
ar
X

iv
:2

20
6.

13
36

9v
1

 [
m

at
h.

O
C

]
 2

7
Ju

n
20

22

Fast Multilevel Algorithms for Compressive

Principle Component Pursuit

Vahan Hovhannisyan* Yannis Panagakis† Panos Parpas†

Stefanos Zafeiriou†

June 28, 2022

Abstract

Recovering a low-rank matrix from highly corrupted measurements arises in

compressed sensing of structured high-dimensional signals (e.g., videos and hy-

perspectral images among others). Robust principal component analysis (RPCA),

solved via principal component pursuit (PCP), recovers a low-rank matrix from

sparse corruptions that are of unknown value and support by decomposing the ob-

servation matrix into two terms: a low-rank matrix and a sparse one, accounting

for sparse noise and outliers. In the more general setting, where only a fraction of

the data matrix has been observed, low-rank matrix recovery is achieved by solv-

ing the compressive principle component pursuit (CPCP). Both PCP and CPCP are

well-studied convex programs, and numerous iterative algorithms have been pro-

posed for their optimisation. Nevertheless, these algorithms involve singular value

decomposition (SVD) at each iteration, which renders their applicability challeng-

ing in the case of massive data. In this paper, we propose a multilevel approach

for the solution of PCP and CPCP problems. The core principle behind our algo-

rithm is to apply SVD in models of lower-dimensionality than the original one and

then lift its solution to the original problem dimension. We show that the proposed

algorithms are easy to implement, converge at the same rate but with much lower

iteration cost. Numerical experiments on numerous synthetic and real problems

indicate that the proposed multilevel algorithms are several times faster than their

original counterparts, namely PCP and CPCP.

1 Introduction

Low-rank matrix recovery is a cornerstone in data analysis and dimensionality re-

duction, with the principal component analysis (PCA) [12] being the most widely

employed method for this task. However, PCA is fragile to the presence of gross,

non-Gaussian, noise and outliers, and the estimated low-rank subspace may be arbi-

trarily away from the true one; even when a small fraction of the data is corrupted

*Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ London, UK

(vh13@imperial.ac.uk, vh13@imperial.ac.uk, p.parpas@imperial.ac.uk, s.zafeiriou@imperial.ac.uk).

1

http://arxiv.org/abs/2206.13369v1
mailto:vh13@imperial.ac.uk
mailto:i.panagakis@imperial.ac.uk
mailto:p.parpas@imperial.ac.uk
mailto:s.zafeiriou@imperial.ac.uk

[14]. To alleviate this drawback, robust PCA (RPCA) models have been proposed

[6]. RPCA aims to recover a low-rank matrix from sparse corruptions that are of un-

known value and support by decomposing the observation matrix (D) into two parts,

namely D = L + S. The first part is a low-rank matrix (L) and the second part is

a sparse matrix (S) that accounts for sparse noise and outliers. In case of partially

observed data, the RPCA model is extended to consider the following decomposition

[34]: D
.
= PQ[M] = PQ[L+ S], where Q ⊆ R

m×n is a linear subspace and PQ de-

notes the projection operator onto that subspace. The aforementioned low-rank matrix

recovery models have profound impact in visual data analysis and computer vision ap-

plications such as image denoising [6], background subtraction, image alignment [28],

texture recovery [36], deformable models [29], face frontalization [30], and structure

from motion [2], to mention but a few examples.

A natural approach to estimate the low-rank and sparse components in the above

mentioned models is to minimise the rank of L and the number on non-zero entries

of S, measured by the ℓ0 quasi norm [6]. Unfortunately, both rank and ℓ0-norm min-

imisation are NP-hard [32, 23]. The nuclear- and the ℓ1- norms are typically adopted

as convex surrogates to rank and ℓ0- norm, respectively yielding the convex principle

component pursuit (PCP) [6] and compressive principle component pursuit (CPCP)

programs [34].

Common solvers for the convex PCP and CPCP models include: Iterative Thresh-

olding (IT) [7], Accelerated Proximal Gradient (APG) [26], Augmented Lagrange Mul-

tipliers (ALM) [17] and Linearized Augmented Lagrangian method [35]. However, all

these solvers exhibit significant computational drawbacks. In particular, at each itera-

tion, they require computing several (not necessarily all) singular values and vectors of

a large matrix, which is computationally expensive.

There have been several attempts to reduce the computational cost of large nuclear-

norm regularised optimisation problems. Concretely, [18] proposed to reduce the di-

mensions of the problem by factorising the low-rank matrix as the product of two

smaller matrices, resulting in a non-convex problem which is solved by employing the

augmented Lagrangian alternating direction method. Another very popular approach

for reducing the dimensions of large-scale problems is to create smaller sub-problems

by applying randomised techniques [1, 8, 19, 21, 25]. More recently, the Frank-Wolfe

(FW) algorithm has regained popularity for solving large-scale problems due to its ex-

tremely low iteration complexity. Specifically, the Frank-Wolfe Thresholding (FW-T)

method proposed in [20] is arguably the most efficient method for solving large (C)PCP

problems. Nevertheless, FW type of methods require significantly more iterations to

converge, and hence they can be impractically time consuming.

In this paper, motivated by the recent advances in multilevel optimisation algo-

rithms [11, 13, 15, 22, 5, 27], we propose a simple, yet generic and very effective

multilevel approach for significantly reducing computational costs for many prob-

lems that require solving nuclear norm based oracles, including RPCA models such

as the PCP and CPCP. The core of our proposed methodology is to construct and solve

lower dimensional (coarse) models for each optimisation oracle and then lift its so-

lution to the original problem dimension. We show that using appropriately chosen

restriction and prolongation operators result in algorithms that converge to an (approx-

imate) solution of the original problem. We apply the proposed multilevel approach on

2

two state-of-the-art algorithms, namely the Inexact Augmented Lagrange Multiplier

Method (IALM) for the PCP problem [17], and the Frank-Wolfe Thresholding method

for the more general CPCP model [20]. In particular, our main contributions are:

• In section 3.2 we show that the proposed multilevel IALM algorithm converges

to an approximate solution, and in sections 4.2 and 4.3 we show that in practice

it is several times faster than the standard IALM.

• The first provably convergent variant of IALM with approximate updates (The-

orem 5).

• In section 3.4 we show that for the FW-T method we prove that its multilevel

variant converges in function value with the same worst-case iteration complex-

ity (Theorem 6). However, in sections 4.2 and 4.3 we show that in practice each

iteration of the multilevel algorithm is up to two times cheaper.

• Numerical tests in both synthetic and real data indicate that the proposed mul-

tilevel variants solve large-scale problems two times faster than their standard

counterparts (Section 4).

Notation. Throughout the paper, scalars are denoted by lower-case letters, vectors

(matrices) are denoted by lowercase (upper-case) boldface letters, e.g. x (X). I denotes

the identity matrix with appropriate dimension. The ℓ1 and ℓ2 norms of a vector x are

defined as ‖x‖1 =
∑

i |xi|, where | · | denotes the absolute value operator, and ‖x‖2 =√∑
i x

2
i , respectively. The matrix ℓ1 norm is defined as ‖X‖1 =

∑
i

∑
j |xij |. The

Frobenius norm is defined as ‖X‖F =
√∑

i

∑
j x

2
ij , and the nuclear norm of X (i.e.,

the sum of singular values of a matrix) is denoted by ‖X‖∗. The l-th largest singular

value of matrix X is denoted as σl(X). In algorithm pseudocodes we use X(k) (uk) to

denote the value of matrix X (scalar u) at iteration k.

2 Compressive Principle Component Pursuit and Ro-

bust PCA

In this section, we give a formal presentation of the CPCP [34] model. Let Q ⊆
R

m×n be a linear subspace spanned by the set of sensing matrices, and PQ denote

the projection operator onto that subspace. In many applications Q is the subset of

observed values of data D. Then the problem is to find a low rank matrix L⋆ and a

sparse matrix S⋆ such that the PQ[L
⋆ + S⋆] = PQ[D]. The problem can be written as

a convex unconstrained minimisation problem as follows:

min
L,S

1

2
‖PQ[L+ S−D]‖2F + λL‖L‖∗ + λS‖S‖1,

where λL and λS are positive penalising coefficients.

An important special case of (2) is the well known PCP problem robust principle

component analysis (RPCA), whereQ is the entire space Rm×n and PQ is the identity,

3

i.e. all values of D have been observed. The problem in this case can be formulated

to represent the input data matrix D ∈ R
m×n as a sum of a low rank matrix L⋆ and

a sparse matrix S⋆. This can be exactly solved via the following convex constrained

optimisation problem:

min
L,S
‖L‖∗ + λ‖S‖1, subject to D = L+ S,

where λ > 0 is a weighting parameter.

Before proceeding in the presentation of the proposed multilevel algorithms for the

PCP and CPCP problems, we will provide an overview of the most widely adopted

solvers for these problems

2.1 Inexact ALM for Robust PCA

We start with the simpler PCP problem for RPCA. A classical approach for solving (2)

is by minimising its augmented Lagrangian defined as

L(L,S,Y, µ) = ‖L‖∗ + λ‖S‖1 + 〈Y,D− L− S〉+ µ

2
‖D− L− S‖2F ,

where Y ∈ R
m×n is the Lagrangian variable and µ > 0 is a penalty parameter. The

convex optimization model in (2.1) can be solved via alternating directions method.

The latter method first solves the problem for each primal variable L and S separately

for a fixed Y. The dual variable Y is updated according to a linear rule and µk is

chosen as an increasing sequence at each iteration [17]. The method is computationally

attractive because each resulting subproblem has a closed form solution. The resulting

procedure was dubbed Inexact ALM (IALM) in [17] and is formally given here in

Algorithm 1.

Algorithm 1 Inexact ALM (IALM)

Input: D,S(0),Y(0) ∈ R
m×n; µ0 > 0

1: for k← 1 to ... do

2: // Solve L(k+1) = argmin
L

L(L,S(k),Y(k), µk)

3: M(k) ←D− S(k) + µ−1
k Y(k)

4: (U,Σ,V)← SVD(M(k))

5: L(k+1) ←USµ−1

k
[Σ]V⊤

6: // Solve S(k+1) = argmin
S

L(L(k+1),S,Y(k), µk)

7: S(k+1) ← Sλµ−1

k
[D− L(k+1) + µ−1

k Y(k)]

8: // Update the Lagrangian variable

9: Y(k+1) ←Y(k) + µk(D− L(k+1) − S(k+1))
10: Update µk ← µk+1

11: end for

12: return (L(k+1),S(k+1))

4

Minimising (2.1) over L requires computing singular values of a large m× n ma-

trix. It is well known that computing the k largest singular values has a computational

complexity of O(kmn). Thus for practical efficiency it is important to compute only

a few singular values [17]. However, the SVD in step 4 remains the computational

bottleneck of Algorithm 1. Theorem 1 [17] gives an asymptotic convergence result for

Algorithm 1.

Theorem 1. For Algorithm 1, if µk is non-decreasing and
∑+∞

k=1 µ
−1
k = +∞, then

(L(k),S(k)) asymptotically converges to an optimal solution of the RPCA problem.

2.2 Frank-Wolfe Method

In this section, we review the more general CPCP problem and the well studied Frank-

Wolfe (FR) method [9], also known as the conditional gradient method [16] and its

associated convergence result. Since the method minimises any convex smooth func-

tion f over a bounded convex set D ⊆ H, whereH is a Hilbert space endowed with an

inner product 〈·, ·〉, we study the more general optimisation problem:

min f(x) s.t x ∈ D,

where f has a L-Lipschitz continues gradient:

∀x,y ∈ D, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Throughout, we let D = maxx,y∈D ‖x− y‖ denote the diameter of the feasible set D.

The Frank-Wolfe method, as well as all its variants and extensions studied in this work

will assume that the feasibility set D is bounded, i.e. D < ∞. The classical Frank-

Wolfe method has many variants with different update rules, but in the most general

form it can be written as in Algorithm 2 [20].

Algorithm 2 Frank-Wolfe (FW)

Input: x(0) ∈ D
1: for k← 1 to ... do

2: v(k) ∈ argminv∈D〈v,∇f(x(k))〉;
3: γ = 2

k+2

4: Update x(k+1) to a point in D so that f(x(k+1)) ≤ f(x(k) + γ(v(k) − x(k)));
5: end for

6: return x(k+1)

The two most common updating rules for x(k+1) are the simple

x(k+1) = x(k) + γ(v(k) − x(k)),

and the following slightly more sophisticated one

x(k+1) ∈ argminx f(x) s.t. x ∈ conv{x(k),v(v)}.

5

In this paper we will use the more advanced update rule (2.2) for its better practical

performance. Using standard techniques it can be shown that the FW method converges

at a rate of O(1/k) in function values.

Theorem 2. Let x⋆ be an optimal solution of (2.2). For {x(k)} generated by Algorithm

2, we have for k = 0, 1, 2, ..

f(x(k))− f(x⋆) ≤ 2LD2

k + 2
.

Proof. The proof can be found, for example, in [20].

2.3 Frank-Wolfe Thresholding Method for CPCP

In this section we discuss the application of the Frank-Wolfe method to problem (2).

Since the FW algorithm can be applied only for smooth and constrained convex opti-

misation problems with a bounded feasible set, we reformulate (2) into a such problem.

In [20] the reformulation was done by first performing an epigraph reformulation on

(2) obtaining,

min f(L,S, tL, tS) :=
1
2‖PQ[L+ S−D]‖2F + λLtL + λStS

s.t. ‖L‖∗ ≤ tL, ‖S‖1 ≤ tS .

Now the objective function has a 2-Lipschitz gradient∇f with partial derivatives given

as follows:

∇Lf(L,S, tL, tS) = ∇Sf(L,S, tL, tS) = PQ[L+ S−D],

∇tLf(L,S, tL, tS) = λL,∇tSf(L,S, tL, tS) = λS .

Then to make the feasible region bounded we introduce upper bounds UL and US

for tL and tS , respectively. It can be shown [20] that we can choose

UL = 1
2λL
‖PQ[D]‖2F , US = 1

2λS
‖PQ[D]‖2F ,

and the resulting feasible set has a bounded diameter: D ≤
√
5 ·
√
U2
L + U2

S .

Now we can apply the FW algorithm on

min f(L,S, tL, tS) :=
1
2‖PQ[L+ S−D]‖2F + λLtL + λStS

s.t. ‖L‖∗ ≤ tL ≤ UL, ‖S‖1 ≤ tS ≤ US .

Setting x = (L,S, λL, λS) and using the gradient expressions (2.3)-(2.3) we can de-

rive the linear optimisation oracle in step 2 of Algorithm 2 as two independent linear

optimisation problems:

(V
(k)
L , V

(k)
tL) ∈ argmin

‖VL‖∗≤VtL
≤UL

〈PQ[L
(k) + S(k) −D],VL〉+ λLVtL ,

6

(V
(k)
S , V

(k)
tS) ∈ argmin

‖VS‖∗≤VtS
≤US

〈PQ[L
(k) + S(k) −D],VS〉+ λSVtS .

Both (2.3) and (2.3) are separable and can be solved in closed form using the lead-

ing singular values and the largest in magnitude elements of PQ[L
(k)+S(k)−D] [20].

This is given in steps 3 − 16 in Algorithm 3. Finally, we use the update rule (2.2) for

problem (2.3) resulting to step 17 of Algorithm 3.

A major drawback of the FW method is that for the ℓ1-norm, at each iteration it

projects a linear function on a ℓ1 ball, thus updating only one entry of a very large

matrix. To resolve this problem [20] suggested to add a thresholding operation to the

FW algorithm, calling it Frank-Wolfe Thresholding (FW-T). This is performed in steps

18 − 19 of Algorithm 3. Finally, as suggested in [20], in steps 20− 21 we update the

bounds UL and US tightening the feasibility set.

We present the complete Frank-Wolfe Thresholding method in Algorithm 3. Both

primal and dual convergence of the FW-T algorithm was established in [20]. Since the

thresholding (and more generally proximal) operator decreases the function value more

than the Frank-Wolfe update, the Frank-Wolfe Thresholding algorithm can be seen as

a special case of Algorithm 2 [20]. Therefore FW-T converges to the solution (L⋆,S⋆)
in function value with the same O(1/k) rate. Although the FW-T method requires

only computing the largest singular value of a m × n matrix at each iteration, SVD

computations still remain the computational bottleneck.

3 Multilevel Algorithms

We propose multilevel variants of the two classical methods discussed above. IALM

and FW-T have the same computational bottleneck of computing one or more sin-

gular values at each iteration. Our methods will build lower dimensional, so-called

coarse, models for each problem and use their singular values for iteration updates.

We will show that both algorithms converge to an (approximate) solution of the original

problem with the same worst case iteration complexity of their standard counterparts.

However, the per iteration cost of multilevel methods is much smaller, since SVDs are

performed on much smaller coarse models 1.

3.1 The Coarse Model

In this section we will introduce a generic lower dimensional model for (2) and (2). It

uses the so-called restriction operator R ∈ R
n×nH , for some nH ≤ n, where nH is

the dimension of the coarse model. Throughout the paper we will make the following

assumption about the restriction operator R.

Assumption 1. The restriction operator R has linearly independent columns. There-

fore, R has a left inverse R† ∈ R
nH×n so that R†R = InH

(in general, RR† 6= In
and R may not have a right inverse).

1In our experiments we observed 2-10 times cheaper per iteration complexities

7

Algorithm 3 Frank-Wolfe Thresholing (FW-T) for (2)

Input: D ∈ R
m×n;λL, λS > 0

1: Set L(0) = S(0) = 0; t
(0)
L = t

(0)
S = 0;U

(0)
L = f(L(0),S(0), t

(0)
L , t

(0)
S)/λL;U

(0)
S =

f(L(0),S(0), t
(0)
L , t

(0)
S)/λS .

2: for k← 1 to ... do

3: M
(k)
L ∈ argmin

‖ML‖∗≤1

〈PQ[L
(k) + S(k) −D],ML〉;

4:

5: M
(k)
S ∈ argmin

‖MS‖1≤1

〈PQ[L
(k) + S(k) −D],MS〉;

6:

7: if λL ≥ −〈PQ[L
(k) + S(k) −D],M

(k)
L 〉 then

8: V
(k)
L = 0; V

(k)
tL = 0

9: else

10: V
(k)
L = ULM

(k)
L ; V

(k)
tL = UL

11: end if

12: if λS ≥ −〈PQ[L
(k) + S(k) −D],M

(k)
S 〉 then

13: V
(k)
S = 0; V

(k)
tS = 0

14: else

15: V
(k)
S = USM

(k)
S ; V

(k)
tS = US

16: end if

17: Compute (L(k+1),S(k+ 1

2
), t

(k+1)
L , t

(k+ 1

2
)

S) as a minimiser of

min
L,S,tL,tS

1
2‖PQ[L+ S−D]‖2F + λLtL + λStS

s.t.

(
L

tL

)
∈ conv

{(
L(k)

t
(k)
L

)
,

(
V

(k)
L

V
(k)
tL

)}
,

(
S

tS

)
∈ conv

{(
S(k)

t
(k)
S

)
,

(
V

(k)
S

V
(k)
tS

)}
;

18: S(k+1) ← SλS
[S(k+ 1

2
) − PQ[L

(k+ 1

2
) + S(k+ 1

2
) −D]]

19: t
(k+1)
S ← ‖S(k+1)‖1

20: U
(k+1)
L ← g(L(K+1),S(k+1), t

(k+1)
L), t

(k+1)
S /λL

21: U
(k+1)
S ← g(L(K+1),S(k+1), t

(k+1)
L), t

(k+1)
S /λS

22: end for

23: return (L(k+1),S(k+1))

8

Assumption 1 is a very generic and natural assumption about the restriction oper-

ator and it is satisfied for all restriction operators used in this work. Indeed, there is

no practical advantage of having redundant columns in R, and we can always remove

the redundant columns thus creating lower dimensional coarse models. We make two

generic assumptions about the coarse model.

Assumption 2.

rank(L⋆) ≤ nH ≤
m+ 1

2
.

The first inequality of (2) holds whenever n < m, which is the case in all prac-

tical problems we consider in the paper. The second inequality, on the other hand,

has to be explicitly enforced using an approximate guess on the rank of L⋆, which is

well known for most applications. For example, for the video background extraction

problem rank(L⋆) ≈ 1 and for the facial shadow removal problem it is ≈ 9. In all

experiments we use this prior information to set the number of levels so that (2) is

satisfied.

Assumption 3. The low-rank component L⋆ can be represented as L⋆ = L⋆
HR⊤ for

some coarse L⋆
H ∈ R

m×nH .

Assumption 3 is not restrictive for the problems considered here. We demonstrate

this fact by using a simple example. Let L⋆ be a simple white rank one background

extracted from a video. This means that each of its columns is a white frame stacked

as a column vector. Thus it can be written as a matrix of ones. Also, as it is a standard

practice in multigrid literature [4], assume R is the normalised interpolation operator

(3.1):

Rn =
1

2

2 0 0 0 ... 0 0
2 0 0 0 ... 0 0
1 1 0 0 ... 0 0
0 2 0 0 ... 0 0
0 1 1 0 ... 0 0

...
0 0 0 0 ... 1 2

∈ R
n×n

2 .

Then setting LH
⋆ as a matrix of ones we get:

L⋆
HR⊤ =

1 1 1
· · ·

1 1 1

· 1

2

2 2 1 0 0 0
0 0 1 2 1 0
0 0 0 0 1 2

 =

1 1 1 1 1 1

· · ·
1 1 1 1 1 1

 = L⋆.

As can be seen from this example, the interpolation restriction operator is suitable

for rank one matrices. Indeed, consider the case where L⋆
H is constructed by repeating

a column vector next to each other (this will obviously give a rank one matrix). In fact,

it is easy to notice that multiplying a matrix L⋆
H by this R⊤ from right, effectively

adds linear combinations of columns of L⋆
H without altering the existing columns.

And since R is normalised, the resulted higher dimensional matrix will have exactly

9

the same columns as L⋆. Having this in mind, given a rank one L⋆ with normalised

columns, we can always construct a L⋆
H simply by removing a certain number of its

columns.

Assumption 3 is one of the key assumptions of this paper. It essentially says that the

solution can be represented with varying degrees of fidelity, which is what we observe

in many applications, including those studied here. It is important to notice, that while

we assume the existence of such L⋆
H , we do not need to know its value. Nowhere in

our multilevel algorithms we use the value of L⋆
H .

In the multilevel literature the standard choice for restriction operator is the inter-

polation operator (3.1) and we will also use it in our experiments. Often in practice

we use more than 2 levels of coarse models. Specifically, we use a restriction operator

R = Rn ·Rn
2
· . . . ·RnH

∈ R
n×nH , where Rk ∈ R

k× k
2 is the interpolation operator of

appropriate dimensions. For all experiments we use up to the deepest possible levels,

so that nH > max{rank(L⋆), r}, where r is the number of singular values required

by the overlying algorithm. Clearly, this R has linearly independent columns and thus

is full rank.

3.2 Multilevel IALM

In this section we present a computationally efficient multilevel variant of the Inexact

ALM algorithm. First, we make an additional assumption for this subsection:

Assumption 4. R is normalised so that ‖R‖2 ≤ ‖R‖⋆ ≤ 1.

Before we proceed, we shall present an important inequality about singular values

that we will use in the proofs. The proof can be found for instance in [33].

Theorem 3. Let A,B ∈ R
m×n be matrices and m ≥ n. Then for any k ∈ {1, . . . , n}

k∑

i=1

σi(A)σn−i+1(B) ≤
k∑

i=1

σi(AB) ≤
k∑

i=1

σi(A)σi(B).

Now we show that the restriction operator approximately preserves the nuclear

norm.

Theorem 4. For any LH ∈ R
m×nH and R ∈ R

n×nH with nH ≤ n ≤ m, the

following inequalities hold:

1.

‖LHR⊤‖∗ ≥ ‖LH‖∗ − ǫ,

with ǫ =
∑rH

k=1 σk(LH)(1− σnH−k+1(R)), where rH = rank(LH); and

2. if ‖R‖2 ≤ 1, then also

‖LH‖∗ ≥ ‖LHR⊤‖∗.

10

Proof. Since n ≤ nH , then using (3) we have

‖LHR⊤‖∗ ≥
nH∑

k=1

σk(LHR⊤)

≥
nH∑

k=1

σk(LH)σnH−k+1(R
⊤)

= ‖LH‖∗ −
rH∑

k=1

σk(LH)(1 − σnH−k+1(R)).

The second part can be shown similarly. From Assumption 1 we have

‖LH‖∗ = ‖LHR⊤R†⊤‖∗

≥
nH∑

k=1

σk(LHR⊤R†⊤)

≥
nH∑

k=1

σk(LHR⊤)σnH−k+1(R
†⊤)

= ‖LHR⊤‖∗ −
rH∑

k=1

σk(L)(1 − σnH−k+1(R
†))

= ‖LHR⊤‖∗ −
rH∑

k=1

σk(L)(1 − σ−1
nH−k+1(R)).

Finally, if σk(R) ≤ 1 for all k = nH−rH+1, . . . , nH , then ‖LHR⊤‖∗ ≤ ‖LH‖⋆.

As it can been seen from Theorem 4, in general having ǫ = 0 requires an orthogonal

R, which may not be sparse, thus making each iteration of the algorithm computation-

ally expensive. However, if L⋆ is low rank with quickly decreasing singular values and

σi(R) drop slowly, then ǫ will be small. This is indeed the case for many computer

vision applications such as video background extraction and facial shadow removal

discussed in the paper, where L⋆ is not only low rank, but also has quadratically de-

creasing singular values. Moreover, it is easy to check that the singular values of the

interpolation restriction operator (3.1) satisfy σ1(R)/σnH
(R) ≤ 2.

Now we proceed to define a coarse model for the Augmented Lagrangian function

(3.2):

L(L,S,Y, µ) = ‖L‖∗ + λ‖S‖1 + 〈Y,D− L− S〉+ µ

2
‖D− L− S‖2F ,

For any fixed S, Y and µ, we define the coarse augmented Lagrangian function of

(2) as

LH(L) = ‖L‖∗ + λ‖S‖1 + 〈Y, [(D − S)R− L]R⊤〉+ µ

2
‖(D− S)R − L‖2F .

11

We will use the minimiser of LH to approximately minimise the true Augmented La-

grangian function (3.2) over L. The minimiser of LH is given by the singular value

thresholding operator as

LH = UHSµ−1 [ΣH]V⊤
H ,

where UHΣHV⊤
H = (D − S + µ−1Y)R = MR. Then we use the prolongation

operator R⊤ to lift the minimiser of (3.2) to the fine dimension. The Multilevel IALM

algorithm becomes as stated in Algorithm 4.

Algorithm 4 Multilevel Inexact ALM (ML-IALM)

Input: D,S(0),Y(0) ∈ R
m×n; µ0 > 0

1: for k← 1 to ... do

2: // Solve L
(k+1)
H = argmin

L

LH(L,S(k),Y(k), µk)

3: M
(k)
H ← (D− S(k) + µ−1

k Y(k))R

4: (UH ,ΣH ,VH)← SVD(M
(k)
H)

5: L
(k+1)
H ←UHSµ−1 [ΣH]V⊤

H

6: L(k+1) ← L
(k+1)
H R⊤

7: // Continue as in Algorithm 1

8: S(k+1) ← Sλµ−1

k
[D− L(k+1) + µ−1

k Y(k)]

9: Y(k+1) ←Y(k) + µk(D− L(k+1) − S(k+1))
10: Update µk ← µk+1

11: end for

12: return (L(k+1),S(k+1))

Now we proceed to study the convergence of Algorithm 4. First, we define the

sequence Ŷ(k), which we will use throughout this section. Let

Ŷ(k+1) = Y(k) + µk[D− S(k) − L(k+1)].

We start the convergence proof of Algorithm 4 with the multilevel versions of some

lemmas of [17]. We begin with Lemma 1 from [17] and show that Multilevel IALM

also produces bounded sequences.

Lemma 1. Let Ŷ(k+1) be defined as in (3.2) and Y(k) be defined as in Algorithm 4.

Then the sequence {Y(k)} is bounded and the following hold:

1.

Ŷ(k+1)R+ µkL
(k+1)
H (R⊤R− I) ∈ ∂‖L(k+1)

H ‖∗,

for any L
(k+1)
H ∈ R

m×nH .

2.

Y(k+1) ∈ ∂‖S(k+1)‖∗.

12

Proof. To show (1) we use the optimality condition ofLH and the constructionL(k+1) =

L
(k+1)
H R⊤. We have

0 ∈∂LH
L(L(k+1)

H ,S(k),Y(k), µk)

=∂‖L(k+1)
H ‖∗ −Y(k)R− µk[(D− S(k))R− L

(k+1)
H]

=∂‖L(k+1)
H ‖∗ − Ŷ(k+1)R− µk(L

(k+1)
H R⊤R− L

(k+1)
H).

Similarly, using the optimality condition for updating S(k+1) we can show (2):

Y(k+1) ∈ ∂‖S(k+1)‖∗.

Lemma 2 ([17], Lemma 2).

‖S(k+1) − S⋆‖2F + µ−2
k ‖Y(k+1) −Y⋆‖2F

=‖S(k) − S⋆‖2F + µ−2
k ‖Y(k) −Y⋆‖2F − ‖S(k+1) − S(k)‖2F − µ−2

k ‖Y(k+1) −Y(k)‖2F
− 2µ−1

k (〈Y(k+1) −Y(k),S(k+1) − S(k)〉+ 〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉+ 〈S(k+1) − S⋆,Y(k+1) −Y⋆〉).

Proof. Since the proof of Lemma 2 in [17] relies only on the optimality of L⋆ and

S⋆ and the update formula for Y(k+1), but not on the update rule for L(k+1) (the

only multilevel update part of ML-IALM), then its proof can be exactly repeated for

Algorithm 4.

Lemma 3. If ‖R‖2 ≤ 1, then under Assumption 3

〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉 ≥ −ǫ− µk∆k+1,

for ǫ defined as in Theorem 4 and ∆k+1 = 〈L(k+1)
H (R⊤R− I),L

(k+1)
H − L⋆

H〉.
Proof. Since Y⋆ ∈ ∂‖L⋆‖∗, we have

‖L(k+1)
H R⊤‖∗ − ‖L⋆

HR⊤‖∗ ≥ 〈Y⋆,L(k+1) − L⋆〉.

Then applying Theorem 4 with LH = L⋆
H we derive:

‖L(k+1)
H R⊤‖∗ − ‖L⋆

H‖∗ ≥ 〈Y⋆,L(k+1) − L⋆〉 − ǫ.

On the other hand, from (1) we have

‖L⋆
H‖∗ − ‖L

(k+1)
H ‖∗ ≥ 〈Ŷ(k+1)R+ µkL

(k+1)
H (R⊤R− I),L⋆

H − L
(k+1)
H 〉.

Then adding (3.2) and (3.2) and using Assumption 3 we get

‖L(k+1)
H R⊤‖∗−‖L(k+1)

H ‖∗ ≥ 〈Y⋆−Ŷ(k+1),L(k+1)−L⋆〉−ǫ−µk〈L(k+1)
H (R⊤R−I),L(k+1)

H −L⋆
H〉.

13

We finish the proof applying the construction L(k+1) = L
(k+1)
H R⊤ and denoting

∆k+1 := 〈L(k+1)
H (R⊤R− I),L

(k+1)
H − L⋆

H〉.

Lemma 4. Let ∆k be defined as in Lemma 3 and define

ck := µ−1
k (〈Y(k+1) −Y(k),S(k+1) − S(k)〉+ 〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉+

〈S(k+1) − S⋆,Y(k+1) −Y⋆〉).

Then if µk is non-decreasing, then

• ck ≥ −ǫµ−1
k −∆k+1, and

•
∑k=+∞

k=1 ck < +∞.

Proof. Let (L⋆,S⋆,Y⋆) be a saddle point of the Lagrangian of (2). So we have

Y⋆ ∈ ∂‖L⋆‖∗, Y⋆ ∈ ∂‖λS⋆‖1.

Then from Lemma 3 of [17] and Y(k+1) ∈ ∂‖λS(k+1)‖1 we have

〈S(k+1) − S⋆,Y(k+1) −Y⋆〉 ≥ 0,

〈S(k+1) − S(k),Y(k+1) −Y(k)〉 ≥ 0.

Adding (3) and the two inequalities of (3.2) we get

− ǫ− µk∆k+1

≤〈Y(k+1) −Y(k),S(k+1) − S(k)〉+ 〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉+ 〈S(k+1) − S⋆,Y(k+1) −Y⋆〉.

Showing that ck ≥ −ǫµ−1
k −∆k+1.

Show part 2, we apply Lemma 2 and use µk+1 ≥ µk to get

‖S(k+1)−S⋆‖2F+µ−2
k+1‖Y(k+1)−Y⋆‖2F ≤ ‖S(k)−S⋆‖2F+µ−2

k ‖Y(k)−Y⋆‖2F+2ǫµ−1
k +2∆k+1.

Therefore from Lemma 2 we conclude that

2µ−1
k (〈Y(k+1) −Y(k),S(k+1) − S(k)〉+ 〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉

+ 〈S(k+1) − S⋆,Y(k+1) −Y⋆〉)
≤(‖S(k) − S⋆‖2F + µ−2

k ‖Y(k) −Y⋆‖2F)− (‖S(k+1) − S⋆‖2F + µ−2
k+1‖Y(k+1) −Y⋆‖2F).

Theorem 5 (Convergence of Multilevel IALM). For Algorithm 4, if {µk} is non-

decreasing,
∑+∞

k=1 µ
−1
k = +∞ and

∑+∞
k=1 µ

−2
k < +∞, then (L(k),S(k)) asymptot-

ically converges to an approximate solution of (2).

14

Proof. Similarly to the proof of Lemma 4 we have that

µ−2
k ‖Y(k+1) −Y(k)‖2F − 2ǫµ−1

k − 2[∆k+1]+

≤µ−2
k ‖Y(k+1) −Y(k)‖2F − 2ǫµ−1

k − 2∆k+1

≤(‖S(k) − S⋆‖2F + µ−2
k ‖Y(k) −Y⋆‖2F)− (‖S(k+1) − S⋆‖2F + µ−2

k+1‖Y(k+1) −Y⋆‖2F)
− 2ǫµ−1

k − 2∆k+1 − 2µ−1
k (〈Y(k+1) −Y(k),S(k+1) − S(k)〉+ 〈L(k+1) − L⋆, Ŷ(k+1) −Y⋆〉

+ 〈S(k+1) − S⋆,Y(k+1) −Y⋆〉)
≤(‖S(k) − S⋆‖2F + µ−2

k ‖Y(k) −Y⋆‖2F)− (‖S(k+1) − S⋆‖2F + µ−2
k+1‖Y(k+1) −Y⋆‖2F).

Therefore,

+∞∑

k=1

(µ−2
k ‖Y(k+1) −Y(k)‖2F − 2ǫµ−1

k − 2[∆k+1]+) < +∞.

Thus, µ−2
k ‖Y(k+1) −Y(k)‖2F − 2ǫµ−1

k − 2[∆k+1]+ → 0, and since 2ǫµ−1
k → 0 we

see that

‖D− L(k) − S(k)‖F = µ−1
k ‖Y(k) −Y(k−1)‖F → (2[∆k+1]+)

1/2,

Moreover, since we showed in Lemma 1 that {Y(k+1)} is a bounded sequence,

it follows that so is [∆k]+. Therefore, denoting max{∆k} := δ we show that any

accumulation point of (L(k),S(k)) is a δ-feasible solution.

On the other hand, denote the optimal objective value of problem (2) by f∗. As

Ŷ(k)R ∈ ∂‖L(k)
H ‖∗ and Y(k) ∈ ∂(λ‖S(k)‖1), under Assumption 4 we have

‖L(k)‖∗ + λ‖S(k)‖1
≤‖L(k)

H ‖∗ + λ‖S(k)‖1
≤‖L⋆

H‖∗ + λ‖S⋆‖1 − 〈Ŷ(k)R,L⋆
H − L

(k)
H 〉 − 〈Y(k),S⋆ − S(k)〉

≤‖L⋆‖∗ + ǫ+ λ‖S⋆‖1 − 〈Ŷ(k),L⋆ − L(k)〉 − 〈Y(k),S⋆ − S(k)〉
=f⋆ + 〈Y⋆ − Ŷ(k),L⋆ − L(k)〉+ 〈Y⋆ −Y(k),S⋆ − S(k)〉 − 〈Y⋆,L⋆ − L(k) + S⋆ − S(k)〉+ ǫ

=f⋆ + 〈Y⋆ − Ŷ(k),L⋆ − L(k)〉+ 〈Y⋆ −Y(k),S⋆ − S(k)〉 − 〈Y⋆,D− L(k) − S(k)〉+ ǫ.

Similarly to Lemma 4 we notice that from Lemma 2

µ−1
k (〈L(k) − L⋆, Ŷ(k) −Y⋆〉+ 〈S(k) − S⋆,Y(k) −Y⋆〉)

≤(‖S(k) − S⋆‖2F + µ−2
k ‖Y(k) −Y⋆‖2F)− (‖S(k+1) − S⋆‖2F + µ−2

k+1‖Y(k+1) −Y⋆‖2F).

And therefore,

k=+∞∑

k=1

µ−1
k (〈L(k) − L⋆, Ŷ(k) −Y⋆〉+ 〈S(k) − S⋆,Y(k) −Y⋆〉) < +∞.

15

As
∑+∞

k=1 µ
−1
k = +∞, there must exist a subsequence (L(kj),S(kj)) such that

〈L(kj) − L⋆, Ŷ(kj) −Y⋆〉+ 〈S(kj) − S⋆,Y(kj) −Y⋆〉 → 0.

Then since ‖D− L(k) − S(k)‖F ≤ δ, we have that

lim
j→+∞

‖L(kj)‖∗ + λ‖S(kj)‖1 ≤ f⋆ + ǫ+ δ.

So (L(kj),S(kj)) approaches to an (ǫ + δ)-approximate solution of problem (2).

Notice that Theorem 5 gives a similar convergence results as Theorem 1, mean-

ing that one should expect a similar number of iterations for IALM and ML-IALM

methods. This is indeed the case, as observed from empirical studies. However, since

ML-IALM performs SVDs on much smaller dimensional matrices, each iteration is

significantly cheaper.Of course, as opposed to the original IALM algorithm, here we

only showed an approximate convergence. However, as several numerical experiments

will demonstrate, the approximation error is practically negligible.

3.3 Multilevel Frank-Wolfe

In this section we use operator notation for the linear restriction operator, i.e. R : H →
HH is a linear operator from the original spaceH to the coarse spaceHH . H andHH

are both Hilbert spaces endowed with inner products andHH has lower dimension. In

the next subsection we will see whatH, HH andR are for the CPCP model.

First we create a coarse model for the gradient by applying the restriction operator

R, then solve the linear optimisation oracle over the coarse gradient, then lift the solu-

tion back to the original dimension applying the transpose of the restriction operator.

For the algorithm we use a convex set DH ⊆ HH such that for every xH ∈ DH it

holds thatR⊤(xH) ∈ D. The method is given in Algorithm 5.

Algorithm 5 Multilevel Frank-Wolfe (ML-FW)

Input: x
(0)
H ∈ DH

1: x(0) ←R⊤(x
(0)
H)

2: for k← 0, 1, to . . . do

3: v
(k)
H ∈ argminv∈DH

〈v,R(∇f(x(k)))〉
4: v(k) ←R⊤(v

(k)
H)

5: γ ← 2
k+2

6: Set x(k+1) ∈ D so that f(x(k+1)) ≤ f(x(k) + γ(v(k) − x(k)))
7: end for

8: return x(k+1)

Using techniques similar to the original proof [20], it can be shown that the ML-

FW method converges to a point obtained from the coarse level at a O(1/k) rate in

function values.

16

Theorem 6. For any x⋆
H ∈ DH and for {x(k)} generated by Algorithm 5, we have for

any x⋆
H ∈ HH and k = 0, 1, 2, ..

f(x(k))− f(R⊤(x⋆
H)) ≤ 2LD2

k + 2
.

Proof. For k = 0, 1, 2, . . . we have

f(x(k+1)) ≤ f(x(k) + γ(v(k) − x(k)))

≤ f(x(k)) + γ〈∇f(x(k)),v(k) − x(k)〉+ Lγ2

2
‖v(k) − x(k)‖2

≤ f(x(k)) + γ〈∇f(x(k)),R⊤(v
(k)
H)−R⊤(x

(k)
H)〉 + γ〈∇f(x(k)),R⊤(x

(k)
H)− x(k)〉

+
γ2LD2

2

= f(x(k)) + γ〈R(∇f(x(k))),v
(k)
H − x

(k)
H 〉+ γ〈∇f(x(k)),R⊤(x

(k)
H)− x(k)〉+ γ2LD2

2

≤ f(x(k)) + γ〈R(∇f(x(k))),x⋆
H − x

(k)
H 〉+ γ〈∇f(x(k)),R⊤(x

(k)
H)− x(k)〉+ γ2LD2

2

= f(x(k)) + γ〈∇f(x(k)),R⊤(x⋆
H)− x(k)〉+ γ2LD2

2

≤ f(x(k)) + γ(f(R⊤(x⋆
H))− f(x(k))) +

γ2LD2

2
.

Here for the first line we used the updating rule in Algorithm 5; for the second line

we used the Lipschitz continuity of f ; for the third line - the definitions of v
(k)
H and

D, and we added and subtracted R⊤(x
(k)
H); for the fourth line - the property of inner

product; for the fifth line - the optimality of v
(k)
H ; for the sixth line - the property of

inner product and the definition of x(k); and for the last line - the convexity of f . Then

rearranging the terms we get

f(x(k+1))− f(R⊤(x⋆
H)) ≤ (1 − γ)(f(x(k))− f(R⊤(x⋆

H))) +
γ2LD2

2
.

Therefore, by mathematical induction, it can be verified that

f(x(k))− f(R⊤(x⋆
H)) ≤ 2LD2

k+2 for k = 1, 2, 3,

Theorem 6 tells us, that if the minimiser x⋆ can be accurately represented in terms

of a coarse variable, then ML-FWT is a good and efficient method for that particular

problem. As we will see in the next subsection, this is indeed the case for the CPCP

model.

17

3.4 Multilevel Frank-Wolfe Thresholding for CPCP

In this subsection we will modify the Multilevel Frank-Wolfe method similarly to the

Frank-Wolfe Thresholding method introducing the Multilevel Frank-Wolfe Threshold-

ing method and apply it for the CPCP problem (2). In this case as well we will apply

the multilevel update only on nuclear ball projections.

We begin with defining the fine and coarse spaces, and the restriction operator for

the CPCP problem. In this setting our variables becomes x = (L,S, tL, tS) and the

space isH = R
m×n × R

m×n × R× R.

Since we are applying the multilevel steps only for updating L(k), we will use the

following restriction operator:

R =

Rx

In×n

1
1

 ,

so that

R(L,S, λL, λS) = (LRx,S, λL, λS)

R⊤(∇Lf,∇Sf,∇λL
f,∇λS

f) = (∇LfRx,∇Sf,∇λL
f,∇λS

f),

and thus R(∇f(x)) only affects ∇Lf(L,S, tL, tS) and correspondingly, R⊤(vH)
only affects ∇fL. Here Rx = Rn · . . . · RnH

is the restriction operator as defined

in Section 3.1. Therefore, the coarse space becomesHH = R
m×nH ×R

m×n×R×R.

Now we can define the coarse feasibility set DH for the CPCP problem as follows:

‖ML,H‖∗ ≤ 1/‖R‖∗,
so that for each k = 0, 1, . . .

‖M(k)
L ‖∗ = ‖RT (M

(k)
L,H)‖∗ ≤ ‖R‖∗‖M(k)

L,H‖∗ ≤ 1,

is a feasible point of the fine problem, where ML,H is the coarse variable. We call the

new algorithm Multilevel Frank-Wolfe Thresholding (ML-FWT) (Algorithm (6)).

Thus the multilevel update step forM
(k)
L requires calculating only the largest singu-

lar value with the corresponding singular vectors for much lower dimensional matrices.

The next theorem gives convergence guarantees for the ML-FWT method.

Theorem 7. Let f(L,S, tL, tS) be defined as in (2.3) and rank(L⋆) ≤ nH . Then

under Assumptions 1 and 3, for x(k), k = 1, 2, . . . defined as in Algorithm 6 the

following holds

f(x(k))− f(x⋆) ≤ 2LD2

k + 2
.

Proof. From assumption 3 we derive

f(R⊤(L⋆
H ,S⋆, t⋆L, t

⋆
S)) =

1

2
‖PQ[D− L⋆

HR⊤ − S⋆]‖2F + λLt
⋆
L + λSt

⋆
S

=
1

2
‖PQ[D− L⋆ − S⋆]‖2F + λLt

⋆
L + λSt

⋆
S

=f(L⋆,S⋆, t⋆L, t
⋆
S).

18

Algorithm 6 Multilevel Frank-Wolfe Thresholing (ML-FWT)

Input: D ∈ R
m×n;λL, λS > 0

1: Initialize as in Algorithm 3

2: for k← 1 to ... do

3: M
(k)
L,H ∈ argmin

‖ML,H‖∗≤1/‖R‖∗

〈R(PQ[L
(k) + S(k) −D]),ML,H〉

4:

5:

6: M
(k)
L ←R⊤(M

(k)
L,H)

7: // Continue as in Algorithm 3

8: end for

9: return (L(k+1),S(k+1))

Therefore, the claim follows from Theorem 6.

Finally, note that since FWT and ML-FWT have the same convergence rate and

multiplying by the sparse matrix R (and its powers) is much cheaper than computing

one singular value (although both have the same O(mn) worst case complexity), ML-

FWT has a lower overall complexity.

4 Experiments

To test the practical efficiency of the proposed methods we compare them with the

standard Inexact ALM [17] and Frank-Wolfe Thresholding [24] algorithms on sev-

eral synthetically generated problems, as well as real life video background extraction

and facial shadow removal problems. For the standard Inexact ALM and Frank-Wolfe

Thresholding algorithms we used the provided Matlab code. Then for each multilevel

variant we replaced the standard singular value thresholding parts of respective algo-

rithms with corresponding multilevel singular value thresholding code, keeping the rest

of the algorithms unchanged. Particularly, we used the same optimality criteria, so that

the comparisons are fair. All methods were tested in Matlab R2015a on a standard

Ubuntu 16.4 machine with Intel Core i7 processor and 32GB RAM. The code is avail-

able online at https://github.com/vahanhov/ml-rpca.

4.1 Synthetic Data

First we test the multilevel algorithms on synthetically generated data matrix D =
L̂ + Ŝ ∈ R

m×n, where L̂ has a fixed low rank r and Ŝ is η-sparse (i.e. has at most

η ·mn non-zero entries). We generate the synthetic data so that the singular values of

the low rank component follow 1/k2, where k indicates the k-th largest singular value.

We run two sets of experiments. The first one compares the results achieved af-

ter running IALM and ML-IALM on RPCA problems for a fixed time. We run two

pairs of experiments: with smaller and larger data, each with lower and higher rank

19

https://github.com/vahanhov/ml-rpca

problem IALM ML-IALM

dimensions rank sec f⋆ error(L⋆) error(S⋆) f⋆ error(L⋆) error(S⋆)
5000× 100 2 5 19 7 0.1 10 1 0.02
5000× 100 5 5 18 6 0.1 7.5 1 0.02
5000× 1000 2 10 64 42 0.8 7 1 0.01
5000× 1000 5 10 64 43 0.8 8 1 0.01

Table 1: Achieved objective function values and relative errors from ground truth after

running IALM and ML-IALM on RPCA problems with synthetic data for a fixed time.

problem FWT ML-FWT

dimensions rank sec f⋆ err(L⋆) err(S⋆) sec f⋆ err(L⋆) err(S⋆)
10000× 500 2 14.5 8 · 10−4 1.3 88 9 2 · 10−4 1.1 89.4
10000× 5000 2 209 0.02 1.3 125 91 7 · 10−4 1 125
10000× 500 5 14.4 8 · 10−4 1.3 89 12.5 2 · 10−4 1.1 89
10000× 5000 5 203 0.002 1.3 125 90 7 · 10−4 1.1 125

Table 2: CPU times (in seconds), achieved objective function values and relative errors

from ground truth after running FWT and ML-FWT on CPCP problems with synthetic

data until 10−3 convergence error.

of the low-rank component. The experiments are described in Table 1, with each row

corresponding to one experimental setting. The first three columns describe the par-

ticular setting and the number of seconds dedicated to solve the problem. Then each

triplet of columns gives the results achieved by IALM and ML-IALM algorithms cor-

respondingly. The reported results are f⋆ - achieved objective value, error(S⋆) and

error(L⋆) - achieved relative errors from corresponding ground truths. It is evident that

ML-IALM accurately solves all four problems, while both objective values and relative

errors from IALM are several times larger than those of ML-IALM. This effectively

means that ML-IALM can solve large problems in reasonable time that may require

impractically long times for IALM.

Then we synthetically generate similar data, but this time with partial observations.

This setting is modelled as a CPCP problem and is then solved using FWT and ML-

FWT methods. The experimental settings are given in Table 2. Here as well we have

two pairs of problems: larger and smaller with larger and smaller ranks of the low-

rank component. Here we run both problems until 10−3 tolerance as suggested in

[20]. Here both algorithms achieve relatively small objective values and relative errors

from the ground truth, with ML-FWT being slightly better, however ML-FWT takes

significantly less time to do so. In fact, it is more than twice faster for the smaller rank

settings.

4.2 Video Background Extraction

Now we test the algorithms on real surveillance videos. Assume we are given a surveil-

lance video from a fixed camera and the task is to separate the constant background

20

from moving objects. This problem can be modelled as a RPCA problem [3]. We first

stack each frame of the video as a column vector creating a data matrix D. Then, since

the fixed background remains (approximately) constant in each frame and the moving

objects take a relatively small portion of each frame, they can respectively represent the

low rank and sparse components of the RPCA decomposition. We tested all algorithms

on several surveillance videos described below.

• highway: 48× 64× 400; run 5 seconds

• copy machine: 48× 72× 3400; run 50 seconds 2

• walk: 240× 320× 794; run 30 seconds [31]

• gates: 240× 320× 1895; run 200 seconds [31]

First we test the IALM and ML-IALM methods. Here we run both methods for

a fixed amount of time until a reasonably small error from ground truth has been

achieved. The running times for each problem are indicated above. We then compare

the results, which are reported in Figure 1. Each row represents a tested video. The

first column contains sample frames from each corresponding video, then each of the

following column triplets contains corresponding low rank and sparse components as

returned from IALM and ML-IALM algorithms. Below each frame we also report the

corresponding achieved rank and the feasibility gap (FG) i.e. ‖D−L⋆−S⋆‖F/‖D‖F .

As the results indicate, both algorithms produce similar results for all videos, ex-

cept the larger copymachine and gates examples, for which ML-IALM produces sig-

nificantly clearer separation of background than IALM.

In order to further investigate the convergence properties of the ML-IALM algo-

rithm compared to the standard IALM, we measure the relative error of the current

iterates compared to the ground truth (L0,S0) and FGs during the iterations of both

algorithms through the same time interval. We report those relative errors against CPU

time (seconds) and iteration numbers in Figure 2. The plots suggest that ML-IALM

performs only slightly faster than IALM on the smaller highway example, however, as

expected it is significantly faster on the larger copy machine problem. As we could

anticipate from the theory, at each iteration ML-IALM achieves a very good approxi-

mation as measured by the reconstruction error, and since its iterations are significantly

cheaper, it performs more iterations during the same time interval than IALM.

In all experiments we used 4 levels of coarse models for all four problems. In this

case as well, the multilevel variant largely outperforms the original algorithm. In fact,

the larger the original problem, the bigger relative speed up can be achieved using the

multilevel approach, since for larger n we can use deeper levels.

Next we test the performance of our ML-FWT algorithm against the standard FWT.

In this case we will also add 75% random noise to the original video. Here we run both

algorithms until convergence with 10−3 accuracy as suggested in [20]. Consequently,

here we will report the running times and the achieved results (objective value, rank

of the low-rank component and sparsity of the sparse component) of each algorithm in

Table 3. As the numbers indicate both algorithms achieve very similar objective values

2http://wordpress-jodoin.dmi.usherb.ca/dataset2012/

21

http://wordpress-jodoin.dmi.usherb.ca/dataset2012/

Original
Low Rank Sparse

IALM ML-IALM IALM ML-IALM

highway rank =5 rank=3 FG = 0.0176 FG=0.01

copy machine rank = 7 rank=4 FG = 0.0364 FG=0.0031

walk rank = 2 rank=1 FG = 0.02 FG=0.0231

gates rank = 3 rank=3 FG = 0.05 FG=0.04

Figure 1: Examples from solving video background extraction problems via IALM and

ML-IALM methods. Both IALM and ML-IALM run for a fixed CPU seconds. Each

row corresponds respectively to highway (48× 64× 400), copy machine (48× 72×
3, 400), walk (240 × 320 × 794) and gates (240 × 320 × 1, 895) videos from top to

bottom. With each frame we also report the respective rank of the low rank component

and the feasibility gap (FG): ‖D− L− S‖F /‖D‖F .

22

Low Rank Sparse Feasibility Gap

h
ig

h
w

a
y

CPU time (seconds)
0 2 4 6

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0.19

0.2

0.21

0.22

0.23
IALM
ML-IALM

CPU time (seconds)
0 2 4 6

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0.2

0.4

0.6

0.8

1
IALM
ML-IALM

iterations
0 10 20 30 40

F
ea
si
b
il
it
y
G
a
p
(l
o
g
)

-10

-8

-6

-4

-2

0
IALM
ML-IALM

co
p

y
m

a
ch

in
e

CPU time (seconds)
0 20 40 60

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0.12

0.14

0.16

0.18

0.2

0.22
IALM
ML-IALM

CPU time (seconds)
0 20 40 60

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0.8

0.85

0.9

0.95

1
IALM
ML-IALM

iterations
0 10 20 30

F
ea
si
b
il
it
y
G
a
p
(l
o
g
)

-8

-6

-4

-2

0
IALM
ML-IALM

w
a

lk

CPU time (seconds)
0 50 100 150

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0

0.05

0.1

0.15
IALM
ML-IALM

CPU time (seconds)
0 50 100 150

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0

0.5

1

1.5
IALM
ML-IALM

iterations
0 5 10

F
ea
si
b
il
it
y
G
a
p
(l
o
g
)

-6

-5

-4

-3

-2
IALM
ML-IALM

g
a

te
s

CPU time (seconds)
0 100 200 300re

la
ti
v
e
er
ro
r
fr
o
m

g
ro
u
n
d
tr
u
th

0

0.05

0.1

0.15
IALM
ML-IALM

CPU time (seconds)
0 100 200 300

R
E

fr
o
m

g
ro
u
n
d
tr
u
th

0.7

0.8

0.9

1

1.1
IALM
ML-IALM

iterations
0 2 4 6

R
R
E

(l
o
g
)

-3.5

-3

-2.5

-2

-1.5
IALM
ML-IALM

Figure 2: Comparing the relative errors during IALM and ML-IALM iterations. The

first two columns give relative errors (RE) compared to the ground truth (L0,S0), and

the third column gives feasibility gaps (FG) during iterations. Each row corresponds

respectively to highway (48 × 64 × 400), copy machine (48 × 72 × 3, 400), walk

(240× 320× 794) and gates (240× 320× 1, 895) videos from top to bottom.

23

problem (dimensions)
FWT ML-FWT

sec f⋆ rank(L⋆) sp(S⋆) sec f⋆ rank(L⋆) sp(S⋆)
highway (3072× 400) 14 0.001 39 0.22 10 0.001 36 0.22

hall (25344× 200) 50 0.001 38 0.47 37 0.001 12 0.47
copym. (3456× 3400) 373 0.001 104 0.11 160 0.001 26 0.17

mall (81920× 300) 337 0.001 32 0.42 195 0.001 9 0.43
lobby (20480× 1000) 487 0.001 111 0.05 385 0.001 31 0.06

Table 3: CPU time (in seconds), achieved objective value, rank and sparsity after solv-

ing the resulting PCP problem for noisy video background extraction up to tolerance

10−3 using the standard Frank-Wolfe Thresholding (FWT) and its multilevel variant

ML-FWT.

and sparsity of the sparse component. However that ranks of the low rank components

is better for ML-FWT. In fact for the largest problems FWT returns values with very

large ranks and thus fails to solve the problem, while ML-FWT performs equally well

on all problems. Furthermore, ML-FWT is much faster, especially on larger problems.

4.3 Shadow removal from facial images

Here we have a set of facial images from one individual under various illuminations

and the task is to remove shadow/light noises from images. This problem can also be

modelled as RPCA by stacking the facial images as column vectors and then putting

them together to form the data matrix. Then since aligned frontal facial images span a

low dimensional subspace, we can represent the clear images as the low-rank compo-

nent of the data matrix and the shadow will become the sparse component.

We used images of individuals from the Yale B facial extended database [10]. It

contains (96× 84) dimensional facial images of 39 subjects taken under various poses

and illuminations each, with total 2, 414 images. For this setting as well we ran the

IALM and ML-IALM algorithms for a fixed 5 second and compare the returned results,

which are reported in Figure 3. Here as well each row represents a particular problem

setting (individual). The first column contains sample frames from each corresponding

facial database, then each of the following four columns contains correspondingly low

rank and sparse components as returned from IALM, and ML-IALM algorithms. With

each image we also report the corresponding achieved rank of the low rank component

and the feasibility gap.

A brief examination of the Table 3 reveals that ML-IALM produces much better

separation for each subject, with a more accurate rank 10 of the low-rank component

and a five times smaller feasibility gap.

For the shadow removal problem as well, we test the Frank-Wolfe methods on

the noisy data with 75% contaminated entries. Both FWT and ML-FWT run until

convergence with 10−3 tolerance and record CPU times (seconds) and the achieved

rank of the low-rank component and sparsity of the sparse component. The results of

all 35 subjects are reported in Table 4. In all experiments we used up to 4 levels of

coarse models. Here in all experiments both methods achieved similar objective values

24

Original
Low Rank Sparse

IALM ML-IALM IALM ML-IALM

Yale B01 rank = 5 10 FG = 0.24 0.05

Yale B02 rank = 5 10 FG = 0.24 0.05

Yale B10 rank = 3 10 FG = 0.24 0.05

Figure 3: Examples from solving facial shadow removal problems via IALM and ML-

IALM algorithms on cropped Yale B database (96 × 84 × 2414). We run both IALM

and ML-IALM for fixed five seconds. With each image we also report the respective

rank of the low rank component and the feasibility gap (FG): ‖D− L− S‖F/‖D‖F .

25

and sparsity values, as expected. However ML-FWT is not only twice faster, but it also

achieves a much better rank of the low-rank component. In fact, FWT fails to solve the

problem, since the low-rank component is essentially full rank.

5 Conclusion

In this paper, we presented two multilevel algorithms for solving problems modelled

as robust principle component analysis or compressive principle component pursuit

optimisation problems. The first algorithm is a multilevel variant of the well-known

inexact augmented Lagrange method (or more generally, ADMM), called ML-IALM.

We proved that ML-IALM converges to an approximate solution, with approximation

error being small for many computer vision problems, including those studied here. To

the best of our knowledge this is the first time when an ADMM with approximate steps

was proven to converge. Our second algorithm is a multilevel variant of the well known

Frank-Wolfe method modified to be most efficient for CPCP problems. We showed that

this multilevel algorithm also converges to the solution of the CPCP problem with the

same rate as its standard counterpart, while having much lower per iteration complexity.

We tested both methods on various synthetic and real life problems. The results clearly

show that the multilevel algorithms are not only several times faster (especially on

larger problems), but also can often solve problems that their standard counterparts

cannot.

References

[1] Zeyuan Allen-Zhu and Yuanzhi Li. Even faster svd decomposition yet without

agonizing pain. In Advances in Neural Information Processing Systems, pages

974–982, 2016.

[2] Roland Angst, Christopher Zach, and Marc Pollefeys. The generalized trace-

norm and its application to structure-from-motion problems. In 2011 Interna-

tional Conference on Computer Vision, pages 2502–2509. IEEE, 2011.

[3] Thierry Bouwmans, Andrews Sobral, Sajid Javed, Soon Ki Jung, and El-

Hadi Zahzah. Decomposition into low-rank plus additive matrices for back-

ground/foreground separation: A review for a comparative evaluation with a

large-scale dataset. Computer Science Review, 2016.

[4] William L Briggs, Steve F McCormick, et al. A multigrid tutorial. Siam, 2000.

[5] Juan S Campos and Panos Parpas. A multigrid approach to sdp relaxations

of sparse polynomial optimization problems. SIAM Journal on Optimization,

28(1):1–29, 2018.

[6] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal

component analysis? Journal of the ACM (JACM), 58(3):11, 2011.

26

problem
FWT ML-FWT

sec f⋆ rank(L⋆) sp(S⋆) sec f⋆ rank(L⋆) sp(S⋆)
yaleB01 83 0.001 65 0.71 41 0.001 8 0.73

yaleB02 71 0.00098 65 0.71 39 0.00098 8 0.74

yaleB03 75 0.00099 65 0.71 40 0.00099 8 0.73

yaleB04 72 0.001 65 0.72 42 0.001 8 0.73

yaleB05 61 0.00096 65 0.7 33 0.00094 8 0.73

yaleB06 77 0.001 65 0.72 48 0.001 8 0.73

yaleB07 78 0.001 65 0.72 42 0.00099 8 0.73

yaleB08 75 0.00099 65 0.71 44 0.00098 8 0.73

yaleB09 84 0.001 65 0.71 48 0.00097 8 0.73

yaleB10 67 0.00099 65 0.72 45 0.001 8 0.73

yaleB11 75 0.00098 60 0.71 41 0.00097 7 0.73

yaleB12 79 0.00099 59 0.71 41 0.00097 7 0.73

yaleB13 60 0.00096 60 0.71 35 0.00097 7 0.74

yaleB15 85 0.001 63 0.71 43 0.00097 8 0.73

yaleB16 77 0.00098 62 0.7 47 0.001 7 0.73

yaleB17 66 0.00098 63 0.71 42 0.00099 8 0.73

yaleB18 85 0.001 63 0.71 45 0.00099 8 0.73

yaleB19 77 0.001 64 0.71 48 0.001 8 0.73

yaleB20 73 0.00099 64 0.7 43 0.001 8 0.73

yaleB21 75 0.00098 64 0.7 43 0.00099 8 0.73

yaleB22 88 0.00098 64 0.69 44 0.00093 8 0.72

yaleB23 63 0.00098 64 0.71 45 0.001 8 0.73

yaleB24 74 0.00099 64 0.71 49 0.001 8 0.73

yaleB25 75 0.00099 64 0.7 48 0.001 8 0.73

yaleB26 77 0.001 64 0.71 45 0.00099 8 0.73

yaleB27 61 0.00097 64 0.69 40 0.00096 8 0.72

yaleB28 61 0.00096 64 0.69 40 0.00097 8 0.73

yaleB29 71 0.00099 64 0.7 44 0.00099 8 0.73

yaleB30 72 0.00098 64 0.71 43 0.00099 8 0.73

yaleB31 78 0.001 64 0.71 48 0.001 8 0.73

yaleB32 60 0.00096 64 0.7 37 0.00097 8 0.72

yaleB33 79 0.00099 64 0.7 44 0.00099 8 0.73

yaleB34 78 0.00099 64 0.7 37 0.00097 8 0.73

yaleB35 75 0.00099 64 0.7 45 0.00099 8 0.73

yaleB36 72 0.00099 64 0.71 42 0.00098 8 0.73

Table 4: CPU times (in seconds) after solving shadow removal problems up to a fixed

tolerance using the standard Frank-Wolfe Thresholding algorithm and its multilevel

variant. For all experiments we used 2 levels for the multilevel algorithm.

27

[7] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresh-

olding algorithm for linear inverse problems with a sparsity constraint. Commu-

nications on pure and applied mathematics, 57(11):1413–1457, 2004.

[8] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algo-

rithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM

Journal on computing, 36(1):158–183, 2006.

[9] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.

Naval research logistics quarterly, 3(1-2):95–110, 1956.

[10] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illu-

mination cone models for face recognition under variable lighting and pose. IEEE

Trans. Pattern Anal. Mach. Intelligence, 23(6):643–660, 2001.

[11] Chin Pang Ho and Panos Parpas. Multilevel optimization methods: Convergence

and problem structure. 2016.

[12] Harold Hotelling. Analysis of a complex of statistical variables into principal

components. Journal of educational psychology, 24(6):417, 1933.

[13] Vahan Hovhannisyan, Panos Parpas, and Stefanos Zafeiriou. Magma: Multilevel

accelerated gradient mirror descent algorithm for large-scale convex composite

minimization. SIAM Journal on Imaging Sciences, 9(4):1829–1857, 2016.

[14] Peter J Huber. Robust statistics. Springer, 2011.

[15] Ashkan Javaherian and Sean Holman. A multi-grid iterative method for pho-

toacoustic tomography. IEEE transactions on medical imaging, 36(3):696–706,

2017.

[16] Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR

Computational mathematics and mathematical physics, 6(5):1–50, 1966.

[17] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multi-

plier method for exact recovery of corrupted low-rank matrices. arXiv preprint

arXiv:1009.5055, 2010.

[18] Guangcan Liu and Shuicheng Yan. Active subspace: Toward scalable low-rank

learning. Neural computation, 24(12):3371–3394, 2012.

[19] Risheng Liu, Zhouchen Lin, Zhixun Su, and Junbin Gao. Linear time princi-

pal component pursuit and its extensions using l1 filtering. Neurocomputing,

142:529–541, 2014.

[20] Cun Mu, Yuqian Zhang, John Wright, and Donald Goldfarb. Scalable robust ma-

trix recovery: Frank–wolfe meets proximal methods. SIAM Journal on Scientific

Computing, 38(5):A3291–A3317, 2016.

28

[21] Cameron Musco and Christopher Musco. Randomized block krylov methods for

stronger and faster approximate singular value decomposition. In Advances in

Neural Information Processing Systems, pages 1396–1404, 2015.

[22] Stephen Nash. A multigrid approach to discretized optimization problems. Opti-

mization Methods and Software, 14(1-2):99–116, 2000.

[23] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM

journal on computing, 24(2):227–234, 1995.

[24] Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar,

and Prateek Jain. Non-convex robust pca. In Advances in Neural Information

Processing Systems, pages 1107–1115, 2014.

[25] Tae-Hyun Oh, Yasuyuki Matsushita, Yu-Wing Tai, and In So Kweon. Fast ran-

domized singular value thresholding for nuclear norm minimization. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

4484–4493, 2015.

[26] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in

optimization, 1(3):123–231, 2013.

[27] Panos Parpas. A multilevel proximal gradient algorithm for a class of compos-

ite optimization problems. SIAM Journal on Scientific Computing, 39(5):S681–

S701, 2017.

[28] Yigang Peng, Arvind Ganesh, John Wright, Wenli Xu, and Yi Ma. RASL: Robust

alignment by sparse and low-rank decomposition for linearly correlated images.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11):2233–

2246, 2012.

[29] Christos Sagonas, Yannis Panagakis, Stefanos Zafeiriou, and Maja Pantic. Raps:

Robust and efficient automatic construction of person-specific deformable mod-

els. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages

1789–1796. IEEE, 2014.

[30] Christos Sagonas, Yannis Panagakis, Stefanos Zafeiriou, and Maja Pantic. Robust

statistical frontalization of human and animal faces. International Journal of

Computer Vision, pages 1–22, 2016.

[31] Antoine Vacavant, Thierry Chateau, Alexis Wilhelm, and Laurent Lequièvre. A

benchmark dataset for outdoor foreground/background extraction. In Asian Con-

ference on Computer Vision, pages 291–300. Springer, 2012.

[32] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM re-

view, 38(1):49–95, 1996.

[33] Bo-Ying Wang and Bo-Yan Xi. Some inequalities for singular values of matrix

products. Linear algebra and its applications, 264:109–115, 1997.

29

[34] John Wright, Arvind Ganesh, Kerui Min, and Yi Ma. Compressive principal

component pursuit. Information and Inference, 2(1):32–68, 2013.

[35] Junfeng Yang and Xiaoming Yuan. Linearized augmented lagrangian and alter-

nating direction methods for nuclear norm minimization. Mathematics of Com-

putation, 82(281):301–329, 2013.

[36] Zhengdong Zhang, Arvind Ganesh, Xiao Liang, and Yi Ma. Tilt: Transform

invariant low-rank textures. International Journal of Computer Vision, 99(1):1–

24, 2012.

30

	1 Introduction
	2 Compressive Principle Component Pursuit and Robust PCA
	2.1 Inexact ALM for Robust PCA
	2.2 Frank-Wolfe Method
	2.3 Frank-Wolfe Thresholding Method for CPCP

	3 Multilevel Algorithms
	3.1 The Coarse Model
	3.2 Multilevel IALM
	3.3 Multilevel Frank-Wolfe
	3.4 Multilevel Frank-Wolfe Thresholding for CPCP

	4 Experiments
	4.1 Synthetic Data
	4.2 Video Background Extraction
	4.3 Shadow removal from facial images

	5 Conclusion

