wm.

By Proposition 2.1 there then holds,

α(|||(uh,ph)|||2−1 + ‖zh‖21,h) ≤ A[(uh,ph, zh), (wh,yh, rh)] = 0

and we immediately see that zh = 0. In the case γT > 0 the equation |||(uh,ph)|||2−1 = 0 implies
the claim since we obtain ‖∇uh‖Ω = ‖ph‖Ω = 0 , and the conclusion follows after noting that the
H1-semi norm on V k0 is a norm by the Poincaré inequality.

Assume now that γT = 0. In this case the stability implies

‖A∇uh − ph‖2Ω + ‖∇ · ph + µuh‖2Ω = 0.
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This means that A∇uh = ph and ∇ · ph + µuh = 0. As a consequence ∇ · (A∇uh) ∈ L2(Ω),
uh|Σ = A∇uh · ν|Σ = 0 and

∇ · (A∇uh) + µuh = 0 in Ω.

It follows that uh is a solution to the problem (1.2) with zero data. The stability estimate (1.10)
implies that the trivial solution uh = 0 is the unique solution of this problem. It follows that
uh = 0 and ph = 0. This proves the claim. The claimed uniqueness for (2.24) is immediate due
to the coercivity.

We end this section by proving the continuity of the forms A[·, ·].
Proposition 2.2. For all (v, q) ∈ H1(Ω)×Hdiv(Ω) and for all (wh,yh, wh) there holds,

A[(v, q, 0), (wh,y, wh)] ≤ |||(v, q)|||] (|||(wh,yh)|||−1 + ‖wh‖1,h). (2.32)

For all (v, q), (w,y) ∈ H1(Ω)×Hdiv(Ω) there holds

AR[(v, q), (w,y)] ≤ |||(v, q)|||0 |||(w,y)|||0. (2.33)

Proof. The inequality (2.32) follows by first using the Cauchy-Schwarz inequality in the

symmetric part of the formulation, s[(v, q), (wh,y)] ≤ s[(v, q), (v, q)]
1
2 s[(wh,y), (wh,y)]

1
2 . In the

remaining term we use the divergence formula elementwise to obtain

(∇ · q + µv,wh)Ω =
∑
K∈T

(q,∇wh)K +
∑
F∈F
〈q · nF , [[wh]]〉F + (µv,wh)Ω.

The inequality now follows by applying the Cauchy-Schwarz inequality termwise with suitable
scaling in h. The inequality (2.33) on the other hand is immediate by applying the Cauchy-
Schwarz inequality to the form AR that is completely symmetric in this case.

3. Error estimates using conditional stability. In this section we will prove error es-
timates that give, for unperturbed data, an optimal convergence order with respect to the ap-
proximation and stability properties of the problem. We also quantify the effect of perturbations
in data and the resulting possible growth of error under refinement. Throughout this section we
assume that spaces and parameters in the methods are chosen so that Proposition 2.1 holds.

Proposition 3.1. (Estimate of residuals.) Assume that (u,p) is the solution to (1.2), where
p = A∇u and consider either (uh,ph, zh) the solution of (2.23) or (uh,ph) the solution of (2.24).
Then there holds

|||(u− uh,p− ph)|||−ζ + ζ‖zh‖1,h . Cuh
k + Cph

l+1 + ‖δf‖Ω + h−
1
2 +ζ‖δψ‖Σ,

with ζ = 1 for the method (2.23) and ζ = 0 for the method (2.24). Here

Cu := |u|Hk+1(Ω) + γ
1
2

T ‖u‖H1(Ω), Cp := ‖∇ · p‖Hl+1−ζ(Ω) + ‖p‖Hl+1(Ω).

Proof. We write the errors in the primal and flux variable

e = u− uh and ξ = p− ph.

Using the nodal interpolant ihu and the Raviart-Thomas interpolant Rhp we decompose the error
in the interpolation error eπ := u− ihu, ξπ = p−Rhp and the discrete error, eh = ihu−uh ∈ V k0 ,
ξh = Rhp+ δp−ph ∈ Dl

0, where δp is defined by equation (2.10). Observe that since e = eπ + eh
and ξ = ξπ + ξh − δp, by the triangle inequality there holds

|||(e, ξ)|||−ζ ≤ |||(eπ, ξπ)|||−ζ + |||(eh, ξh)|||−ζ + |||(0, δp)|||−ζ . (3.1)
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We begin with method (2.23), ζ = 1. Since eh ∈ V k0 and ξh ∈ Dl
0 we may apply the stability

result of Proposition 2.1. Therefore there exists (wh,yh, rh) ∈ V k0 ×Dl
0 ×Wm such that

α(|||(eh, ξh)|||2−1 + ‖zh‖21,h) ≤ A[(eh, ξh, zh), (wh,yh, rh)],

and also (2.28) holds. Now by (2.26),

A[(eh, ξh, zh), (wh,yh, rh)]

= A[(ihu,Rhp, 0), (wh,yh, rh)] +A[(0, δp, 0), (wh,yh, rh)]−A[(uh,ph, zh), (wh,yh, rh)]

= A[(ihu,Rhp, 0), (wh,yh, rh)]− (δp, A∇wh − yh)Ω + (∇ · δp, rh)− (f, rh)Ω − (δf, rh)Ω

= A[(ihu− u,Rhp− p, 0), (wh,yh, rh)]︸ ︷︷ ︸
I

− (δp, A∇wh − yh)Ω︸ ︷︷ ︸
II

+ (∇ · δp, rh)Ω︸ ︷︷ ︸
III

− (δf, rh)Ω︸ ︷︷ ︸
IV

+ t(u,wh)︸ ︷︷ ︸
V

= I + II + III + IV + V.

We now bound the five terms. By the continuity (2.32) there holds

I ≤ |||(ihu− u,Rhp− p)|||](|||(wh,yh)|||−1 + ‖rh‖1,h).

An application of the Cauchy-Schwarz inequality leads to

II ≤ ‖δp‖Ω|||(wh,yh)|||−1.

Finally an elementwise application of the divergence theorem followed by the Cauchy-Schwarz
inequality leads to

III ≤ |||(0, δp)|||]‖rh‖1,h.

By applying the Poincaré inequality for broken H1-spaces [10] we have for term IV ,

IV . ‖δf‖Ω‖rh‖1,h.

Finally, by the Cauchy-Schwarz inequality, using that m ≥ k− 1 and the standard approximation
estimates for the L2-projection we have

V ≤ (µhk+1|u|Hk+1(Ω) + γ
1
2

T h
k|u|H1(Ω))|||(wh, 0)|||−1.

By (2.28) we obtain

α(|||(eh, ξh)|||−1 + ‖zh‖1,h) . |||(ihu− u,Rhp− p)|||] + γ
1
2

T h
k|u|H1(Ω) + |||(0, δp)|||] + ‖δf‖Ω.

Since the first term on the right hand side is bounded by (2.22) it only remains to show that

|||(0, δp)|||] . h
1
2 ‖δψ‖Σ.

This relation can be proven by the trace inequality and the inverse inequality followed by the
properties of the Raviart-Thomas element,

|||(0, δp)|||] = ‖h 1
2 δp‖F + 2‖δp‖Ω + ‖h∇ · δp‖Ω . ‖h 1

2 δψ‖Σ + ‖δp‖Ω . ‖h 1
2 δψ‖Σ.

Applying (2.22) and |||(0, δp)|||−1 ≤ |||(0, δp)|||] the claim follows from (3.1).
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Let us now turn to method (2.24), ζ = 0. This case is similar to the previous one, but simpler
since it relies on the coercivity (2.29). Starting from (3.1) we see that using previous results, there
only remains to treat the discrete error term. By (2.29) there holds

|||(eh, ξh)|||20 ≤ AR[(eh, ξh), (eh, ξh)].

Repeating the previous consistency argument, but this time with AR we obtain

AR[(eh, ξh), (eh, ξh)]

= AR[(ihu,Rhp), (eh, ξh)] +AR[(0, δp), (eh, ξh)]−AR[(uh,ph), (eh, ξh)]

= AR[(ihu,Rhp), (eh, ξh)]− (δp, A∇eh − ξh)Ω + (∇ · δp,∇ · ξh + µeh)Ω

− (f,∇ · ξh + µeh)Ω − (δf,∇ · ξh + µeh)Ω

= AR[(ihu− u,Rhp− p), (eh, ξh)]− (δp, A∇eh − ξh)Ω

+ (∇ · δp,∇ · ξh + µeh)Ω︸ ︷︷ ︸
∗

−(δf,∇ · ξh + µeh)Ω + γT (h2k∇u,∇eh)Ω

The only term we need to consider this time is the one marked ∗. All the other terms are handled
similarly as before, but this time using (2.33) and recalling that ζ = 0 in (2.22). For the term
marked ∗ we can not use the divergence formula since the multiplier has been eliminated. Instead
we proceed with the Cauchy-Schwarz inequality followed by the inverse inequality (2.11) and the
properties of δp,

(∇ · δp,∇ · ξh + µeh)Ω ≤ ‖∇ · δp‖Ω|||(eh, ξh)|||0 . ‖h− 1
2ψ‖Σ|||(eh, ξh)|||0.

The claim then follows in the same way as before.
Remark 3.1. To balance the estimate of Proposition 3.1 we want to balance the orders O(hk)

and O(hl+1) to obtain an economical scheme, implying that l = k− 1. But we should also balance
the regularity requirements, recalling that p = A∇u, leading to k + 1 = l + 3 − ζ. We see that
this can only be balanced for ζ = 1. We conclude that the only method that balances both the
convergence orders and the regularities of the different terms is the one discussed in Section 2.3,
i.e. the one given by (2.23).

Corollary 3.1. (A priori estimate for the H1-error) Suppose that γT > 0. Under the same
assumptions as for Proposition 3.1 there holds

‖u− uh‖H1(Ω) . γ
− 1

2

T (Cu + Cph
l+1−k + h−k‖δf‖Ω + h−

1
2−k+ζ‖δψ‖Σ),

where Cu and Cp are defined in Proposition 3.1.
Proof. By the definition of the triple norm there holds

γ
1
2

T h
k‖∇(u− uh)‖Ω . Cuh

k + Cph
l+1 + ‖δf‖Ω + h−

1
2 +ζ‖δψ‖Σ.

Then divide through by γ
1
2

T h
k and apply Poincaré’s inequality.

Remark 3.2. In the lowest order case, k = 1, if A is the identity matrix, the a priori bound
can be achieved also for γT = 0.

Indeed observe that, with eh = ihu−uh and ξh = Rhp+ δp−ph we have, using the Poincaré
inequality on discrete spaces:

‖h∇eh‖Ω . ‖h 1
2 [[∇eh · n]]‖F\FΣ

+ ‖h 1
2∇eh · n‖Σ + ‖h− 1

2 eh‖Σ︸ ︷︷ ︸
=0

. ‖h 1
2 [[∇eh · n− ξh · n]]‖F\FΣ

+ ‖h 1
2 (∇eh · n− ξh · n︸ ︷︷ ︸

=0

)‖Σ

. ‖∇eh − ξh‖Ω.
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Then we proceed as in Corollary 3.1.
Proposition 3.2. (Estimates of boundary data in natural norms.) Assume that (u,p),

p = A∇u, is the solution to (1.2) and (uh,ph) the solution of (2.21). Then the following bound
holds for the error in the approximation of the boundary data.

‖u− uh‖
H

1
2 (Σ)

+ ‖ψ − ph · ν‖H− 1
2 (Σ)

. ‖δψ‖Σ + ‖u− ihu‖
H

1
2 (Σ)

+ h
1
2 ‖ψ − ψh‖Σ

. ‖δψ‖Σ + hk|u|Hk+1(Ω).

Proof. Since we have assumed that the Dirichlet data are unperturbed and we have defined
uh|Σ = gh = ihu|Σ, it follows using (2.2) that

‖u− uh‖
H

1
2 (Σ)

= ‖u− ihu‖
H

1
2 (Σ)

. ‖u− ihu‖H1(Ω) . hk|u|Hk+1(Ω).

Recalling that ph ·ν|Σ = ψ̃h we may write, with ψh the L2-projection of ψ such that ψh|F = πF,lψ,〈
ψ − ψ̃h, v

〉
Σ

= 〈ψ − ψh, v〉Σ +
〈
ψh − ψ̃h, v

〉
Σ
. 〈ψ − ψh, v − vh〉Σ + +| 〈δψ, vh〉Σ |.

We now choose vh so that vh|F = πF,lv. Using the stability of the L2 projection, bounds for

v ∈ H1(Σ), interpolation, and the density of H1(Σ) in H
1
2 (Σ) we have that for v ∈ H 1

2 (Σ), with
‖v‖

H
1
2 (Σ)

= 1 there holds

‖v − vh‖Σ . h
1
2 ‖v‖

H
1
2 (Σ)

. h
1
2 .

After bounding the perturbation term using the Cauchy-Schwarz, inequality, duality and the
approximation of the L2-projection

| 〈δψ, vh − v〉Σ |+ | 〈δψ, v〉Σ | . ‖δψ‖H− 1
2 (Σ)

+ h
1
2 ‖δψ‖Σ,

It follows form the above relations that for ‖v‖
H

1
2 (Σ)

= 1,

〈ψ − ph · ν, v〉Σ . h
1
2 ‖ψ − ψh‖Σ + ‖δψ‖Σ

Note that by definition of the L2-projection, and recalling that A is constant and A∇ihu · ν|F ∈
Pl(F ),

‖ψ − ψh‖Σ ≤ ‖A∇u · ν −A∇ihu · ν‖Σ . hk−
1
2 |u|Hk+1(Ω).

The last inequality followed by an application of (2.12) on all the boundary faces in Σ followed by
(2.2). Combining the above bounds completes the proof.

For the error analysis we must construct a function in H1(Ω) such that both boundary condi-
tions can be estimated simultaneously in natural norms and which is close enough to uh in terms
of the residual terms estimated in Proposition 3.1. For the construction we follow the arguments
of [15].

Proposition 3.3. Let (uh,ph) be the solution of (2.23). Then for some h0 > 0, for all
h < h0 there exists ũh such that ũh|Σ = uh|Σ and

‖A∇ũh − ph‖H− 1
2 (Σ)

+ h−1‖ũh − uh‖Ω + ‖∇(ũh − uh)‖Ω . ‖A∇uh − ph‖Ω.

Proof. We decompose Σ in disjoint, shape regular, elements {F̃}, with diameter O(h). To
each element F̃ we associate a bulk patch P̃ that extends O(h) into Ω, ∂P̃ ∩ Σ = F̃ . On each
patch we will define a function ϕF̃ ∈ H1

0 (P̃ ) such that∫
F̃

A∇ϕF̃ · ν ds =

∫
F̃

ds =: measd−1(F̃ )
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and

h−1‖ϕF̃ ‖P̃ + ‖∇ϕF̃ ‖P̃ . h
d
2 . (3.2)

Under the condition that h is small enough we may take ϕF̃ ∈ V 1
h,0. An example of construction

of the {ϕF̃ }F̃ is given in appendix. We introduce the projection on constant functions on F̃ ,

πF̃ : L2(F̃ ) 7→ R defined by πF̃ v := measd−1(F̃ )−1
∫
F̃
v ds. Then consider uF̃ := πF̃ (ph−A∇uh ·ν)

and define

ũh := uh +
∑
F̃

uF̃ϕF̃ .

It then follows by the definition of ũh and an inverse inequality that

h−2‖ũh − uh‖2Ω + ‖∇(ũh − uh)‖2Ω .
∑
F̃

u2
F̃
h−2‖ϕF̃ ‖

2
P̃

.
∑
F̃

h1−dhd‖A∇uh · ν − ph‖2F̃ . ‖A∇uh · ν − ph‖2Ω. (3.3)

For the second inequality we used (3.2) and |uF̃ | ≤ h
1−d

2 ‖A∇uh · ν − ph‖F̃ and for the third we

applied the trace inequality (2.12) to every element face in each F̃ . The bound of the flux on Σ is

shown observing that by the definition of the uF̃ and ϕF̃ , for any v ∈ H 1
2 with ‖v‖

H
1
2 (Σ)

= 1,

〈A∇ũh − ph, v〉Σ = 〈A∇ũh − ph, v − vh〉Σ . h
1
2 ‖A∇ũh − ph‖Σ.

Here we vh is the piecewise constant function such that vj |F̃ = πF̃ v. We conclude by applying once
again the trace inequality (2.12) on every face in Σ and using a triangle inequality and arguments
similar to those used in (3.3), showing that

h
1
2 ‖A∇ũh − ph‖Σ . ‖A∇uh − ph‖Ω +

∑
F̃

u2
F̃
h−2‖ϕ‖2

P̃

 1
2

. ‖A∇uh − ph‖Ω

Theorem 3.1. (Conditional error estimates.) Assume that (u,p) is the solution to (1.2),
with u ∈ H1(Ω)∩Hk+1(Ω) and p = A∇u, (uh,ph) either the solution of (2.23) (case ζ = 1) with
regularizing term given by (2.17) and k− 1 ≤ l ≤ k, m ≥ l, or the solution of (2.24) (case ζ = 0).

Assume also that the hypothesis of Theorems 1.1 and 1.2 are satisfied and that h < min(h0, γ
− 1

2k

T ),
where h0 is the bound from Proposition 3.3. Then there holds for all G as defined in Theorem 1.1,
for some τ ∈ (0, 1),

‖u− uh‖G . (1 + γ
1
2

T )τCE h
τk (3.4)

where

CE ≡ CE(u, δf, δψ, h) . γ
− 1

2

T (Cu + Cph
l+1−k + h−k‖δf‖Ω + h−

1
2−k+ ζ

2 ‖δψ‖Σ) (3.5)

with Cu and Cp defined in Proposition 3.1. The following global estimate also holds for some
τ ∈ (0, 1),

‖u− uh‖Ω . CE
1

| log((1 + γ
1
2

T )hk)|τ
. (3.6)
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Proof. First observe that recalling the function ũh from Proposition 3.3

‖u− uh‖L2(G) . ‖u− ũh‖L2(G) + h‖A∇uh − ph‖Ω. (3.7)

Since the second term is bounded in Proposition 3.1 we only need to bound the first term of the
right hand side. To this end we will use that the error ẽ := u − ũh is a solution to the equation
(1.2) for certain data. Observe that using Propositions 3.2 and 3.3

‖ẽ‖
H

1
2 (Σ)

+ ‖A∇ẽ · ν‖
H−

1
2 (Σ)

. ‖δψ‖Σ + hk|u|Hk+1(Ω). (3.8)

Injecting ẽ in the weak formulation we see that for all v ∈ VΣ′ ,

a(ẽ, v) = a(uh − ũh, v) + a(e, v)

where e = u− uh. Defining also the finite element residual, for all v ∈ VΣ′ ,

a(e, v) = −(A∇e,∇v)Ω + (µe, v)Ω

= (ξ −A∇e,∇v)Ω + (∇ · ξ + µe, v)Ω − 〈ξ · ν, v〉Σ
=: 〈r(e, ξ), v〉(VΣ′ )

′,VΣ′
.

and comparing with equation (1.2), we may write the right hand side

l(v) = a(uh − ũh, v) + 〈r(e, ξ), v〉(VΣ′ )
′,VΣ′

. (3.9)

It remains to prove (1.6). To this end we show the following bound

‖l(v)‖(VΣ′ )
′ . |||(e, ξ)|||−ζ + ‖zh‖1,h + ‖ξ · ν‖

H−
1
2 (Σ)

+ ‖δf‖Ω,

where ζ = 1 for the method (2.23) and ζ = 0 for the method (2.24). Indeed, we can combine this
bound with that of equation (3.8), and apply the stability estimates in Theorems 1.1 and 1.2 to
the error ẽ, resulting in the claim. First we use the Cauchy-Schwarz inequality on a(uh − ũh, v)
followed by the bound of Proposition 3.3 leading to

a(uh − ũh, v) . ‖uh − ũh‖H1(Ω)‖v‖H1(Ω) . ‖A∇uh − ph‖Ω‖v‖H1(Ω) ≤ |||(e, ξ)|||−ζ‖v‖H1(Ω).

When ζ = 1 and the method (2.23) is considered, we can apply the orthogonality in the second
term of the right hand side of (3.9). Choosing vh ∈Wm to be the elementwise L2-projection of v
we obtain

(∇ · ξ + µe, v)Ω = (∇ · ξ + µe, v − vh)Ω + s∗(zh, vh)− (δf, vh)Ω.

Using the approximation properties of the L2-projection it follows that

(∇ · ξ + µe, v)Ω . (‖h(∇ · ξ + ce)‖Ω + ‖δf‖Ω + ‖zh‖1,h)‖v‖H1(Ω).

Here we used also the fact that s∗(zh, vh) . C‖zh‖1,h‖∇vh‖h . ‖zh‖1,h‖v‖H1(Ω).
In case ζ = 0 the bound of the volume integral term is immediate by the Cauchy-Schwarz

inequality,

(ξ −A∇e,∇v)Ω + (∇ · ξ + µe, v)Ω ≤ (‖A∇e− ξ‖2Ω + ‖∇ · ξ + µe‖2Ω)
1
2 ‖v‖H1(Ω)

≤ |||(e, ξ)|||0‖v‖H1(Ω).

For the boundary term we proceed using duality followed by the trace inequality

〈ξ · ν, v〉Σ ≤ ‖ξ · ν‖H− 1
2 (Σ)
‖v‖

H
1
2 (Σ)

. ‖ξ · ν‖
H−

1
2 (Σ)
‖v‖H1(Ω).
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Collecting these bounds we obtain, with the two cases distinguished by ζ,

− (A∇e− ξ,∇v)Ω + (∇ · ξ + µe, v)Ω − 〈ξ · ν, v〉Σ
. (|||(e, ξ)|||−ζ + ζ‖zh‖1,h + ζ‖δf‖Ω + ‖ξ · ν‖

H−
1
2 (Σ)

)‖v‖H1(Ω).

We conclude that by Propositions 3.1, 3.2 and 3.3 there holds

‖l(v)‖(VΣ′ )
′ . ‖uh − ũh‖H1(Ω) + ‖r(e, ξ)‖(VΣ′ )

′

. |||(e, ξ)|||−ζ + ζ‖zh‖1,h + ζ‖δf‖Ω + ‖ξ · ν‖
H−

1
2 (Σ)

. Cuh
k + Cph

l+1 + ‖δf‖Ω + h−
1
2 + ζ

2 ‖δψ‖Σ.
(3.10)

Here (and below) we use that h
1
2 ‖ψ−ψh‖Σ . hk|u|Hk+1(Ω) . Cuh

k to absorb the boundary error
contribution. We are now in position to prove the error estimate using Theorems 1.1 and 1.2. To
simplify the notation, we write CE = CE(u, δf, δψ, h). First note that the error ẽ is a solution
to the problem (1.2) with the right hand side defined by (3.9). By (3.8) the inequality (1.5) is
satisfied with

η . ‖δψ‖Σ + hk‖u‖Hk+1(Ω).

By (3.10) the inequality (1.6) holds with

ε . γ
1
2

TCEh
k.

The a priori bounds (1.7) and (1.9) follow from Corollary 3.1 with

E0 ≤ E . CE .

We then observe that, assuming h < γ
− 1

2k

T ,

E0 + ε+ η . CE , ε+ η . (1 + γ
1
2

T )CEh
k.

Applying these bounds in (1.8) we obtain a bound for the first term on the right hand side of
(3.7),

‖u− ũh‖L2(G) . (1 + γ
1
2

T )τCE h
τk

leading to the local error bound (3.4). The global error bound (3.6) is obtained by inserting the
above bounds on E, ε and η into (1.10).

Remark 3.3. Observe that from the definition of CE it follows that the bound makes sense

only when h−k‖δf‖Ω + h−
1
2−k+ ζ

2 ‖δψ‖Σ is small compared to |u|Hk+1(Ω).
Remark 3.4. It is possible to derive corresponding local estimates in the H1-norm, if similar

stability estimates are available. Such estimates will have the same rate as those in the L2-norm,
which is expected to be sharp since no adjoint argument is available to improve the convergence in
the L2-norm. In the numerical section we will see that depending on the geometry of the Cauchy
problem, the L2-norm can perform better than the H1-norm.

3.1. Interlude on the well-posed case. In case the problem under study satisfies the
assumptions of the Lax-Milgram’s Lemma, Theorem 3.1 immediately leads to optimal error esti-
mates in the H1-norm, using the stability estimate ‖u‖H1(Ω) . ‖l‖H−1(Ω) instead of the conditional
stability. Since the problem is well-posed we may take γT = 0. Here we will instead focus on the
convergence in the L2-norm. In this case we only require that the adjoint problem is well-posed
and satisfies a shift theorem for the H2 semi-norm. This analysis, which is an equivalent of that in
[11], for the mixed finite element case, includes indefinite elliptic problems as well. For simplicity
we here restrict the discussion to the case of a convex polygonal domain Ω, homogeneous Dirichlet
conditions and A the identity matrix. We consider the problem: find u ∈ H1(Ω) such that

∆u+ µu = f in Ω (3.11)
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with u|∂Ω = 0 and the associated adjoint problem

∆ϕ+ µϕ = ψ in Ω (3.12)

with ϕ|∂Ω = 0. The weak formulation of the forward problem takes the form: find u ∈ H1
0 (Ω)

such that

a(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω).

We assume that µ is such that the problem admits a unique solution, using Fredholm’s alternative.
Under the assumptions the adjoint problem satisfies the regularity bound

‖ϕ‖H2(Ω) . ‖ψ‖Ω. (3.13)

For the discretization we here consider only the formulation (2.15)-(2.16) with stabilizers given
by (2.14) and (2.17), γT = 0, but the result also holds for the stabilizers (2.14) and (2.18).
Homogeneous Dirichlet conditions are imposed on all of ∂Ω in the space V k0 and no boundary
conditions are imposed on the space where the fluxes are sought, Dl = RTl. We now prove
optimal convergence in the L2-norm.

Proposition 3.1. Let u ∈ Hk+1(Ω) ∩ H1
0 (Ω) by the solution of (3.11) and (uh,ph, zh) ∈

V k0 ×Dl ×Wm, with k − 1 ≤ l ≤ k and l ≤ m ≤ k, be a solution of (2.15)-(2.16) with stabilizers
given by (2.14) and (2.17). Then there holds

‖u− uh‖L2(Ω) . hk+1|u|Hk+1(Ω).

Proof. First observe that the result of Proposition 3.1 holds with ζ = 1. To prove optimal
convergence of the error in the L2-norm we first show that the L2-norm of the Lagrange multiplier
goes to zero with O(hk+1). To this end let ψ = zh in (3.12), then

‖zh‖2Ω = (zh,∆ϕ+ µϕ)Ω = (zh,∆ϕ−∇ ·Rh(∇ϕ) + µ(ϕ− ihϕ))Ω − s[(uh,ph), (ihϕ,Rh(∇ϕ))]

For the last equality we used equation (2.15) with qh = Rh(∇ϕ) and vh = ihϕ. Using the
divergence theorem elementwise we have

(zh,∆ϕ−∇ ·Rh(∇ϕ))Ω ≤ ‖zh‖1,h(‖∇ϕ−Rh(∇ϕ)‖Ω + ‖h 1
2 (∇ϕ−Rh(∇ϕ)) · n‖F )

. ‖zh‖1,hh|ϕ|H2(Ω)

where we recall that for this case ‖h− 1
2 zh‖∂Ω ≤ ‖zh‖1,h since no boundary conditions are imposed

on the flux variable. For the second term there holds using the Cauchy-Schwarz inequality and
the approximation properties of the nodal and Raviart-Thomas interpolants (2.2), (2.3)

(∇uh − ph,∇ihϕ−Rh(∇ϕ))Ω . ‖∇uh − ph‖Ω(‖∇ihϕ−∇ϕ‖Ω + ‖Rh(∇ϕ)−∇ϕ‖Ω)

. ‖∇uh − ph‖Ωh|ϕ|H2(Ω)

and

t(ihϕ, uh) . t(uh, uh)
1
2µh2‖ϕ‖H2(Ω)

Using the stability of the adjoint problem we conclude that

‖zh‖Ω . h(‖∇uh − ph‖Ω + ‖zh‖1,h + t(uh, uh)
1
2 ) . hk+1|u|Hk+1(Ω).

where we used the result of Proposition 3.1, for unperturbed data in the second inequality. We
now proceed to prove the L2-error estimate. Let e = u − uh, ξ = ∇u − ph and ψ = e in (3.12),
then

‖e‖2Ω = (∇ϕ,∇e)Ω + (µϕ, e)Ω = −(∇ϕ,∇uh − ph)Ω + (∇ · ξ + µe, ϕ)Ω. (3.14)
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We now proceed by applying Galerkin orthogonality in each of the two terms on the right hand
side. For the first term we get

(∇ϕ,∇uh − ph)Ω = ((1−Rh)∇ϕ,∇uh − ph)Ω − (∇ ·Rh(∇ϕ), zh)

≤ h|ϕ|H2(Ω)‖∇uh − ph‖Ω + |ϕ|H2(Ω)‖zh‖Ω.

Here we used that ∇ ·Rh(∇ϕ) = πX,l−1∆ϕ, and then the stability of the L2-projection. In the
second term of the right hand side of (3.14) we use (2.16) leading to

(∇ · ξ + µe, ϕ)Ω = (∇ · ξ + µe, ϕ− ihϕ)Ω + s∗(zh, ihϕ)

. h(‖h(∇ · ξ + µe)‖Ω + ‖zh‖1,h)|ϕ|H2(Ω).

We conclude by applying (3.13) in (3.14) together with Proposition 3.1 to obtain

‖e‖Ω . h(‖h(∇ · ξ + µe)‖Ω + ‖∇uh − ph‖Ω + ‖zh‖1,h) + ‖zh‖Ω . hk+1|u|Hk+1(Ω).

4. Iterative solution of the inf-sup stable system. Clearly the elimination of the dual
variable is an important gain compared to the original constrained system, in particular since the
resulting system is symmetric, positive definite and therefore can be solved using the conjugate
gradient method. We will here show how the reduced method can be used to solve the full system
in an iterative procedure, which allows to recover the conservation properties and error estimates
of the full system while only solving the linear system associated to the reduced system. The idea
is to use the Euler-Lagrange equations with the dual stabilizer (2.18), which leads to the mixed
least squares method, but consider the dual stabilizer as a perturbation that is eliminated through
iteration. The iterative scheme takes the form: let z0

h = 0 compute for κ = 0, 1, 2, 3, 4 . . .

s[(uκ+1
h ,pκ+1

h ), (vh, qh)] + b(qh, vh, z
κ+1
h ) = 0 (4.1)

b(pκ+1
h , uκ+1

h , wh)− s∗(zκ+1
h , wh) = (f, wh)Ω − s∗(zκh , wh), (4.2)

where s and s∗ is defined by (2.14) and (2.18). Clearly if the iteration converges, the resulting
discrete solution solves the inf-sup stable formulation for which s∗ ≡ 0. We will now prove the
convergence of the scheme.

Proposition 4.1. Assume that γT > 0. Let κ → ∞ in (4.1)-(4.2), then (uκh,p
κ
h, z

κ
h) →

(uh,ph, zh) solution of (2.15)-(2.16), with s∗ ≡ 0.
Proof. By linearity it is enough to prove that (uκh,p

κ
h, z

κ
h) goes to zero if f ≡ 0, g ≡ 0, ψ ≡ 0 in

(4.1)-(4.2). By taking vh = uκ+1
h , qh = pκ+1

h and wh = −zκ+1
h and summing over κ ∈ 0, . . . n− 1

we obtain

n−1∑
κ=0

(
s[(uκ+1

h ,pκ+1
h ), (uκ+1

h ,pκ+1
h )] + s∗(zκ+1

h − zkh, zκ+1
h )

)
= 0

and therefore using the telescoping sum

1

2
‖znh‖2Ω +

n−1∑
κ=0

(
s[(uκ+1

h ,pκ+1
h ), (uκ+1

h ,pκ+1
h )] +

1

2
‖zκ+1
h − zκh‖2Ω

)
=

1

2
‖z0
h‖2Ω.

It follows that

‖A∇uκh − pκh‖Ω + γT ‖hk∇uκh‖Ω + ‖zκ+1
h − zκh‖Ω → 0 when k →∞.

Observe that for γT > 0 this implies (by Poincaré’s inequality) that uh = limκ→0 u
κ
h = 0 and

ph = limκ→0 p
κ
h = 0. Using Theorem 2.1 we then conclude that zκ → 0.

Remark 4.1. If k = 1 and A is the identity, the conclusion of Proposition 4.1 holds also for
γT = 0. To see this recall the discussion after Remark 3.2 implying that

‖h∇uκh‖Ω . ‖∇uκh − pκh‖Ω.

The consequence is that uh = limκ→0 u
κ
h = 0 as before.
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5. Numerical example. As a numerical illustration of the theory we consider the original
Cauchy problem discussed by Hadamard. In (1.1) let A = I, µ = 0, f = 0, Ω := (0, π) × (0, 1),
ΓN := {x ∈ (0, π); y = 0}, ΓD := ΓN ∪ {x ∈ {0, π}; y ∈ (0, 1)} and

ψ := −bn sin(nx). (5.1)

It is then straightforward to verify that

un = bnn
−1 sin(nx) sinh(ny)

solves (1.1). An example of the exact solution for n = 5 is given in Figure 5.1. One may easily
show show that the choice bn = n−p, p > 0 leads to ψ → 0 uniformly as n→∞, whereas, for any
y > 0, un(x, y) blows up. Stability can only be obtained conditionally, under the assumption that
‖un‖H1(Ω) < E for some E > 0, leading to the relations (1.8) and (1.10).

We choose bn := 1 in (5.1) and impose homogenoeous Dirichlet condition u = 0 on x ∈
(0, π), y = 0. On the lateral boundaries x = 0, x = π we either impose homogenoeous Dirichlet
condition (case 1) or impose nothing (case 2). With these data we then solve the resulting Cauchy
problem (1.1). We study the error in the relative L2-norms,

‖u− uh‖Ωσ
‖u‖Ωσ

, where Ωσ := (0, π)× (0, σ), σ ∈ {1/2, 1}.

We will also consider the relative H1-semi-norm defined similarly. In the graphics below, errors
in the L2-norm will be marked with circle markers ’◦’ and the error in the relative H1-semi norm
with square markers ’�’. The case σ = 1 will be indicated with a filled markes, whereas the one
for σ = 1/2 with not filled. All computations below were performed using formulation (2.23) in
the package FreeFEM++ [30]. We consider the cases k = 1 and k = 2 for increasingly oscillating
data with n = 1 and n = 5. To set the regularization parameter γT we performed a series of
computations on a mesh with 240 × 80 elements and unperturbed data. We then chose the first
γT for which the influence of the regularizing term was visible in the form of increasing error. The
resulting parameter was 10−4 both for k = 1 and k = 2. Observe that for unperturbed data the
regularization parameter could be chosen to be zero. To minimize the influence of mesh structure
we used Union-Jack meshes, an example is given in Figure 5.2. We used the iterative method
of Section 4 to solve the linear system and obtained convergence to 10−6 on the L2-norm of the
increment after less than three iterations in all cases. In experiments not presented here we used
the reduced method and observed similar accuracy of the approximations as those reported below.

5.1. Case 1. In Figure 5.3 we show computations performed on a sequence of structured
meshes using k = 1. From left to right we have n = 1, and n = 5. We see that when n = 1 the
H1 and L2 errors converge with the optimal orders O(hk) and O(hk+1) respectively. For n = 5 on
the other hand, (right plot of Figures 5.3 and 5.4), when k = 1 the relative error remains above
30% on all the meshes and the solution is clearly not resolved.

Increasing the order to k = 2 changes the behaviour dramatically. The results for this case is
reported in Figure 5.4. Here the dotted reference lines are if y ∼ h2 and y ∼ h3 and we observe
that the H1 and L2 errors have optimal convergence, but the local and the global errors. For
n = 5 on the coarse scales the problem is completely underresolved also in this case. however
the performance for n = 5 is very different when k = 1 and k = 2. indeed for k = 1 we do
not observe any convergence on the considered scales, whereas for k = 2, the error decreases as
expected from the second refinement. Indeed we observe O(h2) convergence from O(1) errors to
an error of order 10−4 for h = 0.01. Clearly there is a strong “pollution” effect of the Cauchy
problem due to oscillation in data. It appears that, similarly as for Helmholtz equation, using
higher order approximation leads to a method that is more robust in handling this phenomenon.

In Figure 5.5 we consider a similar computation with n = 3, but this time using the data
ψ̃ = (1 + δurand)ψ where urand is a finite element function where each degree of freedom has been
set randomly to a value in [0, 1]. In the left plot we give the convergence for the case k = 1 and
δ = 0.02 and in the right k = 2 with the same level of the perturbation. In both cases we observe
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stagnation when the error is of the size of the perturbation. On finer meshes we also note that
the error can grow under refinement, this is consistent with theory (recall the inverse power of h
in CE of (3.5).)

5.2. Case 2. For the second case we only consider n = 1. In Figure 5.6 we report the relative
errors for the cases k = 1 (left plot) and k = 2 (right plot). For k = 1 the errors decrease during
refinement. And on the finest mesh, h = 1/400, the error is O(10−2) for the L2-errors and the
local H1-error. The global H1-error is approximately a factor four larger. All error quantities
have similar behavior under refinement. For k = 2 on the other hand the errors are a factor 10
smaller for comparable mesh-sizes and convergence appear to be logarithmic for all quantities,
which coincides with theory since all domains where the errors are measured reach the undefined
boundary. For h < 0.02 the errors grow in this case. For computations on finer meshes not
reported here this growth continuous. This saturation and error growth in the case k = 2 is most
likely due to finite precision.

6. Conclusion. We have derived error estimates for a primal dual mixed finite element
method applied to the elliptic Cauchy problem. The results are optimal with respect to the
approximation orders of the finite element spaces and the stability of the ill-posed problem. In-
troducing a special dual stabilizer we reduce the scheme to a least squares mixed method for
which the number of degrees of freedom is significantly smaller, the system matrix is symmetric,
but the exact local flux conservation is lost. This method satisfies similar estimates, but the
results require slightly more regularity of the source term and have slightly worse sensitivity to
perturbed data. We then showed that the reduced method can be used in an iterative method
to solve the full primal dual formulation, thus recovering local conservation. The estimates show
that if the exact solution is smooth the use of high order approximation can pay off. However
the amplification of perturbations in data is also stronger with increased approximation order. In
numerical experiments we observed that the gain obtained from the high order approximation is
more important than the increased sensitivity. Indeed both methods performed better with higher
order approximation, in particular for oscillating solutions. As expected from the estimates the
accuracy for both methods was similar in our experiments, where the right hand side was zero.
The improved local conservation of the full primal dual formulation was observed and the iterative
procedure converged to a relative residual of the increment in the L2-norm of O(10−6) within up
to three iterations. Finally we point out the the method presented herein also can be applied to
inverse problems subject to the Helmholtz equation, as those discussed in [19].

Appendix. Let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of the
matrix A. Assume, without loss of generality, that no F̃ has a corner of the domain through
its interior. For a patch F̃ let NF̃ denote the set of elements with one face entirely in F̃ , i.e.

not touching the boundary of F̃ . Let NP̃ be the union of the elements NF̃ and their interior
neighbours, that is, any element K such that K ∩ Σ = ∅ and K ∩ K ′ 6= ∅ for some K ′ ∈ NF̃ .

We also introduce the set N∂F̃ of elements in NF̃ with a neighbour that intersects ∂F̃ . We define

the patch P̃ := ∪K∈NP̃ . Now let ϕ̃ ∈ V 1
0 such that ϕ̃|∂P̃ = 0 and ϕ̃(xP ) = 1 for any interior

vertex xP in P̃ . It follows that ‖∇ϕ̃‖2
P̃
. hd−2. We will first prove, using shape regularity and the

properties of A, that provided diam(F̃ )/h is large enough (but independently of h) there exists
c0, independent of h, such that

c0h
−1 ≤ measd−1(F̃ )−1

∫
F̃

A∇ϕ̃ · ν ds =: Θ(A, ϕ̃). (6.1)
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Fig. 5.1. Carpet plot of exact solution for n = 5

Here we used that, for any element in NF̃ \ N∂F̃ , A∇ϕ̃ · ν ≥ λmin(A)|∇ϕ̃|, with h−1 . |∇ϕ̃| on

the face intersecting F̃ .∫
F̃

A∇ϕ̃ · ν ds =
∑

K∈N∂F̃

∫
∂K∩F̃

A∇ϕ̃ · ν ds+
∑

K∈NF̃ \N∂F̃

∫
∂K∩F̃

A∇ϕ̃ · ν ds

≥ −
∑

K∈N∂F̃

λmax(A)cmaxh
−1hd−1 +

∑
K∈NF̃ \N∂F̃

λmin(A)cminh
−1hd−1

where cmin and cmax only depend on the shape regularity of the elements. Observing that
card(N∂F̃ ) = O(h2−d) and card(NNF̃ \N∂F̃ ) = O(h1−d) we see that the second sum dominates

the first for diam(F̃ )/h large enough. This concludes the proof of (6.1).
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Fig. 5.2. Example of a computational mesh
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Fig. 5.3. Relative error against mesh size. k = 1, from left to right: n = 1, n = 5. Square markers indicate
H1-seminorm errors, circle markers indicate L2-errors, filled markers indicate global errors and not filled markers
indicate local errors. Dotted reference lines (left plot): top y = O(h), bottom y = O(h2)

Define ϕF̃ := ϕ̃/Θ(A, ϕ̃). By construction∫
F̃

A∇ϕF̃ · ν ds = measd−1(F̃ ).

Consider now the H1-seminorm of ϕF̃ on P̃ ,

‖∇ϕF̃ ‖P̃ = ‖∇ϕ̃‖P̃ /(c0h
−1)2 . (hd−2/(c0h

−1)2)−
1
2 . h

d
2 . (6.2)

Using a Poincaré inequality we have ‖ϕF̃ ‖P̃ . h‖∇ϕF̃ ‖P̃ which together with (6.2) yields the
desired bound (3.2).
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[28] J. Hadamard. Sur les problèmes aux derivées partielles et leur signification physique. Bull. Univ. Princeton,
1902.

[29] H. Han. The finite element method in the family of improperly posed problems. Math. Comp., 38(157):55–65,
1982.

[30] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.
[31] R. Lattès and J.-L. Lions. The method of quasi-reversibility. Applications to partial differential equations.

Translated from the French edition and edited by Richard Bellman. Modern Analytic and Computational
Methods in Science and Mathematics, No. 18. American Elsevier Publishing Co., Inc., New York, 1969.

[32] Y. Liu, J. Wang, and Q. Zou. A Conservative Flux Optimization Finite Element Method for Convection-

27



Diffusion Equations. ArXiv e-prints, October 2017.
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