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Abstract. We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite
element discretizations of saddle point problems. We focus on the Stokes model with random data
parametrized by uniformly distributed random variables. We introduce a Bramble-Pasciak conjugate
gradient method as a linear solver. This method is associated with a block triangular preconditioner
which must be scaled using a properly chosen parameter. We show how the existence requirements
of such a conjugate gradient method can be met in our setting. As a reference solver, we consider
a standard MINRES method, which is restricted to symmetric preconditioning. We analyze the
performance of the two different solvers depending on relevant physical and numerical parameters
by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the
relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity
as a numerical test case, where the viscosity is given by a truncated Karhunen-Loève expansion
of a random field. In this example, a Bramble-Pasciak conjugate gradient method with a block
triangular preconditioner converges faster than a MINRES method with a comparable block diagonal
preconditioner in terms of iteration counts.
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1. Introduction. We consider a stochastic Galerkin finite element (SGFE) method [4, 16]
for estimating statistical quantities in the context of Stokes problems with uncertain viscosity.
SGFE methods assume a parametrization of the uncertain input in terms of a random vector
with a given probability density. This allows a weak formulation of the governing equations
in terms of an integral over both the spatial domain and the image domain of the random
vector. An SGFE method is then defined by a Galerkin projection of the weak equations
onto a finite dimensional subspace, namely the tensor product of a finite element (FE) space
for the spatial dimensions times a multivariate global polynomial space for the stochastic
dimensions. This leads to a block structured system of coupled equations, where each block
can be interpreted as a finite element discretization of a deterministic problem.

Using global polynomials to model the dependence of the solution on the random data
can lead to exponential convergence rates with respect to the number of stochastic degrees of
freedom [3, 6]. If the necessary regularity assumptions are met, this can provide an advan-
tage over more robust Monte Carlo-type sampling methods. Among global polynomial-based
approaches, stochastic collocation methods [3, 16] are currently the most prominent competi-

∗This work is supported by the Excellence Initiative of the German federal and state governments and the Graduate
School of Computational Engineering at Technische Universität Darmstadt.
†Graduate School Computational Engineering, Technische Universität Darmstadt, Dolivostr. 15, 64293, Darm-

stadt (cmueller@gsc.tu-darmstadt.de, ullmann@gsc.tu-darmstadt.de).
‡Department of Mathematics, Technische Universität Darmstadt, Dolivostr. 15, 64293, Darmstadt

(lang@mathematik.tu-darmstadt.de)

1

ar
X

iv
:1

80
1.

01
83

8v
2 

 [
m

at
h.

N
A

] 
 3

0 
O

ct
 2

01
8

mailto:cmueller@gsc.tu-darmstadt.de
mailto:ullmann@gsc.tu-darmstadt.de
mailto:lang@mathematik.tu-darmstadt.de
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tors to stochastic Galerkin (SG) methods. Stochastic collocation methods benefit from their
ability to estimate statistical quantities by uncoupled solutions of deterministic problems, just
like Monte Carlo methods. SG methods, on the other hand, provide the opportunity to derive
reliable error estimators and adaptive refinement schemes for the deterministic and stochastic
parameter domains by exploiting Galerkin orthogonality [7, 10].

The efficient solution of SG systems of equations remains a challenge: While the block
structured system can be decoupled for specific choices of basis functions in some cases [4],
often a coupled system of equations needs to be solved. Iterative methods are usually employed
for this task, because direct methods are not feasible for realistic problem sizes. The inherent
ill-conditioning raises the question of efficient preconditioning.

The goal of this study is to derive an efficient preconditioned iterative method that takes
advantage of the structural properties of the SGFE system of linear algebraic equations origi-
nating from a Stokes problem with random viscosity. Our research builds on results concerning
preconditioned iterative solvers for partial differential equations with uncertain data, in par-
ticular elliptic problems [26, 29, 32] and saddle point problems [13, 27].

The MINRES method [24] is a standard iterative solver for symmetric indefinite saddle
point problems. We propose a Bramble-Pasciak conjugate gradient (BPCG) method as a
promising alternative. Such a method has been introduced in [8] for deterministic symmetric
saddle point problems. An attractive feature of BPCG methods is that they allow the use of
nonsymmetric preconditioners, which are not applicable within MINRES methods. The BPCG
algorithm, however, relies on a scaling parameter which has to be determined additionally.
We derive a BPCG method for Stokes problems with random viscosity by transferring the
approach of [25] to a stochastic setting. In this context, the dependence of the iteration counts
on stochastic discretization and model parameters is of particular importance. We focus on
the dimensionality of the random parametrization, the degree of the stochastic polynomial
approximation and the magnitude of the random variation. We show that the iteration counts
of the proposed preconditioned solvers for the SGFE equations are largely independent on the
discretization parameters. Our numerical experiments confirm these results and reveal that
the BPCG solver often converges faster than a standard preconditioned MINRES method in
terms of iteration counts.

The outcome of our study is the description and analysis of a BPCG solver for SGFE
discretizations of Stokes problems with uniform random viscosity. With some minor adjust-
ments, the solver can be used for Stokes flow with lognormal random viscosity as well [22]. In
principle, it is possible to transfer our method to related classes of problems by exchanging
individual building blocks. Other potential applications include mixed diffusion problems with
random coefficient [13] and constrained optimization problems [2] where the data is uncertain.

The outline of the paper is as follows: We introduce the continuous setting for the Stokes
problem with random viscosity in section 2. We model the viscosity random field in terms of a
Karhunen-Loève expansion in section 3 and formulate assumptions to ensure that the viscosity
is uniformly positive, see section 4. In section 5, we approximate the Stokes problem in finite
dimensional spaces with a combination of Taylor-Hood finite elements and Legendre chaos
polynomials. We derive a matrix representation of our problem and discuss preconditioning
approaches in section 6. We consider existing strategies from the FE and SG literature as
building blocks for our SGFE preconditioners and derive bounds for the eigenvalues of the
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preconditioned SGFE Laplacian and Schur complements in section 7. In section 8, we discuss
properties of the MINRES solver and state conditions under which a conjugate gradient (CG)
method can be utilized to solve the SGFE problem. Based on the derived eigenvalue bounds,
we predict the convergence behavior of the two iterative solvers with respect to different
modeling and discretization parameters. The theoretic results and predictions are checked by
means of numerical experiments in section 9, where we also compare the iterative methods
with respect to their performance. The work is eventually summarized and concluded in the
final section.

2. Continuous formulation. We establish the framework for the strong form of the Stokes
problem in the spatial and stochastic domain.

Let D ⊂ R2 be a bounded domain with sufficiently regular boundary ∂D and spatial
coordinates x = (x1, x2)T ∈ D. Further, let (Ω,F ,P) be a probability space, where Ω denotes
the set of elementary events, F is a σ-algebra on Ω and P : F → [0, 1] is a probability measure.
The Stokes equations describe the behavior of a vector-valued velocity field u = (u1, u2)T and
a scalar pressure field p subject to viscous and external forcing.

Taking into account uncertainties in the input data, we model the viscosity as a random
field ν = ν(x, ω), ν : D × Ω → R. From a physical point of view, motivating a spatially
varying viscosity is rather difficult because the viscosity is a property of the fluid which is
subject to transport. Nevertheless, we use this input model to demonstrate the applicability
of our methodology in this general setting. Further, note that the physically relevant case of
a spatially constant random viscosity is included as a special case, see also [27]. Since the
uncertainty propagates through the model, the components of the solution are also defined
in terms of random fields. Therefore, the strong form of the Stokes equations with uncertain
viscosity reads: Find u = u(x, ω) and p = p(x, ω) such that, P-almost surely,

−∇ ·
(
ν(x, ω)∇u(x, ω)

)
+∇p(x, ω) = f(x) in D × Ω,

∇ · u(x, ω) = 0 in D × Ω,

u(x, ω) = g(x) on ∂D × Ω.

For simplicity, we assume that f = (f1, f2)T is a deterministic volume force and g = (g1, g2)T is
deterministic Dirichlet boundary data. Extending the model to stochastic forcing and bound-
ary data would not introduce significant difficulties regarding analytical and numerical prop-
erties of the problem and is thus omitted.

3. Input modeling. In the following, we introduce a Karhunen-Loève expansion (KLE)
of the viscosity random field and derive a criterion to ensure uniform positivity.

For the viscosity description, we restrict ourselves to second-order random fields, in par-
ticular ν ∈ L2(Ω, L2(D)). Thereby, it is possible to represent the random field ν(x, ω) as a
KLE [19, Theorem 5.28] of the form

(3.1) ν(x, ω) = ν0(x) + σν

∞∑
m=1

√
λmνm(x)ym(ω),

where ν0(x) is the mean field of the viscosity, i.e. ν0(x) =
∫

Ω ν(x, ω) dP(ω) is the expected
value of ν(x, ω). Further, the pairs (λm, νm)∞m=1 are eigenvalues and eigenvectors of the integral
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operator associated with the covariance of the correlated random field. Finally, the stochastic
parameters ym,m = 1, . . . ,∞, are uncorrelated random variables with zero mean and unit
variance. We assume that these random variables are stochastically independent. For further
properties of the KLE, see [19, sections 5.4 and 7.4].

To show well-posedness of saddle point problems, it is required that the elliptic coefficient
is positive and bounded. For simplicity, we state uniform positivity and boundedness using
constants ν, ν > 0, independent of x and ω, such that

(3.2) 0 < ν ≤ ν(x, ω) ≤ ν <∞ a.e. in D × Ω.

In the following, we make assumptions on the components of the expansion (3.1) to guarantee
that (3.2) holds. First of all, we assume that the random variables are bounded and uniformly
distributed in the infinite dimensional cube Ξ := [−

√
3,
√

3]N. We collect the random variables
in a vector y := (ym(ω))m∈N, y : Ω → Ξ, such that ‖ym‖L∞(Ω) =

√
3 for m ∈ N. Further-

more, we assume that the mean field ν0(x) is a bounded positive function, i.e. there exists a
constant ν0 := ess infx∈D ν0(x) > 0 and a constant ν0 := ess supx∈D ν0(x) < ∞. Moreover,
let
√
λmνm(x) ∈ L∞(D), χm := ‖

√
λmνm‖L∞(D) for all m = 1, . . . ,∞, and assume that the

sequence (χm)m ∈ `1(N), χ := ‖(χm)m‖`1(N). From these assumptions and (3.1), we derive

(3.3) ν0 −
√

3σν χ ≤ ν(x, ω) ≤ ν0 +
√

3σν χ,

for all ω ∈ Ω. Uniform positivity of ν(x, ω) and consequently (3.2) follow under the assumption

(3.4) ν0 >
√

3σν χ

with ν = ν0 −
√

3σν χ > 0 and ν = ν0 +
√

3σν χ. Referring to (3.4), it is thus not possible to
model an input viscosity with an arbitrarily large variance for any given mean field.

When the series representation is used in a discrete setting in section 5, the infinite sum
in (3.1) is truncated after M terms, i.e.

(3.5) ν(x, ω) ≈ νM (x, ω) = ν0(x) + σν

M∑
m=1

√
λmνm(x)ym(ω).

For a given M , the truncation error depends on the correlation length and the smoothness
of the covariance operator [19, sections 5.4]. Assumption (3.4), stated for the infinite case,
naturally also holds for the finite one.

Although we use the KLE (3.1) to describe the uncertain input, the methods presented
in this work are not limited to this representation. They can be applied to any parametrized
random field that fulfills the positivity and boundedness constraint (3.2). We will formulate
our problem with respect to the deterministic range space Ξ instead of Ω. In the truncated
case, the range space is the M -dimensional cube ΞM := Ξ1 × . . .× ΞM , Ξm := [−

√
3,
√

3].
Due to the assumed stochastic independence of the random variables, the uniform measure

on the infinite dimensional cube can be expressed by a tensor product of univariate uniform
measures, i.e. ρ :=

⊗∞
m=1 ρm with ρm(dym) = dym/(2

√
3).

As a consequence of the Doob-Dynkin lemma [23, Lemma 2.1.2], the velocity and pressure
random fields can be parametrized with the vector y as well.
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4. Variational formulation. We establish a variational formulation of the Stokes problem
with random data and discuss existence and uniqueness of weak solutions.

In order to formulate the weak equations, we use Bochner spaces L2
ρ(Ξ;X), where X is

a given Banach space. We consider spaces consisting of all equivalence classes of strongly
measurable functions v : Ξ→ X with norm

(4.1) ‖v‖L2
ρ(Ξ;X) =

(∫
Ξ
‖v(·, y)‖2X ρ(dy)

)1/2

<∞.

As X will always be a separable Hilbert space in our work, the Bochner spaces are isomorphic
to the corresponding tensor product spaces L2

ρ(Ξ)⊗X with norms ‖ · ‖L2
ρ(Ξ)⊗X := ‖ · ‖L2

ρ(Ξ;X).
We mark function spaces containing vector-valued elements with bold symbols. Recalling

the function spaces used for enclosed Stokes flow with deterministic data [18, section 3.2], we
utilize V 0 := {v ∈H1(D) | v|∂D = 0} for the vector-valued velocity field. As a corresponding
norm, we use ‖v‖V 0 := ‖∇v‖L2(D) for v ∈ V 0. For the scalar pressure field, we use the

Sobolev space W0 := {q ∈ L2(D) | ∫D q(x) dx = 0} with norm ‖q‖W0 := ‖q‖L2(D) for q ∈ W0.
The inhomogeneous Dirichlet conditions are homogenized using the function u0 which is a
lifting of the boundary data g in the sense of the trace theorem.

Now, we introduce the tensor product spaces V0 := L2
ρ(Ξ)⊗ V 0 and W0 := L2

ρ(Ξ)⊗W0,
which are denoted by calligraphic letters and which are Hilbert spaces as well. Further, we
define a variational formulation on these product spaces: Find (u, p) ∈ V0 ×W0 such that

(4.2)
〈a(u, v)〉+ 〈b(v, p)〉 = 〈l(v)〉, ∀v ∈ V0,

〈b(u, q)〉 = 〈t(q)〉, ∀q ∈ W0,

where the bilinear forms and linear functionals are given by

〈a(u, v)〉 :=

∫
Ξ

∫
D
ν(x, y)∇u(x, y) · ∇v(x, y) dx ρ(dy), u, v ∈ V0,

〈b(v, q)〉 := −
∫

Ξ

∫
D
q(x, y)∇ · v(x, y) dx ρ(dy), q ∈ W0, v ∈ V0,

〈l(v)〉 =

∫
Ξ

∫
D
f(x) · v(x, y) dx ρ(dy)− 〈a(u0, v)〉, v ∈ V0,

〈t(q)〉 = −〈b(u0, q)〉, q ∈ W0.

Well-posedness of the weak formulation (4.2) can be established using the theory of mixed
variational problems in [9], see also [21, Theorems 2.10 and 2.11]. The line of argument is
similar when the mixed diffusion problem with uncertain input data is considered, see [6, 13].

5. Stochastic Galerkin finite element discretization. We introduce the discretizations of
the tensor product spaces and establish the structure of the emerging system of equations.

5.1. Discrete subspaces. We use FE spaces V h
0 ⊂ V 0 and W h

0 ⊂ W0 to discretize the
spatial domain, where h denotes the spatial mesh size. In particular, we choose stable Taylor-
Hood P2/P1 elements on a regular triangulation [18, section 3.6.2]. They consist of Nu con-
tinuous piecewise quadratic basis functions for the velocity space and Np continuous piecewise
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linear basis functions for the pressure space. The total number of FE degrees of freedom is
denoted by N := (Nu +Np).

We truncate the KLE (3.1) after M terms so that the random parameter domain reduces to
the finite dimensional cube ΞM , see (3.5). We define a stochastic Galerkin space Sk ⊂ L2

ρ(Ξ
M )

by a complete M -variate Legendre chaos of total degree k. This is the appropriate basis for
the chosen uniform input distribution according to the Wiener-Askey scheme [36], because
the basis functions are orthonormal with respect to the measure ρ. The associated number of
degrees of freedom is Q :=

(
M+k
k

)
.

Finally, we define the SGFE spaces Vkh
0 := Sk ⊗ V h

0 ⊂ V0 and Wkh
0 := Sk ⊗W h

0 ⊂ W0.
The emerging discrete system of equations is of size dim(Vkh

0 ×Wkh
0 ) = QN . Existence and

uniqueness of a solution to the fully-discrete variational problem on the SGFE spaces again
follows from the theory of mixed finite element problems [9, Theorem II.1.1]. For the mixed
diffusion equations with uncertain input data, the analysis can be found in [6, Lemma 3.1].

5.2. Matrix formulation. We represent the solution fields and test functions in the fi-
nite element and stochastic Galerkin bases and insert them into the weak formulation (4.2).
Together with the truncated KLE (3.5), this results in a matrix equation of the form

(5.1) C z = b, C ∈ RQN×QN , where C :=

[
A BT

B 0

]
, z :=

[
u
p

]
, b :=

[
f
t

]
.

Here, u ∈ RQNu and p ∈ RQNp are the discrete velocity and pressure coefficient vectors,
respectively. In order to distinguish objects on different spaces, we denote the matrices on
the product spaces with calligraphic capital letters and the matrices on the FE and SG spaces
with standard capital letters. The sub-matrices are given by

A = I ⊗A0 +

M∑
m=1

Gm ⊗Am ∈ RQNu×QNu , f = g0 ⊗w∈ RQNu ,(5.2)

B = I ⊗B ∈ RQNp×QNu , t = g0 ⊗ d ∈ RQNp ,(5.3)

where the identity matrix I ∈ RQ×Q is a consequence of the orthonormality of the SG basis.
The matrix A0 ∈ RNu×Nu results from weighting the FE velocity Laplacian with the mean
viscosity field ν0(x). In the same manner, the matrices Am ∈ RNu×Nu , m = 1, . . . ,M are FE
velocity Laplacians weighted with the fluctuation parts σν

√
λmνm(x), m = 1, . . . ,M , of (3.5).

Further, the entries of the SG matrices Gm ∈ RQ×Q are expectations of products of two SG
basis functions and one random variable ym, m = 1, . . . ,M . Recalling the structure of the
KLE in (3.5), we notice that the SGFE Laplacian A in (5.2) is similarly composed of a mean
part – namely I ⊗A0 – and a sum representing fluctuations around it.

6. Preconditioning. In order to improve the condition of the involved operators and ac-
celerate the convergence of iterative solvers, we discuss different preconditioning strategies. We
use existing approaches from the FE and SG literature as building blocks for our precondi-
tioners and restate corresponding properties and results.

The SGFE matrix C ∈ RQN×QN in (5.1) has a symmetric saddle point structure, like
its deterministic FE counterpart of size N × N , see [12, section 3.5]. Due to this structural
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analogy, it seems natural to transfer existing methods for deterministic saddle point problems
to a stochastic context. This approach is also followed for other SGFE problems such as mixed
diffusion [13] and the Navier-Stokes equations [27].

Introducing the Schur complement S := −BA−1BT, we can formulate the following fac-
torizations of the SGFE system matrix C:

(6.1)

[
A BT

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT

0 I

]
=

[
A 0
B S

] [
I A−1BT

0 I

]
.

The SGFE Laplacian A is positive definite due to the uniformly positive bounds on the
viscosity field in (3.2), see also [21, Theorem 3.3]. The congruence transform in (6.1) then
implies that the discrete SGFE problem is highly indefinite.

As a starting point for constructing preconditioners, we consider block diagonal and block
triangular matrix structures motivated by the factorizations (6.1). They are established ap-
proaches in the context of saddle point problems, see [5]. In the setting of this work, such
preconditioners rely on appropriate approximations of the SGFE matrices A and S. These
approximations are denoted by Ã and S̃ in the following, respectively. The generic precondi-
tioners are of the form

(6.2) Pdiag =

[
Ã 0

0 S̃

]
, Ptri =

[
Ã 0

B S̃

]
.

In addition to (6.2), we also make a structural simplification: We choose the SGFE precondi-
tioners to be Kronecker products of one SG and one FE matrix (see also [13, 26, 27]):

(6.3) Ã := G̃A ⊗ Ã, S̃ := G̃S ⊗ S̃,

where Ã ∈ RNu×Nu and S̃ ∈ RNp×Np shall be approximations of the FE Laplacian and Schur
complement, respectively. The matrices G̃A and G̃S are approximations of the SG matrices.
When evaluating Ã−1A, one sees that G̃A only acts on the SG matrices I and Gm, and Ã only
acts on the FE matrices A0 and Am, m = 1, . . . ,M . The eigenvalue analysis in subsection 7.2
reveals that this works similarly for the preconditioned SGFE Schur complement.

Having fixed the structures in (6.2) and (6.3), the preconditioning task is reduced to choos-
ing appropriate Ã, S̃, G̃A and G̃S . We do this step by step using established preconditioners
from the FE and SG literature.

6.1. Finite element matrices. For the discrete Stokes equations with deterministic data,
it is known that one multigrid V-cycle, denoted by Ãmg in the following, is spectrally equivalent
to the FE Laplacian A, see e.g. [12, section 2.5]. This means, there exist positive constants δ
and ∆, independent of h, such that

(6.4) δ ≤ vTAv

vTÃmgv
≤ ∆, ∀v ∈ RNu\{0}.

As A0 and Am, m = 1, . . . ,M are FE Laplacians weighted with ν0(x) and σν
√
λmνm(x), we

can deduce

(6.5) 0 < ν0 ≤
vTA0v

vTAv
≤ ν0, −σνχm ≤

vTAmv

vTAv
≤ σνχm, ∀v ∈ RNu\{0},
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from the assumptions made in section 3. A combination of (6.4) and (6.5) then yields

(6.6) ν0 δ ≤
vTA0v

vTÃmgv
≤ ν0 ∆, −σν χm ∆ ≤ vTAmv

vTÃmgv
≤ σν χm ∆, ∀v ∈ RNu\{0}.

By the help of the bounds (6.6) we now know how the multigrid preconditioner effects the
spectrum of the FE matrices contained in the SGFE Laplacian A. In particular, we note that
the mesh size h does not appear in the bounds.

For the Schur complement, we again start from an established result for enclosed Stokes
flow: The pressure mass matrix Mp is spectrally equivalent to the negative FE Schur comple-
ment [12, Theorem 3.22]:

(6.7) γ2 ≤ qTBA−1BTq

qTMp q
≤ 1, ∀q ∈ RNp\{0,1}.

By writing \{0,1} we mean that all constant vectors q are excluded. This is necessary because
they are in the nullspace of BT for enclosed flow [12, Section 3.3]. Further, γ is the inf-sup
constant of the chosen mixed FE approximation.

The pressure mass matrix is spectrally equivalent to its diagonal Dp := diag(Mp),

(6.8) θ2 ≤ qTMpq

qTDp q
≤ Θ2, ∀q ∈ RNp\{0},

with positive constants θ2 and Θ2 depending only on the degree and type of finite elements
applied [35]. For linear basis functions on triangles, as used for the pressure approximation in
this work, θ2 = 1

2 and Θ2 = 2. Combining (6.7) and (6.8) results in the relation

(6.9) θ2 γ2 ≤ qTBA−1BTq

qTDp q
≤ Θ2, ∀q ∈ RNp\{0,1}.

The bound (6.9) reveals that preconditioning the negative FE Schur complement with the
diagonal of the pressure mass matrix results in eigenvalue bounds independent of h. This
result together with (6.6) is the starting point for analyzing the parameter dependence of the
eigenvalues of the preconditioned SGFE matrices in section 7.

Besides their spectral properties, the considered FE preconditioners are also attractive
from a computational point of view as they can be applied with linear complexity. For the
mentioned reasons, we use the multigrid V-cycle and the diagonal of the pressure mass matrix
as FE building blocks for our SGFE preconditioners (6.3) such that Ã := Ãmg and S̃ := Dp.

6.2. Stochastic Galerkin matrices. Spectral properties and complexity considerations are
also the basis for choosing SG preconditioners. Independence of the spectral bounds from the
discretization parameters k and M is particularly desired. Because uniform random variables
are used to model the uncertain viscosity, this independence comes for free: The eigenvalues
of Gm, m = 1, . . . ,M , are bounded by the support of the random variables independently of
the chaos degree k [19, Theorem 9.62 and Corollary 9.65]. Furthermore, the number of terms
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kept in the truncated KLE does not influence the location of these eigenvalues but only their
multiplicities [19, Corollary 9.64]. Using these results, we can state the bounds

(6.10) −
√

3 ≤ aTGma

aTa
≤
√

3, ∀a ∈ RQ\{0}, m ∈ N.

Preconditioners for SGFE matrices often rely on the so-called mean-based approximation [26].
As the name suggests, it approximates the mean part of the SGFE problem. In the setting
of this work, the associated mean SG matrix is the identity. Using the identity as an SG
preconditioner works well for SG matrices originating from uniform random variables [26, 27]
and is often the most efficient choice. This is a conclusion drawn in [29], where a more elaborate
comparison of different SGFE preconditioners is conducted. Thus, we also rely on the mean-
based approximation in our work, leading to the definition G̃A = G̃S = I.

When the fluctuation parts of the SGFE problem become more important, e.g. when the
ratio σν/ν0(x) increases, using only the mean information for the preconditioner might be in-
sufficient. Then, one can resort to approaches which rely on higher moment information, see
e.g. [32]. Although such methods could be implemented in our framework, they are computa-
tionally more expensive. As the size of the fluctuations is limited by (3.4) and the mean-based
preconditioner is very cheap to apply, we only use this approach in our work.

7. Analysis of the preconditioned SGFE matrices. We derive bounds on the eigenvalues
of three different matrices: the preconditioned SGFE Laplacian, the preconditioned SGFE
Schur complement and the preconditioned approximate SGFE Schur complement. These
bounds can be used as ingredients to construct eigenvalue bounds for the block diagonal
and block triangular preconditioned system matrix utilizing results from the theory of saddle
point problems.

As FE preconditioners, we decided to use one multigrid V-cycle Ã = Ãmg and the diagonal

of the pressure mass matrix S̃ = Dp. To precondition the SG matrices, we use the approxi-

mation G̃A = G̃S = I. In the following, we consider two preconditioners with block structures
according to (6.2) and identical building blocks:

(7.1) P1 =

[
Ãmg 0

0 S̃p

]
, P2 =

[
a Ãmg 0

B −S̃p

]
, with Ãmg := I ⊗ Ãmg, S̃p := I ⊗Dp.

The scaling parameter a ∈ R and the negative sign of the Schur complement approximation
are additional manipulations to the preconditioner P2 in (7.1). Although it is not immediately
obvious, they have beneficial effects on the spectrum of the respective preconditioned system
matrix. More details are given in subsection 8.2.

7.1. The preconditioned SGFE Laplacian. The eigenvalue estimates for the precondi-
tioned SGFE Laplacian Ã−1

mgA can be derived as in [13], where the procedure is carried out
for a preconditioned SGFE matrix in the context of a mixed diffusion problem with uncertain
coefficient. The main difference between our approach and the one in [13, Lemma 4.6] is that
we use a product estimate of the Rayleigh quotient similar to [28] to derive a lower bound for
the eigenvalues of the preconditioned SGFE Laplacian. This bound is tighter than the one we
would get by following the steps in [13].
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Lemma 7.1. Let the matrices A and Ãmg be defined as in (5.2) and (7.1), respectively.
Then, the estimate

δ̂ ≤ vTAv

vTÃmg v
≤ ∆̂, ∀v ∈ RQNu\{0},(7.2)

holds with δ̂ := (ν0 −
√

3σν χ)δ and ∆̂ := (ν0 +
√

3σν χ)∆.

Proof. We start with the upper bound:

λmax

(
Ã−1

mgA
)

= max
v∈RQNu\{0}

vT
(
I ⊗A0 +

∑M
m=1Gm ⊗Am

)
v

vT
(
I ⊗ Ãmg

)
v

(7.3)

≤ λmax

(
I ⊗ Ã−1

mgA0

)
+

M∑
m=1

λmax

(
Gm ⊗ Ã−1

mgAm

)
.

Considering the remaining terms, estimates for the eigenvalues of I⊗Ã−1
mgA0 are given in (6.6).

Bounds for the eigenvalues of Gm ⊗ Ã−1
mgAm, for m = 1, . . . ,M , follow from (6.6) and (6.10):

(7.4) −
√

3σν χm ∆ ≤ vT (Gm ⊗Am)v

vT
(
I ⊗ Ãmg

)
v
≤
√

3σν χm ∆, v ∈ RQNu\{0}.

A subsequent summation over m yields the desired estimate

(7.5)

M∑
m=1

λmax(Gm ⊗ Ã−1
mgAm) ≤

√
3σν χ∆.

The upper bound (ν0 +
√

3σν χ)∆ then follows when using (6.6) and (7.5) in (7.3).
To derive a lower bound, we do not proceed in the same way as for the upper one but use

a specific product representation as in [28, Lemma 3.2]:

λmin

(
Ã−1

mgA
)

= min
v∈RQNu\{0}

vT
(
I ⊗A0 +

∑M
m=1Gm ⊗Am

)
v

vT
(
I ⊗ Ãmg

)
v

(7.6)

= min
v∈RQNu\{0}

vT

(
I +

∑M
m=1Gm ⊗A

−1
0 Am

)
v

vTv︸ ︷︷ ︸
(I)

vTv

vT
(
I ⊗A−1

0 Ãmg

)
v︸ ︷︷ ︸

(II)

,

where I denotes the identity matrix of size QNu. If the matrices contained in (I) and (II) are
symmetric non-negative definite, we can bound λmin(Ã−1

mgA) by the product of the minimum
eigenvalues of those matrices [20, Chapter 9]. Both matrices are symmetric due to their
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symmetric building blocks. We are going to verify positive definiteness, starting with (I):

min
v∈RQNu\{0}

vT
(
I +

∑M
m=1Gm ⊗A

−1
0 Am

)
v

vTv
≥ 1 +

M∑
m=1

min
v∈RQNu\{0}

vT
(
Gm ⊗A−1

0 Am
)
v

vTv

(7.7)

(6.5),(6.10)

≥ ν−1
0 (ν0 −

√
3σν χ)

(3.4)
> 0.

Since the bound in (7.7) is positive, the matrix in (I) is positive definite. The matrix in (II)
is positive definite as well because all of its building blocks are positive definite, see (6.6). We
can therefore apply the product bound and (7.7) to derive

(7.8) λmin

(
Ã−1

mgA
)
≥ ν−1

0 (ν0 −
√

3σν χ) · min
v∈RQNu\{0}

vT
(
I ⊗ Ã−1

mgA0

)
v

vTv
.

Using the left bound of (6.6) in (7.8) then yields the lower bound (ν0 −
√

3σν χ)δ.

7.2. The preconditioned SGFE Schur complement. The eigenvalue bounds are derived
as in Lemma 7.1 by additionally relying on the inf-sup stability of the FE approximation, see
also [21, Lemma 4.6].

Lemma 7.2. Let S = −BA−1BT be defined with building blocks A and B according to (5.2)
and (5.3). Further, let S̃p = I ⊗Dp according to (7.1). Then, the following estimate holds:

(7.9)
θ2γ2

ν0 +
√

3σν χ
≤ qT BA−1BT q

qT (I ⊗Dp) q
≤ Θ2

ν0 −
√

3σν χ
, ∀q ∈ RQNp\{0,1}.

Proof. We start by considering

(7.10) (I ⊗A)−1A = I ⊗A−1A0 +
M∑
m=1

Gm ⊗A−1Am.

Using (6.5) and (6.10) with (7.10), we derive

ν0 −
√

3σν χ ≤
vT(I ⊗A)−1v

vTA−1v
≤ ν0 +

√
3σν χ(7.11)

for all v ∈ RQNu\{0}. Proceeding as in the proof of [31, Lemma 2.4], we derive

qTS̃−1
p BA−1BTq

(7.11)

≤ (ν0 −
√

3σν χ)−1 qTS̃−1
p B(I ⊗A)−1BTq(7.12)

(6.9)

≤ (ν0 −
√

3σν χ)−1Θ2qTq

for q ∈ RQNp\{1} which is the upper bound in the assertion. The lower bound is derived
analogously using the upper bound in (7.11) and the lower bound in (6.9).
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7.3. The preconditioned approximate SGFE Schur complement. We call BÃ−1
mgBT the

approximate SGFE Schur complement. The matrix looks like the original Schur complement,
but the Laplacian is replaced by its preconditioner. Bounds on the eigenvalues of the precon-
ditioned approximate Schur complement are derived in the following lemma.

Lemma 7.3. Let Ãmg = I ⊗ Ãmg and S̃p = I ⊗Dp according to (7.1). Then, the following
estimate holds:

(7.13) δ θ2γ2 ≤
qTBÃ−1

mgBTq
qTS̃pq

≤ ∆ Θ2, ∀q ∈ RQNp\{0,1}.

Proof. We follow the steps of the proof of [31, Lemma 2.4]. Inserting the definitions yields

(7.14) qTS̃−1
p BÃ−1

mgBTq = qT(I ⊗D−1
p BÃ−1

mgB
T)q

for all q ∈ RQNp . As the identity matrix does not influence spectral bounds for the expression,
the considerations can be reduced to the FE matrices on the right-hand side of (7.14):

qTD−1
p BÃ−1

mgB
Tq

(6.4)

≤ ∆ qTD−1
p BA−1BTq

(6.9)

≤ ∆ Θ2 qTq,

for q ∈ RNp\{1}. The upper bound in the assertion immediately follows and the lower one is
derived analogously using the lower bounds in (6.4) and (6.9).

Based on the bounds in the Lemmas 7.1 to 7.3, existing convergence results are utilized in
section 8 to predict the convergence behavior of the iterative solvers that are presented.

8. Iterative solvers. As solvers for the coupled SGFE system, we compare a precondi-
tioned MINRES method [24] with a BPCG method [8]. A similar comparison for Stokes flow
with deterministic data can be found in [25]. We utilize existing results to make predictions
about the convergence behavior of the linear solvers based on the eigenvalue bounds derived
in section 7. Finally, we comment on the complexity and implementation of the two solvers.

8.1. The MINRES method. The system matrix C of the SGFE Stokes problem (5.1)
is symmetric and indefinite, see (6.1). The MINRES method is a standard Krylov subspace
solver for systems of equations with such a structure. Because MINRES relies on the symmetry
of the problem, it requires a symmetric preconditioner which must be positive definite as well.
This excludes the block triangular preconditioner P2 in (7.1). Hence, we will use MINRES
solely in combination with the block diagonal preconditioner P1.

MINRES is a short-recurrence method and applications of C and P−1
1 are the only matrix-

vector operations necessary per iteration [12, Algorithm 4.1]. It is worth noticing that MIN-
RES convergence does not rely on a scaling of the involved preconditioners and the solver can
thus be considered parameter-free.

A standard convergence result for MINRES, as given in [12, Theorem 4.14], can be applied
when eigenvalue bounds for the preconditioned system matrix are available. In our setting,
eigenvalue bounds for P−1

1 C are thus needed. They can be constructed based on the bounds
derived in the Lemmas 7.1 and 7.3 using [13, Theorem 4.1], see also [21, section 4.2.4].
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As a consequence, the convergence behavior of the MINRES method combined with the
preconditioner P1 is influenced by the modeling and discretization parameters contained in
the bounds in the Lemmas 7.1 and 7.3. The iteration counts should thus be asymptotically
independent of the parameters that do not occur in those bounds, i.e. the mesh width h, the
degree of the polynomial chaos k and the dimension of the random input M . Nevertheless,
the bounds still depend on the mean field ν0(x) and the process standard deviation σν .

8.2. The Bramble-Pasciak conjugate gradient method. When the triangular precondi-
tioner P2 in (7.1) is applied instead of P1, the preconditioned system matrix P−1

2 C is nonsym-
metric. There does not exist a short recurrence for generating an orthogonal Krylov subspace
basis for every nonsymmetric matrix [14]. As an alternative, one can use a short-recurrence
and construct a Krylov subspace basis which is not orthogonal, thereby loosing the mini-
mization property of the method, see the Bi-CGSTAB algorithm [34]. The other option is to
maintain the orthogonality of the basis at the expense of a full-recurrence orthogonalization
procedure, as it is done for GMRES [30].

There are special nonsymmetric problems for which an orthogonal Krylov subspace basis
can be constructed with short recurrence [14]. The block triangular preconditioned system
matrix P−1

2 C is such a case due to the manipulations introduced to P2 in the beginning of
section 7. This is shown in the following lemma.

Lemma 8.1. Let a in (7.1) be set to a = aδ δ̂, with 0 < aδ < 1 and δ̂ as in Lemma 7.1.
Then, the matrix

H :=

[
A− aδ δ̂Ãmg 0

0 S̃p

]
,(8.1)

with Ãmg and S̃p as in (7.1), defines an inner product. Moreover, the triangular preconditioned
system matrix P−1

2 C, with C and P2 according to (5.1) and (7.1), respectively, is H-symmetric
and H-positive definite, i.e.

HP−1
2 C = (P−1

2 C)
TH,(8.2)

wTHP−1
2 Cw > 0, ∀w ∈ RQN\{0}.(8.3)

Proof. First of all, we make sure that the matrix H defines an inner product, i.e. check
that it is symmetric and positive definite. Subsequently, we establish (8.2) and (8.3).

The symmetry of H is verified by noting that the building blocks of the matrices on the
diagonal are symmetric. To verify positive definiteness of H, we consider its diagonal blocks
separately. The lower diagonal block S̃p = I ⊗DP is positive definite because its Kronecker
factors are positive definite, see [12, Section 3.5]. The investigation of the upper diagonal
block is more intricate: The matrix A− aδ δ̂Ãmg is positive definite if

(8.4)
vT(A− aδ δ̂Ãmg)v

vTv
=

vTAv
vTv

− vTaδ δ̂Ãmgv

vTv
> 0 ∀v ∈ RQNu\{0}.

We can express this condition equivalently by rearranging (8.4):

(8.5) min
v∈RQNu\{0}

vTAv
vTaδ δ̂Ãmgv

> 1.
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From (7.2) and 0 < aδ < 1, we can deduce λmin(a−1
δ δ̂−1Ã−1

mgA) ≥ a−1
δ > 1, which eventually

ensures the positive definiteness of A− aδ δ̂Ãmg and thereby the positive definiteness of H.
In order to see that (8.2) holds, we perform the matrix-matrix products on both sides

of the equals sign and ascertain that the results are identical. Condition (8.3) is established
based on a matrix factorization in the form of a congruence transform, see [21, Lemma 4.9].

As a consequence, the nonsymmetric system associated with P−1
2 C can be solved with a CG

method in the HP−1
2 C-inner product. However, this approach also has disadvantages: Firstly,

the preconditioner Ãmg must be scaled such that (8.5) holds, i.e. the scaling parameter a must
be chosen properly. This can be done using the analytically derived bound (7.2), as was shown
in Lemma 8.1. When this bound is too pessimistic, using the scaling based on the analytical
estimate might lead to higher iteration counts than using the correct scaling. In such cases,
determining the scaling by computing λmin(Ã−1

mgA) numerically could be beneficial, though
resulting in increased computational costs. We investigate the influence of the scaling on the
convergence behavior of the BPCG method in Table 1. Secondly, the naive BPCG procedure
is formulated in the HP−1

2 C-inner product. Additional matrix-vector operations could arise
from the evaluation of quantities in that inner product. Fortunately, CG methods have several
properties which can be exploited to reformulate the algorithm [1]. Using these reformulations,
it is possible to derive a BPCG algorithm which needs only one extra matrix-vector operation
per iteration compared to preconditioned MINRES: a multiplication with B, which originates
from the definition of P2 in (7.1), see [25]. As the matrix B is block diagonal, however, this
operation is cheap compared to a multiplication with A, which is not block diagonal. Because
of this feature, the BPCG method is particularly interesting in the SGFE setting.

A standard convergence result for CG methods such as [17, Theorem 9.4.12] relies on
eigenvalue bounds for the preconditioned system matrix. For the block triangular precondi-
tioned matrix P−1

2 C, these bounds can be constructed based on [37, Theorem 4.1], using the
bounds in Lemma 7.1 and a scaled version of the bounds in Lemma 7.2, see [21, section 4.2.5].
Following the same line of argumentation as for the MINRES method in subsection 8.1, we use
this convergence result to predict the convergence behavior of the BPCG solver with respect to
different problem parameters: We claim that the convergence of the method is asymptotically
independent of the parameters which do not occur in the bounds in the Lemmas 7.1 and 7.2.
Consequently, the iteration counts should be asymptotically independent of the spatial mesh
width h, the chaos degree k and the dimension M of the random input. The mean field ν0(x)
and the process standard deviation σν remain in the bounds.

9. Numerical test case. We investigate the convergence behavior of the two iterative
methods discussed in section 8 by the help of a numerical example. Furthermore, we check
the theoretical predictions and compare the performance of the solvers.

In order to parametrize the uncertain viscosity properly with a moderate number of ran-
dom variables, we use the separable exponential covariance function Cν : D×D → R defined
by Cν(x, z) = σ2

ν e
−|x1−z1|/b1−|x2−z2|/b2 , where the scalars b1 and b2 are the correlation lengths

in the x1 and x2 direction, respectively. The eigenpairs of the two-dimensional KLE can be
constructed by combining the eigenpairs of two one-dimensional equations, which have an
analytical representation [15, section 5.3], [19, section 7.1].
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As a numerical test case, we consider a regularized lid-driven cavity [12, section 3.1] on
the unit square D = [−0.5, 0.5] × [−0.5, 0.5]. We use no-slip conditions for the velocity field
everywhere on the domain boundary except at the top lid, where we prescribe a parabolic
flow profile u(x) = (1 − 16x4

1, 0)T . The volume forces f(x) are set to zero. If not specified
otherwise, we use the following default parameter values for the simulations:

h = 0.01, k = 2, M = 10, ν0 = 1, σν = 0.1, b1 = b2 = 1.(9.1)

The multigrid method is part of both of our preconditioners in (7.1). For the following
simulations, we use the algebraic multigrid implemented in the IFISS package [11] with two
point Gauss-Seidel pre-and post-smoothing sweeps. Numerical experiments in [12, section 2.5]
suggest that relation (6.4) is then fulfilled with constants δ ≈ 0.85 and ∆ ≈ 1.15. All other
computations are carried out in our own finite element implementation [33] in MATLAB.

In the following, we compare the iterative methods discussed in section 8. We consider
the P1-preconditioned MINRES (P1-MINRES) and the P2-preconditioned BPCG, with the
analytical scaling a = δ̂ according to Lemma 7.1 (Pana2 -BPCG) and with the scaling computed

by numerically approximating λmin(Ã−1
mgA) (Pnum2 -BPCG). In fact, we should set a < δ̂, see

Lemma 8.1. The results below, however, suggest that the solver is robust with respect to small
variations of a. We look at the iteration counts necessary to reduce the Euclidean norm of the
relative residual below 10−6, i.e. the numbers n such that ‖r(n)‖ = ‖b − Cz(n)‖ ≤ 10−6‖b‖.
Here, z(n) denotes the n-th iterate. We use the zero vector as initial guess, i.e. z(0) = 0.

At first, we want to assess the influence of the scaling factor a introduced in section 7 on the
convergence of the BPCG method. Therefore, we define the value a∗ such that A− a∗Ãmg is
bordering positive definiteness and solve the reference problem for different ratios of a/a∗. We
calculate a∗ with MATLAB’s (version 8.6.0) numerical eigensolver eigs, i.e. a∗ ≈ λmin(Ã−1

mgA).
Corresponding iteration counts for Pnum2 -BPCG are displayed in Table 1. We note that the
minimum iteration count of 27 is attained for a/a∗ = 1. The analytical bound according
to Lemma 7.1, which implies a/a∗ = 0.48, leads to an increased iteration count of 36. This
means that the analytical bound is too pessimistic in the sense of overfulfilling the positive
definiteness requirement. For a/a∗ > 1, we can not theoretically guarantee that the algorithm
converges. Still, we could not observe divergent behavior in our experiments. From the results
in Table 1, we deduce that the iteration counts are robust with respect to moderate variations
around the optimal scaling a = a∗.

Table 1
Iteration counts for Pnum2 -BPCG using different values of the relative scaling a/a∗. The boldfaced ratio

corresponds to the analytical bound according to Lemma 7.1.

a/a∗ 0.1 0.2 0.4 0.48 0.6 0.8 1.0 1.2 1.4 2.0 3 5 10

n 46 41 38 36 34 30 27 27 30 32 38 45 58

In the following, we compare the performance of P1-MINRES, Pana2 -BPCG and Pnum2 -
BPCG with respect to the variation of different problem parameters. To reduce the com-
putational costs associated with numerically computing the scaling factor for Pnum2 -BPCG,
we solve the associated eigenproblems on the coarsest mesh with mesh size h = 0.1 in the
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following examples. As h does not appear in the corresponding eigenvalue bounds in (7.2),
the scaling on the coarse mesh should be close to the scaling on the actual mesh.

The iteration counts for different values of the mesh size h are displayed in the top left
plot of Figure 1. The P1-MINRES solver needs the most iterations and the numerically scaled
BPCG converges faster than the analytically scaled one. We observe that the iteration counts
do not increase when refining the mesh but rather decrease moderately for all three methods.
This matches the predictions made at the end of the subsections 8.1 and 8.2, which suggested
that the convergence does not degrade when the mesh is refined. We are not aware of a
theoretical explanation for the decrease in iteration counts.
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Figure 1. Iteration counts for P1-MINRES (red), Pana2 -BPCG (blue) and Pnum2 -BPCG (green) using
different values of the mesh size h (top left), the KLE truncation index M (top right), the degree of the
polynomial chaos k (bottom left) and the standard deviation σν (bottom right).

The influence of the KLE truncation index M on the convergence of the iterative solvers
is displayed in the top right plot of Figure 1. When increasing M , the iteration counts grow
slightly up to a certain threshold and then basically stay constant for all three solvers. Asymp-
totic independence of M thus occurs as predicted. P1-MINRES again has the highest iteration
counts followed by Pana2 -BPCG and Pnum2 -BPCG.
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In Figure 1, iteration counts for different values of the chaos degree k are displayed on the
bottom left. For almost all considered chaos degrees, the three solvers exhibit a slight growth
in iteration counts with increasing k. For P1-MINRES and Pnum2 -BPCG, this behavior can be
observed up to the considered order where for Pana2 -BPCG, the iteration counts decrease at
the end. The theory did not suggest a dependence on k, so the asymptotic regime is apparently
not reached yet. We can verify this by looking at the eigenvalues of the stochastic Galerkin
matrices Gm, m = 1, . . . ,M , for k = 3: λmax(Gm) = 1.4915, i.e. the eigenvalues do not
immediately fill the whole possible range [−

√
3,
√

3]. In fact, for k = 4 we get the maximum
eigenvalue λmax(Gm) = 1.570, which means that increasing the degree of the polynomial
chaos leads to new, larger eigenvalues, thereby increasing the iteration count. We suspect that
the decrease in iteration counts for Pana2 -BPCG has the same cause: For increasing k, the
analytical scaling improves as it relies on the theoretical bound ±

√
3.

Figure 1 (bottom right) contains results for different values of the standard deviation σν .
We observe that the iteration counts of all three methods noticeably increase with σν . This
is due to the fact that σν directly influences the bounds in the Lemmas 7.1 and 7.2. For the
analytically scaled Pana2 -BPCG, this influence is particularly pronounced and the algorithm
converges merely up to σν = 0.18. This is because the scaling factor δ̂ in Lemma 7.1 contains
the term ν0−

√
3σν χ which is also the lower bound for the viscosity in (3.3). In the numerical

examples, this term becomes negative for σν > 0.18. Consequently, we can not theoretically
guarantee well-posedness of the discrete problem for σν > 0.18 as assumption (3.4) no longer
holds. Still, computing λmin(Ã−1

mgA) numerically showed that the discrete problem is well-
posed up to σν ≈ 0.35, independent of the chaos degree. Consequently, we need a lower bound
tighter than the one in (3.3) to make Pana2 -BPCG work for σ > 0.18. Yet, for moderate values
of σν , P1-MINRES needs the most iterations, followed by Pana2 -BPCG and Pnum2 -BPCG.

10. Conclusion. Based on the SGFE discretization of the Stokes model with random vis-
cosity, we have investigated the efficient solution of the resulting system of equations by means
of two suitable preconditioned iterative methods. We have linked the convergence behavior
of the solvers to the eigenvalue bounds of the respective relevant sub-matrices. Because the
eigenvalue bounds of P−1

1 C and P−1
2 C depend on the same parameters, we expect the iteration

counts of P1-MINRES and the P2-BPCG methods to depend on these parameters, too. This
has been confirmed by numerical experiments. In particular, we have observed the following:
• The mesh size does not have a significant influence on the iteration counts. This is in line

with the predictions and results from the use of the spectrally equivalent FE preconditioners.
• The iteration numbers are asymptotically independent of the KLE truncation index. This

is an effect of the conditions imposed on the parametrized random viscosity.
• There is a slight increase of iteration counts when the discretization of the random parameter

domain is refined. This has been explained by the observation that the eigenvalues do not
immediately occupy the whole predicted interval, but fill it steadily as the chaos degree
grows. Still, as the uniform random variables are bounded and appear linearly in the input,
the condition of the SG matrices is bounded independently of the polynomial chaos degree.

• The condition of the problem critically depends on the variance of the data in relation to its
expectation. If the variance becomes too large, the problem even becomes ill-posed. This
is reflected by the fact that the convergence deteriorates as the variance increases.
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The preconditioner used in the BPCG method contains a scaling to ensure positive definiteness
of the matrix H and H-positive definiteness of the preconditioned system matrix P−1

2 C. The
optimal scaling parameter is given by the minimum eigenvalue of the preconditioned SGFE
Laplacian, as confirmed by the numerical experiments. Still, the numerical costs associated
with this eigenvalue problem are prohibitive. We have derived an analytical value for the
scaling based on knowledge of the parametrized random input. Numerical tests performed
with this value resulted in a reduction of the iteration counts by up to a factor of about 1.5
compared to the reference preconditioned MINRES. The only regime where the analytically
scaled BPCG performed worse is close to the analytically derived limit of positivity of the
viscosity. We also used the BPCG method with a numerically computed scaling. This approach
converged faster than the analytically scaled solver and resulted in a reduction of iteration
counts by up to a factor of 2 compared to the preconditioned MINRES method.

Concerning the eigenvalue analysis and the numerical tests, we summarize that the BPCG
solver with block triangular preconditioner has the same qualitative properties as block di-
agonal preconditioned MINRES. When a proper scaling parameter is available, the use of a
BPCG solver can result in a noticeable reduction of iteration counts compared to the applica-
tion of the parameter-free MINRES method with block diagonal preconditioner. At the same
time, applying the block triangular preconditioner is only marginally more expensive.
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