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Abstract. Sparse coding techniques for image processing traditionally rely on a processing of small overlapping
patches separately followed by averaging. This has the disadvantage that the reconstructed image no
longer obeys the sparsity prior used in the processing. For this purpose convolutional sparse coding
has been introduced, where a shift-invariant dictionary is used and the sparsity of the recovered
image is maintained. Most such strategies target the `0 “norm” or the `1 norm of the whole image,
which may create an imbalanced sparsity across various regions in the image. In order to face this
challenge, the `0,∞ “norm” has been proposed as an alternative that “operates locally while thinking
globally”. The approaches taken for tackling the non-convexity of these optimization problems have
been either using a convex relaxation or local pursuit algorithms. In this paper, we present an efficient
greedy method for sparse coding and dictionary learning, which is specifically tailored to `0,∞, and
is based on matching pursuit. We demonstrate the usage of our approach in salt-and-pepper noise
removal and image inpainting.
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1. Introduction. Sparse coding can be described as solving the following minimization
problem, known as the P0 problem [9]:

(P0) : min
α
‖α‖0 s.t. x = Dα,

where α ∈ Rp is a sparse representation of a signal x ∈ RN in the dictionary D ∈ RN×p. The
columns of D, which are referred to as atoms, are a full and overcomplete set, and we will
assume without loss of generality that they are normalized to unit `2 norm. The `0 “norm”1

returns the number of nonzero elements in a vector, also called the sparsity.
When modeling natural images, we allow some deviation ε from the model rather than

seeking a perfect reconstruction:

(P ε0) : min
α
‖α‖0 s.t. ‖x−Dα‖22 ≤ ε.

An alternative form, in which the sparsity k is known, is:(
P k0

)
: min

α
‖x−Dα‖22 s.t. ‖α‖0 ≤ k.

As the P ε0 and P k0 problems are NP-hard, several approximation techniques have been
proposed. Matching Pursuit (MP) [28] is a greedy algorithm that in each iteration updates
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2 E. PLAUT AND R. GIRYES

the representation with the coefficient that decreases the squared representation error the
most. This coefficient is found by computing the inner products between the signal and all
atoms in the dictionary D, selecting the one with the largest absolute value, and adding the
inner product to the corresponding element in the sparse representation vector. Orthogonal
Matching Pursuit (OMP) [34] is a similar method, in which after each iteration, the set of all
nonzero coefficients selected so far are updated to minimize the squared representation error.
Thresholding ([17, Chapter 4]) is a very simple greedy algorithm, which computes the inner
products between the signal and the atoms only once, and selects the nonzero elements in the
representation as those corresponding to their largest absolute values.

Another class of algorithms uses a convex relaxation of the `0 “norm” to the `1 norm,
known as the P1 problem [9]. Many algorithms have been proposed for solving its uncon-
strained form (e.g. [5], [13], [21]), which reads as(

P λ1

)
: min

α
‖x−Dα‖22 + λ ‖α‖1

and is also known as LASSO [42] or Basis Pursuit Denoising (BPDN) [12].
A useful measure for analyzing the behavior of the sparse coding problem is the mutual

coherence of the dictionary, which measures the similarity between the atoms. It is defined
as:

µ (D) = max
1≤i,j≤p,i 6=j

∣∣dTi dj∣∣ .
In the noiseless case, the minimizer of the P1 problem has been shown to coincide with the
minimizer of the P0 problem for sufficiently sparse representations [16]. If a solution to x = Dα
exists and obeys

‖α‖0 <
1

2

(
1 +

1

µ (D)

)
,

then it is the unique solution of both P0 and P1. In such a case, OMP is also guaranteed to
recover it exactly.

The dictionary D may be an analytically defined matrix or operator. Yet, learning it
from examples may provide sparser solutions and thus, better performance in various appli-
cations [36]. When training a dictionary on a set of vectors {xi}si=1, one typically solves the
minimization problem

(1) min
D,{αi}si=1

s∑
i=1

‖xi −Dαi‖22 s.t. ‖αi‖0 ≤ k , 1 ≤ i ≤ s,

or, alternatively, the problem of minimizing the sparsity with a constraint on the representa-
tion error:

(2) min
D,{αi}si=1

s∑
i=1

‖αi‖0 s.t. ‖xi −Dαi‖22 ≤ ε , 1 ≤ i ≤ s.

Notice that if we relax the `0 “norm” to the convex `1 norm, the problems (1) and (2)
become convex only in D and {αi}si=1 separately, but not jointly. A common approach to solve
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the dictionary learning problem is by repeatedly alternating between optimizing the dictionary
with the sparse representations held fixed, and optimizing the sparse representations with the
dictionary held fixed. Optimizing the sparse representation vectors can be done to each signal
separately using either `1 based methods or greedy methods such as MP. Several dictionary
learning methods have been proposed, including MOD [19] and K-SVD [2].

In practice, these dictionary learning methods are only learned on relatively small signals
due to computational complexity, memory requirement and the required quantity of training
signals. When each xi is a

√
N ×
√
N image, the computational cost of the sparse coding step

for each image using MP is O (Npk), and the computational cost of the K-SVD dictionary
update step is O

(
Np2 + kN + pk

)
[37]. Since p is of the order of N , the dictionary learning

is not scalable for full images. The current common practice is to divide the image into
small patches of size

√
n×
√
n, where each patch has its own sparse representation in a local

dictionary DL ∈ Rn×p and now p is of the order of n (patch size) and not N (image size). The
computational complexity of the sparse coding step for overlapping patches where each patch
has a sparsity of kp is O (Nnpkp), and the complexity of the K-SVD dictionary update step is
O
(
np2 + kpNmn+Npkp

)
. While some solutions have been proposed for working with large

dimensions [3], [38], [39], they mainly allow working with larger patches or with sampling that
is not on the grid.

1.1. Convolutional sparse coding. An appealing model that addresses these problems
has been introduced in the form of convolutional sparse coding [7], [10], [22], [24], [29], [47],
which has demonstrated impressive performance in various applications [23], [26], [30], [35],
[48]. With this strategy, a set of local atoms {dj}pj=1 is used to represent a global signal by con-
volutions with representation vectors. Assuming that the representation in these dictionaries
is sparse, we get the following optimization problem:

(3) min
{αj}

∥∥∥∥∥∥x−
p∑
j=1

dj ∗αj

∥∥∥∥∥∥
2

2

s.t.

p∑
j=1

‖αj‖0 ≤ k.

Notice that we may recast this problem to be similar to P0 by setting D as the concatenation
of Toeplitz matrices Dj ∈ Rn×p, 1 ≤ j ≤ p, each representing a convolution with a kernel dj :

x = Dα =
[

D1 D2 ... Dp

] 
α1

α2

...
αp

 =

p∑
j=1

Djαj =

p∑
j=1

dj ∗αj ,

where α is the global sparse representation vector, D is the global dictionary (also referred to
as the convolutional dictionary), and αj is the vector of the coefficients multiplying dj at each
of its shifts within the global signal. Each matrix Dj is Toeplitz for one-dimensional signals
and is block-Toeplitz in the two-dimensional case (e.g., images). It is related to the signature
dictionary from [1], which is approximately shift invariant.

Greedy solutions to (3) and similar forms have been proposed in [4], [25], [27], [40], [41].
They are based on MP or OMP, with the inner products between the residual and the columns
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Figure 1. A convolutional dictionary is the concatenation of matrices representing convolutions with dif-
ferent kernels (depicted in different colors). A stripe is a set of indices of columns whose contribution to a
specific pixel is not trivially zero (marked in gray).

of D computed efficiently using convolutions with columns of DL:

bj = DT
j x =

←→
dj ∗ x,

where
←→
dj is the column-stacked horizontally and vertically flipped atom dj . Thus, there is no

need to store or use the explicit form of D for matrix multiplication.
The computational complexity of most implementations of the convolutional matching

pursuit is O (N log (N) pk) (e.g. [4], [41]), and the implementation in [40] has a complexity
of O

(
Npk + np2

)
. Although p is of the order of n rather than N , as the atoms are local,

convolutional sparse approximations typically have much larger values of the sparsity k com-
pared the patch sparsity kp. This complexity is prohibitive, especially for large global images,
which do not only increase the factor N but also require a larger number of atoms for the
representation (a larger k). Hence, later and more widely used methods surveyed in [8], [20],
[45] use `1 relaxation and minimize its unconstrained penalized Lagrangian form (similar to
P λ1 ).

By imposing a constraint on the `0 or `1 norm of a global image, we can achieve a global
sparse representation with a shift-invariant dictionary. However, in this global approach the
selected atoms may be concentrated in some areas of the image, leaving other areas very sparse.
In addition, previous works [15], [43] have shown that pursuit algorithms are guaranteed to
succeed as long as the `0 “norm” is lower than a certain threshold. Therefore, a local pursuit
method that is able to succeed in the sparser patches, which might cover most of the global
image, could fail in its denser patches.

1.2. The P0,∞ problem. A new prior for convolutional sparse coding was recently pro-
posed in [33]. Rather than minimizing the `0 “norm” (the total number of nonzero coefficients
in the convolutional representation), this model minimizes the `0,∞ group “norm”. We will
loosely follow the original definitions and notation of [33]. The P0,∞ problem is defined as:

(4) (P0,∞) : min
α
‖α‖0,∞ s.t. x = Dα.

Recall that the global dictionary D is a concatenation of the convolution matrices of local
atoms of size n, zero-padded to the size of the global signal N . A stripe Ωi is defined as a set
of (2n−1)p indices of columns in D whose values are not trivially zero at the row corresponding
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to the pixel i (1 ≤ i ≤ N). Only nonzero coefficients of α with these indices contribute to
the value of the pixel xi. Fig. 1 demonstrates the concept of a convolutional dictionary and
a stripe in it. The `0,∞ “norm”2 of the vector α, denoted ‖α‖0,∞, is the number of nonzero
coefficients in the densest stripe, or equivalently the maximum number of atoms contributing
to any pixel. By limiting the sparsity of the densest stripe, we are effectively limiting the
sparsity of all stripes, and therefore the number of overlaps of atoms in all pixels of the global
representation. This new type of convolutional sparse coding allows representations with both
a localized measure of sparsity and a shift invariant dictionary. This notion of sparsity is more
intuitive and closer related to the original non-convolutional sparse coding problem in that for
any given pixel in the image, there is a constraint on the number of atoms that may contribute
to its value.

When modeling natural images, we allow some deviation from the model. As with P ε0 ,
instead of seeking a perfect reconstruction, we solve the P ε0,∞ problem:

(5)
(
P ε0,∞

)
: min

α
‖α‖0,∞ s.t. ‖x−Dα‖22 ≤ ε.

The work in [33] provides guarantees for the success of the standard OMP and `1 relaxation
in the ideal and noisy regimes. It proposes optimization methods for solving an approximation
of (5) using the Alternating Direction Method of Multipliers (ADMM) [6] to minimize the `1
norm of the representation with additional penalties, which bias the solution towards a small
`0,∞ “norm”. In [32], a corresponding dictionary learning algorithm is proposed, which also
minimizes an unconstrained Lagrangian with an `1 norm penalty for the representation vector
and an additional penalty for ensuring a small `0,∞ “norm”. They refer to their method as
slice-based convolutional sparse coding.

1.3. Contribution. Convolutional sparse coding with the `0,∞ prior has been recently
proposed for natural images. However, the algorithms that have so far been introduced for
solving it are relaxation based and only tackle the `0,∞ “norm” indirectly, relying on `1
minimization and unconstrained optimization [32], [33].

In this work, we propose a novel greedy sparse coding scheme for the `0,∞ “norm” con-
strained minimization problem (5) and the corresponding dictionary learning problem3. It
allows direct control over the squared error or the `0,∞ sparsity, which enables incorporating
prior knowledge of the sparsity when it is known. In the case of non-convolutional dictionary
learning, greedy methods are often preferred for the sparse coding step because they are more
computationally efficient [43]. When solving (1), they allow designing a dictionary for a target
sparsity.

Greedy strategies have so far been proposed for solving the standard convolutional sparse
coding problem [4], [25], [27], [40], [41]. Yet, they are not used often as they are computa-
tionally demanding. Our proposed greedy methods are able to efficiently solve the `0,∞ based
convolutional sparse coding problem. They are efficient both in terms of computational com-
plexity and memory requirement, and recover multiple sparse representation coefficients at

2`0,∞ is also not actually a norm, but we shall nonetheless refer to it as a norm for the sake of brevity.
3A code package which reproduces the experiments presented in this work is available at

http://web.eng.tau.ac.il/∼raja
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the scale of the image after computing inner products with the columns of the local dictionary
only once.

2. A greedy approach to P0,∞.

2.1. Group convolutional matching pursuit. Recall the standard MP algorithm: (i) cal-
culate inner products between the signal and all atoms; (ii) select the one with the largest
absolute value and use the inner product as a coefficient; (iii) subtract the projection from
the signal, creating a residual vector; and (iv) repeat steps (i)-(iii) with the residual as the
new signal until a stopping condition is reached, such as a target sparsity.

In the case of the P0,∞ problem, we do not count the total number of selected atoms,
but rather the number of their overlaps. After selecting the first atom as the one with the
most significant inner product, we may add many more atoms without increasing the `0,∞
“norm”, as long as they do not overlap. We create a representation that covers the entire
image with non-overlapping atoms (Fig. 2(a)) by sequentially selecting atoms with the most
significant inner products excluding those which overlap atoms that have already been selected.
Technically, we exclude atoms by zeroing their corresponding elements in the vector storing
the inner products, thus, ensuring they will not be selected. We do so until it is not possible
to add a new atom anywhere in the image without overlapping an existing atom. Until
this point, the `0,∞ “norm” of the approximation equals one. Next, we subtract the current
representation from the original signal, compute the inner products between the residual and
the convolutional dictionary (using convolution operations), and create a second representation
of non-overlapping atoms (Fig. 2(b)). We continue stacking layers of non-overlapping atoms
to the approximation until a sufficiently small error is attained if we target (5), or until a
desired sparsity is reached if we solve another form of the problem:

(6)
(
P k0,∞

)
: min

α
‖x−Dα‖22 s.t. ‖α‖0,∞ ≤ k.

The resulting algorithm is summarized in Algorithm 1, which we call Group Convolutional
Matching Pursuit (GCMP). The inner loop adds the atoms with the most significant inner
products to the representation, while excluding atoms that overlap those that have already
been selected in the current layer. Thus, each iteration of the inner loop increments the `0
“norm” while holding the `0,∞ “norm” fixed. Each iteration of the outer loop increments the
`0,∞ norm. Notice that the number of times the inner products between the residual and
the columns of the convolutional dictionary are calculated is equal to the `0,∞ norm, which
is much smaller than the `0 norm. This results from the fact that in each iteration of the
inner loop, the added atoms do not overlap the ones selected so far, ensuring that the residual
remains unchanged. Thus, there is no need to recompute the inner products with the updated
residual until the next iteration of the outer loop.

Consequently, the order of complexity of such an algorithm is O
(
N log (N) p ‖α‖0,∞

)
,

which is much lower than the O (N log (N) p ‖α‖0) required by the standard convolutional
matching pursuit (e.g. [41], [4]). If we use an implementation based on [40], the complexity

becomes O
(
Np ‖α‖0,∞ + np2

)
, compared to O

(
Np ‖α‖0 + np2

)
.

A useful inequality relates the `0,∞ sparsity to the overall `0 sparsity. For a circular
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Algorithm 1 Group Convolutional Matching Pursuit (GCMP)

Initialize: α← 0, r← x, k ← 0
while ‖r‖2 > ε do

b←
[ (←→

d1 ∗ r
)T (←→

d2 ∗ r
)T

...
(←→
dp ∗ r

)T ]T
while max

i
{|bi|} > 0 do

i∗ ← arg max
i
{|bi|}

αi∗ ← αi∗ + bi∗

for i ∈ Ωi∗ do
bi ← 0

end for
end while

r← x−
p∑
j=1

dj ∗αj

k ← k + 1
end while

convolutional dictionary:

(7) ‖α‖0,∞ ≤ ‖α‖0 ≤
N

n
‖α‖0,∞ ,

and for a dictionary based on the linear (non-circular) convolution, N is replaced by N+n−1.
This inequality is easily understood by noticing that, per layer, the largest number of atoms
that can cover the entire image without any overlaps occurs when they completely cover the
image with no gaps between them.

2.2. Group convolutional orthogonal matching pursuit. A natural extension of our con-
volutional version of matching pursuit is an algorithm based on its orthogonal version, which
we call Group Convolutional Orthogonal Matching Pursuit (GCOMP) and is summarized in
Algorithm 2. GCOMP differs from GCMP in that after every iteration of the outer loop,
all the coefficients are updated by computing the orthogonal projection of the residual signal
onto the set of atoms selected so far, denoted by S. Unfortunately, these cannot be computed
using the convolution operation. Nevertheless, the full global dictionary does not need to be
computed or stored, but only the columns corresponding to the indices in S. The matrix
containing columns of D with indices in S is denoted by DS . In each iteration of the outer
loop, we update the representation coefficients by solving a least squares problem using the
QR algorithm (orthogonal-triangular decomposition).

Notice that the matrix DT
s Ds is invertible. This can be seen by observing that as in

regular OMP, in each iteration of GCOMP all the selected atoms are linearly independent of
all the already selected ones. This happens because we constrain them not to overlap in the
inner loop. In addition, after each iteration of the outer loop, we update the coefficients in
the representation by least squares, which ensures that the residual in the next iteration of
the outer loop is orthogonal to the current representation (similar to regular OMP). Notice
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also that the number of elements in the set S is equal to the sparsity of a single representation
of non-overlapping atoms, which according to inequality (7) is at most N

n . For high-fidelity
representations, DS is computed more times, but the number of columns in it is bounded by
inequality (7) every time.

Algorithm 2 Group Convolutional Orthogonal Matching Pursuit (GCOMP)

Initialize: α← 0, r← x, k ← 0, S ← {}
while ‖r‖2 > ε do

b←
[ (←→

d1 ∗ r
)T (←→

d2 ∗ r
)T

...
(←→
dp ∗ r

)T ]T
while max

i
{|bi|} > 0 do

i∗ ← arg max
i
{|bi|}

S ← S ∪ i∗
for i ∈ Ωi∗ do

bi ← 0
end for

end while
αS ← arg min

αS

‖r−DSαS‖22 . QR solver

r← x−
p∑
j=1

dj ∗αj

k ← k + 1
end while

2.3. Group convolutional thresholding. A much simpler greedy algorithm based on the
thresholding algorithm computes the inner products with the columns of the convolutional
dictionary only once. Then, it selects those corresponding to the largest absolute values while
excluding those that if added to the representation would violate the constraint on the `0,∞
norm. When there are no more atoms that can be selected without violating the constraint,
all the coefficients are updated by computing the orthogonal projection of the signal onto the
set of selected atoms, which we do by solving a least squares problem using the QR algorithm.
The resulting strategy for approximating (6) is summarized in Algorithm 3. By modifying
the stopping condition it may also approximate (5). We denote by ‖S‖0,∞ the `0,∞ “norm”
of any vector whose elements are nonzero at the indices in the set S.

In the case of exact recovery, x = Dα, a performance guarantee for group convolutional
thresholding (GCT) can be established using the mutual coherence of the dictionary and

the `0,∞ norm. If a solution α exists obeying ‖α‖0,∞ < 1
2

(
|αmin|
|αmax|

1
µ(D) + 1

)
, then GCT is

guaranteed to recover it exactly. This guarantee is based on a result from [31], where hard
thresholding is used as a step in a forward pass through a multi-layer model. Note that
the authors of [31] do not employ the least squares step and therefore their inequality only
guarantees recovery of the support.

2.4. Stagewise group convolutional orthogonal matching pursuit. In GCOMP, we cre-
ated representations with ‖α‖0,∞ = k using k iterations of the outer loop, each time computing
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Algorithm 3 Group Convolutional Thresholding (GCT)

Initialize: α← 0, S ← {}

b←
[ (←→

d1 ∗ x
)T (←→

d2 ∗ x
)T

...
(←→
dp ∗ x

)T ]T
while max

i
{|bi|} > 0 do

i∗ ← arg max
i
{|bi|}

if ‖S ∪ i∗‖0,∞ ≤ k then
S ← S ∪ i∗

end if
bi∗ ← 0

end while
αS ← arg min

αS

‖x−DSαS‖22 . QR solver

the inner products and selecting the atoms in a way that increments ‖α‖0,∞ by one. In GCT,
we created the entire representation by computing the inner products between the signal and
the atoms only once, and add atoms as long as ‖α‖0,∞ ≤ k.

An alternative approach is to create the representation in stages, where at each stage we
increment ‖α‖0,∞ by some 1 ≤ ∆k ≤ k. When ∆k = 1, this is equivalent to GCOMP, and
when ∆k = k, this is equivalent to GCT. When 1 < ∆k < k, at each outer iteration this
method applies GCT with a sparsity of ∆k, and repeats until reaching ‖α‖0,∞ = k, each
time increasing ‖α‖0,∞ by ∆k. This technique is summarized in Algorithm 4, which we call
Stagewise GCOMP (after Stagewise OMP [14]). An alternative way to the usage of a constant
increase in ‖α‖0,∞ is to add all the atoms for which the amplitudes of their inner products
with the current residual is larger than a certain threshold, as implemented in [14].

Algorithm 4 Stagewise group convolutional OMP (StGCOMP)

Initialize: k ← 0, α← 0, S ← {}
repeat

b←
[ (←→

d1 ∗ (x−DSαS)
)T (←→

d2 ∗ (x−DSαS)
)T

...
(←→
dp ∗ (x−DSαS)

)T ]T
while max

i
{|bi|} > 0 do

i∗ ← arg max
i
{|bi|}

if ‖S ∪ i∗‖0,∞ ≤ ∆k then
S ← S ∪ i∗

end if
bi∗ ← 0

end while
αS ← αS + arg min

αS

‖x−DSαS‖22 . QR solver

k ← k + ∆k
until reaching a desired value of k
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3. Convolutional Dictionary Learning. Until now, we have assumed that the convolu-
tional dictionary D is given. Now, we turn to discuss some approaches for learning the set of
convolutional kernels from examples. Let

{
x(i)
}s
i=1

be a training set of s global signals and
{dj}pj=1 be a set of p local atoms. The dictionary is trained by optimizing both the sparse
representations and the dictionary:

(8) min
{α(i)}s

i=1
,{dj}pj=1

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥∥
2

2

s.t.
∥∥∥α(i)

∥∥∥
0,∞
≤ k, 1 ≤ i ≤ s,

where α(i) ∈ RNp×1 is a vector formed by vertically stacking α
(i)
j for all j, and the constraint

is on the `0,∞ “norm” of each α(i) separately.
We repeatedly alternate between a sparse coding step with a constraint on the `0,∞ norm,

and a dictionary update step. The sparse coding problem is identical to (6) and is solved by
applying one of the pursuits introduced in Section 2 (e.g. GCMP) to each of the s global
images separately (possibly in parallel). The dictionary update step minimizes the sum of
total squared representation errors:

(9) min
{dj}

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥∥
2

2

.

We experimented with two different optimization methods for the dictionary update step,
which we describe next. Additional dictionary learning methods have recently been surveyed
in [20].

3.1. Convolutional method of optimal directions. First, we use the fact that the convo-
lution operation can be constructed as a matrix multiplication to rewrite the convolution in
(8) as a matrix multiplication:

min
{dj}pj=1

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

A
(i)
j dj

∥∥∥∥∥∥
2

2

,

where A
(i)
j is the convolution matrix of α

(i)
j . We define the matrix A(i) as the horizontal

concatenation of the convolution matrices of the sparse representation of signal i for all j

A(i) =
[

A
(i)
1 A

(i)
2 ... A

(i)
p

]
, and the matrix A ∈ RNs×p by stacking the matrices A(i)

vertically. We define the vector d ∈ Rnp×1 as a vertical concatenation of the local dictionary

d =
[
dT1 dT2 ... dTp

]T
, and the matrix x ∈ RNs×1 as the vertical concatenation of the

training signals. Thus, (9) can be rewritten as minimization of a squared Frobenius norm
with respect to a single vector:

(10) min
d
‖x−Ad‖2F .

An analytical solution can be found by taking the gradient and setting it to zero, yet its
computational complexity is prohibitive. Nevertheless, this is an unconstrained convex mini-
mization, which can be solved by a variety of numerical methods. The gradients only require



A GREEDY APPROACH TO `0,∞ BASED CONVOLUTIONAL SPARSE CODING 11

the computation of ATx and ATAd, which can both be computed efficiently using convolution
operations: the cost of computing ATx is O (spN log (N)), and the cost of computing ATAd
is O

(
sp2N log (N)

)
.

We choose to use Conjugate Gradient Least Squares (CGLS) with convolution operations.
If we loop through all mnp conjugate directions, the total cost of each dictionary update
step per image is O

(
p2nN log (N) + p3nN log (N)

)
≈ O

(
p3nN log (N)

)
, as typically k �

p. However, it has been shown [45] that early stopping of the CGLS step (e.g., with an
error of 10−3) is sufficient for reliable convergence. This greatly reduces the complexity to
O
(
p2qN log (N)

)
, where q is the number of inner iterations in the CGLS step (q � np).

After updating the dictionary, we go back to sparse coding with the updated dictionary
(e.g., using GCMP). Then, the next dictionary update occurs using the new values of A,
and we repeat until convergence in the total representation error. The resulting dictionary
learning algorithm, which is a convolutional version of MOD [19], is summarized in Algorithm
5. Notice that the constraint on the `0,∞ “norm” is enforced in the sparse coding step, and
each dictionary update step optimizes the dictionary given the current representations A.

Algorithm 5 Convolutional MOD

Initialize d to some initial dictionary, column-stacked.
repeat

for 1 ≤ i ≤ s do

α(i) ← arg min
{αi}

∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥
2

2

s.t.
∥∥α(i)

∥∥
0,∞ ≤ k . using GCMP

end for
d← arg min

d
‖x−Ad‖2F . using CGLS

for 1 ≤ j ≤ p
dj ← dj

‖dj‖2
end for do

until convergence of ‖x−Ad‖2F

3.2. Convolutional block-coordinate descent. Updating the whole dictionary at each
iteration may become computationally challenging for large images or large dictionaries, even
when using a gradient based optimizer with convolutional operations. Alternatively, we can
update the atoms one at a time (as in K-SVD), which is equivalent to block-coordinate descent
optimization. In this case, the dictionary update step loops through all atoms one at a time
(possibly in parallel), each time minimizing the objective by a single atom, dj0 :

(11) min
dj0

s∑
i=1

∥∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥∥
2

2

= min
dj0

s∑
i=1

∥∥∥e(i)
j0
− dj0 ∗α

(i)
j0

∥∥∥2

2
,

where e
(i)
j0

= x(i) −
∑
j 6=j0

dj ∗ α(i)
j . The same solver from Algorithm 5, convolutional CGLS,

can be used here with d replaced by dj0 , x(i) replaced by e
(i)
j0

and A(i) replaced by A
(i)
j0

. The
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computation cost becomes O
(
pnN log (N) + p2nN log (N)

)
≈ O

(
p2nN log (N)

)
per iteration

or O (pqN log (N)) with early stopping, which is significantly lower than the computational
cost of Algorithm 5. The resulting algorithm is summarized in Algorithm 6.

Algorithm 6 Convolutional BCD

Initialize {d}pj=1 to some initial dictionary.
repeat

for 1 ≤ i ≤ s do

α(i) ← arg min
α(i)

∥∥∥∥∥x(i) −
p∑
j=1

dj ∗α(i)
j

∥∥∥∥∥
2

2

s.t.
∥∥α(i)

∥∥
0,∞ ≤ k . using GCMP

end for
for 1 ≤ j ≤ p do

for 1 ≤ i ≤ s do
e

(i)
j = x(i) −

∑
j′ 6=j

dj′ ∗α
(i)
j′

end for

dj ← arg min
dj

s∑
i=1

∥∥∥e(i)
j − dj ∗α(i)

j

∥∥∥2

2
. using CGLS

dj ← dj

‖dj‖2
end for

until convergence of ‖x−Ad‖2F

4. Computational complexity. Table 1 summarizes the computational complexity of our
sparse coding and dictionary learning methods compared to the methods referenced in previous
sections. The complexities are given for a single signal, and the dictionary learning complexity
is for a single dictionary update iteration. For convenience, we summarize here the notations
used in the table. N is the dimension of the global signal and n is the dimensionality of the
local dictionary (in patch-based methods this is the number of pixels in each patch, and in
convolutional sparse coding this is the size of each filter). p is the number of atoms in the
dictionary (in convolutional sparse coding, this is the number of filters). In global sparse
coding, p > N for an overcomplete dictionary, and in patch based methods p > n for an
overcomplete dictionary. In convolutional sparse coding, often p > n. kp is the sparsity in
patch based methods. In slice-based convolutional sparse coding and in our method, k is the
`0,∞ sparsity, and in `0 convolutional matching pursuit it is the sparsity of the global signal
(and is therefore larger). q is the number of inner iterations required by some solvers. The
computational complexity of sparse coding of an image using the method in [24], which is the
same as its dictionary update step, is O (qpN + qpN log (N)) ≈ O (qpN log (N)), where q is
the number of inner iterations in their ADMM [6] solver. The work in [24] used q = 10 and
their dictionary learning converged after about 13 outer iterations. Our method has inner
iterations in the conjugate gradient dictionary update step. However, we usually do not loop
through all conjugate directions and instead stop at some error tolerance.

5. Methods. Previous works on `0,∞ based convolutional sparse coding [32] have demon-
strated its applicability in image processing applications. In a similar way, we show next how
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Table 1
Computational complexity

Method Sparse coding Dictionary update

Global OMP + MOD O (Npk) O
(
p2 + p3

)
Global OMP + K-SVD O (Npk) O (Np+Nk + pk)

Patch-based OMP + MOD O (Nnpk) O
(
Np2 + p3

)
Patch-based OMP + K-SVD O (Nnpk) O

(
np2 +Nnk +Npk

)
`0 based CSC [4], [27] O (N log (N) pk) −
`0 based CSC [40] O

(
Npk + np2

)
−

`1 based CSC [24] O (N log (N) pq +Npq) O (N log (N) pq +Npq)

Slice based CSC [32] O
(
Nnp+N

(
k3 + pk2

))
O
(
np2 +Nk (n+ p)

)
Our method: GCMP + CBCD O (N log (N) pk) O (N log (N) pq)

we may adapt our greedy algorithms to such tasks, namely image inpainting and salt-and-
pepper noise removal. In the supplementary material, we present an adaptation to another
application: texture and cartoon separation.

5.1. Inpainting. Inpainting is the task of recovering an image from a corrupted version of
it, which has missing pixels. We shall assume that the corrupted image, denoted y, holds the
value zero in the corrupted pixels, whose locations are known, and is identical to the original
image in all other pixels. We assume a convolutional sparse representation of the original
image:

y = Cx = CDα = C

p∑
j=1

dj ∗αj ,

where C, referred to as the subsampling matrix, is a diagonal binary matrix with elements
cii = 0 for a corrupted pixel i, cii = 1 for an uncorrupted pixel i, and cij = 0 for i 6= j. We find
the sparse representation of the original image by solving the P k0,∞ problem with the global
dictionary CD:

(12) min
α
‖y− CDα‖22 s.t. ‖α‖0,∞ ≤ k.

The inner products between the corrupted image and the columns of CD are the same as with
the columns of D due to C being symmetric and idempotent: b = (CD)T y = DTCTCx =
DTCx = DTy. Thus, these inner products can still be computed efficiently using convolution
operations. The only effect C has on the pursuit algorithms is the computation of the residual,

which becomes: r← y−C
p∑
j=1

dj ∗αj . After computing the sparse representation, we estimate

the original image as:

x̂ = Dα =

p∑
j=1

dj ∗αj .

Training of the dictionary on the corrupted image [24], [18] can be done by solving the
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following minimization problem:

(13) min
α,{dj}pj=1

∥∥∥∥∥∥y− C

p∑
j=1

dj ∗αj

∥∥∥∥∥∥
2

2

s.t. ‖α‖0,∞ ≤ k.

Following the steps of the dictionary learning algorithms, the dictionary update step can be
computed by using CGLS to solve

d← arg min
d
‖x− CAd‖2F ,

when updating the whole dictionary at once (Convolutional MOD), or

dj ← arg min
dj

s∑
i=1

∥∥∥Ce
(i)
j − Cdj ∗α(i)

j

∥∥∥2

2
,

when looping through all indices j (Convolutional BCD). Because CA is rank-deficient and
the Hessian ATCA is ill-conditioned, we do not seek a full minimization at each iteration, but
rather take a single step of gradient descent as the dictionary update. In order to ensure that
all atoms are updated, we use convolutional BCD with a single step of gradient descent for
each atom before recomputing the sparse representation. The same solver from Algorithm
6 may be used with these adjustments and a step size γ. Looping through 1 ≤ j ≤ p, the
update of each atom reads as:

dj ← dj − γ
∂

∂dj
‖C (ej − dj ∗αj)‖22 .

5.2. Salt-and-pepper noise removal. Salt and pepper refers to noise that affects an image
by turning some of the pixels into black or white (minimum and maximum gray levels). We do
not assume knowledge of the noise mask, i.e. whether each pixel is corrupted or not. Rather,
we rely on the prior knowledge that the image is sparse (in the `0,∞ sense) in a dictionary
{dj}pj=1, and that the noise is sparse in a noise dictionary which contains a single atom, the

unit impulse: d0 =
[

1 0 0 ... 0
]T
. Thus, for each noisy image, we solve:

(14) min
α,α0

∥∥∥∥∥∥x−
p∑
j=1

dj ∗αj − d0 ∗α0

∥∥∥∥∥∥
2

2

s.t. ‖α‖0,∞ ≤ k, ‖α0‖0,∞ ≤ knoise,

by alternating between two steps: (i) convolutional sparse coding using the dictionary {dj}pj=0,
which includes the additional noise atom, and zeroing the coefficients of the noise atom in
the reconstruction; (ii) convolutional sparse coding of the residual using only the noise atom,
for an estimate of the noise. Then, we repeat step (i) for the image with the noise estimate
subtracted from it. We repeatedly alternate between the two steps, each time increasing
the `0,∞ “norm” until reaching the target sparsities for the image and the noise. Thus, the
noisy image is separated into a text component and an impulse noise component. An exact
description of the method appears in Algorithm 7.
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Algorithm 7 Salt-and-pepper noise removal

Initialize: {αj}pj=0 ← 0, k1 ← 1, k2 ← 1
while k1 ≤ k and k2 ≤ knoise do

{αj}pj=1 ← arg min
{αj}pj=1

∥∥∥∥∥(x− d0 ∗α0)−
p∑
j=1

dj ∗αj

∥∥∥∥∥
2

2

s.t.

∥∥∥∥∥∥∥∥


α1

...

αp


∥∥∥∥∥∥∥∥

0,∞

≤ k

α0 ← arg min
α0

∥∥∥∥∥
(
x−

p∑
j=1

dj ∗αj

)
− d0 ∗α0

∥∥∥∥∥
2

2

s.t. ‖α0‖0,∞ ≤ knoise

k1 ← k1 + 1
k2 ← k2 + 1

end while

6. Experiments. We turn now to evaluate our proposed strategy. We first perform an
evaluation of the different components in the proposed approach and then compare it to
other methods for inpainting and impulse noise removal. We use two types of data in our
experiments: natural images with local contrast normalization, which is a very common type
of data used for testing convolutional sparse coding [24], and text images.

For the latter, we use scanned pages from a book, Aristotle’s Nicomachean Ethics, taken
from The Internet Archive (www.archive.org). We use the first 16 pages as the training set
and the next 16 pages (pages 17-32) as the test set. The size of all images is 497 × 383 and
gray levels are normalized to the range [0, 1], where zero is black and one is white. In the
case of black-on-white text images, the background can be assumed to be white. As typically
zero represents the black gray-level, we invert the gray-levels of the dataset so that the text
is white-on-black. This way, the background is black (contains zeros) and not white, which is
consistent with the fact that the gaps between atoms are zeros in GCMP, and no atoms are
required to approximate them. At the end, we invert the result to a black-on-white image.

6.1. Accuracy vs. sparsity. To illustrate how our proposed algorithm reconstructs the
representation of an image, we apply GCMP (Algorithm 1) to 11 standard test images (taken
from [32]) after contrast normalization using an undercomplete Discrete Cosine Transform
(DCT) dictionary with 100 atoms of size 11 × 11. Fig. 2(a)-(d) show the reconstructed hill
image from representations with several values of ‖α‖0,∞ (namely, 1, 2, 8 and 32) and their
PSNR values. In addition, we plotted the histograms of the number of times each atom
was selected, normalized by the ‖α‖0 sparsity (Fig. 2(e)-(h)). The dictionary indices in the
horizontal axis are sorted in an increasing spatial frequency. Notice how low frequency atoms
(representing cartoon) are preferred in the first iterations, while the ones with high frequencies
(containing texture details) are selected for larger values of the `0,∞ “norm”. When we have
performed the same visualization for images without local contrast normalization, we have
found that a larger portion of atoms are dedicated to the DC component (the first bin in the
histogram is much higher), which may explain the tendency of using local contrast normalized
images in convolutional sparse coding experiments.

Next, we train a dictionary of 100 atoms of size 11× 11 on the Fruit dataset [24], which
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contains ten images of fruit, using Convolutional BCD (Algorithm 6), and use it to approxi-
mate the 11 test images (taken from [32]), with local contrast normalization. Fig. 5(a) shows
the PSNR as a function of the `0,∞ sparsity, averaged over the test images, for dictionaries
trained for different target sparsities. It can be seen that the performance of the dictionaries
improves significantly when they are trained for higher values of the `0,∞ “norm”.

We compare the behavior of the dictionaries trained on natural images to the case of text
images, which are of a different nature. Text images are very sparse in the `0,∞ sense, since
such images, especially in typed documents, are composed of characters appearing at different

(a) ‖α‖0,∞ = 1 (b) ‖α‖0,∞ = 2 (c) ‖α‖0,∞ = 8 (d) ‖α‖0,∞ = 32

(e) ‖α‖0,∞ = 1 (f) ‖α‖0,∞ = 2 (g) ‖α‖0,∞ = 8 (h) ‖α‖0,∞ = 32

Figure 2. (a)-(d) Approximations of the hill image with local contrast normalization using GCMP for
several `0,∞ sparsities and their PSNR values; (e)-(h) histograms of atoms selected for each sparsity (sorted in
increasing spatial frequency).

(a) ‖α‖0,∞ = 1

PSNR=17.13(dB)

(b) ‖α‖0,∞ = 2

PSNR=20.40 (dB)

(c) ‖α‖0,∞ = 10

PSNR=26.01(dB)

(d) ‖α‖0,∞ = 20

PSNR=29.29(dB)

Figure 3. Approximations of a text image using GCMP for several `0,∞ sparsities and their PSNR values.
The dictionary was trained on text images.
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(a) (b)

Figure 4. (a) A dictionary of 256 atoms and (b) a dictionary of 100 atoms, both trained on the clean
training set.

shifts within the images. Thus, they can be approximated as a sum of convolutions between
atoms representing individual characters and coefficients, which determine the locations of
the characters within the image. In this case, each atom represents a whole character, and
characters are positioned in non-overlapping locations. However, in most text layouts the
spacing between characters, both horizontal and vertical, depends on the character. Therefore,
a reasonable assumption would be that when representing a text image using atoms of single
characters, there should be no more than one overlap between the atoms in any given pixel.
This is equivalent to convolutional sparse coding with an `0,∞ “norm” equal to 2.

We used a dictionary of 100 atoms with size 11× 11 (like the typical size of a character)
trained on the 16 training images to represent the test set of 16 text images with various level
of sparsity. Fig. 3 shows the approximations of one of the images for different sparsity levels.
We do not present histogram similar to Fig. 2 because the text dictionary, unlike the DCT
atoms, cannot be sorted in a meaningful order of spatial frequencies. It can be observed that
when the `0,∞ “norm” equals 2, the image already looks good. Fig. 5(b) shows the PSNR as a
function of ‖α‖0,∞, averaged over the test images, for dictionaries trained for different target
sparsities. As expected, almost the same reconstruction accuracy is maintained on the test set
even when the target sparsity is as low as two. This is different from the natural images case,
where we see a significant degradation when the dictionary target `0,∞ “norm” decreases.

Fig. 4 presents the atoms of the dictionary above (of size 100) and compares it to a dictio-
nary trained with 256 atoms. Both use a target `0,∞ “norm” of 2. As expected, most atoms
resemble individual characters and only few resemble a pair of them. As the `2 cost function
is used in updating the atoms, they do not uniformly represent the alphabet. Characters that
appear frequently may have more than one atom resembling them, and characters that are
rare may have no atom dedicated to them. Note that the larger dictionary has more diversity.
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(a) (b)

Figure 5. PSNR as a function of ‖α‖0,∞ using dictionaries trained for several target sparsities. The two
image types are: (a) natural images with local contrast normalization; and (b) text images.

6.2. Convolutional sparse coding methods comparison. We now compare the various
greedy methods proposed. We used GCMP, GCOMP (Algorithm 2), GCT (Algorithm 3),
and StGCOMP (Algorithm 4 with ∆k = 2, 4) to represent the cameraman image with 1 ≤
‖α‖0,∞ ≤ 20. Similar results are observed for other images. For comparison, we also used `0
based convolutional matching pursuit [4], [41], and computed the `0,∞ norm at each iteration.

Fig. 6 shows the PSNR as a function of the `0,∞ sparsity for the different algorithms. The
PSNR was highest for GCOMP. Also, the PSNR of GCMP was lower than that of GCOMP
because it does not include the additional step of optimizing the values of the coefficients after
each iteration of the outer loop. GCT gave the worst reconstructions, as it greedily selects
all the atoms at once. Also, Stagewise GCOMP gave PSNR values lower than GCOMP and
higher than GCT, and ∆k = 2 gave larger PSNR values than ∆k = 4.

In the supplementary material, we measure the runtimes of GCMP and GCOMP (the two
best algorithms according to this experiment), and compare them to the runtime of `0 based
convolutional matching pursuit [4], [41]. In the sequel we use GCMP, as it offers the best
trade-off between accuracy and runtime.

6.3. Convolutional MOD vs. Convolutional BCD. We trained a dictionary of 64 atoms
of size 8× 8 on the Fruit dataset [24], which contains ten images of fruit, using Convolutional
MOD (Algorithm 5) and using Convolutional BCD (Algorithm 6). Both dictionaries were
constrained to ‖α‖0,∞ = 4 and initialized to random Gaussian values. We computed the total
squared error of the representations in each iteration. In both algorithms, the convergence
rate is affected by the stopping condition of the CGLS dictionary update step, which we set
to some mean squared error threshold ε. For large values of ε, each dictionary update step
takes less time to compute, but achieves a smaller reduction in the squared error and therefore
requires more iterations.

Fig. 7 compares the total squared error of the representations as a function of time for
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Figure 6. PSNR as a function of ‖α‖0,∞ for the proposed sparse coding methods.

ε = 1, 10−1, 10−3, 10−5, and 10−9. The computation time of the first iteration of CMOD
increased significantly with ε, and resulted in a similar error reduction. In later iterations,
CMOD converged slower for ε = 1 than for smaller values of ε. Yet, the squared error of
CBCD converged much faster than that of CMOD for all ε values and was less dependent on
the value of ε. Therefore, in the subsequent experiments we use CBCD with ε = 1.

In the supplementary material, we present visualizations of a dictionary trained for solving
an `0,∞ constrained problem using Convolutional BCD, a dictionary trained for solving the
standard `1 convolutional sparse coding problem, and a dictionary trained on patches for
solving an `0 constrained problem using K-SVD.

6.4. Inpainting. We next apply our algorithm on the inpainting problem of text data
and natural images with the same setting presented in [24, 32]. We corrupt the images by
removing 50% of the pixels from each image at random. We use the pretrained and image
specific inpainting methods from Section 5.1 with a `0,∞ target sparsity of 64.

We compare our results to the method from [32] (using their software), which solves a `0,∞
problem with convex relaxation; and to the method from [24] (using their software), which
uses standard `1 convolutional sparse coding. The PSNR (dB) in this experiment is computed

the same way as in [32], as PSNR = 20 log
( √

MN
‖x−x̂‖2

)
. We also apply our method for image

specific inpainting, and compare our results to the image specific method from [32] (using their
software), which uses convolutional dictionary learning based on `0,∞ with convex relaxation;
to the image specific method from [24] (which is based on standard `1 convolutional sparse
coding) using the SPORCO library [46], and to the patch-based method from [17, Chapter
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Figure 7. Total squared error as a function of time for the two proposed dictionary learning algorithms,
Fruit dataset.

Table 2
Average PSNR (dB) of inpainted text images

Method Pretrained dictionary Dictionary learning

[17, Ch. 15] 12.08 19.34

[24] 19.19 23.30

[32] 19.29 20.57

Our method 19.78 21.88

15] (using their software), which uses K-SVD to train a dictionary on overlapping patches of
the corrupted image. All techniques use dictionaries of the same size (100 atoms), are trained
on the same data (see Section 6.1), and process the same images with 50% missing pixels.

Table 2 presents the PSNR of the inpainted text images, averaged over all the test images.
Observe that our method leads to better results compared to the other strategies. We believe
that this is due to the small target `0,∞ “norm” required for training a dictionary for text
images.

Table 3 presents the results for the local contrast normalized natural images. For most
images, our strategy has poorer results compared to those of [32], [24] and [17, Chapter 15].
The methods in [32] and [24] use convex `1 relaxations, which appear to be more successful
at inpainting natural images than our `0,∞ method. Following the comparison in Section 6.1,
we believe that the reason for that is the higher `0,∞ norm required in the training of our
dictionary in this case. Though the final target sparsity used in the sparse coding after the
dictionary has been trained is the same in both text and natural images cases, the influence
of the sparsity of the trained dictionary is strongly apparent.
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Table 3
PSNR (dB) of inpainted images

Method barbara boat c.man couple finger hill house lena man montage peppers

[24], pretrained 11.00 10.29 9.74 11.99 15.55 10.37 10.18 11.77 10.60 15.11 9.41

[32], pretrained 11.67 10.33 9.95 12.25 16.04 10.66 10.56 11.92 11.84 15.40 9.18

Our method, pretrained 10.92 9.89 9.57 10.71 13.88 9.67 9.60 11.33 10.62 13.72 9.61

[17, Ch. 15], image specific 13.33 11.05 10.06 12.07 14.77 10.43 10.61 11.96 11.17 14.92 10.78

[24], image specific 18.47 13.89 12.10 14.59 13.88 12.96 13.63 14.23 13.92 16.92 13.16

[32], image specific 15.20 11.60 10.68 12.41 16.07 10.90 11.77 12.35 11.71 15.67 11.45

Our method, image specific 13.18 10.94 9.63 11.59 15.44 10.25 10.91 11.43 10.87 14.38 10.44

6.5. Salt-and-pepper noise removal for text images. Having seen the advantage of our
method for inpainting of text images, we turn to demonstrate that this is the case also for
another image processing application, namely, salt-and-paper noise removal.

Due to the type of the noise, when training on noisy images, some of the learned atoms in
the dictionary trained on noisy images will contain only this noise. Thus, they can be sparsely
represented using the impulse noise atom d0. Therefore, we remove them automatically by
solving the following minimization problem:

(15) min
α
‖α‖0 s.t. ‖dj − d0 ∗α‖22 ≤ ε,

which indicates whether the atom is noise or not. If the `0 “norm” of the atom dj is lower
than a given threshold (which we set to 3), we prune it from the dictionary.

We corrupted 10% of the pixels of each test image by setting 5% of the pixels to black
and 5% of the pixels to white at random. Fig. 8(b) shows an example of a noisy image and
Fig. 8(a) shows its original clean version. We applied Algorithm 7, both in the case of training
on a clean training set and training on noisy images. As a reference, we compare our results to
(i) a simple 3×3 median filter; (ii) the weighted couple sparse representation method from [11]
(using their software), which trains a dictionary on overlapping patches by solving a weighted
rank-one minimization problem; and (iii) the method from [44] (using their software), which
is based on standard `1 convolutional sparse coding. All methods other than the median filter
trained dictionaries with 100 atoms of size 11 × 11 on the same noisy text images. We have
tuned the relevant hyperparameters of each method to give the best results for the test images.

Table 4 presents the average PSNR of the different denoising methods and the initial
average PSNR of the noisy images. The best results are achieved using our method with the
(larger) dictionary of 100 atoms that was trained on the noisy test set. Fig. 8 presents the
results for one of the test images. Simple methods such as a median filter do not work well
in the case of text images due to considerable degradation of the clean parts of the images
(and larger filter sizes cause more degradation). The patch-based method from [11] and the
convolutional method from [44], which work well for natural images, also degrade the clean
parts of the text images, while our method provides better results.

7. Conclusions. The greedy algorithms that we have proposed in this work solve the
constrained P ε0,∞ problem and offer an alternative to the approaches in [32] and [33], which
minimize an unconstrained penalized Lagrangian with a convex relaxation to the `1 norm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Salt and pepper noise removal results for one of the test images: (a) the original (clean) image;
(b) the noisy image; (c) denoising using the patch-based method from [11]; (d) denoising using the convolutional
sparse coding method from [44] (e) denoising using a dictionary trained on the clean training set, 100 atoms
and (f) 256 atoms; (g) denoising using a dictionary trained on the noisy test set, 51 atoms and (h) 100 atoms.

Table 4
Average PSNR of denoised images, 10% noise

Method PSNR (dB)

Noisy image 13.37

Median filter 16.53

Patch-based method [11] 13.27

Convolutional sparse coding method from [44] 16.63

Train on clean training set, 100 atoms 21.60

Train on clean training set, 256 atoms 21.43

Train on noisy test set, 51 atoms 21.36

Train on noisy test set, 100 atoms 22.30

One advantage of using greedy algorithms over relaxation based techniques is that they allow
minimizing the squared error with a hard constraint on the `0,∞ sparsity or minimizing the
`0,∞ sparsity with a hard constraint on the squared error. Our pursuits are accompanied by
a dictionary learning method that uses our greedy solution to P ε0,∞ as the sparse coding step
separately from the dictionary update step. This allows us to train dictionaries on a set of
training signals with a target sparsity. Our techniques are computationally efficient and very
easy to implement.

Since our greedy approach targets solely the `0,∞ “norm”, and not in conjunction with
other norms as in [32], we believe that it serves as a good tool to evaluate this ‘’norm” for
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various image types. From our experiments, it seems that while targeting this norm directly
is beneficial for text images, which are very sparse in this “norm”, this is less the case for
natural images. For the latter, it seems that it may be more beneficial to use the `0,∞ sparsity
in conjunction with other priors such as the `1 norm, and not alone. Clearly, this conclusion
may be specific to the greedy optimization technique we have proposed.
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