
DISCRETE GAUSSIAN DISTRIBUTIONS VIA THETA FUNCTIONS

DANIELE AGOSTINI AND CARLOS AMÉNDOLA

Abstract. We study a discrete analogue of the classical multivariate Gaussian distribution. It is
supported on the integer lattice and is parametrized by the Riemann theta function. Over the reals,
the discrete Gaussian is characterized by the property of maximizing entropy, just as its continuous
counterpart. We capitalize on the theta function representation to derive statistical properties.
Throughout, we exhibit strong connections to the study of abelian varieties in algebraic geometry.

1. Introduction

Based on the principle of maximum entropy, it is of great interest to find, for a given class of
probability distributions, the ones that maximize entropy. For a random variable X, with density
f(x), its differential entropy as defined by Claude Shannon is

(1.1) H[X] = E[− log(f(X))]

and it is a measure of the information contained in the distribution. It is well known (see e.g.
[7, 12]) that the maximum entropy distribution for densities supported over a finite set or a bounded
interval in R is given by the corresponding uniform distribution. Since there is no such distribution
supported over the whole real line R, some constraints are needed to make sure there exists a
maximum entropy distribution. If one fixes the mean and the variance, the distribution with
maximum entropy is the Gaussian.

This fact motivates the definition of a discrete Gaussian distribution as the maximum entropy
probability distribution supported over the integers Z with fixed mean and variance. In their
compilation of maximum entropy distributions, Lisman and Van Zuylen in [14] say that it “cannot
be presented in plain terms, because there is no summation procedure for the series involved”.
Kemp in [13] proposes a somewhat explicit form for the discrete Gaussian, and later Szablowski
in [24] observed that the normalization constant can be parametrized in terms of the Jacobi theta
functions.

In this paper, we simplify and extend part of their work to higher dimensions, working over the
lattice Zg. Central to our approach is the Riemann theta function [5, Section 8.5],[18, Section II.1].
This is the holomorphic function

(1.2) θ : Cg ×Hg → C, θ(u,B) =
∑
n∈Zg

e

(
−1

2
ntBn+ ntu

)
where e(x) = e2πx and Hg is the Siegel right half-space, consisting of symmetric g × g complex
matrices whose real part is positive definite. Using this function, we can define a family of complex
probability distributions on Zg, that we call complex discrete Gaussian distributions.

Definition 1.1 (Complex discrete Gaussian distribution). Fix (u,B) ∈ Cg×Hg such that θ(u,B) 6=
0. We define the discrete Gaussian distribution with parameters (u,B) as the complex-valued
probability distribution on Zg given by

(1.3) pθ(n;u,B) =
1

θ(u,B)
e

(
−1

2
ntBn+ ntu

)
for all n ∈ Zg.

Observe that when u and B are real (that is, when their imaginary part is zero) the quantities
e
(
−1

2n
tBn+ ntu

)
are positive real numbers, so that pθ(n;u,B) is a standard real-valued probabil-

ity density function on the integer lattice Zg. One of our main results, proven in Section 2, is that
this probability distribution is the unique one that maximizes entropy among all those with same
mean and covariance matrix, so that it justifies the name discrete Gaussian.

As a consequence, discretizing the kernel of the continuous Gaussian gives indeed a distribution
maximizing entropy (for its own mean and variance). This means that our definition coincides with
the one usually studied in the computer science literature [2, 16, 20, 21]. Our observation creates
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a bridge to papers in this field on the topic and in particular to applications of discrete Gaussians.
In fact, they play a fundamental role in lattice-based cryptography, with one key problem being how
to sample from these distributions efficiently [1, 10]. It is our hope that our approach can be used
to shed light on this problem (e.g. through numerical evaluations of the Riemann theta function).

The Riemann theta function is a core object in the study of complex abelian varieties: these are
projective varieties that have at the same time the structure of an algebraic group, and they are
ubiquitous in algebraic geometry. We introduce them, their parameter spaces and related concepts
in Section 3. We exhibit several connections between the statistical properties of discrete Gaussians
and the geometry of abelian varieties. For instance, we show in Proposition 3.9 that independent
discrete Gaussians correspond to products of abelian varieties.

In Section 4, we continue exploiting the representation via the Riemann theta function to study
the properties of discrete Gaussians. For example, in Proposition 4.1 we give explicit formulas for
the characteristic function and for the higher moments. In this section we also provide numerical
examples where we illustrate simple modeling with discrete Gaussians and maximum likelihood
estimation for them.

Most interestingly, we show in Proposition 3.1 that discrete Gaussians can be interpreted, up
to translation, as points on abelian varieties, and this is our guiding principle. Moreover, this
principle extends in Proposition 3.3 to families of both abelian varieties and discrete Gaussians,
thus obtaining a natural relation between the set of all discrete Gaussian distributions on Zg and
the universal family of abelian varieties over the moduli space Ag [5, Section 8.2].

As a consequence of this principle, every statistical function of the discrete Gaussian that is
translation invariant, such as central moments and cumulants, gives a well defined function on
abelian varieties. In Section 5, we use this to define statistical maps of abelian varieties into
projective space. These realize abelian varieties as the moment varieties of the discrete Gaussian
distribution. We go on to study the geometry of these maps and we draw statistical consequences,
particularly about moment identifiability. We show in Theorems 5.9 and 5.14 that complex discrete
Gaussians on Z or Z2 with the same parameter B are completely determined by the moments up
to order three. Moreover, for discrete Gaussians on Z, we show in Proposition 5.10 how to use
the cubic equation of the corresponding elliptic curve to obtain explicit formulas for the higher
moments in terms of the first three.

In summary, in this paper we establish a connection between algebra and statistics that echoes
and complements similar results in the field of algebraic statistics [9, 19]. On the one hand, finite
discrete exponential families have been shown to correspond to toric varieties [9]. On the other
hand, some continuous exponential families have been linked to what are called exponential varieties
[17]. The present paper now relates some infinite discrete exponential families to abelian varieties.

2. The discrete Gaussian distribution and the Riemann theta function

We start by extending the definition of the univariate discrete Gaussian in Z to a multivariate
discrete Gaussian in Zg. The (continuous) multivariate Gaussian distribution given by

(2.1) f(x) =
1√

det(2πΣ)
e−

1
2

(x−µ)tΣ−1(x−µ),

is the maximum entropy distribution supported over Rg where the mean vector µ ∈ Rg and the
symmetric positive definite g × g covariance matrix Σ are fixed. It is thus natural to attempt the
following definition.

Definition 2.1 (Discrete Gaussian distribution). The g-dimensional discrete Gaussian distribution
is the maximum entropy probability distribution supported over Zg with fixed mean vector µ ∈ Rg
and covariance matrix Σ � 0.

A priori, such a distribution may not exist nor be unique. Our main result in this section is that
existence and uniqueness do hold.

To obtain this distribution we will use the classical Riemann theta function; we recall now its
definition. For any positive integer g we denote by Hg the Siegel right half-space, which consists of
symmetric g × g complex matrices whose real part is positive definite:

Hg = {B ∈ Cg×g |Bt = B, ReB � 0}.
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Then the Riemann theta function is defined as

(2.2) θ : Cg ×Hg → C, θ(u,B) =
∑
n∈Zg

e

(
−1

2
ntBn+ ntu

)
where e(x) = e2πx.

Observe that the series is convergent, thanks to the condition ReB � 0: in particular this shows
that the function is holomorphic. We denote the zero locus of this function by Θg = {(u,B) ∈
Cg ×Hg | θ(u,B) = 0}; this is sometimes called the universal theta divisor.

Remark 2.2. In order to emphasize the connection between geometry and statistics, we use a
different notation than the usual one for the Riemann theta function. Classically, the theta function
has parameters z ∈ Cg and τ ∈ Hg, where Hg is the Siegel upper half space of g × g symmetric
complex matrices with positive definite imaginary part. To pass from our notation to the classical
one, one just needs to take z = −iu, τ = iB.

Now, we define the probability distributions we are going to work with.

Definition 2.3 (Complex Discrete Gaussian distribution). For (u,B) ∈ (Cg × Hg) \ Θg, we de-
fine the discrete Gaussian distribution with parameters (u,B) as the complex-valued probability
distribution on Zg given by

(2.3) pθ(n;u,B) =
1

θ(u,B)
e

(
−1

2
ntBn+ ntu

)
for all n ∈ Zg.

We will denote by X(u,B) a random variable with values on Zg and distribution given by pθ(n;u,B).

We also give a name to the set of all complex discrete Gaussian distributions. We will see in
Remark 3.4 that this set has a natural structure of a complex manifold.

Definition 2.4 (The set Gg). For a fixed g ≥ 1, we denote by Gg the set of all complex discrete
Gaussian distributions on Zg.

Observe that when u and B are real (that is, when their imaginary part is zero) the quantities
e
(
−1

2n
tBn+ ntu

)
are positive real numbers, so that pθ(n;u,B) is a standard real-valued probabil-

ity density function on Zg. We will show that this probability distribution is the unique one that
maximizes entropy among all those with same mean and covariance matrix. In particular, the two
definitions of discrete Gaussian agree in this case.

Theorem 2.5. Fix a vector µ ∈ Rg and a positive definite symmetric matrix Σ ∈ Sym2 Rg. Then
there exists a unique distribution supported on Zg with mean vector µ and covariance matrix Σ that
maximizes entropy. This distribution is given by

(2.4) pθ(n;u,B) =
1

θ(u,B)
e

(
−1

2
ntBn+ ntu

)
for some unique u ∈ Rg and B ∈ Hg real.

It is natural to ask how one can compute effectively such u,B from given µ,Σ. See Remark 2.10
and Subsection 4.1. For a explicit expression of the maximized entropy see Proposition 4.4.

Remark 2.6. When B has imaginary part zero, it is a positive definite real matrix. Then the
function n 7→ −2π

(
1
2n

tBn
)

is a negative definite quadratic form. Thus pθ is a log-concave density
(looking at its piecewise linear extension in Rg), just as its continuous counterpart.

Remark 2.7. Set g = 1 and take two real parameters u ∈ R and B ∈ H1 ∩ R = R+. Then if we
set q = e (−B) , λ = e

(
−1

2B + u
)

we can rewrite

(2.5) e

(
−1

2
n2B + nu

)
= λnq

n(n−1)
2 .

Therefore, our one-dimensional discrete Gaussian coincides with the one defined by Kemp in [13].



DISCRETE GAUSSIAN DISTRIBUTIONS VIA THETA FUNCTIONS 4

We see now that the density we are proposing is very special in the statistical sense. Indeed, it
belongs to an exponential family.

Exponential families are of fundamental importance in statistics [6] and we briefly recall their
definition here. Many common examples of distributions belong to an exponential family. An
exponential family on a space X has density

(2.6) p(η, x) = h(x)e〈η,T (x)〉−A(η) for x ∈ X

where η ∈ Rn is a parameter, T : X → Rn is a measurable function, and 〈·, ·〉 is the standard scalar
product on Rn. In this case, h is known as the base measure, T as the sufficient statistics and A
as the log-partition function. The space of canonical parameters is {η ∈ Rn|A(η) < ∞} and it is
convex. The exponential family is regular if the space of canonical parameters is a nonempty open
set and it is minimal if the image of T does not lie in a proper affine subspace of Rn.

Proposition 2.8. Fix real parameters u,B. The density function pθ(n, u,B) over Zg in Theorem
2.5 belongs to a minimal regular exponential family of distributions.

Proof. Indeed, we can rewrite pθ(n, u,B) in the exponential family form:

(2.7) pθ(n, u,B) =
e2π(ntu− 1

2
ntBn)

θ(u,B)
= e〈(u,B),2π(n,− 1

2
nnt)〉−log(θ(u,B)),

so that we have identity base measure h(n) = 1, sufficient statistics T (n) = 2π(n,−1
2nn

t) and
log-partition function A(u,B) = log(θ(u,B)). �

Corollary 2.9. There is a bijection between the set of real canonical parameters (u,B) ∈ Rg ×Hg

and the moments (µ,Σ) ∈ Rg × Sym2 Rg with Σ � 0. It is given up to scaling by the gradient of

the log-partition function ∇A(u,B) =
1

θ(u,B)
∇θ(u,B).

Proof. From classical theory of minimal regular exponential families [6, 17], there is a bijection
between the space of canonical parameters {η |A(η) < ∞} and the space of sufficient statistics
conv(T (x)|x ∈ X ), and it is given by the gradient of the log-partition function ∇A(η). �

Remark 2.10. Furthermore, the inverse map (µ,Σ) → (u,B) is known to give the maximum
likelihood estimate (MLE) in the following sense. Given a sample x from a distribution in the
exponential family, we can compute its sufficient statistics t = T (x) (in our case multiples of the
sample mean µ and sample covariance Σ). For the given sufficient statistics t, solving the equation
∇A(u,B) = t for u,B is equivalent to solving the likelihood equations. See Subsection 4.1 for an
example.

Finally, exponential families are precisely the right candidates to be maximum entropy distribu-
tions [7]. We present the argument for this in our case.

Corollary 2.11. Fix real parameters u,B and let µ,Σ be the moment vector and the covariance
matrix of the corresponding discrete Gaussian. Among all densities q(n) of support Zg with fixed
mean vector µ and covariance matrix Σ, the distribution pθ(n) = p(n, u,B) maximizes entropy.

Proof. We observe that q having the first two matching moments to pθ means that when we sum
q(n) against the linear form ntu and against the quadratic form ntBn, it is equivalent to doing it
with pθ(n). That is,∑

n∈Zg
q(n)ntu =

∑
n∈Zg

p(n)ntu ,
∑
n∈Zg

q(n)ntBn =
∑
n∈Zg

p(n)ntBn.

Thus, ∑
n∈Zg

q(n) log(pθ(n)) =
∑
n∈Zg

p(n) log(pθ(n)).
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With this in mind, we proceed:

H(q) = −
∑
n∈Zg

q(n) log(q(n))

= −
∑
n∈Zg

q(n) log
q(n)

pθ(n)
−
∑
n∈Zg

q(n) log(pθ(n))

= −KL(q|pθ)−
∑
n∈Zg

p(n) log(pθ(n))

≤ −
∑
n∈Zg

p(n) log(pθ(n))

= H(pθ)

where KL(q|pθ) is the Kullback-Leibler divergence (always non-negative by the classical Jensen’s
inequality). Further, equality holds if and only if q = pθ almost everywhere. Since we are working
with the counting measure over the integer lattice, we have uniqueness. �

Combining Corollary 2.9 and Corollary 2.11 we obtain the result stated in Theorem 2.5.

3. Abelian varieties and discrete Gaussians

The Riemann theta function is a central object in the study of complex abelian varieties. These
are projective varieties that have at the same time the structure of an algebraic group, and they are
fundamental objects in algebraic geometry. Especially important are principally polarized abelian
varieties: these are pairs (A,Θ), where A is an abelian variety and Θ is an ample divisor on A such
that h0(A,Θ) = 1.

The theta function can be used to build a universal family of these varieties. This is a very
classical construction that we recall briefly here. For more details one can look into [5, Chapter 8].

We should however point out a slight difference between our construction and the classical one:
for some sources, for example [5], an isomorphism of principally polarized abelian varieties (A,Θ)
and (A′,Θ′) is considered to be an isomorphism of groups F : A → A′ such that F−1(Θ′) and
Θ differ by a translation. However, for our purposes we will need to fix the theta divisors, so
that, we will define an isomorphism between (A,Θ) and (A′,Θ′) to be an isomorphism of varieties
F : A→ A′ such that F−1(Θ′) = Θ.

3.1. Parameter spaces of abelian varieties. Fix an integer g ≥ 1, and for any B ∈ Hg consider
the subgroup ΛB = {im+Bn |m,n ∈ Zg} ⊆ Cg. Since B ∈ Hg one can see that ΛB is a lattice, so
that AB = Cg/ΛB is a complex torus. Moreover, the theta function is quasiperiodic with respect
to this lattice, meaning that for all n,m ∈ Zg and u ∈ Cg, B ∈ Hg we have:

(3.1) θ(u+ im+Bn,B) = e

(
1

2
ntBn+ ntu

)
θ(u,B).

In particular, the theta divisor ΘB := {u ∈ Cg | θ(u,B) = 0} is invariant under ΛB, so that it
descends to a divisor on AB that we denote by ΘB again.

Riemann proved that (AB,ΘB) is a principally polarized abelian variety, and moreover he also
showed that every principally polarized abelian variety of dimension g is isomorphic to one of these.
More precisely, for any principally polarized abelian variety (A,Θ), there is a certain B ∈ Hg and
an isomorphism F : A → AB such that F−1(ΘB) = Θ. Hence, with this interpretation, the space
Hg becomes a parameter space for all principally polarized abelian varieties.

One can go further and construct a moduli space of these varieties. The space Hg has a natural
action of the symplectic group

(3.2) Sp(2g,Z) =

{
M ∈M(2g,Z)

∣∣∣∣M t

(
0 Ig
−Ig 0

)
M =

(
0 Ig
−Ig 0

)}
defined as follows:

(3.3) M =

(
α β
γ δ

)
∈ Sp(2g,Z), B ∈ Hg MB := −i(αB − iβ)(γB − iδ)−1.
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For M and B as above, we can define an invertible C-linear map

(3.4) f̃M,B : Cg → Cg, u 7→ −i(γB − iδ)−tu

which in turn induces an isomorphism of abelian varieties fM,B : AB → AMB. However, this is

in general not an isomorphism of polarized abelian varieties, since the pullback f−1
M,B(ΘMB) could

differ from ΘB by a translation. To fix this, one defines (see [5, Lemma 8.4.1])

(3.5) c1 =
1

2
diag(γδt), c2 =

1

2
diag(αβt), cM,B = (MB)c1 + ic2

and then considers the affine transformation

(3.6) F̃M,B : Cg → Cg, F̃M,B(u) = f̃M,B(u) + cM,B

which in turn induces a map FM,B : AB → AMB. One can see that this is again an isomorphism and

moreover F−1
M,B(ΘMB) = ΘB. Hence, this shows that the two polarized abelian varieties (AB,ΘB)

and (AMB,ΘMB) are isomorphic. Moreover, it turns out that, up to translations, any isomorphism
between two polarized abelian varieties (AB,ΘB) and (AB′ ,ΘB′) is of this form.

Hence, the quotient Ag = Hg/Sp(2g,Z) is a natural parameter space for isomorphism classes of
principally polarized abelian varieties: it is usually called the moduli space of abelian varieties of
dimension g, and it is an algebraic variety itself [5, Remark 8.10.4].

3.2. Universal families of abelian varieties. Out of the previous discussion we also can actually
construct universal families of abelian varieties. The group Zg ⊕ Zg acts on Cg ×Hg by

(3.7) (m,n) · (u,B) = (u+ im+Bn,B).

The quotient Xg = (Cg×Hg)/(Zg⊕Zg) is a complex manifold equipped with a map Xg → Hg such
that the fiber over B is precisely the abelian variety AB. Moreover, by quasiperiodicity (3.1), the
universal theta divisor Θg = {(u,B) ∈ Cg ×Hg | θ(u,B) = 0} passes to the quotient Xg and defines
another divisor in Xg whose restriction to AB is precisely the theta divisor ΘB. Hence, the map
Xg → Hg, together with Θg, can be considered as the universal family of abelian varieties over Hg.

We can do something similar with the moduli space. Indeed, the action of Sp(2g,Z) on Hg,
extends (see [5, Lemma 8.8.1]) to an action of the group Gg = (Zg ⊕ Zg) o Sp(2g,Z) on Cg ×Hg,
given by

(3.8) ((m,n),M) · (u,B) = (F̃M,B(u) + im+ (MB)n,MB).

The quotient Ug = (Cg × Hg)/Gg by this action can also be seen as a quotient Xg/Sp(2g,Z).
In particular, it has a natural map Ug → Ag. Moreover, the Theta Transformation Formula [5,

Theorem 8.6.1] tells us explicitly how the theta function changes under Gg: for each M =
(
α β
γ δ

)
∈

Sp(2g,Z) and u ∈ Cg, B ∈ Hg we have

(3.9) θ(FM (u,B),MB) = C(M,B, u)θ(u,B)

for a certain explicit function C(M,B, u) which never vanishes. In particular, this tells us that the
universal theta divisor Θg is invariant under the action of Gg, so that it passes to the quotient Ug.
In this setting, the map Ug → Ag, together with Θg is sometimes called the universal family over
the moduli space Ag.

3.3. Discrete Gaussian distributions and abelian varieties. In the following, we study fur-
ther statistical properties of discrete Gaussians, in light of the connection to abelian varieties.

The key observation is that the quasiperiodicity property has a transparent interpretation in
terms of the discrete Gaussian. Recall that if (u,B) ∈ Cg×Hg \Θg, we denote by X(u,B) a random
variable with discrete Gaussian distribution of parameters (u,B). We will use the standard notation
X ∼ Y to denote that two random variables have the same distribution.

Proposition 3.1 (Quasiperiodicity). Let (u,B) ∈ Cg × Hg \ Θg. Then for every m,n ∈ Zg we
have that

(3.10) X(u+im+Bn,B) ∼ X(u,B) + n.
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Proof. First we observe that by the quasiperiodicity of the theta function (3.1) we have that (u+
im+Bn,B) /∈ Θg, so that it makes sense to speak of the variable X(u+im+Bn,B). Now, we fix more
generally (u,B) ∈ Cg ×Hg and m,n ∈ Zg and for all h ∈ Zg we can compute

e

(
−1

2
htBh+ ht(u+ im+Bn)

)
= e

(
−1

2
htBh+ htu+ htBn

)
= e

(
−1

2
(h− n)tB(h− n) + (h− n)tu− 1

2
ntBh− 1

2
htBn+

1

2
ntBn+ ntu+ htBn

)
= e

(
1

2
ntBn+ ntu

)
e

(
−1

2
(h− n)tB(h− n) + (h− n)tu

)
e

(
−1

2
htBn− 1

2
ntBh+ htBn

)
.

However, since B is symmetric we see that the last factor in this expression is 1. Notice that this
shows in particular that the theta function is quasiperiodic as in (3.1). Now we can compute

P(X(u+im+Bn,B) = h) =
e
(
−1

2h
tBh+ ht(u+ im+Bn)

)
θ(u+ im+Bn,B)

=
e
(

1
2n

tBn+ ntu
)
e
(
−1

2(h− n)tB(h− n) + (h− n)tu
)

e
(

1
2n

tBn+ ntu
)
θ(u,B)

=
e
(
−1

2(h− n)tB(h− n) + (h− n)tu
)

θ(u,B)
= P(X(u,B) = h− n)

which is precisely what we want. �

Remark 3.2. This result tells us that if we fix a parameter B ∈ Hg, then discrete Gaussian
distributions X(u,B) correspond, up to translation, to points in the open subset AB \ΘB ⊆ AB.

Hence, we see a direct connection between discrete Gaussians and abelian varieties. More pre-
cisely, the next Proposition 3.3 shows that we can relate the set Gg of all discrete Gaussian distri-
butions to the universal family Ug.

Proposition 3.3 (Equivalence of discrete Gaussians). Let (u,B), (u′, B′) ∈ Cg × Hg \ Θg. Then
X(u,B) ∼ X(u′,B′) if and only if

(3.11) u = u′ + i

(
1

2
diag(β) + a

)
, B = B′ − iβ

where β ∈ Sym2 Zg is a symmetric matrix with integer coefficients, diag(β) is the diagonal of β
and a ∈ Zg.

Proof. The two discrete Gaussians X(u,B) and X(u′,B′) have the same distribution if and only if

(3.12)
e
(
−1

2n
tBn+ ntu

)
θ(u,B)

=
e
(
−1

2n
tB′n+ ntu′

)
θ(u′, B′)

for all n ∈ Zg.

We can rewrite this as

(3.13) e

(
−1

2
nt(B −B′)n+ nt(u− u′)

)
=

θ(u,B)

θ(u′, B′)
for all n ∈ Zg.

In particular, this shows that the left hand side is independent of n, so that plugging n = 0 gives
that

(3.14) e

(
−1

2
nt(B −B′)n+ nt(u− u′)

)
= 1 for all n ∈ Zg.

Conversely, if this last condition holds, then it is clear that θ(u,B) = θ(u′, B′), so that (3.13) holds
as well. This proves that X(u,B) ∼ X(u′,B′) is equivalent to (3.14). We can rewrite (3.14) as

(3.15) − 1

2
nt(B −B′)n+ nt(u− u′) ∈ iZ for all n ∈ Zg.

Now, let’s set B −B′ = −iβ and u− u′ = 1
2 idiag(β) + ia: the condition becomes

(3.16)
1

2
ntβn+

1

2
nt diag(β) + nta ∈ Z for all n ∈ Zg.
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We need to prove that this holds if and only if a, β have integer coefficients. Suppose first that a, β
have integer coefficients: the coordinates corresponding to off-diagonal entries are indeed integers
(since β is symmetric), so (3.16) holds if

(3.17)
1

2
n2βii +

1

2
nβii =

n(n+ 1)

2
βii ∈ Z for all n ∈ Z, i ∈ {1, . . . , g},

but this is true because βii ∈ Z and n(n+ 1) is even.
Conversely, suppose that (3.16) holds and let’s prove that a, β have integer coefficients. Let ei

denote the i-th vector of the canonical basis. Taking n = ei and n = −ei in (3.16) we get that
βii ∈ Z and ai ∈ Z for all i. To conclude, we just need to check that βij ∈ Z for all i 6= j and this
follows again from (3.16) taking n = ei + ej . �

Remark 3.4. We can interpret this result via universal families of abelian varieties as follows: the
group Ng = Zg ⊕ Sym2 Zg embeds in the group Gg = (Zg ⊕ Zg) o Sp(2g,Z) via the map

(3.18) Ng ↪→ Gg (a, β) 7→
(

(a, 0),

(
Ig β
0 Ig

))
.

In particular, the action (3.8) of Gg on Cg ×Hg restricts to an action of Ng as follows:

(3.19) (a, β) · (u,B) =

(
u+ ia+ i

1

2
diag(β), B − iβ

)
.

Then, Proposition 3.3 says precisely that the set Gg of all discrete Gaussian distributions is naturally
identified with the quotient ((Cg ×Hg) \Θg)/Ng. In particular, since the action of Ng is free and
properly discontinuous, we see that Gg has a natural structure of a complex manifold.

Moreover, since Ng is a subgroup of Gg, we have a natural map Gg −→ Ug, so that the set Gg of
discrete Gaussians is an intermediate space between Cg ×Hg and the universal family Ug.

3.4. Discrete Gaussians and affine transformations. The class of continuous Gaussians is
invariant under the action of affine automorphisms of Rg. The same is true for discrete Gaussians
and affine automorphisms of Zg. The case of translations is covered by Proposition 3.1, so we just
need to consider linear automorphisms.

Proposition 3.5. Let X(u,B) be a discrete Gaussian on Zg. Then, for any α ∈ GL(g,Z) we have

(3.20) αX(u,B) ∼ X(α−tu,α−tBα−1).

Proof. We just write down everything explicitly: if n ∈ Zg, then we see that

e

(
−1

2
(α−1n)tB(α−1n) + (α−1n)tu

)
= e

(
−1

2
nt(α−tBα−1)n+ nt(α−tu)

)
(3.21)

In particular, summing over Zg we get that θ(u,B) = θ(α−tu, α−tBα−1). Putting these two
together, we conclude that both distributions have the same probability mass functions. �

Remark 3.6. We can also interpret this result as in Remark 3.4. Indeed, the group GL(g,Z)
embeds in the group Gg = (Zg ⊕ Zg) o Sp(2g,Z) via the map

(3.22) GL(g,Z) ↪→ Gg, α 7→
(

(0, 0),

(
α−t 0
0 α

))
.

In particular, the action (3.8) of Gg on Cg ×Hg restricts to an action of Ng as follows:

(3.23) α · (u,B) =
(
α−tu, α−tBα−1

)
,

which is exactly what appears in Proposition 3.5.

Remark 3.7 (Parity). In particular, it follows immediately from Proposition 3.5 that X(−u,B) ∼
−X(u,B). This gives a parity property for discrete Gaussians that reflects the analogous property
for the Riemann Theta function.

However, in general it is not true that an arbitrary linear transformation of a discrete Gaussian
is again a discrete Gaussian. Still, we can control the difference, and thanks to Proposition 3.5, it
is enough to do it for projections.
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Proposition 3.8. Let X = (X1, X2) be a discrete Gaussian random variable on Zg1 × Zg2 with

parameters u = (u1, u2) and B =
(
B11 B12

Bt12 B22

)
.

Then X1 has probability mass function:

(3.24) P(X1 = n1) =
θ(u1, B11)θ(u2 −Bt

12n1, B22)

θ(u,B)
P(X(u1,B11) = n1).

Proof. This is a straightforward computation:

P(X1 = n1) =
∑

n2∈Zg2
P((X1, X2) = (n1, n2))

=
1

θ(u,B)

∑
n2∈Zg2

e

(
−1

2
(nt1, n

t
2)

(
B11 B12

Bt
12 B22

)(
n1

n2

)
+ (nt1, n

t
2)

(
u1

u2

))

=
1

θ(u,B)

∑
n2∈Zg2

e

(
−1

2
nt1B11n1 − nt2Bt

12n1 −
1

2
nt2B22n2 + nt1u1 + nt2u2

)

=
1

θ(u,B)
e

(
−1

2
nt1B11n1 + nt1u1

) ∑
n2∈Zg2

e

(
−1

2
nt2B22n2 + nt2(u2 −Bt

12n1)

)

=
θ(u2 −Bt

12n1, B22)

θ(u,B)
e

(
−1

2
nt1B11n1 + nt1u1

)
=
θ(u1, B11)θ(u2 −Bt

12n1, B22)

θ(u,B)
P(X(u1,B11) = n1)

�

In particular, the components of a discrete Gaussian are not discrete Gaussian themselves, but
we see now that things work well when they are independent.

3.5. Independence for discrete Gaussians. We can characterize independence of joint discrete
Gaussians in a way analogous to continuous Gaussians.

Proposition 3.9. Let X = (X1, X2) be a discrete random variable on Zg1×Zg2. Then the following
are equivalent:

(1) X is a discrete Gaussian with X1, X2 independent.

(2) X is a discrete Gaussian with parameter B =
(
B11 0

0 B22

)
.

(3) X1, X2 are independent discrete Gaussians with parameters B11 and B22 respectively.

Moreover, if X is a discrete Gaussian with real parameters B and u, these conditions are equivalent
to

(4) X1, X2 are uncorrelated.

Proof. Let X is a discrete Gaussian with parameters u = (u1, u2) and B =
(
B11 B12

Bt12 B22

)
. With the

same computations as in Lemma 3.8 we see that

P((X1, X2) = (n1, n2)) =
1

θ(u,B)
e

(
−1

2
nt1B11n1 − nt1B12n2 −

1

2
nt2B22n2 + nt1u1 + nt2u2

)
,

P(X1 = n1) =
θ(u2 −Bt

12n1, B22)

θ(u,B)
e

(
−1

2
nt1B11n1 + nt1u1

)
,

P(X2 = n2) =
θ(u1 −B12n2, B11)

θ(u,B)
e

(
−1

2
nt2B22n2 + nt2u2

)
.

Hence P((X1, X2) = (n1, n2)) = P(X1 = n1)P(X2 = n2) if and only if

(3.25) θ(u,B) · e
(
nt1B12n2

)
= θ(u1 −B12n2, B11)θ(u2 −Bt

12n1, B22)

We first show that (1) implies (2). If X1, X2 are independent, this means precisely that the relation
(3.25) holds for every n1, n2. Choosing n1 = 0 shows that θ(u1−B12n2, B11) is a constant function
of n2, and choosing n2 = 0 shows that θ(u2 − Bt

12n1, B22) is a constant function of n1. Hence, it
must be that e

(
nt1B12n2

)
is independent of n1, n2, and by choosing one of the two to be zero, we

see that e
(
nt1B12n2

)
= 1. This is the same as asking that nt1B12n2 ∈ Zi for all n1, n2, which in turn
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means that B12 has coefficients in Zi. Then, thanks to Proposition 3.3, we can assume B12 = 0,
which proves (2).

To show that (2) implies (3) observe that if we set B12 = 0 in (3.25), then the relation reduces
to θ(u,B) = θ(u1, B11)θ(u2, B22), which is true by an explicit computation. Hence, we get that
X1, X2 are independent. To show that they are discrete Gaussians, it is enough to plug B12 = 0 in
Proposition 3.8 and use again that θ(u,B) = θ(u1, B11)θ(u2, B22). In the same way, to show that
(3) implies (1) it is enough to use (3.25) and the fact that θ(u,B) = θ(u1, B11)θ(u2, B22).

To conclude, suppose that X is a discrete Gaussian with real parameters u,B. It is clear that
(1) implies (4). We will show here that (4) implies (1). To do this, let Y1, Y2 be two independent
discrete Gaussians with real parameters which have the same mean vector and covariance matrix
as X1, X2 respectively. Then we see from (3) that Y = (Y1, Y2) is a discrete Gaussian distribution
with real parameters. Moreover, since X1, X2 are uncorrelated, Y and X have the same mean and
covariance matrix. Then, Theorem 2.5 shows that X,Y have the same distribution, and we are
done. �

This result tells us that two joint discrete Gaussians are independent if and only if the matrix
parameter B is diagonal (modulo Zi). This evokes the special property of continuous Gaussians that
for the two components X1, X2 of a Gaussian vector (X1, X2) one has that X1, X2 are independent
if and only if their joint covariance Σ12 is zero.

Remark 3.10. The abelian variety AB corresponding to a parameter of the form B =
(
B11 0

0 B22

)
is a product of abelian varieties of smaller dimension: AB = AB11 ×AB22 . This is suggestive of the
relation in algebraic statistics between statistical independence of finite random variables and the
Segre embedding of Pn1 × Pn2 .

4. Characteristic function and moments

In this section we derive various probabilistic aspects of the discrete Gaussian, such as its charac-
teristic function, its moments, its cumulants and its entropy. These already appear in the computer
science literature: see for example [15, Lemma 2.8] or [20, Formulas (6),(7)]. These expressions
have a simple description in terms of the Riemann theta function and we feel it is worth collecting
them here in a systematic way.

We will use the following notation: if a = (a1, . . . , ag) is a multi-index, with ai ∈ N, ai ≥ 0, then
we set |a| = a1 + · · ·+ ag and a! = a1! . . . ag!. Also, if a, b ∈ Ng, we say that a ≤ b if ai ≤ bi for all
i = 1, . . . , g.

If v = (v1, . . . , vg) ∈ Cg is a vector of complex numbers we set va = va11 . . . v
ag
g . If f(u1, . . . , ug)

is a holomorphic function, or a formal power series, we set

(4.1) Da
uf =

∂a1f

∂ua11

·. . .·∂
agf

∂u
ag
g
, Duf =

(
∂f

∂u1
, . . . ,

∂f

∂ug

)
, (Duf)a =

(
∂f

∂u1

)a1
·. . .·

(
∂f

∂ug

)ag
and we denote by Da

u(log f) the higher logarithmic derivatives of f . Recall that they are computed
by taking formal derivatives of log f : for example, if f = f(u) is a function of one variable we have

(4.2) D1
u(log f) =

f ′

f
, D2

u(log f) =
f · f ′′ − f ′2

f2
.

If X = (X1, . . . , Xg) is a random variable (possibly with a complex-valued distribution) we denote
the corresponding means as µi = E[Xi] and the mean vector as µ = (µ1, . . . , µg)

t. Moreover for
each multi-index a ∈ Ng the higher moments are

(4.3) µa[X] = µa1,...,ag [X] = E[Xa1
1 · . . . ·X

ag
g ] ai ∈ N

and the higher central moments are

(4.4) ma[X] = µa[X − µ] = E[(X1 − µ1)a1 · . . . · (Xg − µg)ag ].

The moments are encoded by the characteristic function of X: this is the formal power series

(4.5) φX(v) = E[eiv
tX ] =

∑
a∈Ng

i|a|

a!
µa[X]va.
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We also consider the cumulants κa[X], defined through a generating function, namely,

(4.6)
∑
a∈Ng

κa[X]

a!
va = logE[ev

tX ].

We rephrase this by saying that the cumulants correspond to the logarithmic derivatives of the
formal power series v 7→ E[ev

tX ] evaluated at 0:

(4.7) κa[X] = Da
v(logE[ev

tX ])|v=0.

In the case of the discrete Gaussian distribution, these quantities can be easily expressed using the
Riemann theta function. We sometimes suppress the explicit dependence of u,B in θ(u,B) and its
derivatives for readability.

Proposition 4.1. Fix (u,B) ∈ Cg ×Hg \Θg. Then the characteristic function of X(u,B) equals

(4.8) φX(u,B)
(v) = E[eiv

tX(u,B) ] =
θ
(
u+ i

2πv,B
)

θ(u,B)
=

1

θ

∑
a∈Ng

i|a|

(2π)|a|
1

a!
(Da

uθ) · va.

Consequently, the moments, central moments and cumulants are given by

µa[X(u,B)] =
1

(2π)|a|
1

θ
Da
uθ,(4.9)

ma[X(u,B)] =
1

(2π)|a|
1

θ

∑
0≤b≤a

(
a

b

)
(−1)|b|

θ|b|
(Duθ)

bDa−b
u θ,(4.10)

κa[X(u,B)] =
1

(2π)|a|
Da
u(log θ).(4.11)

where the expressions on the right hand side are evaluated at (u,B).

Proof. By definition,

φX(u,B)
(v) = E[eiv

tX(u,B) ] = E
[
e

(
i

2π
vtX(u,B)

)]
=

1

θ

∑
n∈Zg

e

(
−1

2
ntBn+ ntu

)
e

(
i

2π
vtn

)
(4.12)

=
1

θ

∑
n∈Zg

e

(
−1

2
ntBn+ nt

(
u+

i

2π
v

))
=
θ
(
u+ i

2πv,B
)

θ(u,B)
(4.13)

=
1

θ

∑
a∈Ng

i|a|

(2π)|a|
1

a!
(Da

uθ)(u,B) · va(4.14)

where the last equality follows from the Taylor expansion of θ(u+ i
2πv,B) around u. The formula

for µa is obtained by substituting φX(−iv). To get the central moments, we observe that if µ =
µ[X(u,B)] then ma[X(u,B)] = µa[X(u,B) − µ]. Hence, we get them from the characteristic function
of X(u,B) − µ:

φX(u,B)−µ(v) = φµ(−v)φX(u,B)
(v) = e−iv

tµ

(∑
c∈Ng

i|c|

c!
µc[X(u,B)]v

c

)
(4.15)

=

(∑
b∈Ng

i|b|

b!
(−1)|b|µbvb

)(∑
c∈Ng

i|c|

c!
µc[X(u,B)]v

c

)
(4.16)

=
∑
a∈Ng

( ∑
b+c=a

i|a|

b!c!
(−1)|b|µb · µc[X(u,B)]

)
va(4.17)

=
∑
a∈Ng

i|a|

a!

 ∑
0≤b≤a

(
a

b

)
(−1)|b|µb · µa−b[X(u,B)]

 va.(4.18)
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Substituting µ = 1
θ

1
2πDuθ and µa−b[X(u,B)] = 1

θ
1

(2π)|a−b|
Da−b
u θ (we suppress the evaluation at (u,B)

for readability) we get

φX(u,B)−µ(v) =
∑
a∈Ng

i|a|

a!

1

θ

1

(2π)|a|

∑
0≤b≤a

(
a

b

)
(−1)|b|

θ|b|
(Duθ)

b ·Da−b
u θ

 va(4.19)

which is what we want.
To conclude, we compute the cumulants. By definition we have

logE[ev
tX(u,B) ] = log

1

θ

∑
n∈Ng

e

(
1

2π
vtn

)
e

(
−1

2
ntBn+ utn

)

= log
1

θ

∑
n∈Ng

e

(
−1

2
ntBn+

(
u+

1

2π
v

)t
n

)
= log θ

(
u+

v

2π
,B
)
− log θ(u,B)

And taking derivatives with respect to v we get

(4.20) κa[X(u,B)] =
1

(2π)|a|
Da
u(log θ),

where we suppress again the evaluation at (u,B). �

Remark 4.2 (Mean and covariance). In particular, we can write down explicitly the mean vector
and the covariance matrix of X(u,B). Indeed, the first moments always coincide with the first
cumulants, so that

(4.21) µi[X(u,B)] =
1

2π

1

θ

∂θ

∂ui
=

1

2π

∂ log θ

∂ui
= κi[X(u,B)].

For the covariances we also have that the second central moments coincide with the second cumu-
lants, so that

(4.22) mij [X(u,B)] =
1

(2π)2

1

θ2

(
θ

∂2θ

∂ui∂uj
− ∂θ

∂ui

∂θ

∂uj

)
=

1

(2π)2

∂2 log θ

∂ui∂uj
= κij [X(u,B)].

We can compare these formulas with those obtained from the theory of exponential families in
Corollary 2.9. In particular, from the expression for the covariances, we get that

(4.23)
∂θ

∂Bii
= − 1

4π

∂2θ

∂u2
i

and
1

2

∂θ

∂Bij
= − 1

4π

∂2θ

∂ui∂uj
if i < j

which is precisely the heat equation for the theta function [5, Proposition 8.5.5].

Remark 4.3. As a consequence of Lemma 3.7, we see that the moments µa[X(u,B)], the central
moments ma[X(u,B)] and the cumulants κa[X(u,B)] are even or odd functions of u, depending on
whether |a| is even or odd. In particular, we get immediately that µ[X(0,B)] = 0.

We can also compute the entropy of discrete Gaussian random variables.

Proposition 4.4. Fix (u,B) ∈ Cg × Hg \ Θg, and set µ = µ[X(u,B)] and Σ = Cov[X(u,B)]. Then
the entropy of X(u,B) is given by

H[X(u,B)] = log θ − 1

θ

(
〈u,Duθ〉+

1

2
〈B,DBθ + diag(DBθ)〉

)
(4.24)

= log θ − 2π〈u, µ〉+ π〈B,Σ + µµt〉(4.25)

where 〈·, ·〉 denotes the standard scalar product.
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Proof. We compute:

H[X(u,B)] = −

(∑
n∈Zg

log

(
e
(
−1

2n
tBn+ ntu

)
θ(u,B)

)
e
(
−1

2n
tBn+ ntu

)
θ(u,B)

)
=

∑
n∈Zg

(
log θ(u,B) + πntBn− 2πntu

) e
(
−1

2n
tBn+ ntu

)
θ(u,B)

=

log θ(u,B) +
1

θ

(
π
∑
n∈Zg

(ntBn)e

(
−1

2
ntBn+ ntu

)
− 2π

∑
n∈Zg

(ntu)e

(
−1

2
ntBn+ ntu

))
.

Now, differentiating the theta function term by term, we see that

(4.26)
∂θ

∂ui
= 2π

∑
n∈Zg

nie

(
−1

2
ntBn+ ntu

)
whereas for i < j,

(4.27)
∂θ

∂Bii
= −π

∑
n∈Zg

n2
i e

(
−1

2
ntBn+ ntu

)
∂θ

∂Bij
= −π

∑
n∈Zg

2ninj e

(
−1

2
ntBn+ ntu

)
.

With this, the first equality in (4.24) follows. For the second, we know from Proposition 4.1 that
1
θDuθ = 2πµ, so we just need to check that 1

θ
DBθ+diag(DBθ)

2 = −π(Σ+µµt). To do this, it is enough
to apply Proposition 4.1 together with the heat equation for the theta function (4.23) �

Remark 4.5. We should point out that, since θ is a complex function, the logarithm log θ is defined
just up to a constant. However, when u,B are real, we can take the standard determination of the
logarithm on C, which is the one that coincides with the usual logarithm on the positive real axis.
In that case the above formula gives the entropy of the real discrete Gaussian.

4.1. Numerical examples. A nice consequence of the bijection in Corollary 2.9 and the expres-
sions in Proposition 4.1 is that we can compute numerically the real parameters u,B from given
moments µ,Σ by solving the gradient system

µ =
1

2π

1

θ
Duθ(4.28)

Σ + µµt = − 1

2π

1

θ
(DBθ + diag(DBθ)).(4.29)

It provides an advantage with respect to parametrizations like in [13] where the constant is not
easy to compute. Indeed, geometers have long been interested in computing the Riemann Theta
function and there are several numerical implementations [8]. Thus, in principle, the discrete
Gaussian distribution we propose can be computed effectively for applications.

In fact, in SAGE using the package abelfunctions and with the help of Lynn Chua (who has
maintained and implemented similar functions), we were able to compute with numerical precision
the corresponding u,B for given choices of µ,Σ. A desirable step following this work would be to
have a fully efficient implementation for all g ≥ 1, for instance as an R package.

For example, let g = 1 and consider the sample with 10 data points (1, 0, 1,−2, 1, 2, 3,−2, 1,−1)
that measure some discrete error. Then the sample mean is µ̂ = 0.4 and the sample standard
deviation is σ̂ = 1.6465. Assuming a univariate discrete Gaussian model and solving numerically
the system (4.28), (4.29) we get û = 0.023 and B̂ = 0.0587 as the maximum likelihood estimates.

Now suppose we want to know the corresponding real parameters u,B for a “standard” discrete
Gaussian on Z with mean µ = 0 and variance σ2 = 1. By the parity property of Remark 3.7, we
must have u = 0 (see also Remark 4.3). Solving numerically for B in (4.29), we get

(4.30) B ≈ 0.1591549.

We can generalize this to a standard discrete Gaussian on Zg with mean vector µ = (0, 0, . . . , 0)
and identity covariance matrix Σ = Id. Indeed, the parity property gives again u = (0, 0, . . . , 0).
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Moreover, Proposition 3.9 implies that

(4.31) B ≈

0.1591549 0 0

0
. . . 0

0 0 0.1591549

 .

We can also go in the other direction and compute the mean vector and covariance matrix
starting from the parameters u and B. As an explicit example we take the Fermat quartic C =
{X4

0 +X4
1 +X4

2 = 0} in P2. This is a smooth curve of genus 3, so that its Jacobian is a principally
polarized abelian variety of dimension g = 3. We can compute the corresponding matrix parameter
B in MAPLE by using the function periodmatrix. We get that

(4.32) B =

 1− i −0.5 + 0.5i 0.5 + 0.5i
−0.5 + 0.5i 1.25− 0.25i −0.75 + 0.25i
0.5 + 0.5i −0.75 + 0.25i 0.75 + 0.25i

 .

Then, we can compute the mean vector and the covariance matrix of the discrete Gaussian on Z3

with parameters u = 0 and B. Since u = 0, the mean vector is also zero by Remark 4.3. We can
compute the covariance matrix numerically and we get

Σ ≈

 −3.2885 + 8.1041 · 10−9i 0.1335 · 10−6 + 0.8432 · 10−7i 5.989 + 0.635 · 10−7i
0.1335 · 10−6 + 0.8432 · 10−7i −6.283 + 5.696i −6.283 + 5.696i

5.989 + 0.635 · 10−7i −6.283 + 5.696i −18.262 + 5.696i

 .

Remark 4.6. From the approximation (4.30), one could think that the exact parameter for the
“standard” discrete Gaussian on Z should be B = 1

2π . Unfortunately, this is not the case: indeed,

we know from (4.22) that Var[X(0,B)] = 1
(2π)2

∂2 log θ
∂u2

(0, B). Now, the classical Jacobi identity [18,

Table V, p. 36] for the theta function gives

(4.33) θ

(
u

iB
,

1

B

)
=
√
Be−

π
B
u2θ(u,B).

Hence, taking the second logarithmic derivative on both sides, evaluating at u = 0 and dividing by
1

(2π)2
we get

(4.34)
1

(2π)2

∂2 log θ

∂u2

(
0,

1

B

)
=

B

2π
− 1

(2π)2

∂2 log θ

∂u2
(0, B).

Setting B = 2π we get:

(4.35) Var[X(0, 1
2π

)] = 1−Var[X(0,2π)]

and since X(0,2π) is a random variable on Z which is not constant, it follows that Var[X(0,2π)] 6= 0
so that Var[X(0, 1

2π
)] 6= 1. It would be interesting to learn more about the true constant B.

5. Statistical theta functions

Now, let’s fix a parameter B ∈ Hg and let (AB,ΘB) be the corresponding principally polarized
abelian variety. We have seen before that discrete Gaussians X(u,B) correspond, up to translations,
to points in the open abelian variety AB \ ΘB. Hence, every statistical function that is invariant
under translations of random variables gives a well-defined function on AB \ ΘB. Natural choices
of such functions are the higher central moments and the higher cumulants. We show here that
they actually define meromorphic functions on AB.

Proposition 5.1. Fix B ∈ Hg and a ∈ Ng with |a| > 1. Then the higher central moment ma and
the cumulant κa define meromorphic functions on AB with poles only along the theta divisor ΘB of
order at most |a|. Hence they can be seen as global sections in H0(AB, |a|ΘB). Moreover, they have
poles precisely of order |a| if and only if (Duθ)

a is not identically zero along ΘB. In particular, this
happens if ΘB is irreducible.

Proof. First, we consider the higher central moments. The explicit expression for ma given in
Proposition 4.1, shows that ma is a meromorphic function on AB with poles at most along the theta
divisor ΘB. Moreover, looking again at the explicit form, we see that the summand corresponding
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to b has a pole of order at most |b|+1. The maximum value possible for |b| is |a| and it corresponds
to the unique case b = a. The corresponding summand is

(5.1)
1

(2π)|a|
(−1)|a|

θ|a|+1
(Duθ)

aD0
uθ =

1

(2π)|a|
(−1)|a|

θ|a|+1
(Duθ)

aθ =
(−1)|a|

(2πi)|a|
(Duθ)

a

θ|a|
,

which has poles only along ΘB of order at most |a|. This shows immediately that ma has poles only
along ΘB of order at most |a|. For the cumulants κa one can follow a similar reasoning by writing
an explicit expression for Da

u log θ, or one can use the fact that the cumulants are determined by
the central moments through some explicit linear expressions [3, eqn (7)].

Now we ask ourselves when do ma and κa attain poles of order |a|. Looking at the expression of
Proposition 4.1, we consider the summands with |b| = |a| − 1: these are of the form a− Ei, where
i is an index such that ai > 0. Taking the sum over these we get

− 1

(2π)|a|
(−1)|a|

θ|a|

∑
{i|ai>0}

ai(Duθ)
a−EiDEi

u θ = − 1

(2π)|a|
(−1)|a|

θ|a|

∑
i

ai(Duθ)
a(5.2)

=− (−1)|a|

(2π)|a|
(Duθ)

a

θ|a|

∑
i

ai =
(−1)|a|

(2π)|a|
(Duθ)

a

θ|a|
(−|a|).(5.3)

So we can write

(5.4) µa =
(−1)|a|

(2π)|a|
(Duθ)

a

θ|a|
(1− |a|) + fa

where fa is a meromorphic function with poles only along ΘB of order strictly less than |a|. Since
we are assuming |a| > 1, we see that 1 − |a| 6= 0, hence ma has a pole of order |a| along ΘB if
and only if (Duθ)

a is not identically zero along ΘB. For the cumulants, one can follow a similar
reasoning by using an explicit expression for Da

u log θ or the formula relating cumulants with central
moments [25].

To conclude, we need to show that if the theta divisor ΘB is irreducible, then Da
uθ does not

vanish identically along it. Since Θ is irreducible and Da
uθ is a product of terms of the form ∂θ

∂ui
it is enough to check that each one of these terms does not vanish identically along ΘB. But this
follows from [5, Proposition 4.4.1]. �

Remark 5.2. We see that the cumulants correspond to the logarithmic derivatives of the theta
function, which are classical meromorphic functions on abelian varieties [18, Section I.6, Method
III]. However, the central moments give, to the best of our knowledge, new meromorphic functions.

5.1. Statistical maps of abelian varieties. By definition, abelian varieties can be embedded
into projective space. In algebraic geometry it is of great interest to produce rational maps from
an abelian variety AB to different projective spaces. We show that this is possible using statistical
data, namely central moments and cumulants.

Let us fix B ∈ Hg and consider all the higher central moments [ma]|a|≤d,|a|6=1 of order d ≥ 2.

Then, according to Proposition 5.1, we get rational maps AB 99K PNg,d where Ng,d =
(
g+d
d

)
− g− 1.

Observe that we do not consider the linear central moments, because they are always zero by
definition. These maps can be seen as similar to the moment varieties for Gaussians and their
mixtures studied in [3],[4]. We proceed to study here the geometry of these maps and derive some
statistical consequences.

First, as in [3], we can replace the central moments ma[X(u,B)] with the cumulants κa[X(u,B)],
which are often easier to work with. Moreover, we want to work with holomorphic functions instead
of meromorphic functions, so that we multiply the coordinates everywhere by θd. The maps that
we want to consider are the following:

Definition 5.3 (Statistical maps of abelian varieties). With the above notation, we define the
statistical maps

(5.5) φd,B : AB 99K PNg,d , φd,B = [θdκa]|a|≤d,|a|6=1, Ng,d =

(
g + d

d

)
− g − 1.

To study the geometry of these maps it will be useful to consider their restriction to the theta
divisor. It turns out that this can be described in terms of the classical Gauss map of the theta
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divisor. We recall briefly the definition of the Gauss map here, and for more details one can look
at [5, Section 4.4].

First, if we differentiate the quasiperiodicity relation (3.1) we get:

(5.6)
∂θ

∂ui
(u+ im+Bn,B) = 2πni e

(
1

2
ntBn+ ntu

)
θ(u,B) + e

(
1

2
ntBn+ ntu

)
∂θ

∂ui
(u,B).

In particular, when θ(u,B) = 0 this gives

(5.7)
∂θ

∂ui
(u+ im+Bn,B) = e

(
1

2
ntBn+ ntu

)
∂θ

∂ui
(u,B).

Hence, on the theta divisor ΘB ⊆ AB we have a well defined rational map

(5.8) γ : ΘB 99K Pg−1 γ =

[
∂θ

∂u1
, . . . ,

∂θ

∂ug

]
called the Gauss map. By construction, the Gauss map is not defined at the points of ΘB where
all the partial derivatives vanish. This means that the Gauss map is not defined precisely at the
singular points of ΘB. One can show that this is the same map induced by the complete linear
system H0(ΘB,OΘB (ΘB)).

In the next lemma we show how to describe the restriction of φd,B to ΘB in terms of the Gauss
map.

Lemma 5.4. The restriction φd,B |ΘB : ΘB 99K PNg,d corresponds to the composition

(5.9) ΘB
γ
99K Pg−1 vd

↪→ P(g−1+d
d )−1 ↪→ PNg,d

where vd is the d-th Veronese embeddding of Pg−1, and the last map is the linear embedding in the
last

(
g−1+d
d

)
coordinates that sets all the others to zero.

Proof. By definition, the coordinates of φd,B are given by θdκa, for |a| ≤ d, |a| 6= 1. Reasoning as
in the proof of Proposition 5.1, we can write them in the form

(5.10) θdκa = C · θ
d

θ|a|
(Duθ)

a + θdga

where C is a nonzero constant and the ga are meromorphic functions with poles only along ΘB

and of order strictly smaller than |a|. In particular, since |a| ≤ d, it follows that the functions

θdga vanish identically along the theta divisor. The same is true for the functions θd

θ|a|
(Duθ)

a, when

|a| < d. Hence, when we restrict the θdκa to the theta divisor ΘB, the only nonzero terms are those
corresponding to |a| = d. In this case, we get

(5.11) (θdκa)|ΘB = C · (Duθ)
a
|ΘB ,

The common nonzero constant C does not matter since we are taking a map into projective space.
Hence, we just need to consider the functions {(Duθ)

a
|ΘB}|a|=d. However, since the (Duθ)

a corre-

spond to taking monomials of degree d in the partial derivatives Duiθ, this is the same as the d-th
Veronese embedding composed with the Gauss map, and we are done. �

Using this lemma we can draw consequences on the maps φd,B. For example, it is immediate to
see where the φd,B are defined.

Corollary 5.5. The rational map φd,B : AB 99K PNg,d is not defined precisely at the singular points
of ΘB. In particular, it is defined everywhere if and only if ΘB is smooth.

Proof. Since the first coordinate of the map is θd, the map is defined everywhere outside of ΘB.
Moreover, Lemma 5.4 shows that the restriction of the map to ΘB is essentially given by the Gauss
map composed with an embedding. Hence, it is not defined if and only if the Gauss map is not
defined, which happens precisely at the singular points of ΘB. �

We usually want maps that are nondegenerate, in the sense that its image cannot be contained
in a hyperplane. We now give a sufficient condition for this not to happen to the maps φd,B.

Lemma 5.6. Suppose that the theta divisor ΘB is irreducible. Then the image of the rational map
φd,B : AB 99K PNg,d is not contained in a hyperplane.
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Proof. To show that the image is not contained in any hyperplane is the same as proving that
the functions θdκa for |a| ≤ d, |a| 6= 1 are linearly independent. We are going to prove linear
independence by induction on d. The base cases d = 0 and d = 1 are just θd. Now, assume we
have a linear relation

(5.12) λ0θ
d +

∑
|a|=2

λaθ
dκa + · · ·+

∑
|a|=d

λaθ
dκa = 0, for certain λa ∈ C.

By induction hypothesis, it is enough to prove that λa = 0 for all |a| = d. Since ΘB is irreducible,
Lemma 5.1 shows that each κa has poles of order exactly |a| along ΘB. Hence, if we restrict the
above relation to ΘB, we get that (θdκa)|ΘB = 0 for all |a| < d, and we are left with

(5.13)
∑
|a|=d

λa(θ
dκa)|ΘB = 0.

It is then enough to show that the functions (θdκa)|ΘB , for |a| = d, are linearly independent.

Equivalently, we need to show that the image of the map ΘB 99K P(g−1+d
d )−1 that these functions

induce is not contained in any hyperplane. We know from Lemma 5.4 that this map is a composition

(5.14) ΘB
γ
99K Pg−1 vd

↪→ P(g−1+d
d )−1

where γ is the Gauss map and vd is a Veronese embedding. Since ΘB is irreducible, the Gauss map
is dominant [5, Proposition 4.4.2] and the image of the Veronese map is also not contained in any
hyperplane. Hence, the image of the composite map is not contained in any hyperplane, and we
are done. �

Remark 5.7. We can give a geometric interpretation of this result, which will help us study the
maps φd,B. By construction, φd,B is defined by a subset of functions in H0(AB, dΘB). It is known
[5, Proposition 4.1.5] that if d ≥ 2, the complete linear system H0(AB, dΘB) induces everywhere
defined maps

(5.15) ψd,B : AB −→ Pd
g−1.

If ΘB is irreducible, Lemma 5.6 says that our maps φd,B can be realized as a composition

(5.16) AB
ψd,B−→ Pd

g−1 π
99K PNg,d

where the second map is a projection from a linear space. Hence, we can study φd,B through the
maps ψd,B, which are well-known for algebraic geometers. For example, the fibers of the map ψ2,B

correspond exactly to the points u,−u exchanged by the involution. In contrast, the maps ψd,B
are all closed embeddings for d ≥ 3.

We close this subsection with the following proposition.

Proposition 5.8. Let F : AB → AB′ be an isomorphism of polarized abelian varieties of dimension
g. Then for every d there exists a linear isomorphism Q : PNg,d → PNg,d such that

(5.17) φd,B′ ◦ F = Q ◦ φd,B

Proof. If two polarized abelian varieties (AB,ΘB) and (AB′ ,ΘB′) are isomorphic, we know from
the discussion in Section 3.2 that it must be that B′ = MB for a certain M ∈ Sp(2g,Z), and
then the isomorphism is given by FM,B as in (3.6), eventually composed with a translation. Then,
we can compute the relation between the logarithmic derivatives of θ(u,B) and θ(FM,B(u),MB),
using the full Theta Transformation Formula [5, Theorem 8.6.1] , and the conclusion follows. �

What this result is saying is that when we take two isomorphic polarized abelian varieties
(AB,ΘB) ∼= (AB′ ,ΘB′), then the images of the two maps φd,B, φd,B′ differ only by a linear change
of coordinates. Hence, we can say that the image of φd,B depends only on the isomorphism class
of the polarized abelian variety (AB,ΘB).

In the next two subsections we study in more detail the univariate case g = 1 and the bivariate
case g = 2.
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5.2. The case g = 1. We first consider univariate discrete Gaussians, which correspond to elliptic
curves on the abelian varieties side. In this case, we are going to see that actually, the maps φd,B
coincide with the well-studied maps ψd,B. This means that elliptic normal curves are parametrized
by cumulants of univariate discrete Gaussians.

More precisely, fix a B ∈ H1, and for every d ≥ 2, consider the map

(5.18) φd,B : AB −→ Pd−1, φd,B = [θd, θdκ2, . . . , θ
dκd].

For elliptic curves, the theta divisor consists of a single point, so that it is immediately smooth
and irreducible. By Corollary 5.5, the statistical map φd,B is defined everywhere, and according to
Remark 5.7, the map is a composition

(5.19) AB
ψd,B−→ Pd−1 π

99K PN1,d

where the second map is a linear projection. But N1,d = d − 1, so that the projection π must be
the identity. Hence, we can identify φd,B with ψd,B. This means the following:

• d = 2: the map φ2,B : AB → P1 is surjective of degree 2. The fibers correspond to opposite
points u,−u of AB. In particular, it is ramified exactly at the four points of order two in
AB.
• d ≥ 3: the map φd,B : AB ↪→ Pd−1 is a closed embedding. The image is usually called an

elliptic normal curve of degree d. In particular, the map φ3,B embeds AB as a smooth cubic
curve in P2.

This sheds light on the relation between univariate discrete Gaussians and their moments. The-
orem 2.5 tells us that when the parameters u,B are real, the discrete Gaussians are uniquely
determined by the moments up to order two. In contrast, we are going to show now that arbitrary
(that is, complex) univariate discrete Gaussians of a fixed parameter B are determined by the
moments up to order three.

Theorem 5.9. Fix B ∈ H1 and let X(u,B), X(u′,B) be two discrete Gaussians with the same param-
eter B. If the first three moments coincide, then they have the same distribution. Furthermore, if
we consider discrete Gaussians with different parameters B, the first two moments are not enough
in general.

Proof. We prove now the first part. If the first three central moments coincide, then the cumulants
κ2, κ3 coincide as well. This means that the two points u, u′ ∈ AB have the same image under the
map φ3,B : AB → P2. But we know from the previous discussion that this map is injective, hence,
it must be that u, u′ are the same point in AB, which is to say that u′ = u+ im+ Bn for certain
n,m ∈ Z. Then, Proposition 3.1 shows that X(u′,B) ∼ X(u,B) + n, but since X(u,B), X(u′,B) have
the same mean, it must be that n = 0, and we conclude. �

A statistical consequence is that all higher moments of a Gaussian distribution are uniquely
determined by the first three. We can make this explicit using the equation of the cubic curve
φ3,B(AB) ⊆ P2.

To compute this equation we set some notations. For every fixed B ∈ H1, we consider the three
points 0, 1

2 i,
B
2 ∈ C. If we take their images in AB, these give three of the 2-torsion points of AB.

The other torsion point is given by the image of 1
2 i + B

2 , which coincides with the theta divisor
ΘB ⊆ AB [18, Lemma 4.1]. Now, we define

(5.20) e1(B) := D2
u(log θ(u,B)) (0, B) , e2(B) := D2

u(log θ(u,B))

(
1

2
i, B

)
e3(B) := D2

u(log θ(u,B))

(
B

2
, B

)
and the quantities

(5.21) a(B) =
1

π2
(e1 + e2 + e3), b(B) = − 1

4π4
(e1e2 + e1e3 + e2e3), c(B) =

1

16π6
e1e2e3.

Proposition 5.10. Fix B ∈ H1. Then the image of the map φ3,B : AB → P2
[X0,X1,X2] is the cubic

(5.22) X0X
2
2 = −4X3

1 + a(B)X0X
2
1 + b(B)X2

0X1 + c(B)X3
0 .
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Equivalently, for each (u,B) ∈ C×H1 \Θ1 we have the relation

(5.23) κ2
3 = −4κ3

2 + a(B)κ2
2 + b(B)κ2 + c(B).

Proof. For notational clarity we set νa = (2π)aκa = Da
u log θ. Now, we fix B and we consider the

meromorphic function on AB given by ν2
3 +4ν3

2 : we can check, for example by a computer, that this
has a pole of order at most four along ΘB. Let H0(AB, 4ΘB) be the space of meromorphic functions
on AB with poles at most of order 4 along ΘB. This space has dimension 4 by the classical theorem
of Riemann-Roch, and the functions 1, ν2, ν3, ν

2
2 are linearly independent elements in H0(AB, 4ΘB),

since they have poles of different order along ΘB. Hence, they form a basis of the space, so that

(5.24) ν2
3 = −4ν3

2 + a(B) · ν2
2 + b(B) · ν2 + c(B) + d(B) · ν3

for certain a(B), b(B), c(B), d(B) independent of u. Now we observe that the functions ν2
3 and

−4ν3
2 + a(B)ν2

2 + b(B)ν2 + c(B) are even, whereas the function d(B) · ν3 is odd. Hence, it must be
that d(B) = 0. The equation reduces to:

(5.25) ν2
3 = −4ν3

2 + a(B)ν2
2 + b(B)ν2 + c(B).

Now, consider the map φ2,B = [1, ν2] : AB → P1: we know from a previous discussion that this is
ramified precisely at the two torsion points of AB. Since Du(ν2) = ν3, this means precisely that
ν3(0) = ν3(1

2 i) = ν3(B2 ) = 0. Plugging this into (5.25), we get that e1 = ν2(0), e2 = ν2(1
2 i), e3 =

ν2(B2 ) are roots of the polynomial −4x3 + a(B)x2 + b(B)x+ c(B). Then, we can write

(5.26) a(B) = 4(e1 + e2 + e3), b(B) = −4(e1e2 + e1e3 + e2e3), c(B) = 4e1e2e3.

To conclude, it is enough to replace νa = (2π)aκa. �

Remark 5.11. This relation tells us that the second cumulant determines the third cumulant up
to a sign. We can also get the higher cumulants as follows: using the same notation as in the
previous proof, consider the equation

(5.27) ν2
3 = −4ν3

2 + a(B)ν2
2 + b(B)ν2 + c(B).

Then, taking derivatives with respect to u we get

(5.28) ν4 = −6ν2
2 + a(B)ν2 +

b(B)

2
.

Passing to the cumulants, this gives a formula to compute the fourth cumulant from the second.
Differentiating again, we get a formula for the fifth cumulant and so on. All together, this gives
explicit formulas to compute the higher moments, starting from the first three.

It is worth mentioning that the equation we obtain in Proposition 5.10 is the same as the one
obtained through the Weierstrass ℘-function [18, Section 1.6]. In addition, the relations we obtain
by differentiating can be interpreted through the Korteweg-de Vries equation, as in [18, Section
1.6].

As an application of the cubic equation of Proposition 5.10, we are going to show that univariate
discrete Gaussians of arbitrary parameters u,B are not uniquely determined by their moments up
to order two.

To do this, we consider the map

(5.29) Φ: (C×H1) \Θ1 → C2 (u,B) 7→ (µ,Σ) =
(
µ[X(u,B)],Var[X(u,B)]

)
.

This assigns to each couple of parameters (u,B) the mean and the covariance of the corresponding
discrete Gaussian distribution. By construction, this map factors through the space G1 of all
univariate discrete Gaussian distributions. Hence, we get a map

(5.30) Φ̃ : G1 → C2

and we are asking whether this map is injective. To show that this is not the case, we conclude the
proof of Theorem 5.9.

Proof of Theorem 5.9, second part. We know from Remark 3.4 that G1 is a complex manifold of

dimension two. Hence, if Φ̃ is injective, its differential should be everywhere an isomorphism



DISCRETE GAUSSIAN DISTRIBUTIONS VIA THETA FUNCTIONS 20

between tangent spaces. To check this, we may as well work with Φ, for which we can compute the
differential explicitly. We have

(5.31) Φ(u,B) =
(
µ[X(u,B)],Var[X(u,B)]

)
=

(
1

(2π)
ν1,

1

(2π)2
ν2

)
where ν1, ν2 are the same as in the proof of Proposition 5.10. Up to multiplication by nonzero
constants, the differential of Φ is given by

(5.32) DΦ =

(
D1
uν1 D1

Bν1

D1
uν2 D1

Bν2

)
=

(
ν2 D1

Bν1

ν3 D1
Bν2

)
.

However, we see that D1
Bν1 = D1

BD
1
u(log θ) = D1

uD
1
B(log θ) and the same holds for ν2. Then, we

can use the heat equation (4.23), and we get that

(5.33) D1
B(log θ) =

D1
Bθ

θ
= − 1

4π

D2
uθ

θ
= − 1

4π

(
D2
u(log θ) +D1

u(log θ)2
)

= − 1

4π
(ν2 + ν2

1)

Thus, up to multiplying by a nonzero constant, we can write

detDΦ = det

(
ν2 ν3 + 2ν1ν2

ν3 ν4 + 2ν2
2 + 2ν1ν3

)
(5.34)

= det

(
ν2 ν3

ν3 ν4 + 2ν2
2

)
(5.35)

= det

(
ν2 ν3

ν3 ν4 + 2ν2
2

)
= ν2ν4 + 2ν3

2 − ν2
3 .(5.36)

Using the equations (5.25) and (5.28), we get that:

(5.37) ν2ν4 + 2ν3
2 − ν2

3 = −b(B)

2
ν2 + c(B)

where b(B), c(B) are as in the proof of Proposition 5.10. We want to show that this vanishes on
some points of C × H1 \ Θ1. It is enough to show that b(B) is not identically zero. Indeed, if we

fix a B such that b(B) 6= 0, the function − b(B)
2 ν2 + c(B) is a meromorphic function on AB with

poles of order two along the theta divisor ΘB, so that it must have zeroes on AB \ ΘB. A SAGE

computation reveals that b(B) is indeed not identically zero (by evaluating its explicit expression
(5.26)), and we are done. �

5.3. The case g = 2. In the case of dimension two the situation becomes more complicated.
First, let’s fix a parameter B ∈ H2 such that the theta divisor ΘB is irreducible. In this case [5,

Corollary 11.8.2] ΘB is also smooth: more precisely, ΘB is a smooth curve of genus 2 and AB is its
Jacobian variety.

Remark 5.12. It will be useful to single out some results about the Gauss map

(5.38) γ : ΘB −→ P1

in this situation. We have seen before that this map corresponds to the one induced by the line
bundle OΘB (ΘB). Since ΘB is a smooth curve, the adjunction formula [11, Formula II.8.20] shows
that OΘB (ΘB) is the canonical bundle of ΘB. Since ΘB has genus two, it follows that γ is a double
cover of P1. We can identify the fibers explicitly: indeed we see from the explicit form (5.8) that the
Gauss map is invariant under the involution u 7→ −u of ΘB. Since this map has degree precisely
two by the previous discussion, it follows that the fibers of γ consist precisely of opposite points
u,−u, with u ∈ ΘB.

Now set d ≥ 2. Since ΘB is smooth, Corollary 5.5 shows that the map

(5.39) φB,d : AB → PN2,d , N2,d =
(d+ 2)(d+ 1)

2
− 3

is everywhere defined. Moreover, since ΘB is irreducible, Remark 5.7 shows that this map can be
realized as a composition

(5.40) AB
ψd,B−→ Pd

2−1 π
99K PN2,d

where π is a linear projection. We study this situation when d = 2 and d = 3.
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• d = 2. In this case, we see that d2 − 1 = N2,d = 3, so that the projection π must be the
identity. Hence we can identify the map φ2,B with ψ2,B. This map is well studied: it induces
a degree 2 cover of AB onto a quartic surface XB ⊆ P3 with 16 nodes. This surface is called
the Kummer surface of AB, and the map φ2,B : AB → XB realizes it as the quotient of AB
under the involution u 7→ −u. In particular, the 16 nodes correspond to the points of order
two in AB.
• d = 3. In this case, we see that N2,d = 7, whereas d2 − 1 = 8. Hence, the map φ3,B is

the composition of the closed embedding ψ3,B : AB ↪→ P8, with a projection π : P8 99K P7

from a point P . We want to identify geometrically this point. To do this, take any u ∈ ΘB

which is not a point of order two: then we claim that φ3,B(u) = φ3,B(−u). Taking this
claim for granted, we can rephrase it by saying that the two points ψ3,B(u), ψ3,B(−u) must
lie on a common line with the point P . Hence, the point P can be characterized as the
common intersection point of all the lines in P8 spanned by the couples ψ3,B(u), ψ3,B(−u),
for u ∈ ΘB.

To conclude we need to prove the claim. We know that the restriction of φ3,B to the
theta divisor ΘB is the composition of the Gauss map γ : ΘB → P1 with a closed embedding.
Hence, it is enough to show that γ(u) = γ(−u) for all u ∈ ΘB. However, this follows from
the discussion in Remark 5.12.

What if ΘB is reducible? Then [5, Corollary 11.8.2] shows that the polarized abelian sur-
face (AB,ΘB) must be a product of elliptic curves. If we want to study the geometry of the

maps φd,B, we can use Proposition 5.8, and assume that B =
(
B1 0
0 B2

)
, so that (AB,ΘB) =

(AB1 ,ΘB1)× (AB2 ,ΘB2). By Proposition 3.9, this corresponds to the case of two independent dis-
crete Gaussians, and in particular it is straightforward to compute the cumulants κ(a1,a2). We have
that κ(a1,0)((u1, u2), B) = κa1(u1, B1), κ(0,a2)((u1, u2), B) = κa2(u1, B1), and the mixed cumulants
κ(a1,a2)((u1, u2), B) vanish whenever one of a1, a2 is nonzero. Hence, we can write the rational maps
φd,B as the composition of the two maps

(5.41) AB1 ×AB2

φd,B1
×φd,B2−→ Pd−1 × Pd−1 fd

99K P2d−2,

where the second map fd is given by

(5.42) ([X0, . . . , Xd−1], [Y0, . . . , Yd−1]) 7→ [X0Y0, Y0X1, . . . , Y0Xd−1, X0Y1, . . . , X0Yd−1]

Remark 5.13. In particular, we observe that the map φd,B1×φd,B2 sends the open subset AB \ΘB

into the open subset {X0 6= 0}×{Y0 6= 0}, and the map fd restricted to this subset is an isomorphism
onto the image.

As in Theorem 5.9, we can use the statistical map φ3,B to see that discrete Gaussians of dimension
2 with the same parameter B are determined by the moments up to order three.

Theorem 5.14. Fix B ∈ H2 and let X(u,B), X(u′,B) be two discrete Gaussians with the same
parameter B. If all the moments up to order three coincide, then they have the same distribution.

Proof. Proceeding in the same way as in dimension 1, it is enough to show that the map φ3,B : AB →
P3 is injective on the open set AB \ΘB.

Suppose first that ΘB is irreducible. If we look at AB as embedded in P8 by ψ3,B, the injectivity
of φ3,B is equivalent to saying that no two points x, y in AB \ ΘB lie on a line passing through
the point P . Suppose that this happens and take two distinct points u,−u ∈ ΘB exchanged by
the involution. Then the line that they span is also passing through P , so that the four distinct
points x, y, u,−u span a two-dimensional plane in P8. However, Lemma 5.15 below shows that in
this case x, y belong to ΘB as well, which is absurd.

Suppose instead that ΘB is reducible: then as before we can assume B =
(
B1 0
0 B2

)
, so that

the map φ3,B is a composition of the map φ3,B1 × φ3,B2 and of the map f3, as in (5.41). Since
φ3,B1 × φ3,B2 is a product of closed embeddings, it is injective. Moreover, Remark 5.13 shows that
the map f3 is injective when restricted to the image of AB \ΘB, and we are done. �

To conclude the previous proof, we need a more technical lemma from algebraic geometry. In
particular, we will make use some intersection theory on surfaces, for which we refer to [11, Section
V.1].
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Lemma 5.15. Fix B ∈ H2 such that ΘB is irreducible and consider the embedding ψ3,B : AB ↪→ P8.
Take two opposite points u,−u ∈ ΘB and other two points x, y ∈ AB. Suppose that the points
ψ3,B(u), ψ3,B(−u), ψ3,B(x), ψ3,B(y) span a plane of dimension two in P8. Then x, y belong to ΘB

as well.

Proof. With these assumptions, the proof of [22, Theorem 5.7] shows that the points u,−u, x, y lie
on a smooth curve C ⊆ AB of genus two, such that (C · ΘB) = 2. Since (C2) = 2, an application
of the Hodge Index Theorem [11, Theorem V.1.9] shows that C and ΘB are actually numerically
equivalent curves on AB. Since AB is an abelian variety, it follows [5, Theorem 4.11.1] that C is
actually the translate of ΘB by a point c ∈ AB, so that C = ΘB +c. If c = 0, we are done. Suppose
that c 6= 0: this means [5, Lemma 11.3.1] that the restriction OΘB (C) is a line bundle of degree
two which is not the canonical line bundle on the curve ΘB. However, the line bundle OΘB (C)
corresponds by definition to the divisor ΘB ∩C = {u,−u}, and we have seen in Remark 5.12 that
this is a canonical divisor on ΘB. This gives a contradiction and we are done. �

5.4. Open questions. From these results in dimension one and two, there are natural questions
that arise:

Question 5.16. We have seen in Theorem 5.9 and Theorem 5.14 that two Gaussian distributions
in dimension 1 or 2 with the same parameter B can be distinguished by the moments up to order
three. Is this true for every dimension g?

Following the proofs of Theorems 5.9 and 5.14, a geometric way to prove this would be to show
that the maps

(5.43) φ3,B : AB \ΘB −→ PN3,g

are injective for every B ∈ Hg. Moreover, it could be that for a fixed parameter B, two Gaussian
distributions can be distinguished just by the moments up to order two. We would like to identify
when this happens too.

We can generalize this question to all Gaussian distributions at the same time:

Question 5.17. We have seen in Theorem 5.9 that in general mean and covariance are not enough
to determine a discrete Gaussian. Could this be true if we take all moments up to order three? Or
up to an higher order d? Geometrically, this would mean to study the fibers of the map

(5.44) Φd,g : Cg ×Hg \Θg −→ PNd,g , (u,B) 7→ φd,B(u).

Remark 5.18. Taking our correspondence further, mixtures of discrete Gaussians correspond to
secants of abelian varieties. More precisely, if B is fixed then mixtures of two discrete Gaussians
with parameters (u1, B), (u2, B) form a secant line in the corresponding abelian variety, while
mixtures with (u1, B1), (u2, B2) lie in a secant line to the universal family Ug. This should be a
very interesting connection to explore, with natural recurring questions such as identifiability from
moments (the case of continuous Gaussian mixtures is treated in [4]).
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[19] Pistone, G., Riccomagno, E. and Wynn, H.P. (2000). Algebraic statistics: Computational commutative algebra

in statistics. Chapman and Hall/CRC.
[20] Regev, O. and Stephens-Davidowitz, N. (2017). An inequality for Gaussians on lattices. SIAM Journal on

Discrete Mathematics, 31(2), 749-757.
[21] Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM

(JACM) 56(6), 34.
[22] Terakawa, H. (1998). The k-very ampleness and k-spannedness on polarized abelian surfaces. Mathematische

Nachrichten, 195, 237-250.
[23] Swierczewski, C. and Deconinck, B. (2013). Computing Riemann Theta Functions in Sage with applications.

Mathematics and Computers in Simulation, 127, 263-272.
[24] Szab lowski, P. J. (2001). Discrete normal distribution and its relationship with Jacobi Theta functions. Statistics

& probability letters, 52(3), 289-299.
[25] Willink, R. (2003). Relationships between central moments and cumulants, with formulae for the central moments

of Gamma distributions. Communications in Statistics-Theory and Methods, Vol. 32(4), 701-704.

Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099, Berlin,
Germany

E-mail address: daniele.agostini@math.hu-berlin.de

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748, Garching, Ger-
many

E-mail address: carlos.amendola@tum.de


	1. Introduction
	2. The discrete Gaussian distribution and the Riemann theta function
	3. Abelian varieties and discrete Gaussians
	3.1. Parameter spaces of abelian varieties
	3.2. Universal families of abelian varieties
	3.3. Discrete Gaussian distributions and abelian varieties
	3.4. Discrete Gaussians and affine transformations
	3.5. Independence for discrete Gaussians

	4. Characteristic function and moments
	4.1. Numerical examples

	5. Statistical theta functions
	5.1. Statistical maps of abelian varieties
	5.2. The case g=1
	5.3. The case g=2
	5.4. Open questions

	Acknowledgements
	References

