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Abstract. We consider a finite element discretization for the dual Rudin–Osher–Fatemi model
using a Raviart–Thomas basis for H0(div; Ω). Since the proposed discretization has splitting property
for the energy functional, which is not satisfied for existing finite difference-based discretizations, it
is more adequate for designing domain decomposition methods. In this paper, a primal domain
decomposition method is proposed, which resembles the classical Schur complement method for
the second order elliptic problems, and it achieves O(1/n2) convergence. A primal-dual domain
decomposition method based on the method of Lagrange multipliers on the subdomain interfaces is
also considered. Local problems of the proposed primal-dual domain decomposition method can be
solved at a linear convergence rate. Numerical results for the proposed methods are provided.
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1. Introduction. Nowadays, due to advances in imaging devices, large scale im-
ages have become increasingly available, and there has arisen the necessity of parallel
algorithms for image processing. One suitable method for parallel computation is the
domain decomposition method (DDM), for which we solve a problem by splitting its
domain into several smaller subdomains and conquering the small problem in each
subdomain separately. We consider the Rudin–Osher–Fatemi (ROF) model [23] as a
model problem, which is a classical and effective model for image denoising:

(1.1) min
u∈BV (Ω)

α

2

∫
Ω

(u− f)2 dx+ TV (u),

where Ω is the rectangular domain of an image, f ∈ L2(Ω) is an observed noisy image,
α is a positive denoising parameter, and TV (u) is the total variation measure defined
by

TV (u) = sup

{∫
Ω

udivq dx : q ∈ (C1
0 (Ω))2, |q| ≤ 1

}
.

Here, |q| ≤ 1 means that |q(x)| ≤ 1 for a.e. x ∈ Ω. The solution space BV (Ω) denotes
the space of the functions in L1(Ω) with the finite total variation, which is a Banach
space equipped with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω). It is well known that
the ROF model has an anisotropic diffusion property so that it preserves edges and
discontinuities in images [24].
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While overlapping DDMs for image restoration were considered in [11, 25], nonover-
lapping DDMs for the total variation minimization were proposed in [12, 14]. But Lee
and Nam [17] gave a counterexample that an overlapping DDM does not converge to
the global minimizer. In [16], Lee et al. suggested DDMs with the primal-dual stitch-
ing technique. In [7, 15, 17], DDMs based on the dual total variation minimization
were proposed. In particular, Chang et al. [7] showed that the overlapping subspace
correction methods for the dual ROF model have O(1/n) convergence.

There are several major difficulties in designing DDMs for (1.1). First, the energy
functional in (1.1) is nonsmooth, which makes the design of solvers hard. In addition,
the energy functional is nonseparable in the sense that it cannot be expressed as the
sum of the local energy functionals in the subdomains due to the total variation term.
Finally, the solution space BV (Ω) allows discontinuities of a solution on the subdo-
main interfaces, so that it is difficult to design an appropriate interface condition of a
solution. One way to overcome such difficulties is to consider the Fenchel–Rockafellar
dual problem as in [7, 15, 17], which is stated as

(1.2) min
p∈(C1

0 (Ω))2

1

2α

∫
Ω

(divp + αf)2 dx subject to |p| ≤ 1.

Even if it is cumbersome to treat the inequality constraint |p| ≤ 1, (1.2) is more
suitable for DDMs, since the energy functional is separable and the solution space
(C1

0 (Ω))2 has some regularity on the subdomain interfaces. The desired primal solu-
tion u is recovered from the dual solution p of (1.2) by the following relation:

u = f +
1

α
divp.

Faster algorithms for solving (1.2) were developed in [1, 21].
In the existing works [3, 7, 15, 17] for (1.2), the problems were discretized in the

finite difference framework. Each pixel in an image was treated as a discrete point
on a grid, and the dual variable was considered as a vector-valued function on the
grid. The discrete gradient and divergence operators were defined by finite difference
approximations of the continuous gradient and divergence operators. In this paper,
we propose a finite element discretization for (1.2), which is more suitable for the
DDMs than the existing ones. Each pixel in an image is treated as a square finite
element and the problem (2.1) is discretized by using the conforming lowest order
Raviart–Thomas element [22].

Based on the proposed discretization, we propose a primal DDM which is simi-
lar to the classical Schur complement method for the second order elliptic problems.
Eliminating the interior degrees of freedom in each subdomain yields an equivalent
minimization problem to the full dimension problem. The functional of the result-
ing minimization problem has enough regularity to adopt the FISTA [1]. Thus, the
proposed primal DDM achieves O(1/n2) convergence, and to the best of our knowl-
edge, it is the best rate among the existing DDMs for the ROF model. In addition,
we propose a primal-dual DDM based on an equivalent saddle point problem. The
continuity of a solution on the subdomain interfaces is enforced by the method of
Lagrange multipliers as in [8, 9, 10], and it yields an equivalent saddle point problem
of the original variable (primal) and the Lagrange multipliers (dual). The local prob-
lems for the proposed primal-dual DDM can be solved at a linear convergence rate,
so that the method becomes very fast.

The rest of the paper is organized as follows. In section 2, a conforming dis-
cretization of the dual ROF model with a Raviart–Thomas finite element space is
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introduced. A primal DDM based on an equivalent minimization problem on the
subdomain interfaces is presented in section 3. A primal-dual DDM based on an
equivalent saddle point problem is considered in section 4. We present numerical re-
sults for the proposed methods in various settings in section 5. Finally, we conclude
the paper with some remarks in section 6.

2. The Dual ROF Model.

2.1. Preliminaries. We review some preliminaries about the dual ROF model.
The space H(div; Ω) is defined as

H(div; Ω) =
{
p ∈ (L2(Ω))2 : divp ∈ L2(Ω)

}
.

It is a Hilbert space equipped with an inner product

〈p,q〉H(div;Ω) =

∫
Ω

p · q dx+

∫
Ω

divpdivq dx,

and its induced norm is called the H(div; Ω) graph norm. A remarkable property of
H(div; Ω) is that, for a vector function p ∈ H(div; Ω), the normal component p · n
on ∂Ω is well-defined [2, 13]. We define H0(div; Ω) as the subspace of H(div; Ω) with
vanishing normal component on ∂Ω. It can be shown that the space H0(div; Ω) is the
closure of (C∞0 (Ω))2 in the H(div; Ω) graph norm [19]. Thus, it is natural to consider
the following alternative formulation of (1.2) using H0(div; Ω) as the solution space:

(2.1) min
p∈H0(div;Ω)

{
J (p) :=

1

2α

∫
Ω

(divp + αf)2 dx

}
subject to |p| ≤ 1.

We notice that this formulation was also considered in [7].

2.2. Finite Element Discretizations. A digital image consists of a number
of rows and columns of pixels, holding values representing the intensity at a specific
point. We regard each pixel as a unit square and an image as a piecewise constant
function in which each piece is a single pixel. In this sense, we regard each pixel in
a digital image as a square finite element whose side length equals 1. Let T be the
collection of all elements in Ω, i.e. pixels. We define the space X for the image by

X =
{
u ∈ L2(Ω) : u|T is constant ∀T ∈ T

}
.

Then it is clear that X ⊂ BV (Ω), which means that the discretization is conforming.
Each degree of freedom of X lies in an element (see Figure 1(a)), and its corresponding
basis function is

φT (x) =

{
1 if x ∈ T,
0 if x 6∈ T,

T ∈ T .

For u ∈ X and T ∈ T , let (u)T denote the degree of freedom of u associated with
the basis function φT . With a slight abuse of notation, let T also indicate the set of
indices of the basis functions for X; then we can represent u by

u =
∑
T∈T

(u)TφT .



4 C.-O. LEE, E.-H. PARK, AND J. PARK

(a) Degrees of freedom for X (b) Degrees of freedom for Y

Fig. 1. Degrees of freedom for the spaces X and Y

It is natural to determine the space Y for the dual variable p such that the
divergence of each element in Y is in X. A suitable choice to meet this condition is
the lowest order Raviart–Thomas elements [22]. We define Y by

Y = {q ∈ H0(div; Ω) : q|T ∈ RT 0(T ) ∀T ∈ T } ,

where RT 0(T ) is the collection of the vector functions q: T → R2 of the form

q(x1, x2) =

[
a1 + b1x1

a2 + b2x2

]
.

In order for a piecewise RT 0(T )-function to be in H0(div; Ω), a particular condition
on the element interfaces should be satisfied, which is given in the following proposi-
tion [20].

Proposition 2.1. A vector function q: Ω→ R2 is in H(div; Ω) if and only if the
restriction of q to each T ∈ T is in H(div;T ), and for each common edge e = T̄1∩ T̄2,
we have

q · n|T1
+ q · n|T2

= 0 on e,

where n|Ti is the outer normal to ∂Ti on e, i = 1, 2, so that n|T1 = −n|T2 .

Proposition 2.1 gives a natural way to choose the degrees of freedom of the space
Y . Let q ∈ Y . Then the value of q · n is well-defined on each common edge of
elements, where the direction of n is chosen as in Figure 1(b). Therefore, we choose
the degrees of freedom of Y by the values of q · n on the element interfaces.

To construct the corresponding basis functions, we consider a reference square
Tref = [0, 1]2. The outer normal component of a basis function ψref has the value 1
on one edge, say x = 1, and 0 on the other edges. Such ψref is unique and given
by ψref(x1, x2) = (x1, 0). Similarly, the other basis functions on Tref are given by
(1− x1, 0), (0, x2), and (0, 1− x2).

Now, let I be the set of indices of the basis functions for Y , and let {ψi}i∈I be
the basis. Also, for p ∈ Y and i ∈ I, let (p)i denote the degree of freedom of p
associated with the basis function ψi; then we can write

p =
∑
i∈I

(p)iψi.

Next, we determine the norms and the inner products for which X and Y will be
equipped. In X, the L2(Ω)-inner product agrees with the Euclidean inner product,
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so it is natural to choose the inner product as

〈u, v〉X =

∫
Ω

uv dx =
∑
T∈T

(u)T (v)T

and the norm as its induced norm

‖u‖2X = 〈u, u〉X .

We set the inner product for Y by the usual Euclidean inner product

〈p,q〉Y =
∑
i∈I

(p)i(q)i

and the norm by its induced norm

‖p‖2Y = 〈p,p〉Y .

Remark 2.2. We equipped Y with not the (L2(Ω))2-inner product but the Eu-
clidean inner product. The reason is that if we equip Y with the (L2(Ω))2-inner
product, then the (L2(Ω))2-mass matrix occurs in the resulting algorithms, making
computation more cumbersome. In the following, we prove that using the Euclidean
inner product instead of the (L2(Ω))2-inner product does not affect both the quality
of image denoising and the rate of convergence.

Assume that the image size is n = M×N . Consider an n×n symmetric tridiagonal
matrix tridn(α, β) whose diagonal entries are α and off-diagonal entries are β. Under
an appropriate ordering of the degrees of freedom of Y , one can see that the (L2(Ω))2-
mass matrix is a block-diagonal matrix composed of N tridM−1( 2

3 ,
1
6 )-blocks and M

tridN−1( 2
3 ,

1
6 )-blocks. Hence, all eigenvalues are

2

3
+

1

3
cos

(
kπ

M

)
, k = 1, . . . ,M − 1,

and

2

3
+

1

3
cos

(
kπ

N

)
, k = 1, . . . , N − 1.

See section C.7 in [18] for details. The (L2(Ω))2-mass matrix is spectrally equivalent
to the identity matrix which can be obtained from the (L2(Ω))2-mass matrix by
diagonal lumping with proper scaling. Therefore, one can conclude that the overall
performance remains the same even if we use the Euclidean inner product.

For a pixel T = Tij ∈ T on the ith row and the jth column of the M ×N image,
let ιT,1 ∈ I be the index corresponding to the degree of freedom of Y on the edge
shared by Tij and Ti+1,j . Similarly, let ιT,2 ∈ I be the one on the edge shared by Tij
and Ti,j+1. To treat the inequality constraints in (2.1), for 1 < p <∞, we define the
subset Cp of Y by

(2.2) Cp =
{
p ∈ Y : |(p)ιT,1 |q + |(p)ιT,2 |q ≤ 1 ∀T ∈ T

}
,

where q is the Hölder conjugate of p and the convention (p)ιTM,j,1 = (p)ιTi,N ,2 = 0 is

adopted. Also, for p = 1, we define

(2.3) C1 = {p ∈ Y : |(p)i| ≤ 1 ∀i ∈ I} .
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(a) div (b) div∗

Fig. 2. Action of the operators div and div∗ on an element

Clearly, for 1 ≤ p < ∞, Cp is nonempty and convex. The orthogonal projection of
p ∈ Y onto Cp can be easily computed by

(2.4) (projCpp)ιT,k =
(p)ιT,k(

|(p)ιT,1 |q + |(p)ιT,2 |q
) 1
q

∀T ∈ T , k = 1, 2

for 1 < p <∞ and

(2.5) (projC1p)i =
(p)i

max {1, |(p)i|}
∀i ∈ I

for p = 1.
Finally, we are ready to state a finite element version of problem (2.1):

(2.6) min
p∈Y
J (p) + χCp(p),

where χCp is the characteristic function of Cp which is defined as

χCp(p) =

{
0 if p ∈ Cp,
∞ if p 6∈ Cp.

We provide a relation between (2.6) and the conventional finite difference discretiza-
tion of the ROF model.

Theorem 2.3. Let p∗ ∈ Y be a solution of (2.6). If we identify X with the
Euclidean space of the functions from the M ×N discrete points [1, ...,M ]× [1, ..., N ]
into R, then u∗ = f + 1

αdivp∗ is a solution of the finite difference ROF model

min
u∈X

α

2
‖u− f‖22 + ‖|Du|p‖1, (1 ≤ p <∞)

where Du is the forward finite difference operator

(Du)1
ij =

{
ui+1,j − uij if i = 1, ...,M − 1,

0 if i = M,

(Du)2
ij =

{
ui,j+1 − uij if j = 1, ..., N − 1,

0 if j = N

and (|Du|p)ij =
(
|(Du)1

ij |p + |(Du)2
ij |p
) 1
p .
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Proof. By the primal-dual equivalence, u∗ is a solution of the Fenchel–Rockafellar
dual of (2.6) given by

min
u∈X

{
α

2

∫
Ω

(u− f)2 dx+ sup
p∈Cp

∫
Ω

udivp dx

}
.

Then, we have

α

2

∫
Ω

(u− f)2 dx+ sup
p∈Cp

∫
Ω

udivp dx =
α

2
‖u− f‖22 + sup

p∈Cp
〈u,divp〉X

=
α

2
‖u− f‖22 + sup

p∈Cp
〈div∗u,p〉Y ,

where div∗: X → Y is defined as

〈div∗u,p〉Y = 〈u,divp〉X ∀u ∈ X,p ∈ Y.

Observe that the div∗ operator acts like the minus finite difference operator (see
Figure 2(b)). Indeed, we can see that

(div∗u)ιT,1 = uij − ui+1,j = −(Du)1
ij

(div∗u)ιT,2 = uij − ui,j+1 = −(Du)2
ij

for T = Tij ∈ T with the convention uMj − uM+1,j = uiN − ui,N+1 = 0. Assume
1 < p <∞, 1

p + 1
q = 1, and take any p ∈ Cp. Then, by the duality between the spaces

lp and lq in each pixel, we get

sup
p∈Cp

〈div∗u,p〉Y =
∑

T=Tij∈T
sup

|(p)ιT,1 |q+|(p)ιT,2 |q≤1

[
(Du)1

ij(p)ιT,1 + (Du)2
ij(p)ιT,2

]
=

∑
T=Tij∈T

[
|(Du)1

ij |p + |(Du)2
ij |p
] 1
p = ‖|Du|p‖1,

which concludes the proof. The case for p = 1 is straightforward.

Theorem 2.3 means that, by choosing the set Cp appropriately, the finite element
model (2.6) can express various versions of discrete total variation, for example, an
anisotropic one for p = 1 and an isotropic one for p = 2. Hereafter, for the sake
of simplicity, we treat the case for p = 1 only; generalization to the other cases is
straightforward. We drop the superscript and write C = C1.

Next, note that the divergence operator in the continuous setting is well-defined
on Y , and its image is contained in X. That is, the divergence of a function in Y is
piecewise constant. This means that we do not need to define a discrete divergence
operator as in the preceding researches, and some good properties from the continuous
setting are inheritable to our discretization. For instance, for a nonoverlapping domain
decomposition {Ωs}Ns=1 of Ω and p ∈ Y , the following splitting property of J (p) holds:

(2.7)
1

2α

∫
Ω

(divp + αf)2 dx =

N∑
s=1

1

2α

∫
Ωs

(div(p|Ωs) + αf)2 dx.

Equation (2.7) will be our main tool in designing the DDMs in sections 3 and 4.

Remark 2.4. The discrete divergence operator proposed in [3, 17] does not sat-
isfy (2.7), which was designed in the finite difference framework.



8 C.-O. LEE, E.-H. PARK, AND J. PARK

2.3. Solvers for the Finite Element ROF Model. The proposed discrete
problem (2.6) can adopt the existing solvers for the total variation minimization using
either dual approaches [1, 3] or primal-dual approaches [4]. We give some results
about (2.6) which help to set the parameters for the solvers.

Proposition 2.5. The operator norm of div: Y → X has a bound such that
‖div‖2Y→X ≤ 8.

Proof. Fix p ∈ Y . For a pixel T ∈ T , let pT,1, pT,2, pT,3, and pT,4 be the
degrees of freedom of p on the top, bottom, left, and right edges of T , respectively
(see Figure 2). We may set pT,j by 0 if it is on ∂Ω for some j. Then, we have

(divp)2
T = (−pT,1 + pT,2 − pT,3 + pT,4)2

≤ 4(p2
T,1 + p2

T,2 + p2
T,3 + p2

T,4).

Summation over all T ∈ T yields

‖divp‖2X =
∑
T∈T

(divp)2
T ≤ 4

∑
T∈T

(p2
T,1 + p2

T,2 + p2
T,3 + p2

T,4)

≤ 8
∑
i∈I

(p)2
i = 8‖p‖2Y .

For the second inequality, the fact that every edge is shared by at most two elements
is used. Therefore, ‖div‖2Y→X ≤ 8.

Proposition 2.6. The gradient of J (p) is given by

∇J (p) =
1

α
div∗(divp + αf)

and it is Lipschitz continuous with a Lipschitz constant 8/α.

Proof. Take any p ∈ Y , and let q ∈ Y with ‖q‖Y = 1, and h > 0. Then we have∣∣∣∣J (p + hq)− J (p)−
〈

1

α
div∗(divp + αf), hq

〉
Y

∣∣∣∣ =
h2

2α

∫
Ω

(divq)2 dx

≤ h2

2α
‖div‖2Y→X‖q‖2Y ≤

4h2

α
.

Therefore, ∇J (p) = 1
αdiv∗(divp + αf). Furthermore, for any p, q ∈ Y ,

‖∇J (p)−∇J (q)‖Y =

∥∥∥∥ 1

α
div∗ (div(p− q))

∥∥∥∥
Y

≤ 1

α
‖div‖2Y→X‖p− q‖Y ≤

8

α
‖p− q‖Y .

In the last line, we used Proposition 2.5 to bound ‖div‖Y→X . From the above com-
putations, we conclude that ∇J is Lipschitz continuous with a Lipschitz constant
8/α.

We notice that the proof of Proposition 2.5 given here is essentially the same as
the proof of Theorem 3.1 of [3].
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(a) Primal DD (b) Primal-dual DD

Fig. 3. Primal and primal-dual domain decomposition

3. A Primal Domain Decomposition Method. In this section, we propose
a primal DDM for the proposed discretization which resembles the Schur complement
method, one of the most primitive nonoverlapping DDMs for second order elliptic
problems. We note that the method proposed in this section is not a DDM for the
“primal” total variation minimization problem, but a “primal” DDM for the “dual”
total variation minimization problem. In the Schur complement method for second
order elliptic problems, the degrees of freedom in the interior of the subdomains are
eliminated so that only the degrees of freedom on the subdomain interfaces remain.
The remaining system on the subdomain interfaces is called the Schur complement
system, and it is solved by an iterative solver like the conjugate gradient method.
Similarly, in the proposed method, the interior degrees of freedom are eliminated
and we solve a resulting minimization problem on the subdomain interfaces. Every
finite-dimensional Hilbert space H appearing in sections 3 and 4 is equipped with the
Euclidean inner product 〈·, ·〉H and the induced norm ‖ · ‖H .

We decompose the image domain Ω into N = N ×N disjoint square subdomains
{Ωs}Ns=1 in a checkerboard fashion (see Figure 3(a)). From now on, the letters s and
t stand for indices of subdomains, that is, s and t run from 1 to N . We denote the
outer normal to ∂Ωs by ns. For two adjacent subdomains Ωs and Ωt with s < t, let
Γst = ∂Ωs ∩∂Ωt be the subdomain interface between them. The subdomain interface
Γst is oriented in the way that the normal nst to Γst is given by nst = ns = −nt.
Also, we define the union of the subdomain interfaces Γ by Γ =

⋃
s<t Γst.

For the discrete setting, let Ts be the collection of all elements in Ωs. We define
the local dual function space Ys by

(3.1) Ys = {qs ∈ H0(div; Ωs) : qs|T ∈ RT 0(T ) ∀T ∈ Ts} .

Also, let Is be the set of indices of the basis functions for Ys. In addition, we set YI
by the direct sum of all local dual function spaces, that is,

YI =

N⊕
s=1

Ys.

One can observe that, for pI =
⊕N

s=1 ps and qI =
⊕N

s=1 qs, we have

〈pI ,qI〉YI =

N∑
s=1

〈ps,qs〉Ys .
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Next, we denote IΓ by the set of indices of degrees of freedom of Y on Γ, and define
the interface function space YΓ by

YΓ = span {ψi}i∈IΓ
.

The interface function space YΓ is equipped with the inner product defined by

〈pΓ,qΓ〉YΓ
= 〈pΓ,qΓ〉Y

and its induced norm

‖pΓ‖2YΓ
= 〈pΓ,pΓ〉YΓ

.

As we readily see, Y = YI ⊕ YΓ. For p ∈ Y , there exists a unique decomposition

p = pI ⊕ pΓ =

( N⊕
s=1

ps

)
⊕ pΓ

with ps ∈ Ys and pΓ ∈ YΓ. Thanks to the splitting property (2.7), we have

J (p) =
1

2α

∫
Ω

(divp + αf)2 dx

=

N∑
s=1

1

2α

∫
Ωs

(div(ps + pΓ|Ωs) + αf)2 dx.

(3.2)

To treat the inequality constraints, as we did in (2.3), we define the subset Cs of
Ys by

(3.3) Cs = {ps ∈ Ys : |(ps)i| ≤ 1 ∀i ∈ Is} ,

and we set CI as the direct sum of all Cs’s:

CI =

N⊕
s=1

Cs.

In addition, let CΓ be the subset of YΓ satisfying the inequality constraints:

CΓ = {pΓ ∈ YΓ : |(pΓ)i| ≤ 1 ∀i ∈ IΓ} .

Similarly to (2.5), the projections onto Cs and CΓ can be computed by the pointwise
Euclidean projection:

(3.4a) (projCsps)i =
(ps)i

max {1, |(ps)i|}
∀i ∈ Is,

(3.4b) (projCΓ
pΓ)i =

(pΓ)i
max {1, |(pΓ)i|}

∀i ∈ IΓ.

Now, for pΓ ∈ CΓ, we consider the following minimization problem:

(3.5) min
pI∈YI

{J (pI ⊕ pΓ) + χCI (pI)} .
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We note that, with the help of (3.2), a solution of (3.5) can be obtained by solving

(3.6) min
ps∈Ys

{
1

2α

∫
Ωs

(div(ps + pΓ|Ωs) + αf)2 dx+ χCs(ps)

}
and taking the direct sum of the solutions of (3.6) over s = 1, ...,N . The local prob-
lem (3.6) can be solved independently in each subdomain. That is, no communications
among processors are required so that the resulting algorithm becomes suitable for
parallel computation. With a slight abuse of notation, we denote a solution of (3.5)
by HIpΓ ∈ CI . Although HIpΓ is not unique in general, div(HIpΓ) is uniquely
determined and we will deal with div(HIpΓ) only.

Finally, we present the minimization problem for the proposed primal DDM:

(3.7) min
pΓ∈YΓ

JΓ(pΓ) + χCΓ
(pΓ),

where the functional JΓ(pΓ) on YΓ is defined as

(3.8) JΓ(pΓ) = J (HIpΓ ⊕ pΓ).

The functional JΓ(pΓ) can be regarded as the result of elimination of interior degrees
of freedom pI from J (p). The same technique is widely used in DDMs for second
order elliptic problems. The following proposition shows a relation between (2.6)
and (3.7).

Proposition 3.1. If p∗ ∈ Y is a solution of (2.6), then p∗Γ = p∗|YΓ is a solution
of (3.7). Conversely, if p∗Γ ∈ YΓ is a solution of (3.7), then p∗ = HIp∗Γ ⊕ p∗Γ is a
solution of (2.6).

Proof. Let p∗ ∈ Y be a solution of (2.6) and p∗Γ = p∗|YΓ . Clearly, p∗Γ ∈ CΓ.
We show that JΓ(pΓ) ≥ JΓ(p∗Γ) for all pΓ ∈ CΓ. Take any pΓ ∈ CΓ. Then, by the
minimization property of p∗ with respect to (2.6), we have

JΓ(pΓ) = J (HIpΓ ⊕ pΓ) ≥ J (p∗).

Also, by the minimization property of HI with respect to (3.5), we have

J (p∗) = J (p∗|YI ⊕ p∗Γ)

≥ J (HIp∗Γ ⊕ p∗Γ) = JΓ(p∗Γ).

Therefore, JΓ(pΓ) ≥ JΓ(p∗Γ), so that p∗Γ is a solution of (3.7).
Conversely, let p∗Γ ∈ YΓ be a solution of (3.7) and p∗ = HIp∗Γ⊕p∗Γ ∈ C. It suffices

to show that J (p) ≥ J (p∗) for all p ∈ C. Take any p ∈ C. By the minimization
property of HI with respect to (3.5), we have

J (p) = J (p|YI ⊕ p|YΓ
)

≥ J (HIp|YΓ
⊕ p|YΓ

) = JΓ(p|YΓ
),

while

JΓ(p|YΓ
) ≥ JΓ(p∗Γ) = J (p∗)

by the minimization property of p∗Γ with respect to (3.7). Therefore, p∗ is a solution
of (2.6).
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By Proposition 3.1, it is enough to solve (3.7) to obtain a solution of (2.6). As
we noted in (3.6), (3.7) has an intrinsic domain decomposition structure, so that the
parallelization of the algorithm at the subdomain level is straightforward regardless of
the choice of solver for the minimization problem. In this paper, we adopt FISTA [1]
as the solver for (3.7), which is known to have O(1/n2) convergence. To the best of our
knowledge, there have been no DDMs for the ROF model with convergence rate better
than O(1/n2). In particular, Chang et al. [7] showed that the subspace correction
methods for the dual ROF model has the theoretical convergence rate O(1/n) even
in the overlapping domain decomposition case.

To show the suitability of FISTA for (3.7), it should be ensured that the functional
JΓ(pΓ) in (3.8) is differentiable and its gradient is Lipschitz continuous. The following
lemmas are ingredients for showing such regularity of JΓ(pΓ). At first, Lemma 3.2
tells that the norm bound of the div operator can be improved from Proposition 2.5
if its domain is restricted to YΓ.

Lemma 3.2. Assume that each subdomain consists of at least 2× 2 pixels. Then,
the operator norm of div: YΓ → X has a bound such that ‖div‖2YΓ→X ≤ 4.

Proof. Fix pΓ ∈ YΓ and let p = 0I ⊕ pΓ ∈ Y , which is an extension of pΓ to Y .
We clearly have

divp = divpΓ.

For a pixel T ∈ T , similarly to Proposition 2.5, let pT,1, pT,2, pT,3, and pT,4 be the
degrees of freedom of p on the top, bottom, left, and right edges of T , respectively.
Since ∂T ∩Γ consists of at most two element edges (when T is at a subdomain corner),
at most two of pT,i’s are nonzero. Thus, we have

(divp)2
T = (−pT,1 + pT,2 − pT,3 + pT,4)2

≤ 2(p2
T,1 + p2

T,2 + p2
T,3 + p2

T,4),

where we use the Cauchy–Schwarz inequality. Summation over all T ∈ T yields

‖divp‖2X =
∑
T∈T

(divp)2
T ≤ 2

∑
T∈T

(p2
T,1 + p2

T,2 + p2
T,3 + p2

T,4)

≤ 4
∑
i∈I

(p)2
i

= 4
∑
i∈IΓ

(pΓ)2
i = 4‖pΓ‖2YΓ

.

Therefore, ‖div‖2YΓ→X ≤ 4.

Now we provide the main tool for showing the regularity of JΓ(pΓ), which is
stated in a more general setting. We note that Lemma 3.3 can be regarded as a
generalization of the smoothness property of the Moreau envelope [5].

Lemma 3.3. Suppose that H, H1, and H2 are finite-dimensional Hilbert spaces.
Let A: H1 → H, B: H2 → H be linear operators and c ∈ H. Also, let g: H2 → R̄ be a
proper, convex, and lower semicontinuous functional. Then a functional F : H1 → R
defined as

F (x) = min
y∈H2

{
f(x, y) :=

1

2
‖Ax+By + c‖2H + g(y)

}
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is differentiable and its gradient is given by

∇F (x) = A∗(Ax+By∗(x) + c),

where y∗(x) = arg miny∈H2
f(x, y). Furthermore, ∇F is Lipschitz continuous with

modulus L = ‖A‖2H1→H .

Proof. For x ∈ H1, let

d(x) = A∗(Ax+By∗(x) + c).

One can easily verify that d(x) is single-valued even though y∗(x) may not be.
Take any x1, x2 ∈ H1 and write y1 = y∗(x1), y2 = y∗(x2). Then, by the mini-

mization property of y1, we get

F (x1) =
1

2
‖Ax1 +By1 + c‖2H + g(y1)

≤ 1

2
‖Ax1 +By2 + c‖2H + g(y2)

= g(y2) +
1

2
‖Ax2 +By2 + c‖2H + 〈Ax2 +By2 + c, A(x1 − x2)〉H

+
1

2
‖A(x1 − x2)‖2H

≤ F (x2) + 〈d(x2), x1 − x2〉H1
+
L

2
‖x1 − x2‖2H1

.

(3.9)

On the other hand, the optimality condition of y2 reads as

g(y) ≥ g(y2) + 〈Ax2 +By2 + c,B(y2 − y)〉H ∀y ∈ H2.

Thus, it follows that

F (x1) =
1

2
‖Ax1 +By1 + c‖2H + g(y1)

= g(y1) +
1

2
‖Ax2 +By1 + c‖2H + 〈Ax2 +By1 + c, A(x1 − x2)〉H

+
1

2
‖A(x1 − x2)‖2H

≥ g(y2) + 〈Ax2 +By2 + c,B(y2 − y1)〉H +
1

2
‖Ax2 +By1 + c‖2H

+ 〈Ax2 +By1 + c, A(x1 − x2)〉H +
1

2
‖A(x1 − x2)‖2H .

(3.10)

By the vector identity

〈a+ b, b〉+
1

2
‖a‖22 =

1

2
‖a+ b‖22 +

1

2
‖b‖22,
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equation (3.10) is written as

F (x1) ≥ g(y2) +
1

2
‖Ax2 +By2 + c‖2H +

1

2
‖B(y1 − y2)‖2H

+ 〈Ax2 +By1 + c, A(x1 − x2)〉H +
1

2
‖A(x1 − x2)‖2H

= F (x2) +
1

2
‖B(y1 − y2)‖2H + 〈Ax2 +By2 + c, A(x1 − x2)〉H

+ 〈B(y1 − y2), A(x1 − x2)〉H +
1

2
‖A(x1 − x2)‖2H

= F (x2) + 〈d(x2), x1 − x2〉H1
+

1

2
‖(Ax1 +By1 + c)− (Ax2 +By2 + c)‖2H

≥ F (x2) + 〈d(x2), x1 − x2〉H1
+

1

2L
‖d(x1)− d(x2)‖2H1

.

(3.11)

From (3.9) and (3.11), we conclude that F is differentiable with ∇F = d.
Now, it remains to show that ∇F is Lipschitz continuous. Interchanging x1 and

x2 in (3.11) yields

(3.12) F (x2) ≥ F (x1)− 〈d(x1), x1 − x2〉H1
+

1

2L
‖d(x1)− d(x2)‖2H1

.

Summing (3.11) and (3.12), we obtain

1

L
‖d(x1)− d(x2)‖2H1

≤ 〈d(x1)− d(x2), x1 − x2〉H1

≤ ‖d(x1)− d(x2)‖H1
‖x1 − x2‖H1

,

which means that d is Lipschitz continuous with modulus L.

Now, we obtain the desired regularity result of JΓ(pΓ) as a direct consequence of
Lemma 3.3.

Corollary 3.4. The gradient of JΓ(pΓ) is given by

∇JΓ(pΓ) =
1

α
div∗(div(HIpΓ ⊕ pΓ) + αf)|YΓ

,

which is Lipschitz continuous with a Lipschitz constant 4/α.

Proof. In Lemma 3.3, we set H = X, H1 = YΓ, and H2 = YI . Taking A =
div: YΓ → X, B = div: YI → X, and g = χCI yields the conclusion. In this case, we
have L = 4/α due to Lemma 3.2.

Corollary 3.4 guarantees that FISTA is appropriate for (3.7). The proposed primal
DDM for the dual ROF model is summarized in Algorithm 1.

As we noted in (3.6), HIq(n)
Γ in Algorithm 1 can be obtained independently in

each subdomain. Indeed, HIq(n)
Γ =

⊕N
s=1 q

(n)
s where q

(n)
s is a solution of

(3.13) min
qs∈Ys

{
1

2α

∫
Ωs

(
div(qs + q

(n)
Γ |Ωs) + αf

)2

dx+ χCs(qs)

}
.

Since q
(n)
Γ |Ωs plays a role of only the essential boundary condition in (3.13), the exist-

ing solvers for the ROF model can be utilized to obtain q
(n)
s with little modification.

Convergence analysis for Algorithm 1 is straightforward [1].
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Algorithm 1 Primal DDM

Choose L ≥ 4. Let q
(0)
Γ = p

(0)
Γ = 0Γ and t0 = 1.

for n = 0, 1, 2, ...

HIq(n)
Γ ∈ arg min

qI∈YI

{
J (qI ⊕ q

(n)
Γ ) + χCI (qI)

}
p

(n+1)
Γ = projCΓ

(
q

(n)
Γ − 1

L
div∗

(
div(HIq(n)

Γ + q
(n)
Γ ) + αf

) ∣∣∣
YΓ

)
tn+1 =

1 +
√

1 + 4t2n
2

q
(n+1)
Γ = p

(n+1)
Γ +

tn − 1

tn+1
(p

(n+1)
Γ − p

(n)
Γ )

end

Theorem 3.5. Let {p(n)
Γ } be the sequence generated by Algorithm 1, and let p∗Γ

be a solution of (3.7). Then for any n ≥ 1,

JΓ(p
(n)
Γ )− JΓ(p∗Γ) ≤

2L‖p(0)
Γ − p∗Γ‖2YΓ

(n+ 1)2
.

4. A Primal-Dual Domain Decomposition Method. In the primal DDM
introduced in section 3, the continuity of a solution on the subdomain interfaces is
imposed directly. Alternatively, motivated by existing DDMs in structural mechan-
ics [9, 10], the continuity can be enforced by the method of Lagrange multipliers,
which results in a saddle point problem of the “primal” variable p and the Lagrange
multipliers λ also known as the “dual” variable. We name the algorithm proposed in
this section “primal-dual DDM” because it solves the saddle point problem of p and
λ by the primal-dual algorithm [4].

We begin with the same domain decomposition setting as in section 3. At first,
we state a proposition which suggests how to treat the continuity of the solution on
the subdomain interfaces.

Proposition 4.1. A vector function q: Ω→ R2 is in H0(div; Ω) if and only if the
restriction qs = q|Ωs to each subdomain Ωs is in H(div; Ωs) satisfying the boundary
condition qs · ns = 0 on ∂Ωs ∩ ∂Ω and the interface condition qs · nst − qt · nst = 0
on Γst, s < t.

Proof. Applying Proposition 2.1 to a coarse mesh {Ωs}Ns=1 of Ω yields the con-
clusion.

We introduce the local function space Ỹs, defined by

Ỹs = {q̃s ∈ H(div; Ωs) : q̃s · ns = 0 on ∂Ωs \ Γ, q̃s|T ∈ RT 0(T ) ∀T ∈ Ts} .

The difference between Ys in (3.1) and Ỹs is that the essential boundary condition
q̃s · ns = 0 is not imposed on Γ ∩ ∂Ωs for Ỹs. That is, Ỹs has degrees of freedom on
∂Ωs∩Γ as shown in Figure 3(b), while Ys does not. Let Ĩs be the set of indices of the
basis functions for Ỹs. Similarly to (3.3), we define the inequality-constrained subset
C̃s of Ỹs by

C̃s =
{
p̃s ∈ Ỹs : |(p̃s)i| ≤ 1 ∀i ∈ Ĩs

}
.
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Clearly, the projection onto C̃s is given by

(projC̃s p̃s)i =
(p̃s)i

max {1, |(p̃s)i|}
∀i ∈ Ĩs.

Also, we denote Ỹ by the direct sum of the local function spaces,

Ỹ =

N⊕
s=1

Ỹs

and we denote C̃ by

C̃ =

N⊕
s=1

C̃s.

For p̃ =
⊕N

s=1 p̃s, we define the energy functional J̃ (p̃) on Ỹ by

(4.1) J̃ (p̃) =

N∑
s=1

1

2α

∫
Ωs

(divp̃s + αf)2 dx.

In addition, we define the operator B: Ỹ → R|IΓ| which measures the jump of the
normal component of Ỹ on the subdomain interfaces by

(4.2) Bp̃|Γst = p̃s · nst − p̃t · nst, s < t.

Since each degree of freedom in the Raviart–Thomas elements represents the value of
the normal component on the corresponding edge, the standard matrix of B consists
of only −1’s, 0’s, and 1’s. Thus, an application of B can be done by a series of scalar
additions/subtractions only.

By Proposition 4.1, there is an isomorphism between two spaces Y and kerB ⊂ Ỹ ,
say Φ : Y → kerB, defined by

(4.3) Φp =

N⊕
s=1

p|Ωs , p ∈ Y.

By such an isomorphism, (2.6) is equivalent to

(4.4) min
p̃∈Ỹ
J̃ (p̃) + χC̃(p̃) subject to Bp̃ = 0.

By treating the constraint Bp̃ = 0 in (4.4) by the method of Lagrange multipliers,
we get the following proposition.

Proposition 4.2. If p∗ ∈ Y is a solution of (2.6), then Φp∗ is a primal solution
of the saddle point problem

(4.5) min
p̃∈Ỹ

max
λ∈R|IΓ|

{
L(p̃, λ) := J̃ (p̃) + χC̃(p̃) + 〈Bp̃, λ〉R|IΓ|

}
,

where Φ: Y → kerB was defined in (4.3). Conversely, if p̃∗ ∈ kerB ⊂ Ỹ is a primal
solution of (4.5), then Φ−1p̃∗ is a solution of (2.6).
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Since the functional J̃ (p̃) in (4.1) is convex but not uniformly convex, the O(1/n)-
primal-dual algorithm can be utilized to solve (4.5) [4]. To estimate a valid range of
parameters for the primal-dual algorithm, Lemma 4.3 gives a norm bound of the
operator B : Ỹ → R|IΓ|.

Lemma 4.3. The operator norm of B: Ỹ → R|IΓ| defined in (4.2) has a bound
such that ‖B‖2

Ỹ→R|IΓ| ≤ 2.

Proof. Fix p̃ =
⊕N

s=1 p̃s ∈ Ỹ . Let (Bp̃)i be a degree of freedom of Bp̃ on Γst for
some s < t, and let (p̃s)i, (p̃t)i be degrees of freedom of p̃s, p̃t adjacent to (Bp̃)i,
respectively. Then it satisfies that

(Bp̃)i = (p̃s)i − (p̃t)i.

By applying the Cauchy–Schwarz inequality, we get

(Bp̃)2
i ≤ 2((p̃s)

2
i + (p̃t)

2
i ).

Summation over every i and s < t yields ‖Bp̃‖2R|IΓ| ≤ 2‖p̃‖2
Ỹ

.

Thanks to Lemma 4.3, the primal-dual algorithm for (4.5) is given in Algorithm 2.
We notice that the primal-dual algorithm was used for DDMs in [8].

Algorithm 2 Primal-dual DDM

Choose L ≥ 2, τ, σ > 0 with τσ = 1
L . Let p̃(0) = 0 and λ(0) = 0.

for n = 0, 1, 2, ...
λ(n+1) = λ(n) + σB(2p̃(n) − p̃(n−1))

p̃(n+1) ∈ arg min
p̃∈Ỹ

{
J̃ (p̃) + χC̃(p̃) +

1

2τ

∫
Ω

(p̃− p̂)2 dx

}
,

where p̂ = p̃(n) − τB∗λ(n+1)

end

We note that the primal problem for p̃(n+1) in Algorithm 2 can be solved inde-
pendently in each subdomain. Indeed, p̃(n+1) can be obtained as the direct sum of

p̃
(n+1)
s ’s, where p̃

(n+1)
s is a solution of

(4.6) min
p̃s∈Ỹs

{
1

2α

∫
Ωs

(divp̃s + αf)2 dx+ χC̃s(p̃s) +
1

2τ

∫
Ωs

(p̃s − p̂s)
2 dx

}
,

where p̂s = p̃
(n)
s − τB∗λ(n+1)|Ωs . Now, we state the convergence analysis for Algo-

rithm 2. See Theorem 5.1 of [5] for details.

Theorem 4.4. Let
{
p̃(n), λ(n)

}
be the sequence generated by Algorithm 2. Then,

it converges to a saddle point of (4.5) and satisfies that

L

(
1

n

n∑
k=1

p̃(k), λ

)
− L

(
p̃,

1

n

n∑
k=1

λ(k)

)
≤ 1

n

(
1

τ
‖p̃− p̃(0)‖2

2,Ỹ
+

1

σ
‖λ− λ(0)‖2

2,R|IΓ|

)

for any p̃ ∈ Y and λ ∈ R|IΓ|.

Even though the convergence rate in Theorem 4.4 is the same as the existing
methods (see, e.g., [7]), the proposed primal-dual DDM has an advantage for the
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convergence rate of local problems compared to the existing ones. With the help of a
1
τ -uniformly convex term

1

2τ

∫
Ωs

(p̃s − p̂s)
2 dx

in (4.6), linearly convergent algorithms such as [4, Algorithm 3] and [5, Algorithm 5]
can be adopted, while the known optimal convergence rate of the existing methods
for the ROF model is only O(1/n2), which is far slower than linear convergence. The
following is the linearly convergent primal-dual algorithm [4, Algorithm 3] applied
to (4.6).

Algorithm Linearly convergent local solver for Algorithm 2

Choose L ≥ 8, γ ≤ α, and δ ≤ 1
τ .

Set µ = 2
√
γδ
L , τ0 = µ

2γ , σ0 = µ
2δ , and θ0 ∈

[
1

1+µ , 1
]
. Let ū

(0)
s = u

(0)
s = 0 and

p̃
(0)
s = 0.

for n = 0, 1, 2, ...

p̃(n+1)
s = projC̃s

(
τ(p̃

(n)
s − σ0div∗ū

(n)
s ) + σ0p̂s

τ + σ0

)

u(n+1)
s =

(u
(n)
s + τ0divp

(n+1)
s ) + τ0αf

1 + τ0α

ū
(n+1)
s = u

(n+1)
s + θ0(u

(n+1)
s − u(n)

s )
end

5. Numerical Results. In this section, numerical results of the algorithms in-
troduced in previous sections are presented. All the algorithms were implemented in
MATLAB R2018a, and all the computations were performed on a desktop equipped
with Intel Core i5-8600K CPU (3.60GHz), 16GB memory, and the OS Windows 10
Pro 64-bit. Two test images “Peppers 512× 512” and “Boat 2048× 3072,” shown in
Figure 4, were used in the numerical experiments. We introduced noise to each image
using Gaussian additive noise with mean 0 and variance 0.05. As a measurement of
the quality of denoising, the peak-signal-to-noise ratio (PSNR) defined by

PSNR = 10 log10

(
MAX2 · |Ω|
‖u− forig‖2X

)
,

where MAX is the maximum possible pixel value of the image (MAX = 1 in our
experiments), forig is the original clean image and u is a denoised image, is calculated
for each output of the experiment. We set α = 10 heuristically in (1.1).

First, we compare the proposed methods with other existing DDMs for the ROF
model. Thanks to Theorem 2.3, direct comparisons with existing methods based on
the finite difference discretization are available in the aspect of the primal energy
functional defined as

(5.1) E(u) =
α

2
‖u− f‖22 + ‖|Du|1‖1.

The following algorithms are used for our numerical experiments:
• ALG1: Primal DDM described in Algorithm 1, L = 4.
• ALG2: Primal-dual DDM described in Algorithm 2, L = 2, σ = 0.02, στ =

1/L.
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(a) Peppers 512× 512 (b) Boat 2048× 3072

Fig. 4. Test images for the numerical experiments

• HL–RJ: Relaxed block Jacobi (parallel) method proposed by Hintermüller
and Langer [15], relaxation parameter: 1/3 (see Remark 3.3 of [17]).

• HL–GS: Block Gauss–Seidel (successive) method proposed by Hintermüller
and Langer [15].

• LN–RJ: Relaxed block Jacobi method proposed by Lee and Nam [17], relax-
ation parameter: 1/3.

• LN–GS: Block Gauss–Seidel method proposed by Lee and Nam [17].
The number of subdomains N is fixed at 4 × 4. Local problems are solved by
the O(1/n2) convergent primal-dual algorithm [4, Algorithm 2] with the parame-
ters L = 8, γ = 0.125α, τ0 = 0.01, and σ0τ0 = 1/L for all algorithms stated above
but ALG2. For ALG2, the linearly convergent primal-dual algorithm [4, Algorithm 3]
with the parameters L = 8, γ = 0.5α, and δ = 1/τ are used. Local problems are
solved by the following stop criterion:

‖p(n+1)
s − p

(n)
s ‖2

‖p(n+1)
s ‖2

< 10−8.

To evaluate the performances of DDMs based on iterations of the dual vari-
ables

{
p(n)

}
in terms of the primal energy (5.1), we have to define the primal it-

erates
{
u(n)

}
appropriately. For HL–RJ and HL–GS, we define u(n) as

u(n) = f +
1

α
divp(n).

Also, for ALG1 and ALG2, u(n) is defined as

(5.2) u(n) = f +
1

α
div(HIq(n)

Γ ⊕ q
(n)
Γ )

and

(5.3) u(n) = f +
1

α

N⊕
s=1

divp̃(n)
s ,

respectively. Meanwhile, we compute the minimum value of the primal energy E(u∗)
approximately by 10,000 iterations of the O(1/n2) convergent primal-dual algorithm
applied to the full dimension problem (2.6).
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(a) Peppers 512× 512 (b) Boat 2048× 3072

Fig. 5. Decay of the values of
E(u(n))−E(u∗)

E(u∗) in various DDMs for the ROF model

Test image ALG1 ALG2 HL–RJ HL–GS LN–RJ LN–GS
Peppers 2923 271 2925 2928 2925 2929

Boat 8613 263 8613 8613 8613 8614
Table 1

Maximum numbers of inner iterations in various DDMs for the ROF model

Figure 5 shows the decay of the relative primal energy functional E(u(n))−E(u∗)
E(u∗)

during 1,000 outer iterations for various DDMs. It can be observed that the primal
energy of ALG1 decreases as fast as the block Gauss–Seidel methods. ALG1 has
an advantage compared to the block Gauss–Seidel methods in the aspect of parallel
computation; all local problems of ALG1 can be solved in parallel while only local
problems of the same color can be solved in parallel for the block Gauss–Seidel meth-
ods. In Figure 5, there are oscillations of the primal energy of ALG1 when the value

of E(u(n))−E(u∗)
E(u∗) is close to 10−10. This is because local problems are solved inexactly

by iterative methods.
Even though the primal energy of ALG2 does not decrease faster than the existing

methods, it has its own advantage in that local problems can be solved much faster.
Table 1 shows the maximum numbers of inner iterations during 1,000 outer iterations
for various DDMs. ALG1 shows similar behavior on inner iterations compared to the
existing DDMs. On the other hand, as we explained in section 4, ALG2 can adopt
linearly convergent algorithms as local solvers, while the other algorithms cannot.
Thus, the maximum number of inner iterations of ALG2 is much less than the other
ones. This phenomenon makes ALG2 practically efficient. For example, in the case of
the test image “Boat 2048× 3072,” a single outer iteration of ALG2 is approximately
32 times faster than the other methods.

Next, we present numerical results for the proposed methods, which emphasize
their efficiency as parallel solvers. To evaluate the parallel efficiency, the virtual wall-
clock time is measured, which assumes that the algorithms run in parallel in each
subdomain. That is, it ignores the communication time among processors.

We first present the numerical results for Algorithm 1. We set the parameter
L = 4. We note that, in the viewpoint of image restoration, the stop criteria for the
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Test image N PSNR iter
max

inner iter

Virtual
wall-clock
time (sec)

Peppers
512× 512

1 24.41 - 526 4.90
2× 2 24.41 2 532 0.77
4× 4 24.41 2 584 0.26
8× 8 24.41 5 590 0.22

16× 16 24.41 7 573 0.14

Boat
2048× 3072

1 24.75 - 995 273.48
2× 2 24.75 2 1145 91.72
4× 4 24.75 2 1408 21.03
8× 8 24.75 2 1415 3.42

16× 16 24.75 2 1492 1.31
Table 2

Performance of the primal DDM Algorithm 1

proposed methods need not to be too strict. We use the following stop criterion:

(5.4)

∣∣∣∣E(u(n+1))− E(u(n))

E(u(n+1))

∣∣∣∣ < 10−3,

where u(n) was defined in (5.2). Local problems are solved by the O(1/n2) convergent
primal-dual algorithm with the parameters L = 8, γ = 0.125α, τ0 = 0.01, and
σ0τ0 = 1/L and the stop criterion

(5.5)
‖p(n+1)

s − p
(n)
s ‖Ys

‖p(n+1)
s ‖Ys

< 10−5.

Table 2 shows the performance of Algorithm 1. For the single subdomain case,
the O(1/n2) convergent primal-dual algorithm is used. The PSNRs of the resulting
denoised images do not differ from the single subdomain case. Thus, we can conclude
that the results of Algorithm 1 agree with the single subdomain case, as proven in
Proposition 3.1. With sufficiently many subdomains, the virtual wall-clock time is
much less than the wall-clock time of the single subdomain case. It shows the worth
of Algorithm 1 as a parallel algorithm.

Next, we consider the primal-dual DDM. For Algorithm 2, we set the parameters
L = 2, σ = 0.02, and στ = 1/L. We use the same stop criterion (5.4) for the
outer iterations as in Algorithm 1 with u(n) defined in (5.3). For the local solver, the
parameters L = 8, γ = 0.5α, and δ = 1/τ are used. The stop criterion (5.5) for local

problems is used for p̃
(n)
s .

As Table 3 shows, the solution of Algorithm 2 is consistent with the single sub-
domain case regardless of the number of subdomains. Since the local solver has
the linear convergence rate, which is much faster than the standard algorithms for
the ROF model, we can observe that the maximum number of inner iterations of
Algorithm 2 is smaller than that of Algorithm 1 in all cases. For example, in the
experiments with the test image “Boat 2048 × 3072,” local problems of Algorithm 2
are solved approximately 10 times faster than those of Algorithm 1. Consequently,
even though the convergence rate of Algorithm 2 is only O(1/n), the virtual wall-clock
time of Algorithm 2 is as small as that of Algorithm 1 in the case of sufficiently many
subdomains.
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Test image N PSNR iter
max

inner iter

Virtual
wall-clock
time (sec)

Peppers
512× 512

1 24.41 - 526 4.90
2× 2 24.41 22 144 2.09
4× 4 24.41 24 147 0.66
8× 8 24.41 26 150 0.28

16× 16 24.41 30 154 0.19

Boat
2048× 3072

1 24.75 - 995 273.48
2× 2 24.75 12 138 95.84
4× 4 24.75 18 140 24.59
8× 8 24.75 20 144 3.38

16× 16 24.75 24 146 1.74
Table 3

Performance of the primal-dual DDM Algorithm 2

(a) Noisy “Peppers 512× 512”
(PSNR: 19.11)

(b) Primal DDM, N = 16× 16
(PSNR: 24.41)

(c) Primal-dual DDM,
N = 16× 16 (PSNR: 24.41)

(d) Noisy “Boat 2048× 3072”
(PSNR: 19.10)

(e) Primal DDM, N = 16× 16
(PSNR: 24.75)

(f) Primal-dual DDM,
N = 16× 16 (PSNR: 24.75)

Fig. 6. Results of Algorithms 1 and 2 for test images

Finally, we display the resulting denoised images by the proposed DDMs in Fig-
ure 6. We only provide the images for the case N = 16 × 16 since all the resulting
images are visually the same regardless of the number of subdomains. One can ob-
serve that there are no artificialities at all on the subdomain interfaces even in the
case of quite large number of subdomains.

6. Conclusion. In this paper, we proposed an alternative discretization (2.6)
for the dual ROF model using a conforming Raviart–Thomas basis. We mentioned
that the proposed discretization naturally satisfies the splitting property (2.7) of the
energy functional. Thanks to the splitting property, we proposed two DDMs for the
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dual ROF model: the primal one and the primal-dual one. We showed that the
proposed primal DDM has a O(1/n2) convergence rate, which is the best among the
existing DDMs. Also, we showed that the local problems in the proposed primal-dual
DDM can be solved at a linear convergence rate by using the accelerated primal-dual
algorithm. Numerical results demonstrate the superiority of the proposed DDMs.

We conclude the paper with a remark on the primal-dual DDM. Since we did
not use any regularity of the dual ROF energy functional to prove convergence of
the primal-dual DDM, we expect that the primal-dual DDM can be generalized to
more advanced imaging problems with total variation, for example, total variation
minimization with L1-fidelity term [6].
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