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Abstract

Stochastic gradient methods are scalable for solving large-scale optimization problems that

involve empirical expectations of loss functions. Existing results mainly apply to optimization

problems where the objectives are one- or two-level expectations. In this paper, we consider the

multi-level compositional optimization problem that involves compositions of multi-level compo-

nent functions and nested expectations over a random path. It finds applications in risk-averse

optimization and sequential planning. We propose a class of multi-level stochastic gradient meth-

ods that are motivated from the method of multi-timescale stochastic approximation. First we

propose a basic T -level stochastic compositional gradient algorithm, establish its almost sure

convergence and obtain an n-iteration error bound O(n�1/2T

). Then we develop accelerated

multi-level stochastic gradient methods by using an extrapolation-interpolation scheme to take

advantage of the smoothness of individual component functions. When all component functions

are smooth, we show that the convergence rate improves to O(n�4/(7+T )) for general objectives

and O(n�4/(3+T )) for strongly convex objectives. We also provide almost sure convergence and

rate of convergence results for nonconvex problems. The proposed methods and theoretical

results are validated using numerical experiments.

Keywords: Stochastic gradient · Stochastic optimization · Convex Optimization · Sample com-

plexity · Simulation · Statistical learning

1 Introduction

Over the past decade, stochastic gradient-type methods have drawn significant attention from

various communities such as mathematical programming, signal processing and machine learning,

mainly due to their practical e�ciency in minimizing expected-value objective functions or empirical
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sums of a large number of loss functions [2, 5, 10, 11, 12, 14, 18, 22, 30]. They are particularly

popular methods for tackling large-scale problems such as statistical estimation [6, 20], matrix and

tensor factorization [8] and training deep neural networks [13, 29]. Stochastic gradient methods

mainly apply to minimizing the expectation of a stochastic function, i.e.,

min
x

E![f!(x)],

where the expectation is taken over a random variable !. Note that this problem involves one level

of expectation.

In this paper, we propose to study a richer class of stochastic optimization problems, which

involve nested expectations over a sequence of random variables. In particular, we consider the

T -level stochastic compositional optimization problem, given by

min
x2X

F (x) = E!1

h
f (1)
!1

⇣
E!2

⇥
f (2)
!2

�
· · ·
�
E!T [f (T )

!T
(x)]

�
· · ·
�⇤⌘i

, (1.1)

where f
(j)
!j (·) : Rdj 7! Rdj�1 for j = 1, · · · , T are continuous mappings, X is a convex and closed set,

and d0 = 1, i.e., F (x) is a real-valued function. The nested composition structure provides a rich

modeling tool for data analysis and decision-making applications. For instance, online principal

component analysis and policy evaluation in reinforcement learning can be formulated into two-level

stochastic compositional optimization [15, 27]. For more applications, we illustrate two examples

that arise from operations research in Section 4. One example is a mean-deviation risk-averse

optimization problem which can be formulated into a 3-level compositional problem [1, 21]. The

other example is related to smooth approximations of multi-stage stochastic programming [24].

In problem (1.1), for each f
(j)
!j , we use the subscript !j to denote a random variable and use

the superscript (j) to denote its level. We focus on situations whether there exist deterministic

functions f (1), . . . , f (T ) such that

f (j)(xj) = E[f (j)
!j

(xj)|!1, · · · , !j�1],

for all j = 1, . . . , T with probability 1. We refer to f1, . . . , fT as component functions. However,

these component functions are not explicitly known to us. Note that the multi-level random vari-

ables !1, . . . , !T are not necessarily independent of one another. When we sample from their joint

distribution, we may generate a sample path (!1, . . . , !T ) sequentially by sampling each !j con-

ditioned on realizations at the previous level’s (!1, . . . , !j�1). Throughout this paper, we assume

that the component functions f1, . . . , fT are continuous and that there exists at least one optimal

solution x⇤ to problem (1.1). In some part of our analysis, we require the overall objective function

F (x) be convex, but we never require that any individual component function f
(j)
!j (·) be convex,

linear or monotone. We say that a function f is “smooth” if it has Lipschitz continuous gradients,

and say that it is “non-smooth” otherwise.

Our goal is to solve the T -level stochastic compositional optimization problem (1.1) by sampling

multiple paths of (!1, . . . , !T ). We are interested in scenarios where we do not have the explicit

knowledge of the expected-value component functions f (j)’s. This often occurs when evaluating

f (j) requires making expensive passes over large data sets. This also occurs in online learning

applications where f (j) can not be accurately calculated using finitely many samples. Instead of

knowing f (j)’s, we suppose that there is a Sample Oracle (SO) such that:
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• Upon each query (x 2 X , y1 2 Rd1 , . . . , yT 2 RdT ), the SO generates a sample path (!1, . . . , !T )

independently from the query.

• The SO returns a vector f
(T )
!T (x) 2 RdT�1 and a noisy gradient/subgradient erf

(T )
!T (x) 2

RdT⇥dT�1 .

• The SO returns a vector f
(j)
!j (yj) 2 Rdj and a noisy gradient rf

(j)
!j (yj) 2 Rdj⇥dj�1 .

• The SO returns a noisy gradient rf
(1)
!1 (y1) 2 Rd1 .

In the above, we denote by erf
(T )
!T (x) a noisy gradient/subgradient, which is to be specified in the

context. Let us emphasize that this SO does not return unbiased first-order information regarding

the overall objective function. The SO can be viewed as a component-wise stochastic first-order

oracle that returns noisy first-order information for individual component functions f (j)’s.Detailed

assumptions on the SO will be specified later.

One might attempt to apply the sample average approximation (SAA) method to attack the

multi-level expectation problem (1.1). However, replacing the nested expectations with empirical

averages will not solve the optimization problem. It will reduce one problem with expectations to

another one with empirical expectations. However, the two problems share similar structures and

the latter one is not necessarily easier to solve. What we need is an implementable algorithm that

computes the optimal solution by iteratively querying the SO and making e�cient updates.

Another attempt would be to use some version of gradient method or stochastic gradient

method. Stochastic gradient method will not work automatically. The main challenge is that

we do not have access to the unbiased sample gradient of F due to the multi-level nested expecta-

tions. To see this, let us consider the case where each f (j) is di↵erentiable and apply the chain rule

to get

rF (x) = rf (T )(x)rf (T�1)
�
fT (x)

�
· · · rf (1)

⇣
f (2) � · · · � f (T )(x)

⌘
.

For a given x 2 S and a given sample path (!1, . . . , !T ), one may formulate an unbiased estimate

of rF (x) as

rf (T )
!T

(x)rf (T�1)
!T�1

�
f (T )(x)

�
· · · rf (1)

!1

⇣
f (2) � · · · � f (T )(x)

⌘
,

which unfortunately cannot be calculated by calling the SO once (or even finitely many times).

This is because that computing the preceding unbiased gradient sample requires quering the SO
at values f (T )(x), f (T�1) � f (T )(x), . . . , f (2) � · · · � f (T )(x), which are unfortunately not known. As a

result, the nested composition structure induces substantial bias in the sample gradients for F as

long as T � 2. In contrast, when T = 1, the objective function is linear in the distribution of the

random variable !. For problems with T � 2, the nonlinear composition between expectations and

component functions creates an objective function that is highly nonlinear with respect to the joint

probability distribution of !1, . . . , !T . A graphical illustration of the level of di�culty for dealing

with multi-level composition optimization is given in Figure 1. We can view the optimization

problem (1.1) under the SO as a form of estimation problem, in which we want to estimate the

optimal solution x⇤ by taking independent sample paths. We can see that the nonlinear composition

makes this estimation/optimization problem fundamentally challenging.

Existing work on stochastic compositional optimization traces back to [7] which considered

the two-level problem. In Section 6.7 of [7], a two-timescale stochastic approximation scheme

3



min
x

E�

⇥
f�(x)

⇤

rE�

⇥
f�(x)

⇤
= E�

⇥
rf�(x)

⇤
min

x
F (x) := f

�
E�

⇥
g�(x)

⇤ 

rF (x) 6= E�

⇥
rg�(x) � f

�
g�(x)}

⇤

min
x

E
h
f1,�1

�
E
⇥
f2,�2

�
· · · E[fm,�m

(x) | {!j}m�1
j=1 ] · · ·

�
|!1

⇤�i

� � · · ·�

Figure 1: In one-level stochastic optimization, the objective function is linear in the probability

distribution of !. In multi-level stochastic compositional optimization, the objective is no longer

linear in the joint probability distribution of the random variables (!1, . . . , !m), making the problem

fundamentally harder.

was proposed and its almost sure convergence was established without rate analysis. Recently, [26]

developed a general class of stochastic compositional gradient descent (SCGD) method for two-level

problems and established convergence rate results under various assumptions. [28] developed an

accelerated stochastic compositional proximal gradient (ASC-PG) method for the two-level problem

and proved faster convergence in some cases. [16] considered a special case of the two-level problem

where each expectation takes the form of a finite sum of loss functions and developed variance-

reduced versions of the compositional gradient methods. However, to the best of our knowledge,

all existing results only apply to the case where T = 1, 2. Multi-level stochastic compositional

optimization remains largely open.

In this paper, we develop sampling-based algorithms and complexity theory for the T -level

stochastic compositional problem (1.1). We draw motivation from the optimality conditions of

problem (1.1). In particular, we expand the first-order condition into a system of variational

equalities and inequalities by introducing auxiliary variables that correspond to a sequence of

value functions at the optimal solution, i.e., tail compositions of the component functions. Our

first attempt is a basic multi-timescale stochastic approximation iteration to solve this system.

We establish its almost sure convergence using a T -element super-martingale argument for both

convex and convex problems. We also show that it converges to the optimal solution at a rate of

O(n�1/2T
) where n is the number of iterations/oracle queries. This result suggests that the sample

complexity for obtaining an approximate-optimal solution depends exponentially on the number of

nested levels T . Such an exponential dependence is somewhat expected. It is consistent with the

sample path complexity for solving multi-stage stochastic programming, although the optimization

formulations and assumptions are slightly di↵erent.

Furthermore, we develop accelerated multi-level stochastic gradient methods. The accelerated

algorithms apply to “smooth” composition problems and takes advantages of the smoothness of

4



Non-convex Convex Strongly convex

1-level O(n�1/2) [9] O(n�1/2) [23] O(n�1) [19]

2-level
Smooth O(n�4/9) [28] O(n�4/9) [28] O(n�4/5) [28]

Non-smooth O(n�1/4) [26] O(n�1/4) [26] NA

3-level Smooth O(n�2/5) [⇤] O(n�2/5) [⇤] O(n�2/3) [⇤]
T -level Smooth O(n�4/(7+T )) [⇤] O(n�4/(7+T )) [⇤] O(n�4/(3+T )) [⇤]

Table 1: Best-known n-sample error bound for solving multi-level stochastic compositional opti-

mization. These bounds are achieved by stochastic gradient-type methods, so they are n-iteration

error bounds at the same time. Note that we say the composition problem is “smooth” if all the

component functions have Lipschitz continuous gradients. We use [⇤] to denote the current paper.

individual component functions f (j). An extrapolation-interpolation scheme is used to balance

the bias-variance tradeo↵ in approximating each value function. The accelerated updates for the

auxiliary variables can be viewed as first-oder running approximations of the true values, while

the basic method without acceleration uses zeroth-order running approximations. As a result, the

accelerated updates are more accurate and thus the overall convergence rate is improved. In the

case when all component functions are smooth, we improve the convergence rate to O(n�4/(7+T ))

for convex objective functions and O(n�4/(3+T )) for strongly convex ones. We have also obtained

convergence and rate of convergence results for nonconvex problems. Table 1 summarizes our results

and compare them with the best known ones for the single- and two-level stochastic compositional

optimization problems [9, 19, 23, 26, 28]. We also provide numerical experiments with a risk-averse

regression problem. The numerical results validate our theory.

To the best of our knowledge, this paper proposes for the first time the multi-level stochastic

gradient methods for the composition optimization problem (1.1), where we establish almost sure

convergence results and obtain fast convergence rates. For the case where T = 1, our results

match the best known sample complexity upper- and lower-bounds. For the case where T = 2, our

results improve the convergence rate from O(n�2/9) of the a-SCGD in [26] to O(n�2/5). Besides,

with additional assumption that the inner level function f (T ) in (1.1) has Lipschitz continuous

gradients, we obtain a convergence rate O(n�4/9) for two-level problems, which matches the state-

of-art result achieved by ASC-PG in [28]. For the case where T � 3, our results fill the open gaps

and provide the first few sample complexity benchmarks.

Paper Organization. Section 2 gives a basic algorithm based on multi-timescale stochastic

approximation and establishes its convergence. Section 3 develops accelerated versions of the algo-

rithm and shows that they achieve faster convergence for smooth problems. Section 4 illustrates

two motivating applications in operations research and Section 5 gives numerical experiments.

Notation and Definitions. For x 2 Rn, we denote by x0 its transpose, and by kxk its Euclidean

norm (i.e.,kxk =
p

x0x). For two sequences {xk} and {yk}, we write xk = O(yk) if there exists a

constant c > 0 such that kxkk  ckykk for each k. We denote by Ivalue
condition the indicator function,

which returns “ value ” if the “ condition ” is satisfied; otherwise 0. We denote by F ⇤ the optimal

objective function value for (1.1), and denote by X ⇤ the set of optimal solutions. For a set X ⇢ Rn
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and a vector y 2 Rn, we denote by ⇧X {y} = argminx2X ky � xk2 the Euclidean projection of y on

X , where the minimization is always uniquely attained if X is nonempty, convex and closed. For

a function f(x), we denote by rf(x) its gradient at x if f is di↵erentiable, denote by @f(x) its

subdi↵erential at x, and denote by erf(x) some noisy estimate of the gradient/subgradient of f at

x. We denote by “ ! ” as “converges to”, and denote by “w.p.1” as “with probability 1”.

2 A Basic Algorithm Based On Multi-Timescale Stochastic Ap-

proximation

We start by writing down the optimality condition of problem (1.1) (assuming that the problem is

convex):

rF (x⇤)0(x � x⇤) � 0, 8x 2 X ,

where

rF (x) = rf (T )(x) · rf (T�1)
�
fT (x)

�
· · · rf (1)

⇣
f (2) � · · · � f (T )(x)

⌘
.

However, this optimality condition is not easy to work with. As we have discussed in Section 1, the

chain rule makes obtaining unbiased samples of rF (x) di�cult. Let us rewrite the the optimality

condition as follows
⇣
rf (T )(x)rf (T�1)

�
yT�1)

�
· · · rf (1)

⇣
y(1)
⌘⌘0

(x � x⇤) � 0, 8x 2 X ,

y(T�1) = f (T )(x)

y(T�2) = f (T�1)(y(T�2)) = f (T�1) � f (T )(x)

y(1) = f (2)(y(2)) = f (2) � · · · � f (T )(x).

We refer to f (j) � · · · � f (T )(x), j = 1, . . . , T � 1 as the value functions, i.e., tail compositions of

multi-level component functions. By introducing the auxiliary variables y(j)’s to represent the value

functions, we can decouple the chain product. Now for a given (x, y(1), . . . , y(T�1)), our sampling

oracle allows us to get unbiased estimates for all the quantities in the preceding system of optimality

conditions.

2.1 A T -Level Stochastic Gradient Method

Motivated by the system of optimality conditions, we develop our first algorithm - a multi-timescale

approximation iteration. It is also a generalization of the basic-SCGD in [26] which applies only

to two-level problems. Our algorithm runs iteratively. Denote by k the iteration counter. A key

ingredient of our algorithm is to introduce auxiliary variables y
(j)
k ’s, defined recursively, as running

estimates for the value functions E!j,k
[f

(j)
!j,k(y

(j+1)
k )|!1,k, · · · , !j�1,k], where j = 1, · · · , T � 1, and

xk = y
(T )
k . At the k-th iteration, we update the current solution xk by using a quasi-stochastic

gradient step given by

xk+1 = ⇧X
n

xk � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )
o

.
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Algorithm 1 Basic Stochastic Compositional Gradient Descent (T-SCGD)

Input : x0 2 RdT , y
(j)
0 2 Rdj , for j = T � 1, · · · , 1, SO, K, stepsizes {↵k}K

k=0, {�j,k}K
k=0 for

j = T � 1, ..., 1.

Output : The sequence {xk}1k=0.

for k = 0, ..., do

Query the SO for the sample values of f (T ), · · · , f (1) at (xk, y
(T�1)
k , · · · , y

(1)
k ), obtain the sample

gradients/ subgradients erf
(T )
!T,k(xk),rf

(T�1)
!T�1,k(y

(T�1)
k ), · · · ,rf

(1)
!1,k(y

(1)
k ).

Update the main iterate by

xk+1 = ⇧X
n

xk � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )
o

.

Query the SO for the sample value of f (T )(·) at xk, obtain f
(T )
!T,k+1(xk).

Update y
(T�1)
k by

y
(T�1)
k+1 = (1 � �T�1,k)y

(T�1)
k + �T�1,kf

(T )
!T,k+1

(xk).

for j = T � 2, · · · , 1 do

Query the SO for the sample value of f (j) at y
(j)
k+1, obtain f

(j)
!j,k+1(y

(j)
k+1).

Update

y
(j)
k+1 = (1 � �j,k)y

(j)
k + �j,kf

(j+1)
!j+1,k+1

(y
(j+1)
k+1 ).

end for

end for

Then, we update the auxiliary variables y
(j)
k ’s by taking an weighted average between the previous

values and the new samples returned by the SO, i.e., for j = T � 1, T � 2, . . . , 1,

y
(j)
k+1 = (1 � �j,k)y

(j)
k + �j,kf

(j+1)
!j+1,k+1

(y
(j+1)
k+1 ), (2.1)

where !j,k denotes the realization of j-th level random variable at the k-th iteration, �j,k’s are

pre-specified stepsizes. We refer to this update for y
(j)
k as a basic update step. Letting y

(T )
k = xk

and ↵k = �T,k to simplify the notation, we refer to the preceding iteration as the basic T -level

Stochastic Compositional Gradient Descent (T -SCGD) method and summarize it in Algorithm 1.

Note that we choose the stepsizes such that �j+1,k/�j,k ! 0 as k ! 1 for all j’s, in order to control

and balance the convergence speed for each auxiliary variables.

To analyze the convergence of the algorithm, we impose the following assumptions on the

smoothness and bounded second-order moments for the stochastic component functions.

Assumption 2.1. Let C1, C2, · · · , CT , V1, · · · , VT , L2, L3, · · · , LT be positive scalars.

(i) The outer functions f (T�1), f (T�2), · · · , f (1) are continuously di↵erentiable, the inner function

f (T ) is continuous, the feasible set X is closed and convex, and there exists at least one optimal

solution x⇤ to problem (1.1).
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(ii) The sample paths (!1,0, !2,0, · · · , !T,0), (!1,1, !2,1, · · · , !T,1),...,(!1,k, !2,k, · · · , !T,k) are inde-

pendent across k and satisfy with probability 1

E[f (j)
!j,0

(xj)|!1,0, · · · , !j�1,0] = f (j)(xj), 8xj 2 Rdj for j = 1, · · · , T, and E[erF!0(x)] 2 @F (x),

for all x 2 X , where erF!0(x) ⌘ erf
(T )
!T,0(x)rf

(T�1)
!T�1,0

�
f (T )(x)

�
· · · rf

(1)
!1,0

⇣
f (2) � · · · � f (T )(x)

⌘
.

(iii) The function f (T )(·) is Lipschitz continuous with parameter CT , and the samples f
(T )
!T,0(·),

erf
(T )
!T,0(·) have bounded second-order moments such that with probability 1

E
⇥
kerf (T )

!T,0
(x)k2|!T�1,0, · · · , !1,0

⇤
 CT , E

⇥
kf (T )

!T,0
(x) � f (T )(x)k2|!T�1,0, · · · , !1,0

⇤
 VT ,

for all x 2 X .

(iv) For j = 1, · · · , T � 1, the functions f (j)(·)’s and f
(j)
!j,0(·)0s have Lj-Lipschitz continuous gradi-

ents such that with probability 1

E
⇥
krf (j)

!j,0
(xj)k2|!j�1,0, · · · , !1,0

⇤
 Cj , E

⇥
kf (j)

!j,0
(xj) � f (j)(xj)k2|!j�1,0, · · · , !1,0

⇤
 Vj ,

and krf (j)
!j,0

(xj) �rf (j)
!j,0

(x̄j)k  Ljkxj � x̄jk,

for all xj , x̄j 2 Rdj .

In some part of the analysis, we also assume that the overall objective is su�ciently smooth as

follows.

Assumption 2.2. The function F (x) has Lipschitz continuous gradient, i.e.,there exists LF > 0

such that

F (z) � F (x)  hrF (x), z � xi +
LF

2
kz � xk2, 8x, z.

Note that in Assumption 2.1, we require the functions f (1)(·), · · · , f (T�1)(·) to have Lipschitz

continuous gradients, and we do not impose such assumptions on f (T )(·). Hence, we cannot guar-

antee that F (x) has a Lipschitz continuous gradient, which means Assumption 2.1 does not imply

Assumption 2.2.

2.2 Almost Sure Convergence of T -SCGD

Theoretical analysis of Algorithm 1 is challenging due to the nested level of expections over a path

of random variables. The multiple nested levels of expectations need to be carefully estimated and

balanced to ensure convergence of the algorithm. We first prove the almost sure convergence of the

algorithm as long as the step-sizes are properly chosen and diminishing. For convex problems, we

show that the algorithm generates a sequence of solutions that converges to an optimal solution to

problem (1.1) with probability 1. For nonconvex problems, we show that all limiting points of the

sequence generated by this algorithm are stationary points with probability 1. In the rest of this

subsection, we give a proof outline with all the lemmas. We defer the full proof to Appendix A.
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Theorem 2.1 (Almost sure convergence of T -SCGD). Let Assumption 2.1 hold, and let the step-

sizes {↵1,k}, {�2,k}, · · · , {�T,k} be such that

1X

k=0

↵k = 1,
1X

k=0

�j,k = 1, for all j = T � 1, ..., 1,

and

1X

k=0

⇣
↵2

k + �2
T�1,k + · · · + �2

1,k +
↵2

k

�2,k
+

↵2
k

�3,k
+ · · · +

↵2
k

�T�1,k
+

�2
T�1,k

�T�2,k
+ · · · +

�2
2,k

�1,k

⌘
< 1.

Let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence generated by the T -SCGD Algorithm 1 starting

with an arbitrary initial point (x0, y
(T�1)
0 , · · · , y

(1)
0 ). Then:

(a) If F is convex, {xk} converges almost surely to a random point in the set of optimal solutions

to problem (1.1).

(b) Suppose in addition that Assumption 2.2 holds, X = RdT , and all samples generated by the

SO are uniformly bounded. Then any limiting point of the sequence {xk}1k=0 is a stationary

point to problem (1.1) almost surely.

Proof Outline. We denote by Fk the collection of random variables up to the k-th iteration to help

us better analyze the convergence properties:
n

{xi}k
i=0, {y

(T�1)
i }k�1

i=0 , · · · , {y
(1)
i }k�1

i=0 , {!T,i}k�1
i=0 , · · · , {!1,i}k�1

i=0

o
.

To derive the almost sure convergence of Algorithm 1, we construct two di↵erent T -element super-

martingales for the convex and non-convex objectives, respectively.

Firstly, for problems with convex objective F , in the k-th iteration, we have the following lemma

to analyze the improvement from kxk � x⇤k to kxk+1 � x⇤k by ky(T�1)
k � f (T )(xk)k, ky(T�2)

k �
f (T�1)(y

(T�1)
k )k, · · · , and ky(1)

k � f (2)(y
(2)
k )k.

Lemma 2.1. Let Assumption 2.1 hold, and let F = f (1) � f (2) � · · · � f (T ) be convex. Then

Algorithm 1 generates a sequence {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 such that there exists a constant C0 >

0 and an optimal solution x⇤ 2 X ⇤, for all k, with probability 1,

E[kxk+1 � x⇤k2|Fk]


⇣
1 +

⇥ ↵2
k

�T�1,k
+ · · · +

↵2
k

�1,k

⇤
C0

⌘
kxk � x⇤k2 + ↵2

kC1C2 · · · CT � 2↵k

�
F (xk) � F ⇤�

+ (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk].

(2.2)

Lemma 2.1 states that for T -level SCGD with convex objective function F , the optimality error

kxk+1 �x⇤k can be bounded by kxk �x⇤k, ky(T�1)
k � f (T )(xk)k, ky(T�2)

k � f (T�1)(y
(T�1)
k )k, · · · , and

ky(1)
k � f (2)(y

(2)
k )k in a super-martingale form.

Next, we present a lemma used in the analysis in part (b).

9



Lemma 2.2. Suppose that Assumption 2.1 and 2.2 hold, and X = RdT . Let F ⇤ = minx2X F (x),

then Algorithm 1 generates a sequence {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 such that

E[F (xk+1) � F ⇤|Fk]

 F (xk) � F ⇤ � ↵k

2
krF (xk)k2 +

1

2
↵2

kLF C1C2 · · · CT + (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk]

+ (T � 2)�T�2,kE[ky(T�2)
k � f (T�1)(y

(T�1)
k )k2|Fk] + · · · + �1,kE[ky(1)

k � f (2)(y
(2)
k )k2|Fk],

for k su�ciently large, with probability 1.

This lemma tells us that for T -level SCGD with general nonconvex objective function F ,

(F (xk+1) � F ⇤) can be bounded by (F (xk) � F ⇤), ky(T�1)
k � f (T )(xk)k, ky(T�2)

k � f (T�1)(y
(T�1)
k )k,

· · · , and ky(1)
k �f (2)(y

(2)
k )k in a super-martingale form. Similar as in Lemma 2.1, we shall construct

the super-martingales for ky(T�1)
k �f (T )(xk)k and ky(j)

k �f (j+1)(y
(j+1)
k )k for j = T �2, · · · , 1 respec-

tively, and then use Lemma 2.4 to show the almost sure convergence of (F (xk) � F ⇤) for a T -level

SCGD with nonconvex objective F . With further analysis, we show that any limiting point of the

sequence {xk}1k=0 is a stationary point with probability 1, which proves part (b) of Theorem 2.1.

Next, we analyze the term ky(j)
k � f (j+1)(y

(j+1)
k )k for j = T � 1, · · · , 1 and construct the proper

super-martingales for them respectively.

Lemma 2.3. Let Assumption 2.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence gener-

ated by Algorithm 1. For j = T � 1, · · · , 1, suppose E[ky(j+1)
k+1 � y

(j+1)
k k2]  O(�2

j+1,k) for all k,

then we have

(a) For all k, with probability 1,

E[ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k2|Fk+1]

(1 � �j,k)ky(j)
k � f (j+1)(y

(j+1)
k )k2 + ��1

j Cj+1E[ky(j+1)
k+1 � y

(j+1)
k k2|Fk+1] + 2Vj+1�

2
j,k.

(2.3)

(b) If
P1

k=1 �
2
j+1,k/�j,k < 1, then

1X

k=1

��1
j,k E[ky(j)

k+1 � y
(j)
k k2|Fk+1] < 1, w.p.1.

(c) There exists a constant Dj � 0 such that E[ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k2]  Dj for all k.

(d) E[ky(j)
k+1 � y

(j)
k k2]  O(�2

j,k) for all k.

Note that here we use y
(T )
k = xk and �T,k = ↵k for ease of notation. This lemma constructs

super-martingales of
�
ky(j)

k � f (j+1)(y
(j+1)
k )k

 1
k=1

for j = T � 1 · · · , 1 respectively, and it also

shows that under proper assumptions, the tail part for the super-martingale, ��1
j Cj+1E[ky(j)

k+1 �
y

(j)
k k2|Fk] + 2Vj+1�

2
j,k, converges almost surely.

Previous lemmas provide basic blocks for us to build a T -element super-martingale. We then

provide the T -element super-martingale convergent lemma to establish the convergence property

of {xk � x⇤}.
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Lemma 2.4 (T -element supermartingale convergence). Let {Xk},{Y
(T�1)
k },· · · ,{Y

(1)
k }, {⌘k}, and

{u
(j)
k },{µ

(j)
k },{✓(j)

k } for j = 1, · · · , T be sequences of nonnegative random variables such that

E[Xk+1|Gk]  (1 + ⌘k)Xk � u
(T )
k +

T�1X

j=1

cj✓
(j)
k Y

(j)
k + µ

(T )
k ,

and

E[Y
(T�1)
k+1 |Gk]  (1 � ✓

(j)
k )Y

(j)
k � u

(j)
k + µ

(j)
k , for j = T � 1, ..., 1,

for all k, where Gk is the collection of random variables
n

{Xi}k
i=0, {Y

(T�1)
i }k

i=0, · · · , {Y
(1)
i }k

i=0, {⌘i}k
i=0, {u

(j)
i }k

i=0, {µ
(j)
i }k

i=0, {✓(j)
i }k

i=0, for j = 1, · · · , T
o

,

and cT�1, cT�2 · · · , c1 are positive scalars. Assume that

1X

k=0

⌘k < 1,
1X

k=0

µ
(j)
k < 1, for j = 1, · · · , T.

Then {Xk}, {Y
(1)
k }, {Y

(2)
k }, · · · , {Y

(T�1)
k } converge almost surely to T nonnegative random variables

respectively, and we have

TX

j=1

1X

k=0

u
(j)
k < 1,

1X

k=0

T�1X

j=1

cj✓
(j)
k Y

(j)
k < 1 w.p.1.

To prove Theorem 2.1 part (a), by Lemma 2.1 and Lemma 2.3, we construct a T -element

super-martingale by letting

Xk = kxk � x⇤k2, Y
(T�1)
k = E[ky(T�1)

k � f (T )(xk)k2|Fk],

Y
(T�2)
k = E[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk], · · · , Y

(1)
k = E[ky(1)

k � f (2)(y
(2)
k )k2|Fk],

⌘k = [
↵2

k

�T�1,k
+ · · · +

↵2
k

�1,k
]C0, u

(T )
k = 2↵k(F (xk) � F ⇤),

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 1, · · · , cT�1 = T � 1,

µ
(1)
k = 2�2

1,kV1 + O(
E[ky(2)

k+1 � y
(2)
k k2|Fk]

�1,k
), · · · ,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k2|Fk]

�T�2,k
),

µ
(T�1)
k = 2�2

T�1,kVT + O(
E[kxk+1 � xkk2|Fk]

�T�1,k
),

µ
(T )
k = ↵2

kC1C2 · · · CT , ✓
(1)
j = �1,k, · · · , ✓

(T�1)
j = �T�1,k.

Under the conditions in Theorem 2.1, we have that the T -element super-martingale converges

almost surely to T random variables by Lemma 2.4, thus kxk � x⇤k converges almost surely, and

1X

k=0

↵k(F (xk) � F ⇤) < 1, w.p.1,

11



which further implies that

lim inf
k!1

F (xk) = F ⇤, w.p.1.

Finally, the following lemma shows the the sequence {xk}1k=0 converges almost surely to an optimal

solution to problem (1.1), which completes the proof of part (a).

Lemma 2.5. Let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence generated by Algorithm 1. Let F ⇤ =

F (x⇤), where x⇤ is an optimal solution to problem (1.1). Suppose

lim inf
k!1

F (xk) = F ⇤, w.p.1,

then {xk} converges almost surely to a random point in the set of optimal solutions to problem

(1.1).

For part (b), by Lemma 2.2 and Lemma 2.3, we construct the T -element super-martingale for

general non-convex functions, and show that {F (xk)�F ⇤} converges almost surely by Lemma 2.4,

which further implies
P1

k=0 ↵kkrF (xk)k2 < 1 with probability 1. Then, we have the following

lemma which shows that any limiting point of the sequence {xk} is a stationary point of F (x) with

probability 1.

Lemma 2.6. Let
�
(xk, y

(T�1)
k , · · · , y

(1)
k )
 1

k=0
be the sequence generated by Algorithm 1. SupposeP1

k=0 ↵k = 1 and
P1

k=0 ↵kkrF (xk)k2 < 1 with probability 1, then any limiting point of the

sequence {xk} is a stationary point of F (x) with probability 1.

This concludes the proof for part (b).

2.3 Convergence Rate of T -SCGD

In this subsection, we analyze the convergence rate of Algorithm 1. Specifically, we derive the rate

through taking the averaged iterates bxn = 1
Nn

Pn
k=n�Nn+1 xk, where Nn = dn/2e. Note that similar

results still hold if we let Nn = n/C for other constant C > 0.

Clearly, the rate of convergence is closely related to the stepsizes ↵k’s and �j,k’s. We consider

stepsizes of the form

↵k = k�a and �j,k = k�bj for all j = T � 1, ..., 1, (2.4)

where a and bj ’s are real numbers.

Theorem 2.2 (Convergence rate of T -SCGD). Suppose that Assumption 2.1 holds, and the objec-

tive function F (·) is convex. Let D > 0 be such that supx02X kx0 � x⇤k < D, and let the stepsizes

be ↵k = k�a, �j,k = k�bj for j = T � 1, · · · , 1, where (a, bT�1, bT�2, · · · , b1) 2 (0, 1). If we choose

a = 1 � 1
2T , bT�1 = 1 � 1

2T�1 , · · · , b1 = 1 � 1
2 , letting {(xk, y

(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence

generated by the T -SCGD Algorithm 1 starting with an arbitrary initial point (x0, y
(T�1)
0 , · · · , y

(1)
0 ),

we obtain

E[F (bxn) � F ⇤]  O(n�1/2T
).
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Proof Outline. We present the outline of proof here and defer the details in Appendix B. We first

derive the convergence rate of ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k and ky(j)

k+1 � y
(j)
k k for j = T � 1, · · · , 1.

By Lemma 2.3 and Lemma B.1 in the Appendix, we have the following lemma characterizing the

corresponding convergence rates:

Lemma 2.7. Let Assumption 2.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence gener-

ated by Algorithm 1. For any basic update step j = T � 1, · · · , 1, we have

E[ky(j)
k � f (j+1)(y

(j+1)
k )k2]  O(k�2bj+1+2bj ) + O(k�bj ) for all k.

Next, define the random variable

Jk ⌘ kxk�x⇤k2+(T�1)ky(T�1)
k �f (T )(xk)k2+(T�2)ky(T�2)

k +f (T�1)(y
(T�1)
k )k2+· · ·+ky(1)

k �f (2)(y
(2)
k )k2,

so we have E[Jk]  DT + (T � 1)DT�1 + (T � 2)DT�2 + · · · D1 ⌘ DJ .

We multiply (2.3) by j ⇥ (1 + �j,k) for every j from T � 1 to 1, take their sums with (2.2), and

take the expectation on both sides. By Lemma 2.7, we obtain

E[Jk+1] 
⇣
1 + [

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
]C0

⌘
E[Jk] � 2↵k

�
F (xk � F ⇤)

�

+ C1C2 · · · CT↵
2
k + 4(T � 1)VT�

2
T�1,k +

2(T � 1)C1C2 · · · CT�1C
2
T↵

2
k

�T�1,k

+
T�2X

j=1

j ⇥
h
4Vj+1�

2
j,k +

2Cj+1

�j,k
O(�2

j+1,k)
i
.

Let N > 0, by reordering the terms in the preceding relation and taking its sum over k�N, · · · , k,

with basic algebra, we have

2
kX

t=k�N

E[F (xt) � F ⇤]

 kaD +

kX

t=k�N

(k�a+bT�1 + · · · + k�a+b1)C0DJ

+
kX

t=k�N

O(k�a) +
T�1X

j=1

kX

t=k�N

O(k�2bj+a) +
kX

t=k�N

O(k�a+bT�1) +
T�2X

j=1

kX

t=k�N

O(k�2bj+1+a+bj ).

Finally, we optimize the convergence rate by choosing a = 1� 1
2T , bT�1 = 1� 1

2T�1 , · · · , b1 = 1� 1
2

and obatin

E[F (bxk) � F ⇤]  1

Nk

kX

t=k�N

E[F (xt) � F ⇤]  O(k�1/2T
),

which completes the proof.

This result provides a sample complexity upper bound for the multi-level stochastic compo-

sitional optimization problem. In the case where T = 2, this result matches the convergence of

basic-SCGD given in [26].
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3 Accelerated Multi-Level Stochastic Gradient Algorithm

In the previous section, we establish an O(n�1/2T
) rate of convergence for the T -level stochastic

compositional optimization problem. A key question is whether and when we can better utilize

noisy gradients of component functions and improve the overall convergence rate.

Throughout this section, in addition to Assumption 2.1, we impose the following assumption:

Assumption 3.1. Let C1, C2, · · · , CT , V1, · · · , VT be positive scalars.

(i) The samples f
(j)
!T,k(·), erf

(j)
!T,k(·) have bounded fourth-order moments such that with probability

1,

E[kerf (T )
!T,0

(x)k4|!1,0, · · · , !T�1,0]  C2
T ,

and E[kf (T )
!T,0

(x) � f (T )(x)k4|!1,0, · · · , !T�1,0]  V 2
T , 8x 2 X .

(ii) The samples f
(j)
!j,k(·)’s and rf

(j)
!j,k(·)’s have bounded fourth-order moments such that with

probability 1,

E[krf (j)
!j,0

(xj)k4|!1,0, · · · , !j�1,0]  C2
j ,

and E[kf (j)
!j,0

(xj) � f (j)(xj)k4|!1,0, · · · , !j�1,0]  V 2
j , 8xj 2 Rdj , and for j = T � 1, · · · , 1.

We also consider the case when the first inner level function f (T ) also has Lipschitz continuous

gradients. In some part of our subsequent analysis, we make the following assumption.

Assumption 3.2. The function f (T ) has Lipschitz continuous gradient such that

krf (T )(x) �rf (T )(x̄)k  LT kx � x̄k,

for all x, x̄ 2 X .

In what follows, we propose an accelerated algorithm to better utilize those smoothness prop-

erties and achieve improved convergence rates. I

3.1 An Extrapolation-Interpolation Scheme For Acceleration

The basic idea of acceleration is to refine the running estimates of the value functions by using

additional extrapolations. The same idea has been used for the case where T = 2. Specifically, in

[26], with an additional bounded fourth moments assumption, the authors developed an accelerated

SCGD (a-SCGD) algorithm and achieved faster convergence rate using an extra extrapolation step

per iteration.

Now we develop a new accelerated algorithm for the multi-level problem that runs as follows:

At the k-th iteration, we first update the main iterate solution xk+1 by the chain rule,

xk+1 = ⇧X
n

xk � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )
o

.
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We then update the running estimate y
(T�1)
k for E!T,k

[f
(T )
!T,k(xk)|!1,k, · · · , !T�1,k] by taking weighted

average between the new sample and the previous estimate. Specifically, we update y
(T�1)
k by letting

y
(T�1)
k+1 = (1 � �T�1,k)y

(T�1)
k + �T�1,kf

(T )
!T,k+1

(xk+1).

Next, we conduct extrapolation steps for acceleration. The intuition is that we can use sample

gradients of individual component functions more e�ciently when these functions are smooth, which

allows us to obtain better estimates of f (j)’s. In particular, our accelerated updates for the auxiliary

variables are performing first-oder running approximations of the true values. In comparison, the

corresponding updates used in T -SCGD can be viewed as zeroth-order running approximations.

Specifically, at the k-th iteration, we refine our estimate y
(j)
k+1 by taking an additional extrapolation

step and obtaining a new auxiliary variable by(j)
k+1:

by(j)
k+1 = (1 � 1/�j,k)y

(j+1)
k + y

(j+1)
k+1 /�j,k.

Then, when we update y
(j)
k+1, we plug in this auxiliary variable aiming for a better estimate that

y
(j)
k+1 = (1 � �j,k)y

(j)
k + �j,k · f (j+1)

!j+1,k+1
(by(j)

k+1).

We point out that this is essentially a weighted smoothing scheme, where by(j)
k ’s are obtained

through extrapolation steps to further utilize the smoothness in order to improve the conver-

gence rate. Roughly speaking, this further extrapolation step helps us achieve estimators y
(j)
k+1’s

for f (j+1)(y
(j+1)
k+1 )’s accurate up to the second order terms if we take Taylor expansions of f (j)’s. In

comparison, without the extrapolation, if we directly plug in y
(j+1)
k+1 ’s instead, the estimators are

only accurate up to the first order terms. We call this an accelerating update step. Note that here

we do not assume f (T ) has Lipschitz continuous gradient as in some applications, f (T ) includes

some sparse-inducing regularization terms and is not continuously di↵erentiable.

When Assumption 3.2 holds, we update the main iteration by the chain rule, and then apply

extrapolation to this level to better utilize the smoothness. That is, we refine our estimate y
(T�1)
k+1

with an additional extrapolation step and an auxiliary variable by(T�1)
k+1 as

by(T�1)
k+1 = (1 � 1/�T�1,k)xk + xk+1/�T�1,k.

Next, we update y
(T�1)
k+1 by this auxiliary variable such that

y
(T�1)
k+1 = (1 � �T�1,k)y

(T�1)
k + �T�1,kf

(T )
!T,k+1

(by(T�1)
k+1 ).

For the remaining levels, we apply the same procedure as in the accelerating update steps previously

described. We summarize those two slightly di↵erent accelerated algorithms in Algorithm 2.

In the remaining part of this section, we provide theoretical guarantees for this accelerated

algorithm. We first provide the almost sure convergence result that almost surely, our algorithm

converges to an optimal solution when the problem is convex, and any limiting point of the generated

solution path is a stationary point. Next, we obtain an improved convergence rate for our algorithm

for general nonconvex objective functions. Furthermore, we investigate the case when the objective

function is strongly convex, and shows that one can achieve faster convergence. For all results, we

provide outlines and key lemmas in the main text, and defer the detailed proofs in Appendix C, D

and E.
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Algorithm 2 Accelerated T -Level Stochastic Compositional Gradient Descent (a-TSCGD)

Input: x0 2 RdT , y
(j)
0 2 Rdj for j = T � 1, ..., 1, SO, K, stepsizes {↵k}K

k=0,{�j,k}K
k=0 for

j = T � 1, ..., 1.

Output: The sequence {xk}K
k=0.

for k = 0, ..., K do

Query the SO for the sample values of f (T ), · · · , f (1) at xk, y
(T�1)
k , · · · , y

(1)
k , obtain erf

(T )
!T,k(xk),

rf
(T�1)
!T�1,k+1(y

(T�1)
k ), · · · ,rf

(1)
!1,k(y

(1)
k ).

Update the main iterate by

xk+1 = ⇧X
n

xk � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )
o

.

if Assumption 3.2 is known to hold then

Update the auxiliary variable by(T�1)
k+1 by

by(T�1)
k+1 = (1 � 1/�T�1,k)xk + xk+1/�T�1,k.

Query the SO for the sample value of f (T ) at by(T�1)
k+1 , obtain f

(T )
!T,k+1(by

(T�1)
k+1 ).

Update

y
(T�1)
k+1 = (1 � �T�1,k)y

(T�1)
k + �T�1,kf

(T )
!T,k+1

(by(T�1)
k+1 ).

else if Assumption 3.2 is NOT known to hold then

Query the SO for the sample values of f (T ) at xk, obtain f
(T )
!T,k+1(xk).

Update y(T�1) by

y
(T�1)
k+1 = (1 � �T�1,k)y

(T�1)
k + �T�1,kf

(T )
!T,k+1

(xk+1).

end if

for j = T � 1, · · · , 2 do

Update the auxiliary variable by(j�1)
k+1 by

by(j�1)
k+1 = (1 � 1

�j�1,k
)y

(j)
k +

1

�j�1,k
y

(j)
k+1.

Query the SO for the sample value of f (j) at z
(j�1)
k+1 , obtain f

(j)
!j,k+1(z

(j�1)
k+1 ).

Update y(j) by

y
(j�1)
k+1 = (1 � �j�1,k)y

(j�1)
k + �j�1,kf

(j)
!j,k+1

(by(j�1)
k+1 ).

end for

end for
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3.2 Almost Sure Convergence Of a-TSCGD

We first investigate whether and under what condition the algorithm converges almost surely. In

particular, we provide su�cient conditions of the stepsizes, such that when the problem is convex,

the algorithm converges to an optimal solution almost surely, and when the problem is nonconvex,

all limiting points of the solution path generated by the algorithm are stationary points almost

surely when F (x) has Lipschitz continuous gradient.

Theorem 3.1 (Almost sure convergence for a-TSCGD). Let Assumptions 2.1 and 3.1 hold, and

let the stepsizes {↵k}, {�T�1,k}, · · · , {�1,k} be such that

1X

k=0

↵k = 1,

1X

k=0

�T,k = 1, · · · ,

1X

k=0

�1,k = 1,

1X

k=0

⇣
↵2

k + �2
T�1,k + · · · + �2

1,k +
↵2

k

�T�1,k
+ · · · +

↵2
k

�1,k

⌘
< 1,

and 1X

k=0

⇣�4
T�1,k

�3
T�2,k

+ · · · +
�4

2,k

�3
1,k

⌘
< 1.

Let
�
(xk, y

(T�1)
k , · · · , y

(1)
k )
 1

k=0
be the sequence generated by Algorithm 2 starting with an arbitrary

initial point (x0, y
(T�1)
0 , · · · , y

(1)
0 ). Then:

(a) If F is convex, the sequence {xk}1k=0 converges almost surely to a random point in the set of

optimal solutions to problem (1.1).

(b) Suppose in addition that Assumption 2.2 holds, X = RdT , and all samples generated by the

SO are uniformly bounded. Then any limiting point of the sequence {xk}1k=0 is a stationary

point of problem (1.1) almost surely.

Furthermore, if Assumption 3.2 also holds, i.e., when f (T ) has Lipschitz continuous gradient, then

if the stepsizes also satisfy
1X

k=0

↵4
k

�3
k

< 1,

the assertions in (a) and (b) also hold.

Proof Outline. We provide the proof outline here for the case when the first inner level function

f (T ) is non-smooth. The analysis for problems with a smooth first inner level function could be

derived from the non-smooth case, and we present the details for both cases in Appendix C.

Essentially, we construct a T -element super-martingale to derive the almost sure convergence

of the algorithm. We denote by Fk the collection of random variables up to the k-th iteration, i.e.,

Fk =
n

{xi}k
i=0, {y

(T�1)
i }k�1

i=0 , · · · , {y
(1)
i }k�1

i=0 , {by(T�2)
i }k�1

i=0 , · · · , {by(1)
i }k�1

i=0 , {!T,i}k�1
i=1 , · · · , {!1,i}k�1

i=1

o
.

For the first inner level, since f (T ) is non-smooth, we construct the super-martingale for this level

by Lemma 2.3. With the additional finite fourth-moment Assumption 3.1, we can derive a stronger

result in the following lemma.
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Lemma 3.1. Let Assumptions 2.1 and 3.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence

generated by Algorithm 2. Suppose E[kxk+1�xkk4]  O(↵4
k) for all k and ↵k/�T�1,k ! 0 as k ! 0,

in addition to Lemma 2.3 (a) (b) and (c), we have:

(a) There exists a constant ST�1 > 0 such that E[ky(T�1)
k � f (T )(xk)k4]  ST�1 for all k.

(b) E[ky(T�1)
k+1 � y

(T�1)
k k4]  O(�4

T�1,k) for all k.

Next, to construct the super-martingale for the accelerating update steps, we present the fol-

lowing lemma.

Lemma 3.2. Let Assumption 2.1 and 3.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=1 be the sequence

generated by Algorithm 2. For j = T � 2, · · · , 1, suppose E[ky(j+1)
k+1 � y

(j+1)
k k4]  O(�4

j+1,k) for all

k and �j+1,k/�j,k ! 0 as k ! 0, then there exists a random variable e
(j)
k 2 Fk+1 for all k satisfying

ky(j)
k � f (j+1)(y

(j+1)
k )k  e

(j)
k such that:

(a) For all k, with probability 1,

E[[e
(j)
k+1]

2|Fk+1]  (1 � �j,k

2
)[e

(j)
k ]2 + 2�2

j,kVj+1 + O
 

E[ky(j+1)
k+1 � y

(j+1)
k k4|Fk+1]

�3
j,k

!
.

(b) If
P1

k=1 �
4
j+1,k/�

3
j,k < 1, we have

1X

k=1

E[ky(j+1)
k+1 � y

(j+1)
k k4|Fk+1]

�3
j,k

< 1 w.p.1.

(c) There exists a constant Dj � 0 such that E[e
(j)
k ]2  Dj for all k.

(d) There exists a constant Sj � 0 such that E[ky(j)
k � f (j+1)(y

(j+1)
k )k4]  Sj for all k.

(e) E[ky(j)
k+1 � y

(j)
k k4]  O(�4

j,k) for all k.

By Lemmas 2.1, 2.3, 3.1 and 3.2, we construct the T -element super-martingale and show its
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convergence by letting

Xk = kxk � x⇤k2, Y
(T�1)
k = E[ky(T�1)

k � f (T )(xk)k2|Fk],

Y
(T�2)
k = E[[e

(T�2)
k ]2|Fk], · · · , Y

(1)
k = E[[e

(1)
k ]2|Fk],

⌘k = [
↵2

k

�T�1,k
+ · · · +

↵2
k

�1,k
]C0, u

(T )
k = 2↵k(F (xk) � F ⇤),

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 2, · · · , cT�2 = 2(T � 2), cT�1 = T � 1,

µ
(T�1)
k = CT�

�1
T�1,kE[kxk+1 � xkk2|Fk] + 2VT�

2
T�1,k,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k4|Fk]

�3
T�2,k

), · · · ,

µ
(1)
k = 2�2

1,kV1 + O(
E[ky(2)

k+1 � y
(2)
k k4|Fk]

�3
1,k

),

µ
(T )
k = ↵2

kC1C2 · · · CT ,

✓
(1)
k = �1,k/2, · · · , ✓

(T�2)
k = �T�2,k/2, ✓

(T�1)
k = �T�1,k.

The rest of the proof is similar to that of Theorem 2.1, and we defer the details in Appendix C to

avoid repetition. Besides, to prove part (b), we construct a T -element super-martingale by applying

Lemmas 2.2, 2.3, 3.1 and 3.2, and show any limiting point is a stationary point with probability 1

by Lemma 2.6, which is deferred in Appendix C as well.

3.3 Convergence Rate Results For a-TSCGD

In this subsection, we study the rate of convergence of the algorithm. We consider stepsizes of the

form

↵k = k�a, �T�1,k = k�bT�1 , and �j,k = 2k�bj for all j = T � 2, · · · , 1,

where a and bj ’s are real numbers if the first inner level function f (T ) is nonsmooth, and we choose

the step-sizes to be

↵k = k�a, and �j,k = 2k�bj for all j = T � 1, · · · , 1,

if f (T ) is smooth. After optimizing the rate over all a and bj ’s, we get the following result for both

convex and nonconvex F (x).

Theorem 3.2 (Convergence rate of a-TSCGD). Suppose that Assumptions 2.1, 2.2 and 3.1 hold

and X = RdT . Let the stepsizes be ↵k = k�a, �T�1,k = k�bT�1 and �j,k = 2k�bj for j = T�2, · · · , 1,

where a, bT�1, ..., b1 2 (0, 1). If we choose the step-sizes as a = 4+T
8+T and bj = j+3

8+T for j = T�2, ..., 1,

letting {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence generated by a-TSCGD Algorithm 2, we obtain

Pn
k=1 E[krF (xk)k2]

n
 O(n�4/(8+T )).
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Furthermore, if Assumption 3.2 also holds, Algorithm 2 achieves

Pn
k=1 E[krF (xk)k2]

n
 O(n�4/(7+T )),

with ↵k = k�a and �j,k = 2k�bj , where a = 3+T
7+T and bj = j+3

7+T for j = T � 1, ..., 1.

Proof Outline. We present the outline of proof here and defer the detailed analysis in Appendix D.

The analysis is similar to Theorem 2.2. For the accelerating update steps, by Lemma 3.2 and

Lemma B.1 in the Appendix, we have the following result:

Lemma 3.3. Let Assumptions 2.1 and 3.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence

generated by Algorithm 2. Then for any accelerated update step, we have for all k

E[ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k2]  O(k4(bj�bj+1)) + O(k�bj ), j = T � 2, · · · , 1.

Under additional Assumption 2.2 that F has Lipschitz gradient, we have the following result.

Lemma 3.4. Let Assumptions 2.1, 2.2 and 3.1 hold, and let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the

sequence generated by Algorithm 2, then we have for all k

E[krF (xk)k2]

2↵�1
k E

h
F (xk)] � 2↵�1

k E[F (xk+1)
i

+ O
⇣
E[ky(T�1)

k+1 � f (T )(xk)k2]
⌘

+ O
⇣
E[ky(T�2)

k+1 � f (T�1)(y
(T�1)
k+1 )k2]

⌘

+ · · · + O
⇣
E[ky(1)

k+1 � f (2)(y
(2)
k+1)k2]

⌘
+ O(↵k).

Summing up the inequalities in the previous lemma from k = 0 to n, by Lemma 2.7 and

Lemma 3.3, we obtain

Pn
k=1 E[krF (xk)k2]

n
 O

⇣
na�1 + n�2a+2bT�1Ilog n

2(a�bT�1)=1 + n�bT�1 + n�a
⌘

+ O
⇣ T�2X

j=1

[n4(bj�bj+1)Ilog n
4(bj+1�bj)=1 + n�bj ]

⌘

 O(n�4/(8+T )),

by choosing a = 4+T
8+T and bj = 3+j

8+T for j = T � 1, · · · , 1.

Furthermore, if Assumption 3.2 also holds, i.e., the first inner level function f (T ) has Lipschitz

continuous gradient, then the first inner level could also be updated by the accelerating update

rule. By similar analysis as in Lemma 3.3, we have for all k,

E[ky(T�1)
k+1 � f (T )(xk+1)k2]  O(k4(bT�1�a)) + O(k�bT�1).

Combine this inequality with Lemmas 3.3 and 3.4, by choosing a = 3+T
7+T and bj = 3+j

7+T for j =

T � 1, · · · , 1, we obtain Pn
k=1 E[krF (xk)k2]

n
 O(n�4/(7+T )),

which completes the proof.
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This result shows that one can solve the multi-level composition problem using few calls to

the sampling oracle when individual component functions are smooth. In the special case where

T = 2, when the first inner level is smooth, our result strictly improves the convergence rate of

the a-SCGD in [26] from O(n�2/7) to O(n�4/9). In this case our result matches the convergence

rate by ASC-PG in [28]. To the best of our knowledge, our results for the T -level problem strictly

improve and generalize existing results which work for the case where T = 2.

Next we investigate the convergence rate of Algorithm 2 for optimally strongly convex objective

functions. Denote by X ⇤ the set of optimal solutions x⇤ to problem (1.1). We say that the objective

function F is optimally strongly convex with parameter � > 0 if

F (x) � F
�
⇧X ⇤(x)

�
� �kx �⇧X ⇤(x)k2, 8x 2 X . (3.1)

Clearly, the class of optimally strongly convex functions strictly contains all strongly convex func-

tions, and is thus more general.

In the next theorem, we prove that for optimally strongly convex objective, our algorithm

converges faster. We defer the detailed proof to Appendix E.

Theorem 3.3 (Convergence rate of a-TSCGD for strongly convex problems). Let Assumptions 2.1,

2.2 and 3.1 hold. Suppose that the objective function F (x) in (1.1) is optimally strongly convex

with some parameter � > 0 defined in (3.1) . Set ↵k = 1
�k�a, �T�1,k = k�bT�1 and �j,k = 2k�bj

for j = T � 2, · · · , 1. Let {(xk, y
(T�1)
k , · · · , y

(1)
k )}1k=0 be the sequence generated by a-TSCGD

Algorithm 2, then

E[kxn �⇧X ⇤(xn)k2]  O
⇣
n�a + n�2(a�bT�1) + n�bT�1 +

T�2X

j=1

[n�4(bj+1�bj) + n�bj ]
⌘
.

With the choice of a = 1, bT�1 = 2+T
4+T , bT�2 = 1+T

4+T , · · · , b1 = 4
4+T , we have

E[kxn �⇧X ⇤(xn)k2]  O(n�4/(4+T )).

Furthermore, if Assumption 3.2 also holds, Algorithm 2 achieves

E[kxn �⇧X ⇤(xn)k2]  O(n�4/(3+T )),

with the stepsizes being ↵k = 1
�k�a and �j,k = 2k�bj , where a = 1 and bj = 3+j

3+T for j = T�1, · · · , 1.

This result shows that our algorithm achieves a faster convergence for those problems of op-

timally strongly convexity in the objective functions. For the speical case T = 1 with a smooth

strongly convex function, this result achieves a convergence rate of O(n�1), which meets the con-

vergence rate of the single-level strongly convex stochastic optimization. Besides, for a special case

T = 2 with a smooth first inner level function, this result achieves a convergence rate of O(n�4/5),

which matches the convergence rate ASC-PG in [28] for optimally strongly convex problems.

4 Examples of Applications

In this section, we provide two motivating applications of the T -level stochastic compositional opti-

mization problem (1.1). The first motivating application is the risk-averse stochastic optimization.
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Risk-averse stochastic optimization finds wide applications in many fields such as risk management

[4] and government planning [3]. Among di↵erent formulations of risk-averse stochastic optimiza-

tion problems, one particular important problem is the mean-deviation risk-averse optimization

problem that

max
x

⇢(U(x, w)) := max
x

⇢
E! [U(x, !)] � �E

h
(E [U(x, !)] � U(x, !))p

+

i1/p
�

. (4.1)

Here the objective ⇢ is the composition of three expected-value functions. It is also a law-invariant

coherent risk measure. See [21, 1] for more detailed discussions.

This problem falls into the problem class (1.1) as a three-level stochastic compositional opti-

mization problem. In particular, the problem is equivalent to

min
x

(f (1) � f (2) � f (3))(x),

where

f (1)
�
(y1, y2)

�
= y1 � y

1/p
2 , f (2)

�
z, x
�

=
�
z, E!

⇥
(z � U(x, !))p

+

⇤�
, and f (3)(x) = (E! [U(x, !)] , x).

Another example is multi-level optimization problem. A T -level optimization problem takes the

following general form (see textbook [24] for more details)

min
x1

E!1

h
min
x2

(E!2|!1

h
· · · min

xT

(E!T |!1,!2,··· ,!T�1

h
U(x1, !1, x2, !2, · · · , xT , !T )

i
)
i
)
i
,

where x1, . . . , xT are decision variables at levels from 1 to T , !1, . . . , !T are random variables which

are revealed after each level, and U(x1, !1, x2, !2, · · · , xT , !T ) is some utility function. In the case

where the stochastic process !1, . . . , !T is generated by a random walk on a finite number of states,

the problem becomes

min
x1

E!1

h
min
x2

(E!2|!1

h
· · · min

xT

(E!T |!T�1

h
U(x1, !2, x2, !3, · · · , xT , !T )

i
)
i
)
i
.

It can be viewed as an extension of finite-horizon reinforcement learning, in which the overall

objective is no longer additive with respect to levels and decisions are continuous. This problem

takes a form similar to (1.1), especially when the state space and decision space are finite and

discrete. Note that in this problem, f (1)(·) = minx2(·), f (2)(·) = minx3(·),· · · , and f (T�1)(·) =

minxT (·), where all of them are non-di↵erentiable. Thus we may use a smooth approximation (e.g.,

a softmax operator) to replace these minx2 ,· · · , minxT operators, then apply the T -level SCGD

methods to solve the approximate T -level optimization problem.

5 Numerical Experiments

In this section, we conduct numerical experiments. We consider the risk-averse stochastic optimiza-

tion in a regression setting. In particular, consider a linear model Y = X�⇤ + ✏, where we assume

all samples of X and ✏ are independently and identically distributed. Our goal is to estimate �⇤,
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Figure 2: Averaged di↵erence between generated solution and the optimal solution and empirical

convergence rate when d = 50

and we consider a risk-averse formulation. Consider the risk-averse optimization problem (4.1).

Denoting the i-th sample by !i = {xi, yi}, we take

U(�, !i) = �(yi � xT
i �)2,

and we set p = 2. To the best of our knowledge, our algorithm is the first gradient-based method

which can be adopted to solve this 3-level stochastic optimization problem. We point out that this

approach of risk-averse regression tends to provide “stable” solutions. This defines a general notion

of stability in statistics in [17, 25], where the stability is usually defined as variance, and we also

penalize the “good” cases when the empirical error is smaller than its expectation. In comparison,

in our approach, we do not penalize these “good” cases.

Let the dimension of the covariate xi be d. We consider three setups to generate the data that

• Setup 1: X ⇠ N(0, Id).

• Setup 2: X ⇠ N(0,⌃), where ⌃jj = 1 and ⌃jk = 0.5 for j, k = 1, ..., d and j 6= k.

• Setup 3: X ⇠ N(0,⌃), where ⌃jk = 0.5e�
|j�k|

d .

Since our problem is convex, by our theoretical analysis, the generated sequence of solutions

converges to the optimal solution. As the true optimal solution is unknown (Note that �⇤ is

not necessarily the optimal solution), we take the solution after 500,000 iterations as the optimal

solution. We run 100 replications and plot the averaged di↵erence between the solution at the k-th

iteration �k and the optimal solution b� in Figures 2, 3, 4 and 5.

Meanwhile, in all setups, we draw the error ✏ and generate each component of �⇤ 2 Rd inde-

pendently from a standard normal distribution. We also consider di↵erent d 2 {50, 100, 150, 200},

which are specified in the Figures. In each iteration of the algorithm, we draw a new sample of X

and Y , and update the solution using Algorithm 2.

Besides, to further investigate empirical rates of convergence under all di↵erent settings, we plot

the averaged log(k) vs. log(k�k � b�k) after 100 replications in the figures, where b� is the optimal

solution. We find that for all cases, the slopes of the lines are close to �2/5, which matches our

theoretical analysis that our algorithm converges at a rate of O(k�2/5) for three-level problems.
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Figure 3: Averaged di↵erence between generated solution and the optimal solution and empirical

convergence rate when d = 100.
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Figure 4: Averaged di↵erence between generated solution and the optimal solution and empirical

convergence rate when d = 150.
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Figure 5: Averaged di↵erence between generated solution and the optimal solution and empirical

convergence rate when d = 200.
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6 Conclusion

In this paper, we propose the first gradient-type algorithms for a class of multi-level stochastic

compositional optimization problems. We provide strong theoretical guarantees for our algorithms.

In particular, we prove almost sure convergence results that when the problem is convex, our

algorithm converges to an optimal solution, and when the problem is nonconvex, every limiting

point of the sequence of solutions is an stationary point. Under various assumptions, we further

characterize the rates of convergence of our algorithms. In the case where T = 2, our convergence

rate result matches and strictly generalizes the best known result by [28]. In the case where

T � 3, our results provide the first few benchmarks on the sample complexity for solving multi-

level stochastic optimization problems.

There are several interesting future research questions. First, our convergence rate result re-

quires that the inner-level functions f (2), · · · , f (T ) be smooth. It is unclear how to achieve fast

convergence when some of these functions are non-smooth. Second, it is not clear whether the

convergence rate can be improved or not. We are not aware of any sample complexity lower bound

for the multi-level stochastic optimization problem. Third, it is of practical interest to consider the

special case where all expectations are finite sums. In this case, one may conjecture that variance

reduction can be used to further improve the algorithms’ e�ciency.
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Appendix to “Multi-Level Stochastic Compositonal Optimization”

Shuoguang Yang⇤ Mengdi Wang† Ethan X. Fang‡

A Proof of Theorem 2.1

In this section, we present the detailed proof for Theorem 2.1.

A.1 Proof of Lemma 2.1

Before presenting the detail proof of Lemma 2.1, we present a lemma that is used in proving

Lemma 2.1.

Lemma A.1. Suppose Assumption 2.1 holds, and let
�
(xk, y

(T�1)
k , · · · , y

(1)
k )

 1
k=0

be the sequence

generated by Algorithm 1. Denote by erF!k
(xk) ⌘ erf

(T )
!T,k(xk)rf

(T�1)
!T�1,k(f (T )(xk)) · · · rf

(1)
!1,k(f (2) �

· · · � f (T )(xk)), and let Xk 2 Fk be a vector of random variables, where Fk is the collection of

random variables
n

{xi}k
i=0, {y

(T�1)
i }k�1

i=0 , · · · , {y
(1)
i }k�1

i=0 , {!T,i}k�1
i=0 , · · · , {!1,i}k�1

i=0

o
.

Then there exists a constant C0 > 0 dependent only on the number of levels T such that for all k,

with probability 1,

X 0
kE
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

���Fk

i

(T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk] + C0

⇣ 1

�T�1,k
+ · · · +

1

�1,k

⌘
kXkk2.
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Proof: We begin our analysis by the chain rule as follows:

erF!k
(xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

=erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(f (T )(xk))rf (T�2)
!T�2,k

(f (T�1)(f (T )(xk))) · · · rf (1)
!1,k

(f (2) � · · · � f (T )(xk))

� erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k )rf (T�2)

!T�2,k
(f (T�1)(f (T )(xk))) · · · rf (1)

!1,k
(f (2) � · · · � f (T )(xk))

+ erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k )rf (T�2)

!T�2,k
(f (T�1)(f (T )(xk))) · · · erf (1)

!1,k
(f (2) � · · · � f (T )(xk))

� erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k )rf (T�2)

!T�2,k
(y

(T�2)
k )rf (T�3)

!T�3,k
(f (T�2)(f (T�1)(f (T )(xk)))) · · ·

rf (1)
!1,k

(f (2) � · · · � f (T )(xk))

...

+ erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k )rf (T�2)

!T�2,k
(y

(T�2)
k ) · · · rf (2)

!2,k
(y

(2)
k )rf (1)

!1,k
(f (2) � · · · � f (T )(xk))

� erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k )rf (T�2)

!T�2,k
(y

(T�2)
k ) · · · rf (2)

!2,k
(y

(2)
k )rf (1)

!1,k
(y

(1)
k ).

Denote by Sm = erf
(T )
!T,k(x

(T )
k ) · · · rf

(m)
!m,k(y

(m)
k )rf

(m�1)
!m�1,k(f (m) � · · · � f (T )(xk)) · · · rf

(1)
!1,k(f (2) � · · · �

f (T )(xk)). Clearly, ST = erF!k
(xk) and S1 = erf

(T )
!T,k(xk)rf

(T�1)
!T�1,k(y

(T�1)
k ) · · · rf

(1)
!1,k(y

(1)
k ), and we

have

erF!k
(xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

=(ST � ST�1) + (ST�1 � ST�2) + · · · + (S2 � S1).
(A.1)

Considering Sm � Sm�1, by definition, we obtain

kSm � Sm�1k
=kerf (T )

!T,k
(y

(T )
k ) · · · rf (m)

!m,k
(y

(m)
k )Pmrf (m�2)

!m�2,k
(f (m�1) � · · · � f (T )(xk)) · · · rf (1)

!1,k
(f (2) � · · · � f (T )(xk))k

MmkPmk,
(A.2)

where Pm = rf
(m�1)
!m�1,k(f (m) � · · · � f (T )(xk)) �rf

(m�1)
!m�1,k(y

(m�1)
k ) and

Mm = kerf (T )
!T,k

(y
(T )
k )k · · · krf (m)

!m,k
(y

(m)
k )kkrf (m�2)

!m�2,k
(f (m�1)�· · ·�f (T )(xk))k · · · krf (1)

!1,k
(f (2)�· · ·�f (T )(xk))k.

By Assumption 2.1 (iii)-(iv), we have

E[M2
m|Fk]  CT CT�1 · · · CmCm�2 · · · C1. (A.3)
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Consider Pm,

kPmk = krf (m�1)
!m�1,k

(f (m) � · · · � f (T )(xk))) �rf (m�1)
!m�1,k

(y
(m�1)
k )k

Lm�1kf (m) � · · · � f (T )(xk) � y
(m�1)
k k

Lm�1kf (m) � · · · � f (T )(xk) � f (m) � · · · � f (T�1)(y
(T�1)
k )k

+ Lm�1kf (m) � · · · � f (T�1)(y
(T�1)
k ) � f (m) � · · · � f (T�2)(y

(T�2)
k )k

+ · · · + Lm�1kf (m)(y
(m)
k ) � y

(m�1)
k k

Lm�1

p
Cm · · · CT�1kf (T )(xk) � y

(T�1)
k k + Lm�1

p
Cm · · · CT�2kf (T�1)(y

(T�1)
k ) � y

(T�2)
k k

+ · · · + Lm�1kf (m)(y
(m)
k ) � y

(m�1)
k k,

(A.4)

where the first inequality holds by Assumption 2.1 (iv) as f
(m�1)
!m�1,k has Lipschitz continuous gradient

with parameter Lj , and the last inequality holds by Assumption 2.1 (iii)-(iv) that f (j) is Lipschitz

continuous with parameter Cj for all j’s.

Substituting Eq.(A.4) into Eq.(A.2) yields

kXkkkSm � Sm�1k  MmkXkkkPmk
MmkXkk

⇣
Lm�1

p
Cm · · · CT�1kf (T )(xk) � y

(T�1)
k k + Lm�1

p
Cm · · · CT�2kf (T�1)(y

(T�1)
k ) � y

(T�2)
k k

+ · · · + Lm�1kf (m)(y
(m)
k ) � y

(m�1)
k k

⌘

�T�1,kkf (T )(xk) � y
(T�1)
k k2 + �T�2,kkf (T�1)(y

(T�1)
k ) � y

(T�2)
k k2 + · · · + �m�1,kkf (m)(y

(m)
k ) � y

(m�1)
k k2

+ M2
kkXkk2

⇣L2
m�1Cm · · · CT�1

4�T�1,k
+

L2
m�1Cm · · · CT�2

4�T�2,k
+ · · · +

L2
m�1

4�m�1,k

⌘
,

where the last inequality holds by the fact that 2xy  ax2 + 1
ay2 for any x, y 2 R and a > 0. Taking

expectation on both sides of the previous inequality and combine it with Eq.(A.3) , since Xk 2 Fk,

there exists a constant Rm > 0 such that almost surely

E
h
kXkkkSm � Sm�1k

���Fk

i

�T�1,kE[kf (T )(xk) � y
(T�1)
k k2|Fk] + �T�2,kE[kf (T�1)(y

(T�1)
k ) � y

(T�2)
k k2|Fk]

+ · · · + �m�1,kE[kf (m)(y
(m)
k ) � y

(m�1)
k k2|Fk] + Rm

⇣ 1

�T�1,k
+ · · · +

1

�m�1,k

⌘
kXkk2.

(A.5)

Meanwhile, we have

X 0
kE
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

���Fk

i

kXkkE
h
kST � ST�1k + kST�1 � ST�2k + · · · + kS2 � S1k

���Fk

i
.

(A.6)

Substituting Eq.(A.5) into Eq.(A.6) and sum up from m = 2 to m = T , with some algebraic

manupulation, we conclude that there exists a constant C0 > 0 dependent only on the number of
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levels T such that with probability 1,

X 0
kE
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

���Fk

i

(T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk] + C0

⇣ 1

�T�1,k
+ · · · +

1

�1,k

⌘
kXkk2,

which completes the proof.

Next, we present the proof of Lemma 2.1.

Proof of lemma 2.1:

kxk+1 � x⇤k2

=k⇧X {xk � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )} � x⇤k2

kxk � x⇤ � ↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2

=kxk � x⇤k2 � 2↵k(xk � x⇤)0 erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

+ ↵2
kkerf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · erf (1)

!1,k
(y

(1)
k )k2

=kxk � x⇤k2 � 2↵k(xk � x⇤)0 erF!k
(xk) + uk

+ ↵2
kkerf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2,

(A.7)

where
erF!k

(xk) = erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(f (T )(xk)) · · · rf (1)
!1,k

(f (2) � · · · � f (T )(xk)),

as defined in the main text, and

uk =2↵k(xk � x⇤)0
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

i
.

By Assumption 2.1 (iii)-(iv), erf
(j)
!j,k ’s have bounded second-order moments, thus with proba-

bility 1,

E
h
kerf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2

���Fk

i
 C1 · · · CT . (A.8)

Taking expectation on both sides of Eq.(A.7), conditioning on Fk, we have

E[kxk+1 � x⇤k2|Fk]

kxk � x⇤k2 + ↵2
kC1C2 · · · CT + E[uk|Fk] � 2↵k(xk � x⇤)0E

h
erF!k

(xk)
���Fk

i
.

By the convexity of F (x) and Assumption 2.1(ii), we obtain

(xk � x⇤)0E
h
erF!k

(xk)
���Fk

i
� F (xk) � F ⇤.

Then we have

E[kxk+1 � x⇤k2|Fk]

kxk � x⇤k2 + ↵2
kC1C2 · · · CT � 2↵k(F (xk) � F ⇤) + E[uk|Fk].

(A.9)
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For the term uk, there exists a constant C0 > 0 such that with probability 1,

E[uk|Fk]

=2↵k(xk � x⇤)0E
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

���Fk

i

(T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk] + C0(

↵2
k

�T�1,k
+ · · · +

↵2
k

�1,k
)kxk � x⇤k2,

(A.10)

where the last inequality comes from Lemma A.1 by letting Xk = 2↵k(xk � x⇤) 2 Fk. Substituting

Eq.(A.10) into Eq.(A.9), we get

E[kxk+1 � x⇤k2|Fk]


⇣
1 + C0(

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)
⌘
kxk � x⇤k2 + ↵2

kC1C2 · · · CT � 2↵k(F (xk) � F ⇤)

+ (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk],

which completes the proof.

A.2 Proof of Lemma 2.2

Proof of lemma 2.2: By the assumptions in part (b), F has Lipschitz continuous gradient with

parameter LF and X = RdT , we denote by rF (x) as the gradient of F (x), and obtain

F (xk+1) � F (xk)

hrF (xk), xk+1 � xki +
LF

2
kxk+1 � xkk2

= � ↵khrF (xk), erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i +

LF

2
kxk+1 � xkk2

= � ↵kkrF (xk)k2 + ↵krF (xk)
0
h
rF (xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

i

+
LF

2
kxk+1 � xkk2.

(A.11)

As defined in the main text, erF!k
(xk) = erf

(T )
!T,k(xk)rf

(T�1)
!T�1,k(f (T )(xk)) · · · rf

(1)
!1,k(f (2)�· · ·�f (T )(xk)),

by Assumption 2.1 (ii), we have

E[erF!k
(xk)|Fk] = rF (xk).

We obtain that with probability 1, there exists a constant C0 > 0 such that

↵kE
h
rF (xk)

0
⇣
rF (xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

⌘ ���Fk

i

=↵krF (xk)
0E
h
erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

���Fk

i

(T � 1)�T�1,kE[ky(T�1)
k+1 � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k+1 � f (T�1)(y
(T�1)
k+1 )k2|Fk]

+ · · · + �1,kE[ky(1)
k+1 � f (2)(y

(2)
k+1)k2|Fk] + C0

⇣ ↵2
k

�T�1,k
+ · · · +

↵2
k

�1,k

⌘
krF (xk)k2,

5



where the last inequality comes from Lemma A.1 by letting Xk = ↵krF (xk) 2 Fk. Also note that

E[kxk+1 � xkk2|Fk] = ↵2
kE[kerf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2|Fk]  ↵2

kC1 · · · CT .

(A.12)

Combining the results above, we obtain

E[F (xk+1) � F ⇤|Fk]

F (xk) � F ⇤ +
1

2
↵2

kLF C1C2 · · · CT � ↵k

⇣
1 �

� ↵k

�T�1,k
� · · · � ↵k

�1,k

�
C0

⌘
krF (xk)k2

+ (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk].

Besides, we have 1/2  1 � ( ↵k
�T�1,k

� · · · � ↵k
�T�1,k

)C0 for k su�ciently large since ↵k/�j,k ! 0 as

k ! 1 for all j’s. Finally, we conclude

E[F (xk+1) � F ⇤|Fk]

F (xk) � F ⇤ � ↵k

2
krF (xk)k2 +

1

2
↵2

kLF C1C2 · · · CT + (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk],

for k su�ciently large, which completes our proof.

A.3 Proof of Lemma 2.3

Proof of Lemma 2.3: a) For ease of presentation, we denote y
(T�1)
k+1 by zk+1, �T�1,k by �k, and

f
(T )
!T,k+1(xk) by huk+1

(xk). The corresponding update step can be written as

zk+1 = (1 � �k)zk + �khuk+1
(xk+1).

Let ek = (1 � �k)(h(xk+1) � h(xk)). Together with the definition of zk+1 above, we have

zk+1 � h(xk+1) + ek = (1 � �k)
�
zk � h(xk)

�
+ �k

�
huk+1

(xk+1) � h(xk+1)
�
. (A.13)

In addition, by the Lipschitz continuity of h in Assumption 2.1 (iii), we obtain

kekk  (1 � �k)
p

Chkxk+1 � xkk. (A.14)

Taking expectation of the squared norm on both sides of Eq.(A.13) conditioned on Fk, and using

Assumption 2.1 (ii)-(iii), we have

E[kzk+1 � h(xk+1) + ekk2|Fk]

=E
h
k(1 � �k)(zk � h(xk)) + �k(huk+1

(xk+1) � h(xk+1))k2
���Fk

i

=(1 � �k)
2E[kzk � h(xk)k2|Fk] + �2

kE[khuk+1
(xk+1) � h(xk+1)k2|Fk]

+ 2(1 � �k)�kE[(zk � h(xk))
T (huk+1

(xk+1) � h(xk+1))|Fk]

(1 � �k)
2E[kzk � h(xk)k2|Fk] + �2

kVh + 0.

(A.15)
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Using the fact that ka + bk2  (1 + ✏)kak2 + (1 + 1/✏)kbk2 for any ✏ > 0, we obtain

kzk+1 � h(xk+1)k2  (1 + �k)kzk+1 � h(xk+1) + ekk2 + (1 + 1/�k)kekk2. (A.16)

Taking expectation of both sides conditioned on Fk, and applying Eqs.(A.14)-(A.16), we conclude

E[kzk+1 � h(xk+1)k2|Fk]

(1 + �k)(1 � �2
k)E[kzk � h(xk)k2|Fk] + (1 + �k)�

2
kVh +

(1 � �2
k)Ch

�k
E[kxk+1 � xkk2|Fk]

(1 � �k)E[kzk � h(xk)k2|Fk] +
Ch

�k
E[kxk+1 � xkk2|Fk] + 2Vh�

2
k ,

(A.17)

for all k, with probability 1.

b) Based on our assumption, we have E[kxk+1 �xkk2]  O(↵2
k) and

P1
k=0 ↵

2
k�

�1
k < 1, then we

obtain 1X

k=0

��1
k E

h
E[kxk+1 � xkk2|Fk]

i
=

1X

k=0

��1
k E[kxk+1 � xkk2] 

1X

k=0

O(
↵2

k

�k
) < 1.

By the monotone convergence theorem, we conclude that
Pn

k=1 �
�1
k ChE[kxk+1 � xkk2|Fk] con-

verges almost surely to a random variable with finite expectation as n ! 1. Therefore, the limitP1
k=0 �

�1
k ChE[kxk+1 � xkk2|Fk] exists and is finite with probability 1.

c) By our assumption that E[kxk+1 � xkk2]  O(↵2
k), there exists a constant C0 > 0 such that

E[kxk+1 � xkk2]  ↵2
kC0. Since ↵k/�k ! 0, there exists a constant M > 0 such that ↵k  M�k

for all k. Let Dz = E[kz0 � h(x0)]k2 + 2Vh + M2C0Ch. Since ↵k  M�k and �k  1, we have

Dz � 2Vh�k + ��2
k ↵2

kC0Ch for all k.

We prove by induction that E[kzk+1�h(xk)k2]  Dz for all k. Clearly, the claim holds for k = 0.

Suppose the claim holds for 0, 1, ..., k�1. By Eq.(A.17), we have that there exists a constant C0 > 0

such that

E[kzk+1 � h(xk+1)k2] (1 � �k)E[kzk � h(xk)k2] + 2Vh�
2
k + ��1

k ↵2
kC0Ch

(1 � �k)Dz + 2Vh�
2
k + ��1

k ↵2
kC0Ch

=Dz � �k(Dz � 2Vh�k + ��2
k ↵2

kC0Ch)

Dz,

where the second inequality uses the fact 1 � �k � 0 and E[kzk � h(xk)k2]  Dz. Our claim holds

as desired.

d) By the definition of zk+1, we have zk+1 = (1 � �k)zk + �khuk+1
(xk+1) and

(1 � �k)
2kzk+1 � zkk2 = �2

kkhuk+1
(xk+1) � zk+1k2

 2�2
kkhuk+1

(xk+1) � h(xk+1)k2 + 2�2
kkzk+1 � h(xk+1)k2.

Then we obtain

E[kzk+1 � zkk2]  2�2
k

(1 � �k)2
Vh +

2�2
k

(1 � �k)2
E[kzk+1 � h(xk+1)k2]. (A.18)

From part (c), we have that there exists Dz � 0 such that E[kzk+1 � h(xk+1)k2]  Dz. Plug this

into Eq.(A.18), we conclude

E[kzk+1 � zkk2]  O(�2
k).
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A.4 Proof of Lemma 2.4

This lemma proves the T -element super-martingale convergent lemma to establish convergence

property of {xk+1 � x⇤}.

Proof: Let Jk be the random variable

Jk ⌘ Xk + cT�1Y
(T�1)
k + cT�2Y

(T�2)
k + · · · + c1Y

(1)
k .

We have

E[Jk+1|Fk] =E[Xk+1|Fk] + cT�1E[Y
(T�1)
k+1 |Fk] + · · · + c1E[Y

(1)
k+1|Fk]

(1 + ⌘k)Xk + cT�1Y
(T�1)
k + · · · + c1Y

(1)
k + µ

(T )
k + cT�1µ

(T�1)
k + · · · + c1µ

(1)
k

(1 + ⌘k)Jk + µ
(T )
k + cT�1µ

(T�1)
k + · · · + c1µ

(1)
k .

Since
P1

k=0 µ
(T )
k + cT�1µ

(T�1)
k + · · · + c1µ

(1)
k < 1 and

P1
k=0 ⌘k < 1, we obtain that Jk converges

almost surely to a random variable by Theorem 1 in [1], and Jk is bounded by a constant with

probability 1.

By the definition above, we have that Xk  Jk, Y
(2)
k  1

c2
Jk, · · · , Y

(T )
k  1

cT
Jk. Then

Xk, Y
(T�1)
k , Y

(T�2)
k , · · · , Y

(1)
k are also bounded with probability 1. Since

1X

k=0

µ
(j)
k < 1, for j = 1, · · · , T,

and ✓
(T�1)
k , · · · , ✓

(1)
k are nonnegative, we have

E[Y
(T�1)
k+1 |Fk]  (1 � ✓

(j)
k )Y

(j)
k + µ

(j)
k , for j = T � 1, · · · , 1.

Again, by Theorem 1 in [1], we obtain that Y
(T�1)
k , · · · , Y

(1)
k converge almost surely to T�1 random

variables, respectively, and

1X

k=1

✓kY
(j)
k  1 w.p.1 for j = 1, · · · , T � 1.

Since Y
(1)
k , · · · , Y

(T�1)
k and Jk = Xk + cT�1Y

(T�1)
k + cT�2Y

(T�2)
k + · · · + c1Y

(1)
k are almost surely

convergent, then Xk must converge almost surely to a random variable.

Together with the condition that

1X

k=0

⌘k < 1,
1X

k=0

µ
(j)
k < 1, for j = 1, · · · , T,

we have
TX

j=1

1X

k=0

u
(j)
k < 1 w.p.1.

So we complete the proof.
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A.5 Proof of Lemma 2.5

Note that Lemma 2.5 and 2.6 are proved in Theorem 1 in [2], we present the details here for

self-completeness.

Proof: Let ⌦x⇤ be the collection of sample paths that ⌦x⇤ = {! : limk!1 kxk(!) � x⇤k} exists.

It has been proved that P(⌦x⇤) = 1 for any x⇤ 2 X ⇤. We claim that \x⇤2X ⇤⌦x⇤ is measurable and

P(\x⇤2X ⇤⌦x⇤) = 1.

To see this, we consider a countable dense subset X ⇤
Q of X ⇤. By the fact that F is convex, we

have that the set X ⇤ ⇢ Rn is separable, and such X ⇤
Q exists. So the probability of non-convergence

for some x⇤ 2 X ⇤
Q is the probability of a union of countably many sets, each having probability 0.

As a result, we have

P(\X ⇤
Q
⌦x⇤) = 1 � P([X ⇤

Q
⌦c

x⇤) � 1 �
X

x⇤2X ⇤
Q

P(⌦c
x⇤) = 1.

Now we consider any arbitrary ex 2 X ⇤, which is the limit of a sequence of optimal solutions

{exj}1j=1 ⇢ X ⇤
Q. By using a limit point argument, it is not hard to see that kxk(!)�exk is convergent

as long as kxk(!)�exjk is convergent for all j. Consider arbitrary ! 2 \X ⇤
Q
⌦x⇤ . We have the triangle

inequalities:

kxk(!) = exjk � kexj � exk  kxk(!) � exjk + kexj � exk.
By taking k ! 1 and using the fact that limk!1 kxk(!) � exjk exists, we obtain

lim
k!1

kxk(!) � exjk � kexj � exk  lim inf
k!1

kxk(!) � exk

 lim sup
k!1

kxk(!) � exk  lim
k!1

kxk(!) � exjk + kexj � exk.

So we have

lim sup
k!1

kxk(!) � exk � lim inf
k!1

kxk(!) � exjk  2kexj � exk.

By taking j ! 1, we have kexj � exk ! 0 and

lim sup
k!1

kxk(!) � exk = lim inf
k!1

kxk(!) � exjk

It follows that the limit of kxj(!) � exk exists, therefore ! 2 ⌦ex. Now we have proved that

\X ⇤
Q
⌦x⇤ ⇢ ⌦ex for all ex 2 X ⇤. As a result, we have \X ⇤

Q
⌦x⇤ ⇢ \X ⇤⌦x⇤ . Note that P(\X ⇤

Q
⌦x⇤) = 1

and that the considered probability measure is complete. We have that (\X ⇤⌦x⇤)c is the subset of a

null set (\X ⇤
Q
⌦x⇤)c, therefore it is measurable and satisfies P(\X ⇤⌦x⇤)  P(\X ⇤

Q
⌦x⇤) = 0. It follows

that \X ⇤⌦x⇤ is measurable and satisfied P(\X ⇤⌦x⇤) = 1. In other words, kxk � exk is convergent

for all ex 2 X ⇤, with probability 1.

Consider an arbitrary sample trajectory {xk(!)} such that ! 2 \X ⇤⌦x⇤ and lim infk!1 F (xk(!)) =

F ⇤. Take arbitrary x⇤ 2 X ⇤,since {kxk(!)� x⇤k} converges, the sequence is bounded. By the con-

tinuity of F , the sequence {xk(!)} must have a limit point x̄ being an optimal solution, i.e.,

F (x̄) = F ⇤ and x̄ 2 X ⇤.
Since ! 2 \X ⇤⌦x⇤ ⇢ ⌦x̄, we obtain that {kxk(!)� x̄k} is also a convergent sequence. Since it is

convergent while having a limit point 0, we have kxk(!)� x̄k ! 0.Then xk(!) ! x̄ on this sample

9



trajectory. Note that x̄ depends on the sample path !, so it is a random variable. Also note that

the set of all such sample paths has a probability measure equaling to 1. Therefore xk converges

almost surely to a random point in the set of optimal solutions to problem (1.1).

A.6 Proof of Lemma 2.6

Proof: We focus on a single sample trajectory xk(!) such that the preceding inequalities hold.

For simplicity, we omit the notation (!) in the rest of the proof.

Let ✏ > 0 be arbitrary. We note that krF (xk)k  ✏ holds for infinitely many k. Otherwise we

would have for some k̄ > 0 that
P1

k=0 ↵kkrF (xk)k2 � P1
k=k̄ ↵k✏

2 = 1, yielding a contradiction.

Consequently, there exists a closed set N̄ (e.g., closed union of neighborhoods of all ✏- stationary

xk’s) such that {xk} visits infinitely often, and

krF (x)k =

(
 ✏ if x 2 N̄ ,

> ✏ if x /2 N̄ , x 2 {xk}.

We assume to the contrary that there exists a limit point ex such that krF (ex)k > 2✏. Then there

exists a closed set eN (e.g., union of neighborhoods of all xk?s such that krF (xk)k > 2✏) such that

{xk} visits infinitely often, and

krF (x)k =

(
 2✏ if x 2 eN,

> 2✏ if x /2 eN, x 2 {xk}.

By the continuity of rF and ✏ > 0, we obtain that the sets eN and N̄ are disjoint, i.e., dist(N̄ , eN) >

0. Since the sequence xk enters both sets N̄ and eN infinitely often, there exists a subsequence

{xk}k2K =
n

{xk}ti�1
k=si

o1

i=1

that crosses the two sets infinitely often, with xsi 2 eN , xti 2 eN for all i. In other words, we have

for every i that

krF (xsi)k � 2✏ > krF (xk)k > ✏ � krF (xti)k, 8k = si + 1, · · · , ti � 1.

On one hand, by using the triangle inequality, we have

X

k2K
kxk+1 � xkk =

1X

k=1

ti�1X

k=si

kxk+1 � xkk �
1X

i=1

kxti � xsik

�
1X

i=1

dist(N̄ , eN) = 1.

On the other hand, we have

1 >
1X

k=0

↵kkrF (xk)k2 �
X

k2K
↵kkrF (xk)k2 > ✏

X

k2K
↵k.
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By using the uniform boundedness of random variables generated from the SO, we have for some

M > 0 that kxk+1 � xkk  kerf
(1)
!1,k(xk)rf

(2)
!2,k(y

(T�1)
k ) · · · rf!T,k

(y
(1)
k )k  M↵k for all k. It follows

that X

k2K
kxk+1 � xkk  M

X

k2K
↵k < 1.

This yields a contradiction with the result
P

k2K kxk+1 � xkk = 1 we just obtained. It follows

that there does not exist a limit point ex such that krF (ex)k > 2✏. Since ✏ can be made arbitrarily

small, there does not exist any limit point that is nonstationary. Finally, we note that the set of

such sample paths (to which the preceding analysis applies) has a probability measure 1. In other

words, any limit point of xk is a stationary point of F (x) with probability 1.

A.7 Proof of Theorem 2.1

Proof: a) Let x⇤ be an arbitrary optimal solution to problem (1.1), and let F ⇤ = F (x⇤). By

Lemma 2.1 , we have with probability 1,

E[kxk+1 � x⇤k2|Fk]


⇣
1 + C0(

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)
⌘
kxk � x⇤k2 + ↵2

kC1C2 · · · CT � 2↵k

�
F (xk) � F ⇤�

+ (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk].

(A.19)

By Lemma 2.3, for any basic update step j = T � 1, · · · , 1, if E[ky(j+1)
k+1 � y

(j+1)
k k2]  O(�2

j+1,k),

then

E
h
E[ky(j)

k+1 � f (j+1)(y
(j+1)
k+1 )k2|Fk+1]

���Fk

i
= E[ky(j)

k+1 � f (j+1)(y
(j+1)
k+1 )k2|Fk]

(1 � �j,k)E[ky(j)
k � f (j+1)(y

(j+1)
k )k2|Fk] + ��1

j,k Cj+1E[ky(j+1)
k+1 � y

(j+1)
k k2|Fk] + 2Vj+1�

2
j,k,

(A.20)

and E[ky(j)
k+1�y

(j)
k k2]  O(�2

j,k). By Eq.(A.12), we have E[kxk+1�xkk2]  O(↵2
k), which serves as the

su�cient condition for level T�1 for Eq.(A.20) to be true so that E[ky(T�1)
k+1 �y

(T�1)
k k2]  O(�2

T�1,k),

a su�cient condition for level T � 2 for Eq.(A.20). Conducting this chain to all the levels, we have

that Eq.(A.20) holds for j = T � 1, · · · , 1.

Besides, by Lemma 2.3 (b), under the condition
P1

k=1 �
2
j+1,k/�j,k < 1, we have

��1
j,k Cj+1E[ky(j+1)

k+1 � y
(j+1)
k k2|Fk] + 2Vj+1�

2
j,k < 1,

with probability 1.

Now we apply the T -element super-martingale convergent lemma 2.4 to Eqs.(A.19)-(A.20). By
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letting

Xk = kxk � x⇤k2, Y
(T�1)
k = E[ky(T�1)

k � f (T )(xk)k2|Fk],

Y
(T�2)
k = E[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk], · · · , Y

(1)
k = E[ky(1)

k � f (2)(y
(2)
k )k2|Fk],

⌘k = [
↵2

k

�T�1,k
+ · · · +

↵2
k

�1,k
]C0, u

(T )
k = 2↵k(F (xk) � F ⇤),

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 1, · · · , cT�1 = T � 1,

µ
(1)
k = 2�2

1,kV1 + O(
E[ky(2)

k+1 � y
(2)
k k2|Fk]

�1,k
), · · · ,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k2|Fk]

�T�2,k
),

µ
(T�1)
k = 2�2

T�1,kVT + O(
E[kxk+1 � xkk2|Fk]

�T�1,k
),

µ
(T )
k = ↵2

kC1C2 · · · CT , ✓
(1)
j = �1,k, · · · , ✓

(T�1)
j = �T�1,k,

we obtain the sequence {kxk � x⇤k} converges almost surely to a random variable, and

1X

k=0

↵k(F (xk) � F ⇤) < 1,

which further implies

lim inf
k!1

F (xk) = F ⇤, w.p.1.

Using Lemma 2.5, we conclude that the sequence {xk} converges almost surely to a random point

in the set of optimal solutions to problem (1.1).

b) Since problem (1.1) has at least one optimal solution, the function F is bounded from below,

and denote by F ⇤ the minimal value of F (x) over X . As a result, we can treat {F (xk) � F ⇤} as a

nonnegative random variable. By Lemma 2.2, we have

E[F (xk+1) � F ⇤|Fk]

F (xk) � F ⇤ � ↵k

2
krF (xk)k2 +

1

2
↵2

kLF C1C2 · · · CT + (T � 1)�T�1,kE[ky(T�1)
k+1 � f (T )(xk)k2|Fk]

+ · · · + �1,kE[ky(1)
k+1 � f (2)(y

(2)
k+1)k2|Fk],

(A.21)

for su�ciently large k. We apply the T -element super-martingale convergent lemma to Eqs.(A.20)-

12



(A.21). By letting

Xk = F (xk+1) � F ⇤, Y (T�1)
k = E[ky(T�1)

k � f (T )(xk)k|Fk],

Y
(T�2)
k = E[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk], · · ·

Y
(1)
k = E[ky(1)

k � f (2)(y
(2)
k )k2|Fk],

⌘k = 0, u
(T )
k =

1

2
↵kkrF (xk)k2,

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 1, · · · , cT�1 = T � 1,

µ
(1)
k = 2�2

1,kV2 + O(
E[ky(2)

k+1 � y
(2)
k k2|Fk]

�1,k
), · · · ,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k2|Fk]

�T�2,k
),

µ
(T�1)
k = 2�2

T�1,kVT + O(
E[kxk+1 � xkk2|Fk]

�T�1,k
),

µ
(T )
k =

1

2
↵2

kLF C1C2 · · · CT , ✓
(1)
j = �1,k, · · · , ✓

(T�1)
j = �T�1,k,

we obtain that {F (xk) � F ⇤} converges almost surely to a random variable, and

1X

k=0

↵kkrF (xk)k2 < 1, w.p.1.

Using Lemma 2.6, we conclude that any limiting point of the sequence {xk} is a stationary point

with probability 1, which completes the proof.

B Proof of Theorem 2.2

Note that we let the step-sizes be ↵k = k�a, �T�1,k = k�bT�1 , · · · , �1,k = k�b1 . We slightly modify

Lemma 5 in [3] to help us derive the convergence rates.

Lemma B.1. Given a sequence of positive real numbers {wk}1k=1 satisfying

wk+1  (1 � C1�k)wk + C2k
�a,

where C1 � 0, C2 � 0, and a � 0. Choosing c = a � b and �k to be �k = C3k
�b where b 2 (0, 1]

and C3 > c/C1, the sequence can be bounded by wk  Ck�c, where C is defined as

C := w0 +
C2

C1C3 � c
.

In other words, we have

wk  O(k�a+b).

13



Proof: We prove it by induction. Clearly, the claim holds for k = 0. Next, suppose the claim

holds for “k”, we prove it also true for “k + 1”. That is, given wk  Ck�c, we need to prove

wk+1  C(k + 1)�c.

wk+1 (1 � C1�k)wk + Ck�a

(1 � C1C3k
�b)Ck�c + C2k

�a

=Ck�c � CC1C3k
�b�c + C2k

�a.

(B.1)

To prove B.1 is bounded by C(k + 1)�c, it su�ces to show that

� := (k + 1)�c � k�c + C1C3k
�b�c > 0 and C � C2k

�a

�
.

From the convexity of function h(t) = t�c, we have the inequality (k + 1)�c � k�c � �ck�c�1.

Therefore we obtain

� � �ck�c�1 + C3k
�b�c � (C1C3 � c)k�b�c � 0.

To verify the second one, we have

C2k
�a

�
 C2

C1C3 � 2
k�a+b+c =

C2

C1C3 � c
 C,

where the equality comes from the definition that c = a � b and the last inequality holds by the

definition of C. It completes the proof.

B.1 Proof of Lemma 2.7

Proof: By Lemma 2.3, for any j = T � 1, · · · , 1, E[ky(j+1)
k+1 � y

(j+1)
k k2]  O(�2

j+1,k), and

E[ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k2|Fk]

(1 � �j,k)E[ky(j)
k � f (j+1)(y

(j+1)
k )k2|Fk] + ��1

j,k Cj+1E[ky(j+1)
k+1 � y

(j)
k k2|Fk] + 2Vj+1�

2
j,k,

with probability 1. Thus,

E[ky(j)
k+1 � f (j+1)(y

(j+1)
k+1 )k2]

(1 � �j,k)E[ky(j)
k � f (j+1)(y

(j+1)
k )k2] + ��1

j,k Cj+1E[ky(j+1)
k+1 � y

(j+1)
k k2] + 2Vj+1�

2
j,k

(1 � �j,k)E[ky(j)
k � f (j+1)(y

(j+1)
k )k2] + ��1

j,k O(�2
j+1,k) + 2Vj+1�

2
j,k.

(B.2)

Substitute ↵k = k�a, �j,k = 2k�bj into Eq.(B.2), we get

E[ky(j)
k � f (j+1)(y

(j+1)
k )k2]

(1 � k�bj )E[ky(j)
k � f (j+1)(y

(j+1)
k )k2] + O(k�2bj+1+bj ) + 2Vj+1k

�2bj .

By Lemma B.1, we obtain

E[ky(j)
k � f (j+1)(y

(j+1)
k )k2] O(k�2bj+1+2bj ) + O(k�bj ).

14



B.2 Proof of Theorem 2.2

Proof: Define the random variable

Jk = kxk � x⇤k2 + (T � 1)E[ky(T�1)
k � f (T )(xk)k2|Fk] + · · · + E[ky(1)

k � f (2)(y
(2)
k )k2|Fk],

so we have E[Jk]  Dx + (T � 1)DT�1 + (T � 2)DT�2 + · · · D1 ⌘ DJ . In this basic algorithm,

all steps are updated by the basic update rule. We multiply Eq.(A.20) by j ⇥ (1 + �j,k) for every

j = T � 1, ..., 1 and take their sums with Eq.(A.19). We obtain

E[Jk+1|Fk] 
⇣
1 + (

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)
⌘
Jk � 2↵k(F (xk � F ⇤))

+ C1C2 · · · CT↵
2
k + 2(T � 1)VT�

2
T�1,k(1 + �T�1,k) +

(T � 1)CT (1 + �T�1,k)

�T�1,k
E[kxk+1 � xkk2|Fk]

+
T�2X

j=1

j ⇥
n

2Vj+1�
2
j,k(1 + �j,k) +

Cj+1(1 + �j,k)

�j,k
E[ky(j+1)

k+1 � y
(j+1)
k k2|Fk]

o
.

Taking expectation on both sides using the fact 1+�j,k  2 for all j = T � 1, · · · , 1 and Eq.(A.12),

we obtain

E[Jk+1] 
⇣
1 + (

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)
⌘
E[Jk] � 2↵k(F (xk � F ⇤))

+ C1C2 · · · CT↵
2
k + 4(T � 1)VT�

2
T�1,k +

2(T � 1)C1C2 · · · CT�1C
2
T↵

2
k

�T�1,k

+

T�2X

j=1

j
n

4Vj+1�
2
j,k +

2Cj+1

�j,k
E[ky(j+1)

k+1 � y
(j+1)
k k2]

o
.

By Lemma 2.4, we have E[ky(j)
k+1 � y

(j)
k k2]  O(�2

j,k) for j = T � 1, · · · , 1. Substitute this into the

previous inequality, we obtain

E[Jk+1] 
⇣
1 + (

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)C0

⌘
E[Jk] � 2↵k(F (xk � F ⇤))

+ C1C2 · · · CT↵
2
k + 4(T � 1)VT�

2
T�1,k +

2(T � 1)C1C2 · · · CT�1C
2
T↵

2
k

�T�1,k

+
T�2X

j=1

j ⇥
n

4Vj+1�
2
j,k +

2Cj+1

�j,k
O(�2

j+1,k)
o

.
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Let N > 0, by reordering the terms in the preceding relation and taking its sum over k�N, · · · , k,

we have

2
kX

t=k�N

E[F (xt) � F ⇤]


kX

t=k�N

1

↵t

n⇣
1 + (

↵k

�T�1,k
+ · · · +

↵k

�1,k
)C0

⌘
E[Jt] � E[Jt+1]

o

+

kX

t=k�N

⇣
O(↵k) +

T�1X

j=1

O(
�2

j,k

↵k
) + O(

↵k

�T�1,k
) +

T�2X

j=1

O(
�2

j+1,k

↵k�j,k
)
⌘

=

kX

t=k�N

(
1

↵t
� 1

↵t�1
)E[Jt] �

1

↵k
E[Jk+1] +

1

↵k�N�1
E[Jk�N ] +

kX

t=k�N

(
↵k

�T�1,k
+ · · · +

↵k

�1,k
)C0E[Jk]

+
kX

t=k�N

⇣
O(↵k) +

T�1X

j=1

O(
�2

j,k

↵k
) + O(

↵k

�T�1,k
) +

T�2X

j=1

O(
�2

j+1,k

↵k�j,k
)
⌘


kX

t=k�N

(
1

↵t
� 1

↵t�1
)DJ +

1

↵k�N�1
DJ +

kX

t=k�N

(
↵k

�T�1,k
+ · · · +

↵k

�1,k
)C0DJ

+
kX

t=k�N

O(↵k) +
T�1X

j=1

kX

t=k�N

O(
�2

j,k

↵k
) +

kX

t=k�N

O(
↵k

�T�1,k
) +

T�2X

j=1

kX

t=k�N

O(
�2

j+1,k

↵k�j,k
).

Since
Pk

t=k�N ( 1
↵t

� 1
↵t�1

)DJ + 1
↵k�N�1

DJ = 1
↵k

DJ , let ↵k = k�a, �T�1,k = k�bT�1 , · · · , and

�1,k = k�b1 , we obtain

2
kX

t=k�N

E[F (xt) � F ⇤]

kaD +

kX

t=k�N

(k�a+bT�1 + · · · + k�a+b1)C0DJ

+
kX

t=k�N

O(k�a) +
T�1X

j=1

kX

t=k�N

O(k�2bj+a) +
kX

t=k�N

O(k�a+bT�1) +
T�2X

j=1

kX

t=k�N

O(k�2bj+1+a+bj ).

Choosing a = 1 � 1/2T , bT�1 = 1 � 1/2T�1, · · · , b1 = 1 � 1/2 = 1/2, it is derived that

2

kX

t=k�N

E[F (xt) � F ⇤]

k1�1/2T
DJ +

kX

t=k�N

(k�1/2T
+ · · · + k1/2T�1/2)C0DJ

+
kX

t=k�N

O(k�1+1/2T
) +

T�1X

j=1

kX

t=k�N

O(k�1+1/2j�1�1/2T
) +

kX

t=k�N

O(k�1/2T
) +

T�2X

j=1

kX

t=k�N

O(k�1/2T
).
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Since for any p > 0,
Pk

t=k�N O(kp)  O(k1+p � (k � N)1+p), using the convexity of F and taking

N = Nk = k
2 , we obtain

E[F (bxk) � F ⇤]  1

Nk

kX

t=k�N

E[F (xt) � F ⇤]  O(k�1/2T
),

which completes the proof.

C Proof of Theorem 3.1

C.1 Proof of Lemma 3.1

Note that here we use the same notation as in the proof of Lemma 2.3 . Consider a basic update

step

y
(j)
k+1 = (1 � �j,k)y

(j)
k + �j,kf

(j+1)
wj+1,k+1

(y
(j+1)
k+1 ),

and denote it by

zk+1 = (1 � �k)zk + �khuk+1
(xk+1).

Now we show the detailed proof of Lemma 3.1.

Proof: (a) Under the assumption E[kxk+1 � xkk4]  O(↵4
k), there exists a constant C0 > 0

such that E[kxk+1 � xkk4]  C0↵
4
k. By Lemma 2.3, there exists a constant Dz > 0 such that

E[kzk+1�h(xk+1)k2]  Dz, and we also have E[kzk+1�h(xk+1)k] 
p

E[kzk+1 � h(xk+1)k2]  p
Dz.

Let ek+1 = (1 � �k)
�
h(xk+1) � h(xk)

�
. Together with the definition of zk+1, we get

zk+1 � h(xk+1) + ek+1 � ek+1 = (1 � �k)
�
zk � h(xk)

�
+ �k(huk+1

�
xk+1) � h(xk+1)

�
� ek+1. (C.1)

By the Lipschitz continuity of h, we obtain

kek+1k  (1 � �k)
p

Chkxk+1 � xkk.

Meanwhile, we have

kzk+1 � h(xk+1)k  k(1 � �k)(zk � h(xk)) + �k(huk+1
(xk+1) � h(xk+1))k + kek+1k.

Let Pk = k(1 � �k)(zk � h(xk)) + �k(huk+1
(xk+1) � h(xk+1))k, considering the fourth moment, we

get

P 4
k =k(1 � �k)(zk � h(xk)) + �k(huk+1

(xk+1) � h(xk+1))k4

=(1 � �k)
4kzk � h(xk)k4 + 4(1 � �k)

3�k(zk � h(xk))
3(huk+1

(xk+1) � h(xk+1))

+ 6(1 � �k)
2�2

kkzk � h(xk)k2khuk+1
(xk+1) � h(xk+1)k2

+ 4(1 � �k)�
3
k(zk � h(xk))(huk+1

(xk+1) � h(xk+1))
3

+ �4
kkhuk+1

(xk+1) � h(xk+1)k4

(1 � �k)
4kzk � h(xk)k4 + 4(1 � �k)

3�k(zk � h(xk))
3(huk+1

(xk+1) � h(xk+1))

+ 6(1 � �k)
2�2

kkzk � h(xk)k2khuk+1
(xk+1) � h(xk+1)k2

+ 4(1 � �k)�
3
kkzk � h(xk)kkhuk+1

(xk+1) � h(xk+1)k3

+ �4
kkhuk+1

(xk+1) � h(xk+1)k4.
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So we obtain

E[P 4
k ] (1 � �k)

4E[kzk � h(xk)k4] + 0

+ 6(1 � �k)
2�2

kE
h
kzk � h(xk)k2E[khuk+1

(xk+1) � h(xk+1)k2|Fk+1]
i

+ 4(1 � �k)�
3
kE
h
kzk � h(xk)kE[khuk+1

(xk+1) � h(xk+1)k3|Fk+1]
i

+ �4
kE[khuk+1

(xk+1) � h(xk+1)k4]

(1 � �k)
4E[kzk � h(xk)k4] + 6(1 � �k)

2�2
kDVh + 4(1 � �k)�

3
k

p
DV

3/2
h + �4

kV 2
h .

Using the fact that ka+bk2  (1+✏)kak2+(1+1/✏)kbk2 and ka+bk4  (1+✏)3kak4+(1+1/✏)3kbk4

for any ✏ > 0, we have

kzk+1 � h(xk+1)k4  (1 + �k)
3P 4

k + (1 + 1/�k)
3kek+1k4, (C.2)

and

E[kzk+1 � h(xk+1)k4]

(1 + �k)
3
n

(1 � �k)
4E[kzk � h(xk)k4] + 6(1 � �k)

2�2
kDzVh + 4(1 � �k)�

3
k

p
DzV

3/2
h + �4

kV 2
h

o

+ (1 + 1/�k)
3(1 � �k)

4C2
hE[kxk+1 � xkk4]

(1 � �k)E[kzk � h(xk)k4] + 12�2
kDzVh + 16�3

k

p
DzV

3/2
h + 8�4

kV 2
h +

C2
h

�3
k

E[kxk+1 � xkk4]

(1 � �k)E[kzk � h(xk)k4] + 12�2
kDzVh + 16�3

k

p
DzV

3/2
h + 8�4

kV 2
h +

↵4
k

�3
k

C2
hC0.

(C.3)

Finally, we complete the proof by induction. Since ↵k/�k ! 0, there exists a constant M > 0 such

that ↵k/�k  M for all k. Let Sz = kz0 � h(x0)k4 + 12DzVh + 16
p

DzV
3/2
h + 8M4V 2

h + C2
hC0, then

kz0 � h(x0)k4  Sz, and Sz � 12Dz�kVh � 16�2
k

p
DzV

3/2
h � 8�4

kV 2
h � ↵4

k

�4
k
C2

hC0 � 0 for all k. Suppose

the claim is true for 0, 1, · · · , k, then

E[kzk+1 � h(xk+1)k4]

(1 � �k)Sz + 12�2
kDzVh + 16�3

k

p
DzV

3/2
h + 8�4

kV 2
h +

↵4
k

�3
k

C2
hC0

=Sz � �k

⇣
Sz � 12�kDzVh � 16�2

k

p
DzV

3/2
h � 8�4

kV 2
h � ↵4

k

�4
k

C2
hC0

⌘

Sz,

which completes the proof.

b) By the definition of zk+1, we have zk+1 = (1 � �k)zk + �khuk+1
(xk+1), and

(1 � �k)
4kzk+1 � zkk4 =�4

kkhuk+1
(xk+1) � zk+1k4

8�4
kkhuk+1

(xk+1) � h(xk+1)k4 + 8�4
kkzk+1 � h(xk+1)k4,
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where the inequality comes from (a + b)4  (2a2 + 2b2)2  8a4 + 8b4. Thus

E[kzk+1 � zkk4]  8�4
k

(1 � �k)4
V 2

h +
8�4

k

(1 � �k)4
E[kzk+1 � h(xk+1)k4].

By part (a) that there exists a constant Sz � 0 such that E[kzk+1 � h(xk+1)k4]  Sz, we obtain

E[kzk+1 � zkk4]  O(�4
k),

which completes the proof.

C.2 Proof of Lemma 3.2

Let Assumption 2.1 and 3.1 hold, we apply the basic update rule to the first inner level and

accelerated update rule to the remaining levels. We consider the analysis for the second inner level

updated as:

by(T�2)
k+1 = (1 � 1/�T�2,k)y

(T�1)
k + y

(T�1)
k+1 /�T�2,k,

y
(T�2)
k+1 = (1 � �T�2,k)y

(T�2)
k + �T�2,k · f (T�1)

!T�1,k+1
(by(T�2)

k+1 ).

For ease of notation, we denote y
(T�1)
k by zk, �T�2,k by �k, by(T�2)

k by byk+1, y
(T�2)
k by yk and

f
(T�1)
!T�1,k+1(·) by gwk+1

(·). The corresponding update step can be written as

byk+1 = (1 � 1

�k
)zk +

1

�k
zk+1,

yk+1 = (1 � �k)yk + �kgwk+1
(byk+1).

To construct a super-martingale involving {yk+1 � g(zk+1)} while utilizing the smoothness of

g(·), we write yk as the weighted average of samples at the extrapolated points {gwt(byt)}k
t=0 with

weights ⇣
(k)
t defined as

⇣
(k)
t =

(
�t⇧

k
i=t+1(1 � �i) if k > t � 0,

�k if k = t � 0.

By the definitions of ⇣
(k)
t , zk, and yk, we have the following identities

⇣
(k+1)
t = (1 � �k+1)⇣

(k)
t ,

kX

t=0

⇣
(k)
t = 1,

and

zk+1 =

kX

t=0

⇣
(k)
t byt+1, yk+1 =

kX

t=0

⇣
(k)
t gwt+1(byt+1).

In what follows, we prove Lemma 3.2 through a series of lemmas. These lemmas are also the

building blocks for the subsequent rate of convergence analysis. It can be seen that byk plays a role

as a link between yk and zk, and it is natural to consider decomposing {yk �g(zk)} into some terms

containing byk to start our analysis, which is presented in the following lemma.
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Lemma C.1 (Decomposition of yk � g(zk)). Suppose that Assumption 2.1 holds, then we have

kyk+1 � g(zk+1)k  Lg

kX

t=0

⇣
(k)
t kzk+1 � byt+1k2 + k

kX

t=0

⇣
(k)
t (gwt+1(byt+1) � g(byt+1))k.

Proof: By definition, we have

yk+1 =

kX

t=0

⇣
(k)
t gwt+1(byt+1)

=
kX

t=0

⇣
(k)
t g(byt+1) +

kX

t=0

⇣
(k)
t [gwt+1(byt+1) � g(byt+1)]

=
kX

t=0

⇣
(k)
t [g(zk+1) + rg(zk+1)

T (byt+1 � zk+1) + (zk+1, byt+1))]

+

kX

t=0

⇣
(k)
t (gwt+1(byt+1) � g(byt+1))

= (
kX

t=0

⇣
(k)
t )g(zk+1) + rg(zk+1)

T
kX

t=0

⇣
(k)
t (byt+1 � zk+1)

+
kX

t=0

⇣
(k)
t (zk+1, byt+1) +

kX

t=0

⇣
(k)
t (gwt+1(byt+1) � g(byt+1)),

(C.4)

where the second equality holds by the Taylor expansion of g(·) at zk+1 that

g(byt+1) = g(zk+1) + rg(zk+1)
0(byt+1 � zk+1) + (zk+1, byt+1),

with (zk+1, byt+1) summarizing the second and higher order terms. An important observation here

is that the first order term in Eq.(C.4) cancels out that

rg(zk+1)
0

kX

t=0

⇣
(k)
t (byt+1 � zk+1) = rg(zk+1)

0
⇣ kX

t=0

⇣
(k)
t byt+1 � (

kX

t=0

⇣
(k)
t )zk+1

⌘
= 0,

where we use the identities zk+1 =
Pk

t=0 ⇣
(k)
t byt+1 and

Pk
t=0 ⇣

(k)
t = 1. Next, it follows from (C.4)

that

yk+1 = gzk+1
+ 0 +

kX

t=0

⇣
(k)
t (zk+1, byt+1) +

kX

t=0

⇣
(k)
t [gwt+1(byt+1) � g(byt+1)].

Using triangle inequality, we have

kyk+1 � g(zk+1)k 
kX

t=0

⇣
(k)
t k(zk+1, byt+1)k + k

kX

t=0

⇣
(k)
t (gwt+1(byt+1) � g(byt+1))k

Lg

2

kX

t=0

⇣
(k)
t kzk+1 � byt+1k2 + k

kX

t=0

⇣
(k)
t (gwt+1(byt+1) � g(byt+1))k,
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where the second inequality holds by Assumption 2.1 that k(zk+1, byt+1)k  Lg

2 kzk+1�byt+1k2.

In Lemma C.1, we bound {yk�g(zk)} by the sum of two iterative sums
Pk

t=0 ⇣
(k)
t kzk+1�byt+1k2

and
Pk

t=0 ⇣
(k)
t (gwt+1(byt+1)�g(byt+1)). In the next lemma, we consider convergence properties of the

two iterative sums.

Lemma C.2. Let Assumption 2.1 hold, and let

qk+1 =
kX

t=0

⇣
(k)
t kzk+1 � byt+1k, mk+1 =

kX

t=0

⇣
(k)
t kzk+1 � byt+1k2,

and

nk+1 =

kX

t=0

⇣
(k)
t [gwt+1(byt+1) � g(byt+1)].

We have , with probability 1,

(a) q2
k+1  (1 � �k)q

2
k + 4

�k
kzk+1 � zkk2.

(b) mk+1  (1 � �k)mk + �kq
2
k + 2

�k
kzk+1 � zkk2.

(c) E[knk+1k2|Fk+1]  (1 � �k)
2knkk2 + �kVg.

Proof: a) By definition, we have

qk+1 =
kX

t=0

⇣
(k)
t kzk+1 � byt+1k

= (1 � �k)

k�1X

t=0

⇣
(k�1)
t kzk+1 � byt+1k + �kkzk+1 � byk+1k

 (1 � �k)
k�1X

t=0

⇣
(k�1)
t

⇣
kzk � byt+1k + kzk+1 � zkk

⌘
+ �kkzk+1 � byk+1k

 (1 � �k)qk + (1 � �k)kzk+1 � zkk + �kkzk+1 � byk+1k
= (1 � �k)qk + (1 � �k)kzk+1 � zkk + �kkzk+1 � byk+1k
= (1 � �k)qk + 2(1 � �k)kzk+1 � zkk,

where the inequality holds by the triangle inequality, the third equality holds by the definition of

qk and the fact that
Pk

t=0 ⇣
(k)
t = 1, and the last equality holds by the definition of byk+1. Taking

squares of both sides and using the inequality (a + b)2  (1 + �)a2 + (1 + 1/�)b2 for any � > 0, we

obtain

q2
k+1  (1 + �k)(1 � �k)

2q2
k + 4(1 + ��1

k )(1 � �k)
2kzk+1 � zkk2

 (1 � �k)q
2
k + 4��1

k kzk+1 � zkk2.
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b) By the definition of mk, we have

mk+1 =
kX

t=0

⇣
(k)
t kzk+1 � byt+1k2

= (1 � �k)
k�1X

t=0

⇣
(k�1)
t kzk+1 � byt+1k2 + �kkzk+1 � byk+1k2

= (1 � �k)mk + (1 � �k)

k�1X

t=0

⇠
(k�1)
t

⇣
kzk+1 � byt+1k2 � kzk � byt+1k2

⌘
+ �kkzk+1 � byk+1k2.

Using the triangle inequality, we have

kzk+1 � byt+1k2 � kzk � byt+1k2 
⇣
kzk+1 � byt+1)k � kzk � byt+1k

⌘⇣
kzk+1 � byt+1k + kzk � byt+1k

⌘

kzk+1 � xkk
⇣
2kzk � byt+1k + kzk+1 � zkk

⌘
.

It follows that

mk+1  (1 � �k)mk + (1 � �k)
⇣
2kzk+1 � zkk

k�1X

t=0

⇣
(k)
t kzk � byt+1k

+

k�1X

t=0

⇣
(k�1)
t kzk+1 � zkk2

⌘
+ �kkzk+1 � byk+1k2

= (1 � �k)mk + 2(1 � �k)kzk+1 � zkkqk + (1 � �k)kzk+1 � zkk2

+ (1 � �k)
2/�kkzk+1 � zkk2

 (1 � �k)mk + (1 � �k)
⇣
��1

k kzk+1 � zkk2 + �kq
2
k

⌘

+ (1/�k � 1)kzk+1 � zkk2

 (1 � �k)mk + �kq
2
k + 2��1

k kzk+1 � zkk2,

where the first equality holds by the definition of qk, byk+1 and the inequality
Pk�1

t=0 ⇣
(k�1)
t = 1.

c) By the definition of nk, we have

nk+1 = (1 � �k)nk + �k

⇣
gwk+1

(byk+1) � g(byk+1)
⌘
.

Taking conditional expectations on both sides and using the fact nk 2 Fk+1, we further obtain

E[knk+1k2|Fk+1] = (1 � �k)
2knkk2 + 2�k(1 � �k)n

T
k E[gwk+1

(byk+1) � g(byk+1)|Fk+1]

+ �2
kE[kgwk+1

(byk+1) � g(byk+1)k2|Fk+1]

 (1 � �k)
2knkk2 + �2

kVg,

where we use the unbiasedness and moment boundedness of gw by Assumption 2.1.

Next, we prove Lemma 3.2 by using Lemma C.1 and Lemma C.2 to construct the super-

martingale with respect to an upper bound of {yk � g(zk)}.
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Proof of Lemma 3.2: a) By Lemma C.1 and Lemma C.2, we have

kyk � g(zk)k2  (Lgmk + knkk)2  2L2
gm

2
k + 2knkk2.

By the iterative inequalities for qk and mk derived in Lemma C.2, we obtain that

mk+1 + 4q2
k+1  (1 � �k/2)(mk + 4q2

k) + O(��1
k kzk+1 � zkk2).

Taking squares on both sides of the above inequality and using the fact that (a+b)2  (1+�/2)a2+

(1 + 2/�)b2 for � > 0, we have

(mk+1 + 4q2
k+1)

2  (1 � �k/2)(mk + 4q2
k)

2 + O(��3
k kzk+1 � zkk4). (C.5)

Let

e2
k = 2L2

g(mk + 4q2
k) + 2knkk2.

Clearly, kyk � g(zk)k  ek for all k and ek 2 Fk+1. Taking the sum of Eq.(C.5) and the iterative

inequality for nk in Lemma C.2, we have

E[e2
k+1|Fk]  (1 � �k/2)E[e2

k|Fk] + 2�2
kVg + O(��3

k E[kzk+1 � zkk4|Fk]).

b) Under the condition
P1

k=1 �
4
k�

�3
k < 1, we have

1X

k=1

��3
j,k {E[kzk+1 � zkk4|Fk]} =

1X

k=1

��3
j,k E[kzk+1 � zkk]4 

1X

k=1

O
⇣�4

k

�3
k

⌘
< 1,

where the inequality holds by the assumption E[kzk+1 � zkk4]  O(�4
k). By the monotone conver-

gence theorem, we obtain that
Pn

k=1 �
�3
k O(E[kzk+1�zkk4|Fk]) converges almost surely to some ran-

dom variable with finite expectation as n ! 1. Therefore, the limit
P1

k=1 �
�3
k O(E[kzk�zk�1k4|Fk])

exists and is finite with probability 1.

c) By part (a), we have that there exists a constant C � 0 such that

E[e2
k+1]  (1 � �k/2)E[e2

k] + 2�2
kVg + C

�4
k

�3
k

. (C.6)

Since �k/�k ! 0, there exists an M > 0 such that �k  M�k for all k. Letting Dy = E[e2
1] + 4Vg +

2M4C, by �k  M�k and �k  1, we have Dy � 4Vg�k + 2��4
k �4

kC for all k.

We prove by induction that E[e2
k]  Dy for all k. Clearly, the claim holds for k = 1. Suppose

the claim holds for 1, 2, · · · , k. We have by Eq.(C.6),

E[e2
k+1]  (1 � �k

2
)E[e2

k] + 2�2
kVg + C

�4
k

�3
k

 (1 � �k

2
)Dy + 2�2

kVg + C
�4

k

�3
k

 Dy �
�k

2
(Dy � 4�kVg � 2��4

k �4
kC)

 Dy,
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where the last inequality uses the fact that Dy � 4�kVg � 2��4
k �4

kC � 0 for all k. The claim thus

holds as desired.

d) By the assumption that E[kzk+1 � zkk4]  O(�4
k), there exists a constant C0 > 0 such that

E[kzk+1�zkk4]  �4
kC0. By part (c), we have that there exists a constant Dy > 0 such that E[kyk+1�

g(zk+1)k2]  E[e2
k+1]  Dy for all k. Thus, E[kyk+1 � g(zk+1)k] 

p
E[kyk+1 � g(zk+1)k2] 

p
Dy.

Now we begin our analysis to show the finiteness of the fourth moment E[kyk+1 � g(zk+1)k4].

Let ek+1 = (1 � �k)(g(zk+1) � g(zk)), by the Lipschitz continuity of g, we have

kek+1k  (1 � �k)
p

Cgkzk+1 � zkk.

By the definition of yk+1, we have

yk+1 � g(zk+1) + ek+1 � ek+1

= (1 � �k)(yk � g(zk)) + �k(gwk+1
(byk+1) � g(zk+1)) � ek+1

= (1 � �k)(yk � g(zk)) + �k(gwk+1
(byk+1) � g(byk+1)) + �k(g(byk+1) � g(zk+1)) � ek+1.

Again, by the Lipschitz continuity of g, we get

�kkg(byk+1) � g(zk+1)k  �k

p
Cgkbyk+1 � zk+1k

= �k

p
Cgk

1 � �k

�k
(zk+1 � zk)k

= (1 � �k)
p

Cgkzk+1 � zkk.

So we obtain

kyk+1 � g(zk+1)k  k(1��k)(yk � g(zk)) +�k(gwk+1
(byk+1)� g(byk+1))k+ 2(1��k)

p
Cgkzk+1 � zkk.

Let Pk = k(1 � �k)(yk � g(zk)) + �k(gwk+1
(byk+1) � g(byk+1))k, then we have

P 4
k = k(1 � �k)(yk � g(zk)) + �k(gwk+1

(byk+1) � g(byk+1))k4

 (1 � �k)
4kyk � g(zk)k4 + 4(1 � �k)

3�k(yk � g(zk))
3(gwk+1

(byk+1) � g(byk+1))

+ 6(1 � �k)
2�2

kkyk � g(zk)k2kgwk+1
(byk+1) � g(byk+1)k2

+ 4(1 � �k)�
3
kk(yk � g(zk))kk(gwk+1

(byk+1) � g(byk+1))k3

+ �4
kkgwk+1

(byk+1) � g(byk+1)k4,

which implies

E[P 4
k ]  (1 � �k)

4E[kyk � g(zk)k4] + 0

+ 6(1 � �k)
2�2

kE
h
kyk � g(zk)k2E[kgwk+1

(byk+1) � g(byk+1)k2|Fk+1]
i

+ 4(1 � �k)�
3
kE
h
kyk � g(zk)kE[k(gwk+1

(byk+1) � g(byk+1))k3|Fk+1]
i

+ �4
kE[kgwk+1

(byk+1) � g(byk+1)k4]

 (1 � �k)
4E[kyk � g(zk)k4] + 6(1 � �k)

2�2
kDyVg + 4�3

k

p
DyV

3/2
g + �4

kV 2
g .
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Using the fact that ka+bk2  (1+✏)kak2+(1+1/✏)kbk2 and ka+bk4  (1+✏)3kak4+(1+1/✏)3kbk4

for ✏ > 0, we obtain

kyk+1 � g(zk+1)k4  (1 + �k)
3P 4

k + 16(1 + 1/�k)
3(1 � �k)

4C2
gkzk+1 � zkk4,

which implies

E[kyk+1�g(zk+1)k4]  (1��k)E[kyk �g(zk)k4]+12�2
kDyVg +16�3

k

p
DyV

3/2
g +8�4

kV 2
g +

16�4
k

�3
k

C2
gC0.

Since �k/�k ! 0, there exists a constant M > 0 such that �k  �kM for all k. We set Sy =

ky0 � g(z0)k4 + 12DyVg + 16
p

DyV
3/2
g + 8V 2

g + 16M4C2
gC0, and prove the claim by induction

on k. The rest of the analysis follows the same argument as in the proof of Lemma 3.1 (a). We

omit the details to avoid repetition. We conclude that there exists a constant Sy > 0 such that

E[kyk+1 � g(zk+1)k4]  Sy for all k.

e) By the definition of yk, byk, zk, we have

||yk+1 � yk|| = ||(1 � �k+1)yk + �kgwk+1
(byk+1) � yk||

= ||�k(gwk+1
(byk+1) � yk)|| = �k||gwk+1

(byk+1) � yk||
= �k||gwk+1

(byk+1) � g(byk+1) + g(byk+1) � g(zk) + g(zk) � yk||
 �k

h
||gwk+1

(byk+1) � g(byk+1)|| + ||g(byk+1) � g(zk)|| + ||g(zk) � yk||
i

 �k

h
||gwk+1

(byk+1) � g(byk+1)|| + Lg||byk+1 � zk|| + ||g(zk) � yk||
i

= �k

h
||gwk+1

(byk+1) � g(byk+1)|| + Lg||
1

�k
(zk+1 � zk)|| + ||g(zk) � yk||

i

= �k||gwk+1
(byk+1) � g(byk+1)|| + Lg||zk+1 � zk|| + �k||g(zk) � yk||.

Using the fact (a+ b+ c)4  [2(a+ b)2 +2c2]2  8(a+ b)4 +8c4  64a4 +64b4 +8c4, it is easy to see

||yk+1 � yk||4  64�4
k||gwk+1

(byk+1) � g(byk+1)||4 + 64L4
g||zk+1 � zk||4 + 8�4

k||g(zk) � yk||4.

Then we get,

E[||yk+1 � yk||2]  64�4
kV 2

g + 64L2
gE[||zk+1 � zk||4] + 8�4

kE[||g(zk) � yk||4], (C.7)

By part (d), we have that E[kyk � g(zk)k4]  Sy. Since E[kzk+1 � zkk4]  O(�4
k) and �k/�k ! 0,

we obtain

E[kyk+1 � ykk4] O(�4
k) + O(�4

k)  O(�4
k),

which concludes the proof.
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C.3 Proof of Theorem 3.1

Proof of theorem 3.1: (a) Let x⇤ be an arbitrary optimal solution to problem (1.1), and let

F ⇤ = F (x⇤). By the same argument as in the proof of Lemma 2.1, we obtain there exists C0 > 0

such that

E[kxk+1 � x⇤k2|Fk]


⇣
1 + C0(

↵2
k

�T�1,k
+

↵2
k

�T�2,k
+ · · · +

↵2
k

�1,k
)
⌘
kxk � x⇤k2 + ↵2

kC1C2 · · · CT � 2↵k(F (xk) � F ⇤)

+ (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k|Fk] + (T � 2)�T�2,kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk].

(C.8)

First, we consider the case when the first inner level function f (T ) does not have Lipschitz continuous

gradients. In this case, Algorithm 2 runs with basic update step for the first inner level and

accelerated update steps for all other levels. By Assumption 3.1, we have

E[kxk+1 � xkk4]  ↵4
kC

2
1C2

2 · · · C2
T ,

which is the su�cient condition for Lemma 3.1 to be true. Apply Lemmas 2.3 and 3.1 to the first

update step, we have

E
h
E[ky(T�1)

k+1 � f (T )(xk+1)k2|Fk+1]
���Fk

i

(1 � �T�1,k)E[ky(T�1)
k�1 � f (T )(xk�1)k2|Fk] + ��1

T�1CT E[kxk � xk�1k2|Fk] + 2VT�
2
T�1,k,

(C.9)

and E[ky(T�1)
k+1 � y

(T�1)
k k4]  O(�4

T�1,k), which serves as the su�cient condition for level (T � 1) in

Lemma 3.2 to be true so that E[ky(T�2)
k+1 � y

(T�2)
k k4]  O(�4

T�2,k).

Apply Lemma 3.2 recursively for the accelerated update from j = T � 2 to 1, we have that for

all j’s and all k, there exists an e
(j)
k 2 Fk+1, such that almost surely

E[ky(j)
k � f (j+1)(y

(j+1)
k )k2|Fk]  E

h
[e

(j)
k ]2

���Fk

i
,

E
h
E[[e

(j)
k+1]

2|Fk+1]|Fk

i
 (1��j,k/2)E[[e

(j)
k ]2|Fk]+2�2

j,kVj+1+O
⇣E[ky(j+1)

k+1 � y
(j+1)
k k4|Fk]

�3
j,k

⌘
, (C.10)

and E[ky(j)
k+1 � y

(j)
k k4]  O(�4

j,k).

By Lemma 3.2 part (b), under the condition that
P1

k=1

�4
j+1,k

�3
j,k

< 1, we have

1X

k=1

E[ky(j+1)
k+1 � y

(j+1)
k k4|Fk]

�3
j,k

< 1,

with probability 1. Together with the condition
P1

k=1 �
2
j,k < 1, the sum of tail part of this

super-martingale, 2�2
j,kVj+1 + O(

E[ky(j+1)
k+1 �y

(j+1)
k k4|Fk]

�3
j,k

), converges almost surely.
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Similarly, by Lemma 2.3 part (b), under the condition
P1

k=1
↵2

k
�T�1,k

< 1, we have that with

probability 1,
1X

k=1

E[kxk+1 � xkk2|Fk]

�T�1,k
< 1.

Together with the condition
P1

k=1 �
2
T�1,k < 1, the sum of the tail part of the super-martingale for

Eq.(C.9), 2VT�
2
k +

CT E[kxk+1�xkk2|Fk]
�T�1,k

, converges almost surely.

Now we apply the T -element super-martingale convergent lemma to Eqs.(C.9), (C.8), and

(C.10). By letting

Xk = kxk � x⇤k2, Y
(T�1)
k = E[ky(T�1)

k � f (T )(xk)k2|Fk],

Y
(T�2)
k = E[[e

(T�2)
k ]2|Fk], · · · , Y

(1)
k = E[[e

(1)
k ]2|Fk],

⌘k = [
↵2

k

�T�1,k
+ · · · +

↵2
k

�1,k
]C0, u

(T )
k = 2↵k(F (xk) � F ⇤),

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 2, · · · , cT�2 = 2(T � 2), cT�1 = T � 1,

µ
(1)
k = 2�2

1,kV1 + O(
E[ky(2)

k+1 � y
(2)
k k4|Fk]

�3
1,k

), · · · ,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k4|Fk]

�3
T�2,k

),

µ
(T�1)
k = CT�

�1
T�1,kE[kxk+1 � xkk2|Fk] + 2VT�

2
T�1,k,

µ
(T )
k = ↵2

kC1C2 · · · CT ,

✓
(1)
k = �1,k/2, · · · , ✓

(T�2)
k = �T�2,k/2, ✓

(T�1)
k = �T�1,k,

we obtain that kxk+1 � x⇤k converges almost surely to a nonnegative random variable, and

1X

k=0

↵k(F (xk) � F ⇤) < 1,

which further implies

lim inf
k!1

F (xk) = F ⇤, w.p.1.

Using Lemma 2.5, we conclude that the sequence {xk} converges almost surely to a random point

in the set of optimal solutions to problem (1.1).

Next, we study the case when Assumption 3.2 also holds, i.e.,f (T ) has Lipschitz continuous

gradient. In this case, Algorithm 2 runs with accelerating update steps for all levels. The only

di↵erence is that we use the accelerated update rule for the first inner level instead of the basic

one, so Lemma 2.1 and 3.2 still hold. Consider the first inner level, since it is also updated by the

accelerated update rule, we apply similar analysis as in Lemma 3.2 for this level. We have that

there exists e
(T�1)
k 2 Fk+1 such that with probability 1,

E[ky(T�1)
k � f (T )(xk)k2|Fk]  E

h
[e

(T�1)
k ]2

���Fk

i
,
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and

E
h
E[[e

(T�1)
k+1 ]2|Fk+1]

���Fk

i
 (1 � �j,k

2
)E[[e

(T�1)
k ]2|Fk] + 2�2

j,kVj+1 + O(
E[kxk+1 � xkk4|Fk]

�3
j,k

). (C.11)

By similar argument as in Lemma 3.2 part (b), under the condition
P1

k=1
↵4

k

�3
T�1,k

< 1, we have

with probability 1,
1X

k=1

E[kxk+1 � xkk4|Fk]

�3
j,k

< 1.

Now we apply the T -element super-martingale convergent lemma to Eqs.(C.8),(C.10) and (C.11).

The remaining part follows the same line as in the case where f (T ) does not have Lipschitz contin-

uous gradient. We conclude {xk} converges almost surely to a random optimal solution.

(b) Firstly, consider the case when f (T ) does not have Lipschitz continuous gradient. Since

problem (1.1) has at least one optimal solution, the function F is bounded from below, and denote

F ⇤ as the optimal value of F (x) over X . As a result, we can treat {F (xk) � F ⇤} as nonnegative

random variables. The xk update steps of Algorithm 2 and Algorithm 1 are same. Thus, Lemma 2.2

holds for Algorithm 2 as well. It follows that for su�ciently large k,

E[F (xk+1) � F ⇤|Fk]

F (xk) � F ⇤ � ↵k

2
krF (xk)k2 +

1

2
↵2

kLF C1C2 · · · CT + (T � 1)�T�1,kE[ky(T�1)
k � f (T )(xk)k2|Fk]

+ · · · + �1,kE[ky(1)
k � f (2)(y

(2)
k )k2|Fk].

(C.12)

Using similar argument as in part (a), we apply the T -element super-martingale convergence lemma

to Eqs.(C.10) , (C.11) and (C.12). By letting

Xk = F (xk) � F ⇤, Y (T�1)
k = E[ky(T�1)

k � f (T )(xk)k2|Fk],

Y
(T�2)
k = E[[e

(T�2)
k ]2|Fk], · · · , Y

(1)
k = E[[e

(1)
k ]2|Fk],

⌘k = 0, u
(T )
k =

1

2
↵kkrF (x)k2,

u
(1)
k = u

(2)
k = · · · = u

(T�1)
k = 0, c1 = 2, · · · , cT�2 = 2(T � 2), cT�1 = T � 1,

µ
(T�1)
k = CT�

�1
T�1,kE[kxk+1 � xkk2|Fk] + 2VT�

2
T�1,k,

µ
(T�2)
k = 2�2

T�2,kVT�1 + O(
E[ky(T�1)

k+1 � y
(T�1)
k k4|Fk]

�3
T�2,k

), · · · ,

µ
(1)
k = 2�2

1,kV1 + O(
E[ky(2)

k+1 � y
(2)
k k4|Fk]

�3
1,k

),

µ
(T )
k =

1

2
↵2

kLF C1C2 · · · CT ,

✓
(1)
k = �1,k/2, · · · , ✓

(T�2)
k = �T�2,k/2, ✓

(T�1)
k = �T�1,k,
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we obtain {F (xk) � F ⇤} converges almost surely to a nonnegative random variable, and

1X

k=0

↵kkrF (xk)k2 < 1, w.p.1.

By Lemma 2.6, we conclude any limit point of the sequence {xk} is a stationary point with proba-

bility 1, which completes the proof.

When f (T ) has Lipschitz continuous gradient, we apply the T -element super-martingale con-

vergent lemma to Eqs.(C.10), (C.11), and (C.12). The rest of the proof follows the same line as in

the case where f (T ) is non-smooth.

D Proof of Theorem 3.2

D.1 Proof of Lemma 3.3

Proof: By Lemma 3.2, we have that for j = T � 2, · · · , 1, there exists a random variables

e
(j)
k 2 Fk+1 for all k satisfying ky(j)

k � f (j+1)(y
(j+1)
k )k  e

(j)
k such that

E[[e
(j)
k+1]

2|Fk]  (1 � �j,k/2)[e
(j)
k ]2 + 2�2

j,kVj+1 + O
⇣E[ky(j+1)

k+1 � y
(j+1)
k k4|Fk]

�3
j,k

⌘
,

almost surely and

E[ky(j)
k+1 � y

(j)
k k4]  O(�4

j,k).

So we have

E[[e
(j)
k+1]

2]  (1 � �j,k/2)E[[e
(j)
k ]2] + 2�2

j,kVj+1 + O
⇣�4

j+1,k

�3
j,k

⌘
. (D.1)

Substituting �j,k = 2k�bj into Eq.(D.1) and applying Lemma B.1, we obtain

E[ky(j)
k � f (j+1)(y

(j+1)
k )k2]  E[[e

(j)
k ]2]  O(k�4bj+1+4bj ) + O(k�bj ),

which completes the proof.

D.2 Proof of Lemma 3.4

Proof: By the Lipschitz continuous gradient condition in Assumption 2.2, we have

F (xk+1) � F (xk)

hrF (xk), xk+1 � xki +
LF

2
kxk+1 � xkk2

� ↵khrF (xk), erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i + O(↵2

k)

� ↵kkrF (xk)k2 + ↵khrF (xk),rF (xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i + O(↵2

k).

(D.2)

Let Q be

Q =
D
rF (xk),rF (xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )

E
.
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We have

E[Q] =E
h
hrF (xk),rF (xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i

i

=E
h
hrF (xk), erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i

i
,

where erF!k
(xk) = erf

(T )
!T,k(xk)rf

(T�1)
!T�1,k(f (T )(xk)) · · · rf

(1)
!1,k(f (2) � · · · � (f (T )(xk))) and the equality

comes from Assumption 2.1 (ii). Based on the fact 2ab  a2 + b2 for all a, b, we obtain

E
h
hrF (xk), erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i

i

1

2
E
⇥
krF (xk)k2] +

1

2
E
⇥
kerF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2

⇤
.

Applying the inequality ka + bk2  (kak+ kbk)2  2kak2 + 2kbk2 to Eq.(A.1)-(A.4) in Lemma A.1,

we have

1

2
E[kerF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2]

O(E[ky(T�1)
k � f (T )(xk)k2]) + · · · + O(E[ky(1)

k � f (2)(y
(2)
k )k2]).

Thus, we obtain

E[Q] =E
⇥
hrF (xk), erF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )i

⇤

1

2
E[krF (xk)k2] + O(E[ky(T�1)

k � f (T )(xk)k2]) + O(E[ky(T�2)
k � f (T�1)(y

(T�1)
k )k2])

+ · · · + O(E[ky(1)
k � f (2)(y

(2)
k )k2]).

Taking expectations on both sides of Eq.(D.2) and substituting E[Q] by its upper bound derived

above, we have

↵k

2
krF (xk)k2

E[F (xk)] � E[F (xk+1)] + O(↵kE[ky(T�1)
k � f (T )(xk)k2]) + O(↵kE[ky(T�2)

k � f (T�1)(y
(T�1)
k )k2])

+ · · · + O(↵kE[ky(1)
k � f (2)(y

(2)
k )k2]) + O(↵2

k).

This implies that

E[krF (xk)k2]

 2↵�1
k E[F (xk)] � 2↵�1

k E[F (xk+1)] + O(E[ky(T�1)
k � f (T )(xk)k2])

+ O(E[ky(T�2)
k � f (T�1)(y

(T�1)
k )k2]) + · · · + O(E[ky(1)

k � f (2)(y
(2)
k )k2]) + O(↵k),

(D.3)

which completes the proof.
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D.3 Proof of Theorem 3.2

Proof of theorem 3.2: Firstly, we consider the case where f (T ) does not have Lipschitz con-

tinuous gradient. Since Assumption 2.1 and 2.2 hold, we apply Lemma 3.4 and sum up Eq.(D.3)

from k = 1 to n , then we obtain
Pn

k=1 E(kr(xk)k2)

n

 2n�1↵�1
1 F (x0) + n�1

nX

k=1

((k + 1)a � ka)E[F (xk)] + n�1
nX

k=1

O(E[ky(T�1)
k � f (T )(xk)k2])+

· · · + K�1
nX

k=1

O(E[ky(1)
k � f (2)(y

(2)
k )k2]) + n�1

nX

k=1

O(↵k)

 2n�1F (x0) + n�1
nX

k=1

aka�1E[F (xk)] + n�1
nX

k=1

O(E[ky(T�1)
k � f (T )(xk)k2]) + · · ·

+ n�1
nX

k=1

O(E[ky(1)
k � f (2)(y

(2)
k )k2]) + n�1

nX

k=1

O(n�a),

(D.4)

where the second inequality holds by the fact (k + 1)a  ka + aka�1 since h(t) = ta is a concave

function for 0 < a < 1.

Meanwhile, by Lemma 2.7 and Lemma 3.3, with the choice of a = 4+T
8+T and bj = 3+j

8+T for j =

T�1, T�2, · · · , 1, we have E[ky(T�1)
k+1 �f (T )(xk)k2]  O(k�4/(8+T )) and E[ky(j)

k+1�f (j+1)(y
(j+1)
k+1 )k2] 

O(k�4/(8+T )) for j = T � 2, · · · , 1. Plug them into Eq.(D.4), we have
Pn

k=1 E(krF (xk)k2)

n

O
⇣
na�1 + n2(bT�1�a)Ilog n

2(a�bT�1)=1 + n�bT�1 +

T�2X

j=1

[n4(bj�bj+1)Ilog n
4(bj+1�bj)=1 + n�bj ] + n�a

⌘

O(n�4/(8+T )),

(D.5)

which completes the proof.

Next, when f (T ) has Lipschitz continuous gradient, the first inner level is also updated by the

accelerating rule. By similar analysis as in Lemma 3.3, we have

E[ky(T�1)
k � f (T )(xk)k2]  O(k�4a+4bT�1) + O(k�bT�1).

Plug this convergent rate into Eq.(D.5), together with Lemma 3.3, we obtain
Pn

k=1 E(krF (xk)k2)

n

O
⇣
na�1 + n�4a+4bT�1Ilog n

4(a�bT�1)=1 + n�bT�1 +

T�2X

j=1

[n4(bj�bj+1)Ilog n
4(bj+1�bj)

+ n�bj ] + n�a
⌘

O(n�4/(7+T )),

by choosing a = 3+T
7+T and bj = 3+j

7+T for j = T � 1, T � 2, · · · , 1, which completes the proof.
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E Proof of Theorem 3.3

Proof of theorem 3.3: Denote F ⇤ = minx2X F (x), note that F ⇤ = F (⇧X ⇤(x)) for all x 2 X .

When X = RdT , based on the definition of xk, we have

xk+1 � xk = �↵k
erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf!1,k

(y
(1)
k ).

Then, for the term ||xk+1 �⇧X ⇤(xk+1)||2, we have

||xk+1 �⇧X ⇤(xk+1)||2

||xk+1 �⇧X ⇤(xk)||2

||xk+1 � xk + xk �⇧X ⇤(xk)||2

=||xk �⇧X ⇤(xk)||2 � ||xk+1 � xk||2 + 2hxk+1 � xk, xk+1 �⇧X ⇤(xk)i
=||xk �⇧X ⇤(xk)||2 � ||xk+1 � xk||2

+ 2↵kherf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ),⇧X ⇤(xk) � xk+1i

||xk �⇧X ⇤(xk)||2 � ||xk+1 � xk||2 + 2↵khrF (xk),⇧X ⇤(xk) � xk+1i
+ 2↵kherf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ) �rF (xk),⇧X ⇤(xk) � xk+1i,

(E.1)

where the second equality comes from ka + bk2 = kbk2 � kak2 + 2ha, a + bi with a = xk+1 � xk and

b = xk �⇧X ⇤(xk). Define

T1 = hrF (xk),⇧X ⇤(xk) � xk+1i,
and

T2 = herf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ) �rF (xk),⇧X ⇤(xk) � xk+1i.

For the term T1, we have

T1 =hrF (xk), xk � xk+1i + hrF (xk),⇧X ⇤(xk) � xki

F (xk) � F (xk+1) +
LF

2
kxk+1 � xkk2 + hrF (xk),⇧X ⇤(xk) � xki

F (xk) � F (xk+1) +
LF

2
kxk+1 � xkk2 + F (⇧X ⇤(xk)) � F (xk)

=F (⇧X ⇤(xk)) � F (xk+1) +
LF

2
kxk+1 � xkk2

=F ⇤ � F (xk+1) +
LF

2
kxk+1 � xkk2

F ⇤ � F (xk+1) + O(↵2
k)

where the first inequality is due to the Lipschitz gradient of F , the second inequality comes from

the convexity of F , and the last inequality holds by Eq.(A.8).
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For the term T2, we have

E[T2] =E[herF!k
(xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ), xk �⇧X ⇤(xk)i]

+ E[herF!k
(xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ), xk+1 � xki]

E[herF!k
(xk) � erf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k ), xk �⇧X ⇤(xk)i]| {z }

T2,1

+
↵k

2
E[kerF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2]

| {z }
T2,2

+
1

2↵k
kxk � xk+1k2,

where the inequality comes from the fact that ha, bi  1
2↵k

kak2 + ↵k
2 kbk2. For T2,1, we have

T2,1  ↵k

2�k
E
h
kerF!k

(xk) � erf (T )
!T,k

(xk)rf (T�1)
!T�1,k

(y
(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2

i
+ E[

�k

2↵k
kxk �⇧X ⇤(xk)k2]

O(
↵k

�k
)
h
E[ky(T�1)

k � f (T )(xk)k2] + · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

i
+

�k

2↵k
E[kxk �⇧X ⇤(xk)k2],

where �k is a scalar and will be specified later. By the fact ka � bk2  2a2 + 2b2 and Assumption

2.1 (iii)-(iv), we have

T2,2  2E[kerF!k
(xk)k2] + 2E[kerf (T )

!T,k
(xk)rf (T�1)

!T�1,k
(y

(T�1)
k ) · · · rf (1)

!1,k
(y

(1)
k )k2]  O(1).

Taking expectations on both sides of Eq.(E.1) and plugging in the upper bounds of T1 and T2

derived above, we obtain

2↵k(E[F (xk+1)] � F ⇤) + E[kxk+1 �⇧X ⇤(xk+1)||2]
 (1 + �k)E[kxk �⇧X ⇤(xk)k2] + O(↵3

k) + O(↵2
k/�k)

h
E[ky(T�1)

k � f (T )(xk)k2]

+ · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

i
+ O(↵2

k).

By the definition of optimally strong convexity in (3.1), we have

F (xk+1) � F ⇤ � �kxk+1 �⇧X ⇤(xk+1)k2,

which futher implies

(1 + 2�↵k)E[kxk+1 �⇧X ⇤(xk+1)k2]

 (1 + �k)E[kxk �⇧X ⇤(xk)k2] + O(↵2
k/�k)

⇣
E[ky(T�1)

k � f (T )(xk)k2] + · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

⌘

+ O(↵3
k) + O(↵2

k).

It follows by dividing (1 + 2�↵k) > 0 on both sides,

E[kxk+1 �⇧X ⇤(xk+1)k2]  1 + �k

1 + 2�↵k
E[kxk �⇧X ⇤(xk)k2] + +O(↵2

k/�k)
⇣
E[ky(T�1)

k � f (T )(xk)k2]

+ · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

⌘
+ O(↵3

k) + O(↵2
k).
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Choosing �k = �↵k � 2�2↵2
k yields that

E[kxk+1 �⇧X ⇤(xk+1)k2]

 (1 � �↵k + 2�2↵2
k

1 + 2�↵k
)E[kxk �⇧X ⇤(xk)k2] + O(↵2

k) + O(
↵k

�
)
⇣
E[ky(T�1)

k � f (T )(xk)k2]

+ · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

⌘

= (1 � �↵k)E[kxk �⇧X ⇤(xk)k2]

+ O(↵2
k) + O(

↵k

�
)
⇣
E[ky(T�1)

k � f (T )(xk)k2] + · · · + E[ky(1)
k � f (2)(y

(2)
k )k2]

⌘
.

(E.2)

When f (T ) has Lipschitz continuous gradient, applying Lemma 2.7 and Lemma 3.3, we have

E[kxk+1 �⇧X ⇤(xk+1)k2]

(1 � �↵k)E[kxk �⇧X ⇤(xk)k2] + O(k�2a) + O(
↵k

�
)
⇣
O(k�2a+2bT�1)

+ O(k�bT�1) +

T�2X

j=1

O(k�4bj+4bj+1) + O(k�bj )
⌘
.

Apply Lemma B.1 to the previous inequality, we have

E[kxk �⇧X ⇤(xk)k2]  O(k�a) + O(k�2a+2bT�1) + O(k�bT�1) +
T�2X

j=1

h
O(k�4bj+4bj+1) + O(k�bj )

i
.

Letting a = 1, bT�1 = 2+T
4+T , bT�2 = 1+T

4+T , · · · , b1 = 4
4+T , we have

E[kxk �⇧X ⇤(xk)k2]  O(k�4/(4+T )),

which provides the convergence rate result for the optimally strongly convex T -level accelerated

SCGD.

Next, when f (T ) has Lipschitz continuous gradient, the first inner function is also updated by

the accelerated update rule. By similar analysis as in Lemma 3.3, we have

E[ky(T�1)
k � f (T )(xk)k2]  O(k�4a+4bT�1) + O(k�bT�1).

Plug this convergent rate into Eq.(E.2), we have

E[kxk �⇧X ⇤(xk)k2]

O(k�a) + O(k�4a+4bT�1) + O(k�bT�1) +
T�2X

j=1

h
O(k�4bj+4bj+1) + O(k�bj )

i

O(k�4/(3+T )),

by choosing a = 1,bT�1 = 2+T
3+T , bT�2 = 1+T

3+T , · · · , b1 = 4
3+T , which completes the proof.
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