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Abstract. We present a hybridized discontinuous Galerkin (HDG) method for stationary lin-
earized incompressible magnetohydrodynamics (MHD) equations. At the heart of the paper is the
introduction of an HDG flux of the dual saddle-point form of the MHD equations that facilitates the
hybridization of discontinuous Galerkin (DG) method. We carry out the a priori error estimates for
the proposed HDG method on simplicial meshes in both two- and three-dimensions. The analysis
provides optimal convergence for the fluid velocity and the magnetic variables, and quasi-optimal
convergence for the remaining quantities. Numerical examples are presented to verify the theoretical
findings.
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1. Introduction. An important base-level representation for continuum approx-
imation of the dynamics of charged fluids in the presence of electromagnetic fields is
the resistive magnetohydrodynamics (MHD) model. MHD models describe impor-
tant physical phenomena in astrophysical systems (e.g. solar flares, and planetary
magnetic field generation) and in critical science and technological applications (e.g.,
magnetically confined fusion energy devices) [28], for example. The single fluid re-
sistive MHD model involes the partial differential equations (PDEs) describing con-
servation of mass, momentum, and energy, coupled with the low-frequency Maxwell’s
equations. This multiphysics PDE system is highly nonlinear and characterized by
multiple interacting physical phenomena spanning a wide range of length- and time-
scales. These characteristics make the task of developing scalable, robust, accurate,
and efficient computational methods extremely challenging.

The most common computational solution strategies for MHD have been the
use of explicit and partially implicit time integration methods. Notably are implicit-
explicit [2, 43, 35], semi-implicit [47, 30, 50], and operator-splitting [33, 45] techniques
that include some use of implicit operators in the formulation. The implicitness of
these approaches is used to enhance efficiency by removing stringent explicit time-
scale constraints in the problem, either from diffusion or from fast-wave phenomena
[9, 36].

In addition to the challenges associated with designing robust and efficient time in-
tegrators, there are a number of spatial discretization issues including the dual saddle-
point structure of the velocity-pressure (u, p) and the enforcement of the solenoidal
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involution/constraint on the magnetic induction (∇ · b = 0). This adds considerable
complexity to the numerical approximation of resistive MHD system. In the con-
text of finite volume and finite element methods, there are four popular approaches
to deal with these difficulties: 1) physics-compatible discretizations that directly en-
force key mathematical properties of the continuous problem (see e.g. [39, 34, 3]);
2) methods that transform to potential-based formulations to eliminate one or both
saddle-point sub-systems [10, 43, 37, 48]; 3) exact and weighted-exact penalty for-
mulations [29, 25, 19, 20]; and 4) and stabilization methods that regularize the dual
saddle-point structure [46, 18, 49].

In this paper we propose a hybridized discontinuous Galerkin (HDG) formulation
for a linearized version of the resistive MHD system. The hybridization technique
and post-processing have been proposed to reduce computational costs of saddle-point
problems and to improve the accuracy of numerical solutions [1]. HDG methods were
developed by Cockburn, coauthors, and others to mitigate the computational costs of
classical discontinuous Galerkin (DG) methods. They have been proposed for various
types of PDEs including, but not limited to, Poisson-type equations [13, 15, 40, 22],
the Stokes equation [12, 41], the Oseen equations [8], and the incompressible Navier-
Stokes equations [42].

In HDG discretizations, the coupled unknowns are single-valued traces introduced
on the mesh skeleton, i.e., the faces, and for high order implicit systems the resulting
matrix is substantially smaller and sparser compared to standard DG approaches.
Once they are solved for, the volume DG unknowns can be recovered in an element-
by-element fashion, completely independent of one another. Therefore HDG methods
have an intrinsic structure for parallel computing which is essential for large scale
applications. Nevertheless, devising an HDG method for coupled PDE systems is
challenging because construction of a consistent and robust HDG flux is nontrivial. We
adopt the upwind HDG framework proposed in [5, 7, 6] since it provides a systematic
construction of HDG methods for a large class of PDEs.

Our work starts with section 2 where notations and conventions are introduced to
enable the construction of HDG method in section 3. Specifically, the proposed HDG
method is introduced directly on the dual saddle-point structure of the MHD system
and its well-posedness is analyzed using an energy approach. This is followed by the
a priori error estimation in section 4 where we combine an energy analysis, specially
designed projections, and a duality argument to provide convergence rates for all
variables. Our development can serve as a standalone high-order solver for linearized
MHD equations, or can be used as the fast-time scale solver in an implicit/explicit
time integration method, and/or the solver for a sub-step in a fixed-point nonlinear
solver. Various numerical results will be presented in section 5 to verify our theoretical
findings. Section 6 concludes the paper with future work. This is followed by four
appendices in which we detail the definition and analysis of projection operators, state
some auxiliary results, discuss the well-posedness of the adjoint equation, and present
a postprocessing procedure to enforce the solenoidal constraints.

2. Notation. In this section we introduce common notations and conventions
to be used in the rest of the paper. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain
such that it is simply-connected and its boundary ∂Ω is a Lipschitz manifold with
only one component. Suppose that we have a triangulation of Ω, i.e., a partition
of Ω into a finite number of nonoverlapping d-dimensional simplices. We assume
that the triangulation is shape-regular, i.e., for all d-dimensional simplices in the
triangulation, the ratio of the diameter of the simplex and the radius of an inscribed
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d-dimensional ball is uniformly bounded. We will use Ωh and Eh to denote the sets
of d- and (d − 1)-dimensional simplices of the triangulation, and call Eh the mesh
skeleton of the triangulation. The boundary and interior mesh skeletons are defined
by E∂h := {e ∈ Eh : e ⊂ ∂Ω} and Eoh := Eh\E∂h . We also define ∂Ωh := {∂K : K ∈ Ωh}.
The mesh size of triangulations is h := maxK∈Ωh

diam(K).
We use (·, ·)D (respectively 〈·, ·〉D) to denote the L2-inner product on D if D is a

d- (respectively (d−1)-) dimensional domain. The standard notation W s,p(D), s ≥ 0,
1 ≤ p ≤ ∞, is used for the Sobolev space on D based on Lp-norm with differentiability
s (see, e.g., [23]) and ‖·‖W s,p(D) denotes the associated norm. In particular, if p = 2,

we use Hs(D) := W s,p(D) and ‖·‖s,D. W s,p(Ωh) denotes the space of functions whose

restrictions on K reside in W s,p(K) for each K ∈ Ωh and its norm is ‖u‖pW s,p(Ωh) :=∑
K∈Ωh

‖u|K‖pW s,p(K) if 1 ≤ p < ∞ and ‖u‖W s,∞(Ωh) := maxK∈Ωh
‖u|K‖W s,∞(K).

For simplicity, we use (·, ·), 〈·, ·〉, ‖·‖s, ‖·‖∂Ωh
, and ‖·‖W s,∞ for (·, ·)Ω, 〈·, ·〉∂Ωh

, ‖·‖s,Ω,
‖·‖0,∂Ωh

, and ‖·‖W s,∞(Ωh), respectively. We define ‖u, v‖ := ‖u‖+ ‖v‖. Furthermore,

we denote by A . B the inequality A ≤ λB with a constant λ > 0 independent of
the mesh size, and by A ∼ B the combination of A . B and B . A.

For vector- or matrix-valued functions these notations are naturally extended
with a component-wise inner product. We define similar spaces (respectively inner
products and norms) on a single element and a single skeleton face/edge by replacing
Ωh with K and Eh with e. We define the gradient of a vector, the divergence of a
matrix, and the outer product symbol ⊗ as:

(∇u)ij =
∂ui
∂xj

, (∇ ·L)i = ∇ ·L (i, :) =

3∑
j=1

∂Lij
∂xj

, (a⊗ b)ij = aibj =
(
abT

)
ij
.

In this paper n denotes a unit outward normal vector field on faces/edges. If ∂K− ∩
∂K+ ∈ Eh for two distinct simplices K−,K+, then n− and n+ denote the outward
unit normal vector fields on ∂K− and ∂K+, respectively, and n− = −n+ on ∂K− ∩
∂K+. We simply use n to denote either n− or n+ in an expression that is valid
for both cases, and this convention is also used for other quantities (restricted) on a
face/edge e ∈ Eh. For a scalar quantity u which is double-valued on e := ∂K−∩∂K+,
the jump term on e is defined by [[un]]|e = u+n+ + u−n− where u+ and u− are the
traces of u from K+- and K−-sides, respectively. For double-valued vector quantity
u and matrix quantity L, jump terms are [[u · n]]|e = u+ ·n+ +u− ·n− and [[Ln]]|e =
L+n+ +L−n− where Ln denotes the matrix-vector product.

We define Pk (K) as the space of polynomials of degree at most k on a domain
K, and

Pk (Ωh) =
{
u ∈ L2(Ω) : u|K ∈ Pk (K) ∀K ∈ Ωh

}
.

The space of polynomials on the mesh skeleton Pk (Eh) is similarly defined, and their

extensions to vector- or matrix-valued polynomials [Pk(Ωh)]
d
, [Pk(Ωh)]

d×d
, [Pk(Eh)]

d
,

etc, are straightforward.
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3. HDG Formulation. We consider the following nondimensional linearized
incompressible MHD system [32]

− 1

Re
∆u+∇p+ (w · ∇)u+ κd× (∇× b) = g,(3.1a)

∇ · u = 0,(3.1b)
κ

Rm
∇× (∇× b) +∇r − κ∇× (u× d) = f ,(3.1c)

∇ · b = 0(3.1d)

where u is velocity of the fluid (plasma or liquid metal), b the magnetic field, p
the fluid pressure, and r a scalar potential. The following are constant parameters:
a fluid Reynolds number Re > 0, a magnetic Reynolds number Rm > 0, and a
coupling parameter κ = Ha2/(ReRm), with the Hartmann number Ha > 0. Here,

d ∈
[
W 1,∞ (Ω)

]d
is a prescribed magnetic field and w ∈

[
W 1,∞ (Ωh)

]d ∩ H(div,Ω)
with ∇ ·w = 0 is a prescribed velocity.

By introducing auxiliary variables L and J , we cast (3.1) into a first order hy-
perbolic system:

ReL−∇u = 0,(3.2a)

−∇ ·L+∇p+ (w · ∇)u+ κd× (∇× b) = g,(3.2b)

∇ · u = 0,(3.2c)

Rm

κ
J −∇× b = 0,(3.2d)

∇× J +∇r − κ∇× (u× d) = f ,(3.2e)

∇ · b = 0.(3.2f)

In this paper, we consider the following (Dirichlet) boundary conditions for the MHD
system (3.2)

u = uD on ∂Ω,(3.3a)

bt := −n× (n× b) = hD on ∂Ω,(3.3b)

r = 0 on ∂Ω,(3.3c)

where we have defined the tangent component of a vector a as at := −n × (n × a).
Additionally, we require the compatibility condition for uD:

(3.4) 〈uD · n, 1〉∂Ω = 0.

For the uniqueness of the pressure, p, we require that the pressure has zero mean, i.e.,

(3.5) (p, 1)Ω = 0.

Following the upwind HDG framework in [5] we define the HDG flux as

(3.6)



F̂
1
· n

F̂
2
· n

F̂
3
· n

F̂
4
· n

F̂
5
· n

F̂
6
· n


=



−û⊗ n
−Ln+mu+ pn+ 1

2κd×
(
n×

(
bt + b̂

t
))

+ α1 (u− û)

û · n
−n× b̂

t

n× J + r̂n− 1
2κn× ((u+ û)× d) + α2

(
bt − b̂

t
)

b · n+ α3 (r − r̂)
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where b̂
t
, û, and r̂ are the single-valued trace quantities residing on the mesh skeleton

Eh. They will be new unknowns in the discretizations, which will be described later,
to hybridize the DG method. Here, m := w · n, and α1, α2, and α3 are constant
parameters. As will be shown later, the conditions α1 > 1

2 ‖w‖L∞ , α2 > 0, and
α3 > 0 are sufficient for the well-posedness of our HDG formulation. Note that all
6 components of the HDG flux, F̂ , for simplicity are denoted in the same fashion

(by a bold italic symbol). It is, however, clear from (3.2) that F̂
1

is a third order

tensor, F̂
2

is a second order tensor, F̂
3

is a vector, etc, and that the normal HDG

flux components, F̂
i
· n, defined in (3.6), are tensors of one order lower.

For discretization we introduce the discontinuous piecewise polynomial spaces

Gh := [Pk(Ωh)]
d×d

, Vh := [Pk(Ωh)]
d
, Qh := Pk(Ωh),

Hh := [Pk(Ωh)]
d̃
, Ch := [Pk(Ωh)]

d
, Sh := Pk(Ωh), Mh := [Pk(Eh)]

d
,

Λt
h :=

{
λ ∈ [Pk(Eh)]

d
: λ · ne = 0 ∀e ∈ Eh

}
, Γh := [Pk(Eh)]

d
,

where d̃ = 3 if d = 3, and d̃ = 1 if d = 2.
Let us introduce two identities which are useful throughout the paper:

(u,d× (∇× b))K = (b,∇× (u× d))K + 〈d× (n× b) ,u〉∂K ,(3.7a)

[d× (n× b)] · u = − [n× (u× d)] · b.(3.7b)

These identities follow from integration by parts and vector product identities.
Next, we multiply (3.2a) through (3.2f) by test functions (G,v, q,H, c, s), inte-

grate by parts all terms, and introduce the HDG flux (3.6) in the boundary terms.
This results in a local discrete weak formulation, which we shall call the local solver
of the HDG method, for the MHD system (3.2):

Re (Lh,G)K + (uh,∇ ·G)K +
〈
F̂

1

h · n,G
〉
∂K

= 0,(3.8a)

(Lh,∇v)K − (ph,∇ · v)K − (uh ⊗w,∇v)K(3.8b)

+κ (bh,∇× (v × d))K +
〈
F̂

2

h · n,v
〉
∂K

= (g,v)K ,

− (uh,∇q)K +
〈
F̂

3

h · n, q
〉
∂K

= 0,(3.8c)

Rm

κ
(Jh,H)K − (bh,∇×H)K +

〈
F̂

4

h · n,H
〉
∂K

= 0,(3.8d)

(Jh,∇× c)K − (rh,∇ · c)K − κ (uh,d× (∇× c))K(3.8e)

+
〈
F̂

5

h · n, c
〉
∂K

= (f , c)K ,

− (bh,∇s)K +
〈
F̂

6

h · n, s
〉
∂K

= 0(3.8f)

for all (G,v, q,H, c, s) ∈ Gh (K) ×Vh (K) ×Qh (K) ×Hh (K) ×Ch (K) × Sh (K)
and for all K ∈ Ωh, where uh, Lh, ..., are the discrete counterparts of u, L, ..., and

F̂
i

h is the discrete counterpart of F̂
i

in (3.6) by replacing the unknowns u, L, ..., with
their discrete counterparts.

Since b̂
t

h, ûh, and r̂h are the new unknowns, we need to equip extra equations
to close the system (3.8). To that end, we observe that an element K communicates
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with its neighbors only through the trace unknowns. For the HDG method to be
conservative, we (weakly) enforce the continuity of the HDG flux (3.6) across each

interior edge, i.e.,
〈

[[F̂ h · n]], δ
〉
e

= 0,∀e ∈ Eoh. Since ûh, b̂
t

h and r̂h are single-valued

on Eh, [[F̂
1

h · n]] = 0, [[F̂
3

h · n]] = 0, and [[F̂
4

h · n]] = 0. The conservation constraints to
be enforced reduce to

(3.9)
〈

[[F̂
2

h · n]],µ
〉
e

= 0,
〈

[[F̂
5

h · n]],λt
〉
e

= 0,
〈

[[F̂
6

h · n]], γ
〉
e

= 0

for all (µ,λt, γ) ∈ Mh (e) × Λt
h (e) × Γh (e), and for all e in Eoh. Finally, we enforce

the Dirichlet boundary conditions through the trace unknowns:

〈ûh,µ〉e = 〈uD,µ〉e ,
〈
b̂
t

h,λ
t
〉
e

=
〈
hD,λ

t
〉
e
, 〈r̂h, γ〉e = 0(3.10)

for all (µ,λt, γ) ∈Mh (e)×Λt
h (e)× Γh (e) for all e in E∂h .

In (3.8), (3.9), and (3.10), we seek (Lh,uh, ph,Jh, bh, rh) ∈ Gh×Vh×Qh×Hh×
Ch×Sh and (ûh, b̂

t

h, r̂h) ∈Mh×Λt
h×Γh. From this point forward, for simplicity in

writing, we will not state explicitly that equations hold for all test functions, for all
elements, or for all edges.

We will refer to Lh,uh, ph,Jh, bh, and rh as the local variables, and to equation
(3.8) on each element as the local solver. This reflects the fact that we can solve for

local variables element-by-element as function of ûh, b̂
t

h, and r̂h. On the other hand,

we will refer to ûh, b̂
t

h, and r̂h as the global variables, which are governed by equations
(3.9) and (3.10) on the mesh skeleton. Finally, for the uniqueness of the discrete
pressure ph, we enforce the discrete counterpart of (3.5):

(ph, 1) = 0.(3.11)

3.1. Well-posedness of the HDG formulation. In this subsection we discuss
well-posedness of the system (3.8)–(3.10).

Theorem 3.1. The HDG system (3.8)–(3.11) is well-posed.

Proof. Since the problem is a system of linear equations with the same num-
ber of equations and unknowns, without loss of generality, we only need show that

(g,f ,uD,hD) = 0 implies (Lh,uh, ph,Jh, bh, rh, ûh, b̂
t

h, r̂h) = 0. To begin, we take
(G,v, q,H, c, s) = (Lh,uh, ph,Jh, bh, rh) and get

Re (Lh,Lh)K + (uh,∇ ·Lh)K + 〈−ûh ⊗ n,Lh〉∂K = 0,

(Lh,∇uh)K − (ph,∇ · uh)K − (uh ⊗w,∇uh)K + κ (bh,∇× (uh × d))K

+

〈
−Lhn+muh + phn+

1

2
κd×

(
n×

(
bth + b̂

t

h

))
+ α1 (uh − ûh) ,uh

〉
∂K

= 0,

− (uh,∇q)K + 〈ûh · n, q〉∂K = 0,

Rm

κ
(Jh,Jh)K − (bh,∇× Jh)K +

〈
−n× b̂

t

h,Jh

〉
∂K

= 0,

(Jh,∇× bh)K − (rh,∇ · bh)K − κ (uh,d× (∇× bh))K

+

〈
n× Jh + r̂hn−

1

2
κn× ((uh + ûh)× d) + α2

(
bth − b̂

t

h

)
, bh

〉
∂K

= 0,

− (bh,∇rh)K + 〈bh · n+ α3 (rh − r̂h) , rh〉∂K = 0.
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If we integrate by parts the first four terms of the second equation and the first term
of the fifth equation, sum the resulting equations, and sum over all elements, then we
arrive at

Re ‖Lh‖20 +
Rm

κ
‖Jh‖20 − 〈ûh ⊗ n,Lh〉+

〈m
2
uh,uh

〉
+ 〈α1(uh − ûh),uh〉

+

〈
1

2
κd×

(
n× b̂

t

h

)
,uh

〉
+ 〈ûh · n, ph〉 −

〈
n× b̂

t

h,Jh

〉
+ 〈r̂hn, bh〉(3.13)

+
〈
α2(bth − b̂

t

h), bth

〉
−
〈

1

2
κn× (ûh × d) , bh

〉
+ 〈α3 (rh − r̂h) , rh〉 = 0.

Here, we have used

− (uh,w · ∇uh)K = −1

2
(w,∇(uh · uh))K =

1

2
((∇ ·w)uh,uh)K −

〈m
2
uh,uh

〉
∂K

= −
〈m

2
uh,uh

〉
∂K

which is obtained from ∇ ·w = 0.
Next, we set (µ,λt, γ) = (ûh, b̂

t

h, r̂h), and sum (3.9) over all interior edges to
obtain〈

−Lhn+muh + phn+
1

2
κd×

(
n× bth

)
+ α1 (uh − ûh) , ûh

〉
∂Ωh\∂Ω

+

〈
n× Jh −

1

2
κn× (uh × d) + α2

(
bth − b̂

t

h

)
, b̂
t

h

〉
∂Ωh\∂Ω

(3.14)

+ 〈bh · n+ α3 (rh − r̂h) , r̂h〉∂Ωh\∂Ω = 0

where we have used the continuity of d to eliminate 〈d× (n× b̂
t

h), ûh〉∂Ωh\∂Ω and

〈n× (ûh × d) , b̂
t

h〉∂Ωh\∂Ω.
Since uD = 0 and hD = 0 by assumption, we conclude from the boundary

conditions (3.10) that ûh = 0, b̂
t

h = 0, and r̂h = 0 on ∂Ω. The integrals in (3.14)
can then be written over ∂Ωh since the contribution on the domain boundary, ∂Ω, is
zero. Subtracting (3.14) from (3.13) we arrive at

Re ‖Lh‖20 +
Rm

κ
‖Jh‖20 + 〈α1(uh − ûh), (uh − ûh)〉+

〈m
2
uh,uh

〉
(3.15)

−〈muh, ûh〉+ α2

∥∥∥bth − b̂th∥∥∥2

∂Ωh

+ α3 ‖rh − r̂h‖2∂Ωh
= 0.

Finally, using the fact that w ∈ H(div,Ω) and ûh = 0 on ∂Ω, we can freely add
0 =

〈
m
2 ûh, ûh

〉
to rewrite (3.15) as

Re ‖Lh‖20 +
Rm

κ
‖Jh‖20 +

〈(
α1 +

m

2

)
(uh − ûh), (uh − ûh)

〉
(3.16)

+α2

∥∥∥bth − b̂th∥∥∥2

∂Ωh

+ α3 ‖rh − r̂h‖2∂Ωh
= 0.

Choosing α1 >
1
2 ‖w‖L∞ , α2 > 0, and α3 > 0, we can conclude that Lh = 0 and

Jh = 0, that uh = ûh, bth = b̂
t

h, and rh = r̂h on Eoh, and that uh = 0, bth = 0, and
rh = 0 on ∂Ω.
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Now, we integrate (3.8a) by parts to obtain ∇uh = 0 in K, which implies that
uh must be elementwise constant. The fact that uh = ûh on Eoh means uh is also
continuous on Eh, and since uh = 0 on ∂Ω we conclude that uh = 0, and therefore
ûh = 0.

Note that since bth = b̂
t

h on Eoh, bth is continuous on Ω. Furthermore, the third
conservation constraint in (3.9) implies that bh · n is continuous on Ω. Integrating
both (3.8d) and (3.8f) by parts, we can conclude that ∇ × bh = 0 and ∇ · bh = 0
on Ω. When bh ∈ H(div,Ω) ∩H(curl,Ω) and bth = 0 on ∂Ω, and when Ω is simply-
connected with one component to the boundary, there is a constant C > 0 such that
‖bh‖0 ≤ C(‖∇ · bh‖0 + ‖∇ × bh‖0) (see, e.g., [26, Lemma 3.4]). This implies that

bh = 0, and hence b̂
t

h = 0.
Considering the vanishing unknowns above, integrating by parts reduces (3.8b)

and (3.8e) to (∇ph,v)K = 0 and (∇rh, c)K = 0, respectively. Thus, ph and rh are
elementwise constants. Since rh = r̂h on Eoh, then rh is continuous on Ω, and since
rh = 0 on ∂Ω, we can conclude that rh = 0, and hence r̂h = 0. Finally, we use the
first conservation constraint in (3.9) to conclude ph is continuous and hence constant
on Ω. Using the zero-average condition (3.11) yields ph = 0.

3.2. Well-posedness of the local solver. The key design of the HDG method
is that it allows us to separate the computation of the volume (DG) unknowns

(Lh,uh, ph,Jh, bh, rh) and the trace unknowns (ûh, b̂
t

h, r̂h). In practice, we first solve

(3.8) for local unknowns (Lh,uh, ph,Jh, bh, rh) as a function of (ûh, b̂
t

h, r̂h). These
are then substituted into the conservative algebraic equation (3.9) on the mesh skele-

ton to solve for the unknown (ûh, b̂
t

h, r̂h). Finally, the local unknowns (Lh,uh, ph,

Jh, bh, rh) are computed, as in the first step, using (ûh, b̂
t

h, r̂h) from the second step.
It is therefore important to study the well-posedness of the local solver.

Similar to HDG methods for Stokes equation [41, 16, 5], it turns out that the local
solver is not well-posed unless extra conditions are imposed on the pressure. Two
methods for achieving the well-posedness of the local solver for the Stokes equations
are proposed in [41]. One is a pseudotransient approach, and the other involves
introducing the element average edge pressure as global unknowns. These methods
are both suitable for our setting here. Here, we present a new approach in which
we introduce the elementwise pressure integral as a global unknown and require their
sum to vanish. Toward this goal, we introduce the space of elementwise constants,
Xh := P0(Ωh). Next we augment (3.8c) to read

− (uh,∇q)K + 〈ûh · n, q〉∂K + (ph, q̄)K = |K|−1 (ρh, q̄)K(3.17)

with ρh ∈ Xh, q̄|K := |K|−1 (q, 1)K the average of q in K, and |K| the volume of
element K. Next we augment the global solver with

〈ûh · n, ξ〉∂K +
∑
K

ρh|K = 0(3.18)

for all ξ in Xh, and remove the constraint (3.11), which will be automatically satisfied
by this construction.

To justify (3.17) and (3.18) we make the following observations. First, summing
(3.18) over all elements and using the compatibility condition on uD, (3.4), we con-
clude

(3.19)
∑
K∈Ωh

ρh|K = 0
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and

(3.20) 〈ûh · n, ξ〉∂K = 0 ∀K ∈ Ωh.

Next, setting q = 1 on K in (3.17) and using (3.20), we can conclude that

(3.21) (ph, 1)K = ρh|K ,

and therefore that (3.8c) holds for each K. Additionally, (3.21) and (3.19) imply that
(3.11) holds. Finally, we note that we have added the same number of new unknowns
ρh as the number of equations in (3.18).

For this modified HDG scheme we claim well-posedness of the local solver.

Theorem 3.2. The local solver given by (3.8) such that (3.8c) is replaced by

(3.17), is well-posed. In other words, given (ûh, b̂
t

h, r̂h, g,f , ρh), there exists a unique
solution
(Lh,uh, ph,Jh, bh, rh) to the system.

Proof. We show that (ûh, b̂
t

h, r̂h, g,f , ρh) = 0 implies (Lh,uh, ph,Jh, bh, rh) =

0. To begin, set (ûh, b̂
t

h, r̂h, g,f , ρh) = 0. Then (3.17) reduces to − (uh,∇q)K +
(ph, q̄)K = 0, and taking q as constant gives (ph, q̄)K = 0 and hence − (uh,∇q)K = 0.

Next, choose (G,v, q,H, c, s) = (Lh,uh, ph,Jh, bh, rh), integrate by parts the
first four terms in (3.8b) and the first term in (3.8e), and sum the resulting equations
in the local solver to conclude

Re ‖Lh‖20,K +
〈(
α1 +

m

2

)
uh,uh

〉
∂K

(3.22)

+
Rm

κ
‖Jh‖20,K + α2

∥∥bth∥∥2

0,∂K
+ α3 ‖rh‖20,∂K = 0.

Recalling we have set α1 >
1
2 ‖w‖L∞ , α2 > 0, and α3 > 0, we can conclude that

Lh = 0, Jh = 0 in K, uh = 0, bth = 0, rh = 0 on ∂K.

Using an argument similar to that in Section 3.1 we can conclude that uh = bh = 0
in K. From (3.8b) and (3.8e) we can conclude (∇ph,v)K = 0 and (∇rh, c)K = 0,
respectively. Thus, ph and rh must be constant, and since rh = 0 on ∂K, rh is
identically zero in K. Now since (ph, q̄)K = 0, we have ph = 0 in K.

Remark 3.3. Note that introducing ρh and equations (3.17) and (3.18) does not
alter the solution of the original HDG scheme. Indeed, if (Lh,uh, ph,Jh, bh, rh, ûh,

b̂
t

h, r̂h, ρh) is a solution of the modified scheme, it is also a solution of the original
one because the modified scheme contains all the equations of the original one, except
for (3.8c) and (3.11). But we have already shown that (3.17), (3.18), and (3.4) imply
(3.8c), and that (3.21) and (3.19) imply (3.11). Conversely, reversing these arguments,

if (Lh,uh, ph,Jh, bh, rh, ûh, b̂
t

h, r̂h) is a solution of the original scheme, we can define
ρh as in (3.21) and add (3.21) to (3.8c) to recover (3.17). Then, taking q as constant
in (3.8c) implies (3.20). Also, (3.21) and (3.11) imply (3.19). Finally, adding (3.20)

and (3.19) we recover (3.18), showing that (Lh,uh, ph,Jh, bh, rh, ûh, b̂
t

h, r̂h, ρh) is a
solution of the modified one. Since the original HDG scheme is well-posed, so is the
modified one.
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4. Error analysis. For an unknown σ we use εσ to denote the error between the
exact solution σ and its finite element approximation σh. For example, εL := L−Lh
and εû := û− ûh, where û is the trace of the exact solution u on the mesh skeleton.
We use Πσ to denote some interpolation (or projection) of the unknown σ into its
associated finite element space, and decompose εσ into εIσ + εhσ where

εIσ := σ −Πσ, and εhσ := Πσ − σh.(4.1)

Here the superscript I of εI denotes the ‘I’nterpolation (in fact projection) error, and
the superscript h of eh indicates the difference between the interpolation of the exact
solution and the finite element approximation. We will see that Πσ may not depend

only on σ. In particular, we define a collective projection Π(L,u, p,J , b, r, û, b̂
t
, r̂) in

Appendix B for our HDG scheme. Each component of Π may depend on the others.
Nonetheless, for simplicity of presentation we use ΠL to denote the L-component of
Π for example. The analysis and the properties of the proposed projection can be
referred to Appendix B. This projection simplifies the error equation substantially as
we now see.

Lemma 4.1. Assume that the exact solution (L,u, p,J , b, r) of (3.2)-(3.3) is suf-
ficiently regular. Then the exact solution satisfies (3.8)–(3.10). That is, if we re-

place (Lh,uh, ph,Jh, bh, rh, ûh, b̂
t

h, r̂h) with (L,u, p,J , b, r,u, bt, r) in (3.8)–(3.10),
then (3.8)–(3.10) hold true for all (G,v, q,H, c, s,µ,λt, γ) ∈ Gh (K) × Vh (K) ×
Qh (K)×Hh (K)×Ch (K)× Sh (K)×Mh(e)×Λt

h(e)× Γh(e).

Proof. Multiply (3.2) by (G,v, q,H, c, s) ∈ Gh (K)×Vh (K)×Qh (K)×Hh (K)×
Ch (K)×Sh (K), integrate over Ω, and integrate by parts. By the regularity assump-
tions on the solution, the solution components ((Ln) ⊗ n,u, p,J t, b, r) are single
valued on E . and the exact solution satisfies (3.8). With the additional fact that
(w · n)n and d are also single-valued on Eh, we have that the exact solution satisfies
(3.9). Finally, the boundary conditions (3.3) trivially imply that the exact solution
satisfies (3.10).

Lemma 4.2 (Error equation). The discretization errors satisfy

E2
h :=E2

h(εhL, ε
h
J , ε

h
u − εhû, εhbt − εh

b̂
t , εhr − εhr̂ )(4.2)

:= Re
∥∥εhL∥∥2

0
+

Rm

κ

∥∥εhJ∥∥2

0
+
〈(
α1 +

m

2

)
(εhu − εhû), (εhu − εhû)

〉
+ α2

∥∥∥εhbt − εh
b̂
t

∥∥∥2

∂Ωh

+ α3

∥∥εhr − εhr̂∥∥2

∂Ωh

= −Re
(
εIL, ε

h
L

)
− κ

(
εIb,∇×

(
εhu × d

))
+ κ

(
εIu,d×

(
∇× εhb

))
−
〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt , εhbt − εh

b̂
t

〉
.

Proof. Using the fact that the numerical solution and exact solution both sat-
isfy (3.8) (see Lemma 4.1), the linearity of the operators lead to the following error
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equations:

Re (εL,G) + (εu,∇ ·G)− 〈εû ⊗ n,G〉 = 0,(4.3a)

(εL,∇v)− (εp,∇ · v)− (εu ⊗w,∇v) + κ (εb,∇× (v × d))(4.3b)

+

〈
−εLn+mεu + εpn+

1

2
κd×

(
n×

(
εbt + ε

b̂
t

))
+ α1 (εu − εû) ,v

〉
= 0,

− (εu,∇q) + 〈εû · n, q〉 = 0,(4.3c)

Rm

κ
(εJ ,H)− (εb,∇×H)−

〈
n× ε

b̂
t ,H

〉
= 0,(4.3d)

(εJ ,∇× c)− (εr,∇ · c)− κ (εu,d× (∇× c))(4.3e)

+

〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α2

(
εbt − ε

b̂
t

)
, c

〉
= 0,

− (εb,∇s) + 〈εb · n+ α3 (εr − εr̂) , s〉 = 0.(4.3f)

Next, we split the error terms into their interpolation and approximation components
as in (4.1) using the projections Π defined in Appendix B. Due to the cancellation
properties of Π we obtain reduced error equations:

Re
(
εhL,G

)
+
(
εhu,∇ ·G

)
−
〈
εhû ⊗ n,G

〉
= −Re

(
εIL,G

)
,(4.4a) (

εhL,∇v
)
−
(
εhp ,∇ · v

)
−
(
εhu ⊗w,∇v

)
+ κ

(
εhb ,∇× (v × d)

)
+

〈
−εhLn+mεhu + εhpn+

1

2
κd×

(
n×

(
εhbt + εh

b̂
t

))
+ α1

(
εhu − εhû

)
,v

〉(4.4b)

= −κ
(
εIb,∇× (v × d)

)
,

−
(
εhu,∇q

)
+
〈
εhû · n, q

〉
= 0,(4.4c)

Rm

κ

(
εhJ ,H

)
−
(
εhb ,∇×H

)
−
〈
n× εh

b̂
t ,H

〉
= 0,(4.4d) (

εhJ ,∇× c
)
−
(
εhr ,∇ · c

)
− κ

(
εhu,d× (∇× c)

)
(4.4e)

+

〈
n× εhJ + εhr̂n−

1

2
κn×

((
εhu + εhû

)
× d

)
+ α2

(
εhbt − εh

b̂
t

)
, c

〉
= κ

(
εIu,d× (∇× c)

)
−
〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt , c

〉
,

−
(
εhb ,∇s

)
+
〈
εhb · n+ α3

(
εhr − εhr̂

)
, s
〉

= 0.(4.4f)

More details of the cancellation properties of Π used in the above formula are:

(B.1b), (B.1j)→ (4.4a)

(B.1e), (B.1i), (B.1k)→ (4.4b)

(B.1b), (B.1j)→ (4.4c)

(B.1c), (B.1d), (B.1f)→ (4.4d)

(B.1a), (B.1c), (B.1d), (B.1g)→ (4.4e)

(B.1a), (B.1f), (B.1h)→ (4.4f)

Notice that (4.4) looks like (3.8), but with the approximation error replacing the
finite element solution, and with some nonzero right hand side terms. Since the
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approximation error is in the finite element spaces, we can choose the test functions
to be the approximation error terms. Similar to the procedure to arrive at (3.13), we
take (G,v, q,H, c, s) = (εhL, ε

h
u, ε

h
p , ε

h
J , ε

h
b , ε

h
r ), integrate by parts the first four terms

of (4.4b) and the first term of (4.4e), and sum the resulting equations in (4.4) to
arrive at

Re
∥∥εhL∥∥2

0
+

Rm

κ

∥∥εhJ∥∥2

0
−
〈
εhû ⊗ n, εhL

〉
+
〈m

2
εhu, ε

h
u

〉
+
〈
α1(εhu − εhû), εhu

〉
+

〈
1

2
κd×

(
n× εh

b̂
t

)
, εhu

〉
+
〈
εhû · n, εhp

〉
−
〈
n× εh

b̂
t , εhJ

〉
+
〈
εhr̂n, ε

h
b

〉
(4.5)

+
〈
α2(εhbt − εh

b̂
t), εhbt

〉
−
〈

1

2
κn×

(
εhû × d

)
, εhb

〉
+
〈
α3

(
εhr − εhr̂

)
, εhr
〉

= −Re
(
εIL, ε

h
L

)
− κ

(
εIb,∇×

(
εhu × d

))
+ κ

(
εIu,d×

(
∇× εhb

))
−
〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt , εhb

〉
.

For the boundary conditions and conservation conditions, since the exact solution
satisfies (3.9)–(3.10), we have

〈
−εLn+mεu + εpn+

1

2
κd×

(
n×

(
εbt + ε

b̂
t

))
+ α1 (εu − εû) ,µ

〉
∂Ωh\∂Ω

= 0,

(4.6a)

〈
n× εJ −

1

2
κn× ((εu + εû)× d) + α2

(
εbt − ε

b̂
t

)
,λt
〉
∂Ωh\∂Ω

= 0,(4.6b)

〈εb · n+ α3 (εr − εr̂) , γ〉∂Ωh\∂Ω = 0,(4.6c)

〈εû,µ〉∂Ω = 0,(4.6d) 〈
ε
b̂
t ,λt

〉
∂Ω

= 0,(4.6e)

〈εr̂, γ〉∂Ω = 0.(4.6f)

We split the error terms into their interpolation and approximation components as
before, and use the projections defined in Appendix B to cancel terms. More detailed
roles for cancellations are

(B.1b), (B.1k)→ (4.7a); εhû : single-valued, (B.1c)→ (4.7b); (B.1a), (B.1h)→ (4.7c),

and recall that the definitions of Π for û, b̂, r̂ are L2 projections. Then we have〈
−εhLn+mεhu + εhpn+

1

2
κd×

(
n× εhbt

)
+ α1

(
εhu − εhû

)
,µ

〉
∂Ωh\∂Ω

= 0,(4.7a) 〈
n× εhJ −

1

2
κn×

(
εhu × d

)
+ α2

(
εhbt − εh

b̂
t

)
,λt
〉
∂Ωh\∂Ω

(4.7b)

= −
〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt ,λ

t

〉
∂Ωh\∂Ω

,〈
εhb · n+ α3

(
εhr − εhr̂

)
, γ
〉
∂Ωh\∂Ω

= 0,(4.7c) 〈
εhû,µ

〉
∂Ω

= 0,(4.7d) 〈
εh
b̂
t ,λ

t
〉
∂Ω

= 0,(4.7e) 〈
εhr̂ , γ

〉
∂Ω

= 0.(4.7f)
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In (4.7b), we can also erase εIû but we did not do it on purpose.
Equations (4.7d)–(4.7f) imply that on ∂Ω, εhû = 0, εh

b̂
t = 0, and εhr̂ = 0. In

consideration of this zero contribution on ∂Ω, summing of the formulae (4.7a)–(4.7c)
with (µ,λt, γ) = (εhû, ε

h

b̂
t , εhr̂ ) including ∂Ω gives〈

−εhLn+mεhu + εhpn+
1

2
κd×

(
n× εhbt

)
+ α1

(
εhu − εhû

)
, εhû

〉
+

〈
n× εhJ −

1

2
κn×

(
εhu × d

)
+ α2

(
εhbt − εh

b̂
t

)
, εh

b̂
t

〉
+
〈
εhb · n+ α3

(
εhr − εhr̂

)
, εhr̂
〉

=

〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt , εh

b̂
t

〉
(4.8)

Subtracting (4.8) from (4.5), we arrive at

Re
∥∥εhL∥∥2

0
+

Rm

κ

∥∥εhJ∥∥2

0
+
〈
α1(εhu − εhû), (εhu − εhû)

〉
+
〈m

2
εhu, ε

h
u

〉
−
〈
mεhu, ε

h
û

〉
+ α2

∥∥∥εhbt − εh
b̂
t

∥∥∥2

∂Ωh

+ α3

∥∥εhr − εhr̂∥∥2

∂Ωh

= −Re
(
εIL, ε

h
L

)
− κ

(
εIb,∇×

(
εhu × d

))
+ κ

(
εIu,d×

(
∇× εhb

))
−
〈
n× εIJ −

1

2
κn×

((
εIu + εIû

)
× d

)
+ α2ε

I
bt , εhbt − εh

b̂
t

〉
.

Following the same procedure to get (3.16) from (3.15), we obtain the conclusion.

Lemma 4.3. There holds:

E2
h . Re

∥∥εIL∥∥0

∥∥εhL∥∥0
+ κ ‖d‖W 1,∞

(∥∥εIb∥∥0

∥∥εhu∥∥0
+
∥∥εIu∥∥0

∥∥εhb∥∥0

)
(4.9)

+
(∥∥εIJ∥∥∂Ωh

+ κ ‖d‖L∞
∥∥εIu, εIû∥∥∂Ωh

+ α2

∥∥εIbt

∥∥
∂Ωh

)∥∥∥εhbt − εh
b̂
t

∥∥∥
∂Ωh

.

Proof. It is clear that bounding the energy is the same as bounding the right
hand side of (4.2). The estimate of Re

(
εIL, ε

h
L

)
is straightforward by Cauchy-Schwarz

inequality. To estimate κ
(
εIb,∇×

(
εhu × d

))
, note first that an algebraic computation

gives

κ
(
εIb,∇×

(
εhu × d

))
= κ

(
εIb, ε

h
u (∇ · d)−

(
εhu · ∇

)
d
)

(4.10)

+ κ
(
εIb, (d · ∇) εhu − d

(
∇ · εhu

))
.

The boundedness of the left hand side can be obtained by

κ
∣∣(εIb, εhu (∇ · d)−

(
εhu · ∇

)
d
)
K

∣∣ ≤ κ‖εIb‖0,K‖εhu‖0,K‖d‖W 1,∞(K),

κ
∣∣(εIb, (d · ∇) εhu − d

(
∇ · εhu

))
K

∣∣
= κ

∣∣(εIb, ((d− P0d) · ∇) εhu − (d− P0d)
(
∇ · εhu

))
K

∣∣
. κhK‖εIb‖0,K‖d‖W 1,∞(K)‖∇εhu‖0,K . κ‖εIb‖0,K‖d‖W 1,∞(K)‖εhu‖0,K

where P0d is the L2 projection of d to the piecewise constant space on K, and here
we used (B.1f), Hölder inequality ‖f1f2f3‖L1 ≤ ‖f1‖L2‖f2‖L∞‖f3‖L2 , the Bramble–
Hilbert lemma (see e.g., [4]) and the inverse estimate in the last two inequalities.
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For an estimate of κ
(
εIu,d×

(
∇× εhb

))
, we first note that

κ
(
εIu,d×

(
∇× εhb

))
= κ

(
εIu, (d− P0d)×

(
∇× εhb

))
due to (B.1j). A similar argument as above gives

κ|
(
εIu,d×

(
∇× εhb

))
|K ≤ κ‖εIu‖0,K‖d− P0d‖L∞(K)‖∇ × εhb‖0,K

. κ‖εIu‖0,K‖d‖W 1,∞(K)‖εhb‖0,K .

Finally, we simply use the Cauchy-Schwarz/Hölder inequality for the last term on the
right hand side of (4.2).

Corollary 4.4 (Energy estimate). There holds:

E2
h . Re

∥∥εIL∥∥2

0
+ κ ‖d‖W 1,∞

(∥∥εIb∥∥0

∥∥εhu∥∥0
+
∥∥εIu∥∥0

∥∥εhb∥∥0

)
(4.11)

+ α−1
2

∥∥εIJ∥∥2

∂Ωh
+ κ2 ‖d‖2L∞

∥∥εIu∥∥2

∂Ωh
+ α2

∥∥εIbt

∥∥2

∂Ωh
.

Proof. Apply Young’s inequality to each of the terms on the right side of (4.9)
involving

∥∥εhL∥∥0
and ‖εhbt − εh

b̂
t‖∂Ωh

. Note also that Πû is the best approximation of

u on ∂Ωh, so
∥∥εIû∥∥∂Ωh

is bounded by
∥∥εIu∥∥∂Ωh

.

In the energy estimate (4.11), we do not have direct control on ‖εhu‖0 and ‖εhb‖0.
In the following, we employ an indirect approach to control these quantities via a
duality argument. A similar approach for the Oseen equation has been conducted in
[8]. It is more complicated for our MHD system due to the coupling between fluids and
electromagnetics. In particular, εhu and εhb are coupled and have to be simultaneously
analyzed. To begin, we define a dual problem of the MHD system (3.2) as

ReL∗ −∇u∗ = 0,(4.12a)

−∇ ·L∗ −∇p∗ − (w · ∇)u∗ − κd× (∇× b∗) = θ,(4.12b)

−∇ · u∗ = 0,(4.12c)

Rm

κ
J∗ −∇× b∗ = 0,(4.12d)

∇× J∗ −∇r∗ + κ∇× (u∗ × d) = σ,(4.12e)

−∇ · b∗ = 0(4.12f)

with homogeneous boundary conditions. Here, θ and σ are two given functions in
L2 (Ω), and the superscript “*” is used to denote the corresponding unknowns in the
adjoint equation. We assume the following regularity estimate holds for the adjoint
problem (4.12)

‖u∗‖2 + ‖b∗,L∗,J∗, p∗, r∗‖1 . ‖θ,σ‖0 .(4.13)

The well-posedness of (4.12) and the conditions under which the regularity estimate
(4.13) holds are discussed in Appendix C.

We use the interpolation operators Π∗ defined in Appendix A (B.21), (B.22) below
and εIL∗ , ε

I
p∗ , ... will denote L∗ −Π∗L∗, p∗ −Π∗p∗, etc. Testing (4.12b) with εhu and
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(4.12e) with εhb we have(
εhu,θ

)
+
(
εhb ,σ

)
(4.14)

=
(
εhu,−∇ ·L

∗ −∇p∗ − (w · ∇)u∗ − κd× (∇× b∗)
)

+
(
εhb ,∇× J

∗ −∇r∗ + κ∇× (u∗ × d)
)

=
(
∇εhu,L

∗)+
(
∇ · εhu, p∗

)
+
(
(w · ∇)εhu,u

∗)− κ (εhu,d× (∇× b∗)
)

+
〈
εhu,−L

∗n− p∗n−mu∗
〉

+
(
∇× εhb ,J

∗)+
(
∇ · εhb , r∗

)
+ κ

(
εhb ,∇× (u∗ × d)

)
+
〈
εhb ,n× J

∗ − r∗n
〉

=
(
∇εhu,Π∗L

∗)+
(
∇ · εhu,Π∗p∗

)
+
(
(w · ∇)εhu,Π

∗u∗
)

− κ
(
εhu,d× (∇× b∗)

)
+
〈
εhu,−L

∗n− p∗n−mu∗
〉

+
(
∇× εhb ,Π∗J

∗)
+
(
∇ · εhb ,Π∗r∗

)
+ κ

(
∇× (u∗ × d), εhb

)
+
〈
εhb ,n× J

∗ − r∗n
〉

=
(
εhu,−∇ ·Π∗L

∗ −∇Π∗p∗ − (w · ∇)Π∗u∗ − κd× (∇× b∗)
)

+
(
εhb ,∇×Π∗J∗ −∇Π∗r∗ + κ∇× (u∗ × d)

)
+
〈
εhu,−εIL∗n− εIp∗n−mεIu∗

〉
+
〈
εhb ,n× εIJ∗ − εIr∗n

〉
where we have used integration by parts in the second equality, the properties of the
Π∗ operators (B.21) and (B.22) in the third equality, and integration by parts again
in the last equality.

Lemma 4.5. The following identities hold true:(
εhu,−∇ ·Π∗L

∗) = Re
(
εhL,Π

∗L∗
)
−
〈
εhû,Π

∗L∗n
〉

+ Re
(
εIL,Π

∗L∗
)
,

−
(
εhu, (w · ∇)Π∗u∗

)
= −

(
εhL,∇Π∗u∗

)
+
(
εhp ,∇ ·Π∗u∗

)
− κ

(
εhb ,∇× (Π∗u∗ × d)

)
−
〈
−εhLn+mεhu + εhpn+

1

2
κd× (n× (εhb + εh

b̂
)),Π∗u∗

〉
−
〈
α1(εhu − εhû),Π∗u∗

〉
− κ

(
εIb,∇× (Π∗u∗ × d)

)
,(

εhu,−∇Π∗p∗
)

= −
〈
εhû,Π

∗p∗n
〉
,(

εhb ,∇×Π∗J∗
)

=
Rm

κ

(
εhJ ,Π

∗J∗
)
−
〈
n× εh

b̂
t ,Π∗J∗

〉
,

−κ
(
εhu,d× (∇× b∗)

)
= −κ

(
εhu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
= −

(
εhJ ,∇×Π∗b∗

)
+
(
εhr ,∇ ·Π∗b

∗)− 〈α2(εbt − ε
b̂
t),Π∗b∗

〉
−
〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d),Π∗b∗

〉
+ κ

(
εIu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
,(

εhb ,−∇Π∗r∗
)

= −
〈
εhb · n+ α3(εhr − εhr̂ ),Π∗r∗

〉
.

Proof. In (4.4), choose test functions (G,v, q,H, c, s) to be the adjoint projec-
tions (Π∗L∗,Π∗u∗,Π∗p∗,Π∗J∗,Π∗b∗,Π∗r∗). Noting the identities〈

εhû ⊗ n,Π∗L
∗〉 =

〈
εhû,Π

∗L∗n
〉
,

(
εhu ⊗w,∇Π∗u∗

)
=
(
εhu, (w · ∇)Π∗u∗

)
,

all the results follow immediately except the fifth one. In the fifth identity, note that
the first equality is trivial by the definitions of Π∗b∗ and εIb∗ , and the second equality
comes from (4.4) with the orthogonality of εI

b̂
t and εIr̂ .
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Substituting the result of Lemma 4.5 into (4.14) we obtain(
εhu,θ

)
+
(
εhb ,σ

)
= Re

(
εhL,Π

∗L∗
)
−
〈
εhû,Π

∗L∗n
〉

+ Re
(
εIL,Π

∗L∗
)
−
〈
εhû,Π

∗p∗n
〉

−
(
εhL,∇Π∗u∗

)
+
(
εhp ,∇ ·Π∗u∗

)
− κ

(
εhb ,∇× (Π∗u∗ × d)

)
−
〈
−εhLn+mεhu + εhpn+

1

2
κd× (n× (εhb + εh

b̂
)) + α1(εhu − εhû),Π∗u∗

〉
− κ

(
εIb,∇× (Π∗u∗ × d)

)
−
(
εhJ ,∇×Π∗b∗

)
+
(
εhr ,∇ ·Π∗b

∗)
−
〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α2(εbt − ε

b̂
t),Π∗b∗

〉
+ κ

(
εIu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
+

Rm

κ

(
εhJ ,Π

∗J∗
)
−
〈
n× εh

b̂
t ,Π∗J∗

〉
−
〈
εhb · n+ α3(εhr − εhr̂ ),Π∗r∗

〉
+ κ

(
εhb ,∇× (u∗ × d)

)
+
〈
εhu,−εIL∗n− εIp∗n−mεIu∗

〉
+
〈
εhb ,n× εIJ∗ − εIr∗n

〉
.

Note first that the last term in the second line and the first term in the last line can
be simplified as κ

(
εhb ,∇× (εIu∗ × d)

)
. Note also that we can use (4.12a), (4.12c),

(4.12d), (4.12f) to get

Re
(
εhL,Π

∗L∗
)
−
(
εhL,∇Π∗u∗

)
= −Re

(
εhL, ε

I
L∗
)

+
(
εhL,∇εIu∗

)
,(4.15a)

∇ ·Π∗u∗ = −∇ · εIu∗ ,(4.15b)

Rm

κ

(
εhJ ,Π

∗J∗
)
−
(
εhJ ,∇×Π∗b∗

)
= −Rm

κ

(
εhJ , ε

I
J∗
)

+
(
εhJ ,∇× εIb∗

)
,(4.15c)

−∇ ·Π∗b∗ = ∇ · εIb∗ .(4.15d)

We can subtract the L2 projections on the mesh skeleton, Peu∗, Peb∗, Per∗ of u∗,
b∗, r∗, in flux terms using the flux conservation of interpolation operators and nu-
merical solutions, i.e., (4.7a), (4.7b), (4.7c). Moreover, we can subtract them on the
domain boundary since εhr̂ , u∗, (b∗)t, and r∗ are zero there. If we use the above three
observations, i.e., the simplification of the two terms, substitution of volume integral
terms using (4.15), and the subtraction of L2 projections on the mesh skeleton, then
we have (some terms are colored for readers’ convenience)(

εhu,θ
)

+
(
εhb ,σ

)
= Re

(
εhL,−εIL∗

)
−
〈
εhû,Π

∗L∗n
〉

+ Re
(
εIL,Π

∗L∗
)
−
〈
εhû,Π

∗p∗n
〉

−
(
εhL,−∇εIu∗

)
+
(
εhp ,−∇ · εIu∗

)
+ κ

(
εhb ,∇× (εIu∗ × d)

)
−
〈
−εhLn+mεhu + εhpn+

1

2
κd× (n× (εhb + εh

b̂
)) + α1(εhu − εhû),Π∗u∗−Peu∗

〉
− κ

(
εIb,∇× (Π∗u∗ × d)

)
−
(
εhJ ,−∇× εIb∗

)
+
(
εhr ,−∇ · εIb∗

)
−
〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α2(εbt − ε

b̂
t),Π∗b∗−Peb∗

〉
+ κ

(
εIu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
+

Rm

κ

(
εhJ ,−εIJ∗

)
−
〈
n× εh

b̂
t ,Π∗J∗

〉
−
〈
εhb · n+ α3(εhr − εhr̂ ),Π∗r∗−Per∗

〉
+ κ

(
εhb ,∇× (u∗ × d)

)
+
〈
εhu,−εIL∗n− εIp∗n−mεIu∗

〉
+
〈
εhb ,n× εIJ∗ − εIr∗n

〉
.
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Note that the integration by parts and properties of εIu∗ and Peu∗ yield

(
εhL,∇εIu∗

)
+
〈
εhLn,Π

∗u∗ − Peu∗
〉

= −
(
∇ · εhL, εIu∗

)
+
〈
εhLn,u

∗ − Peu∗
〉

= 0,

−
(
εhp ,∇ · εIu∗

)
−
〈
εhpn,Π

∗u∗ − Peu∗
〉

=
(
∇εhp , εIu∗

)
−
〈
εhpn,u

∗ − Peu∗
〉

= 0.

These two identities simplify the second and third lines of the above formula and yield

(
εhu,θ

)
+
(
εhb ,σ

)
= Re

(
εhL,−εIL∗

)
−
〈
εhû,Π

∗L∗n
〉

+ Re
(
εIL,Π

∗L∗
)
−
〈
εhû,Π

∗p∗n
〉

−
〈
mεhu +

1

2
κd× (n× (εhb + εh

b̂
)) + α1(εhu − εhû),Π∗u∗−Peu∗

〉
− κ

(
εIb,∇× (Π∗u∗ × d)

)
−
(
εhJ ,−∇× εIb∗

)
+
(
εhr ,−∇ · εIb∗

)
−
〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α2(εbt − ε

b̂
t),Π∗b∗−Peb∗

〉
+ κ

(
εIu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
+ κ

(
εhb ,∇× (εIu∗ × d)

)
+

Rm

κ

(
εhJ ,−εIJ∗

)
−
〈
n× εh

b̂
t ,Π∗J∗

〉
−
〈
εhb · n+ α3(εhr − εhr̂ ),Π∗r∗−Per∗

〉
+
〈
εhu,−εIL∗n− εIp∗n−mεIu∗

〉
+
〈
εhb ,n× εIJ∗ − εIr∗n

〉
.

To simplify it further, we note the identities

(
εhJ ,∇× εIb∗

)
=
(
∇× εhJ , εIb∗

)
+
〈
εhJ ,n× εIb∗

〉
=
〈
εhJ ,n× εIb∗

〉
,

−
(
εhr ,∇ · εIb∗

)
=
(
∇εhr , εIb∗

)
−
〈
εhrn, ε

I
b∗
〉

= −
〈
εhrn, ε

I
b∗
〉
,〈

n× εJ + εr̂n−
1

2
κn× ((εu + εû)× d) + α2(εbt − ε

b̂
t),Π∗b∗ − Peb∗

〉
=

〈
n× εhJ + εhr̂n−

1

2
κn× ((εhu + εhû)× d) + α2(εhbt − εh

b̂
t),Π∗b

∗−Peb∗
〉

+

〈
n× εIJ −

1

2
κn× ((εIu + εIû)× d) + α2ε

I
bt ,Π∗b

∗−Peb∗
〉
,

−
〈
εhb · n,Π∗r∗ − Per∗

〉
−
〈
εhb , ε

I
r∗n
〉

= 0

where cancellations come from the properties of εIb∗ , Peb
∗, Per∗ and the orthogonalities

of εIr̂ and εI
b̂
t to polynomials. We use these identities to the previous formula, more

precisely, to the last two terms in the third line, to the fourth line, to the last terms
in the last two lines. Then we obtain (here some terms are colored only for readers’
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convenience later)(
εhu,θ

)
+
(
εhb ,σ

)
= Re

(
εhL,−εIL∗

)
−
〈
εhû,Π

∗L∗n
〉

+ Re
(
εIL,Π

∗L∗
)
−
〈
εhû,Π

∗p∗n
〉

−
〈
mεhu +

1

2
κd× (n× (εhbt + εh

b̂
)) + α1(εhu − εhû),Π∗u∗−Peu∗

〉
− κ

(
εIb,∇× (Π∗u∗ × d)

)
−
〈
n× εhJ , εIb∗

〉
−
〈
εhrn, ε

I
b∗
〉

−
〈
n× εhJ + εhr̂n−

1

2
κn× ((εhu + εhû)× d) + α2(εhbt − εh

b̂
t),Π∗b

∗−Peb∗
〉

−
〈
n× εIJ −

1

2
κn× ((εIu + εIû)× d) + α2ε

I
bt ,Π∗b

∗−Peb∗
〉

+ κ
(
εIu,d× (∇×Π∗b∗)

)
− κ

(
εhu,d× (∇× εIb∗)

)
+ κ

(
εhb ,∇× (εIu∗ × d)

)
+

Rm

κ

(
εhJ ,−εIJ∗

)
−
〈
n× εh

b̂
t ,Π∗J∗

〉
−
〈
α3(εhr − εhr̂ ),Π∗r∗−Per∗

〉
−
〈
εhu, ε

I
L∗n+ εIp∗n+mεIu∗

〉
+
〈
εhbt ,n× εIJ∗

〉
.

Here we used the facts n×εhb = n×εhbt and
〈
εhb ,n× εIJ∗

〉
=
〈
εhbt ,n× εIJ∗

〉
. Algebraic

manipulations with (3.7) yield(
εhu,θ

)
+
(
εhb ,σ

)
= Re

(
εhL,−εIL∗

)
+ Re

(
εIL,Π

∗L∗
)

+
Rm

κ

(
εhJ ,−εIJ∗

)
+ κ
(
εhb ,∇× (εIu∗ × d)

)
− κ
(
εIb,∇× (Π∗u∗ × d)

)
+ κ
(
εIu,d× (∇×Π∗b∗)

)
− κ
(
εhu,d× (∇× εIb∗)

)
−
〈
εhû,Π

∗L∗n+ Π∗p∗n− α1(Π∗u∗ − Peu∗) +
1

2
κd× (n× (Π∗b∗ − Peb∗))

〉
−
〈
εhu, ε

I
L∗n+ εIp∗n+mεIu∗ +

1

2
κd× (n× (Π∗b∗ − Peb∗))

〉
+

〈
εh
b̂
t ,

1

2
κn× ((Π∗u∗ − Peu∗)× d) + n×Π∗J∗ + α2(Π∗b∗ − Peb∗)

〉
+

〈
εhbt ,

1

2
κn× ((Π∗u∗ − Peu∗)× d) + n× εIJ∗ − α2(Π∗b∗ − Peb∗)

〉
+
〈
εhr̂ , α3(Π∗r∗ − Per∗)− (Π∗b∗ − Peb∗) · n

〉
+
〈
εhr ,−α3(Π∗r∗ − Per∗)− εIb∗ · n

〉
−
〈
εhu, (m+ α1) (Π∗u∗ − Peu∗)

〉
+
〈
εhJ ,n× εIb∗ + n× (Π∗b∗ − Peb∗)

〉
−
〈
n× εIJ −

1

2
κn× ((εIu + εIû)× d) + α2ε

I
bt ,Π∗b

∗ − Peb∗
〉
.

We reduce this further, particularly from the third to ninth lines. For the third line,
note that εhû, d, and the exact solution are single-valued, and

〈
εhû,Π

∗u∗ − Peu∗
〉

=〈
εhû, ε

I
u∗
〉
. Note also that Π∗b∗ − Peb∗ = −εIb∗ + εI

b̂
∗ holds. Then the third line is

〈
εhû, ε

I
L∗n+ εIp∗n− α1ε

I
u∗ −

1

2
κd× (n× (−εIb∗ + εI

(b̂
∗
)t

))

〉
= 0
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where the vanishing equality comes from (B.22c). For the fourth line, note first that〈
εhu,mε

I
u∗ +m(Π∗u∗ − Peu∗)

〉
=
〈
εhu,mε

I
û∗
〉
,〈

εhu, α1(Π∗u∗ − Peu∗)
〉

= −
〈
εhu, α1ε

I
u∗
〉

where the second equality is valid because α1 is constant on each facet. Then the
fourth line is〈

εhu, α1ε
I
u∗ −mεIû∗ − εIL∗n− εIp∗n−

1

2
κd× (n× (−εIb∗ + εI

(b̂
∗
)t

))

〉
,

= −
〈
εhu,mε

I
û∗ + κd× (n× (−εIb∗ + εI

(b̂
∗
)t

))
〉

where we use (B.22c) again. Note that

Π∗u∗ − Peu∗ = −εIu∗ + εIû∗ , Pe((Π∗b∗ − Peb∗)t) = −PeεI(b∗)t .

From these the fifth and sixth lines are rewritten as〈
εh
b̂
t ,

1

2
κn× ((−εIu∗ + εIû∗)× d) + n× (−εIJ∗)− α2ε

I
(b∗)t

〉
,〈

εhbt ,
1

2
κn×

(
(−εIu∗ + εIû∗)× d

)
+ n× εIJ∗ + α2ε

I
(b∗)t

〉
.

Further, the seventh, eighth, ninth lines are vanishing, i.e.,〈
εhr̂ , α3(Π∗r∗ − Per∗)− (Π∗b∗ − Peb∗) · n

〉
=
〈
εhr̂ ,−α3ε

I
r∗ + εIb∗ · n

〉
= 0,〈

εhr ,−α3(Π∗r∗ − Per∗)− εIb∗ · n
〉

=
〈
εhr , α3ε

I
r∗ − εIb∗ · n

〉
= 0,〈

εhJ ,n× εIb∗ + n× (Π∗b∗ − Peb∗)
〉

= 0

where we used (B.21c) for the first two identities, and the fact n×εIb∗ = n×εI(b∗)t for

the third identity. Finally,
(
εhJ ,−εIJ∗

)
= 0 by the definition of εIJ∗ . As a consequence,

we have a reduced formula

(
εhu,θ

)
+
(
εhb ,σ

)(4.16)

= Re
(
εhL,−εIL∗

)︸ ︷︷ ︸
=:I1

+Re
(
εIL,Π

∗L∗
)︸ ︷︷ ︸

=:I2

+κ
(
εhb ,∇× (εIu∗ × d)

)︸ ︷︷ ︸
=:I3

− κ
(
εIb,∇× (Π∗u∗ × d)

)︸ ︷︷ ︸
=:I4

+κ
(
εIu,d× (∇×Π∗b∗)

)︸ ︷︷ ︸
=:I5

−κ
(
εhu,d× (∇× εIb∗)

)︸ ︷︷ ︸
=:I6

−
〈
εhu,mε

I
û∗ + κd× (n× (−εIb∗ + εI

(b̂
∗
)t

))
〉

︸ ︷︷ ︸
=:I7

+

〈
εh
b̂
t ,

1

2
κn× ((−εIu∗ + εIû∗)× d) + n× (−εIJ∗)− α2ε

I
(b∗)t

〉
︸ ︷︷ ︸

=:I8

+

〈
εhbt ,

1

2
κn×

(
(−εIu∗ + εIû∗)× d

)
+ n× εIJ∗ + α2ε

I
(b∗)t

〉
︸ ︷︷ ︸

=:I9
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−
〈
n× εIJ −

1

2
κn× ((εIu + εIû)× d) + α2ε

I
bt ,Π∗b

∗ − Peb∗
〉

︸ ︷︷ ︸
=:I10

.

Estimation for I1: Combining the estimate for εIL∗ and the regularity estimate (see
(B.24)) gives

|ReI1| ≤ Re
∥∥εhL∥∥0

∥∥εIL∗∥∥0
. hRe

∥∥εhL∥∥0
‖θ,σ‖0 .(4.17)

Estimation for I2: Using (4.12a), (B.1i), (B.1j), Lemma A.3, and the regularity of
the adjoint solutions, we have

|ReI2| ≤ |Re
(
εIL,∇u∗

)
|+ |Re

(
εIL,−εIL∗

)
|(4.18)

= |Re
(
εIL,∇(u∗ − P1u

∗)
)

+
(
εIu ⊗w,∇P1u

∗) |+ |Re
(
εIL,−εIL∗

)
|

. Re
(
h
∥∥εIL∥∥0

‖u∗‖2 + ‖w − P0w‖L∞
∥∥εIu∥∥0

‖u∗‖1 +
∥∥εIL∥∥0

∥∥εIL∗∥∥0

)
. hRe

(∥∥εIL∥∥0
+ ‖w‖W 1,∞

∥∥εIu∥∥0

)
‖θ,σ‖0 .

Estimation for I4: By the identity (4.10), it suffices to estimate(
εIb,Π

∗u∗ (∇ · d)− (Π∗u∗ · ∇)d
)
, and(

εIb, ((d− P0d) · ∇) Π∗u∗ − (d− P0d) (∇ ·Π∗u∗)
)
.

By the triangle inequality, the inverse estimate, and (B.24), we have

‖∇Π∗u∗‖0 ≤ ‖∇(Π∗u∗ − P1u
∗)‖0 + ‖∇P1u

∗‖0
. h−1 ‖Π∗u∗ − P1u

∗‖0 + ‖u∗‖1
≤ h−1(

∥∥εIu∗∥∥0
+ ‖u∗ − P1u

∗‖0) + ‖u∗‖1
. ‖θ,σ‖0 ,

and we also have

‖Π∗u∗‖0 ≤
∥∥εIu∗∥∥0

+ ‖u∗‖0 . ‖θ,σ‖0 ,

thus

|κI4| . κ ‖d‖W 1,∞

∥∥εIb∥∥0
(‖Π∗u∗‖0 + h ‖∇Π∗u∗‖0)(4.19)

. κ ‖d‖W 1,∞

∥∥εIb∥∥0
‖θ,σ‖0 .

Estimation for I5: By an argument similar to the estimate of ‖∇Π∗u∗‖0 above,
‖∇ ×Π∗b∗‖0 . ‖θ,σ‖0. Since I5 =

(
εIu, (d− P0d)× (∇×Π∗b∗)

)
,

|κI5| . hκ ‖d‖W 1,∞

∥∥εIu∥∥0
‖∇ ×Π∗b∗‖0(4.20)

. hκ ‖d‖W 1,∞

∥∥εIu∥∥0
‖θ,σ‖0 .

Estimation for I6 and I7: Integrating I6 by parts (see (3.7)) we have

−κI6 = −κ
(
εIb∗ ,∇× (εhu × d)

)
− κ

〈
d× (n× εIb∗), εhu

〉
.

Now we can write −κI6 + I7 as

−κI6 + I7 = −κ
(
εIb∗ ,∇× (εhu × d)

)
+
〈
εhu,−mεIû∗ − κd× (n× εI

(b̂
∗
)t

)
〉
.
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For the first term, as in the estimate of I4, it suffices to estimate(
εIb∗ , ε

h
u (∇ · d)−

(
εhu · ∇

)
d
)

and
(
εIb∗ , ((d− P0d) · ∇) εhu − (d− P0d)

(
∇ · εhu

))
.

Invoking the Hölder’s inequality and an inverse estimate we can bound the upper
bounds of the first term as∥∥εIb∗∥∥0

‖d‖W 1,∞

∥∥εhu∥∥0
. h ‖d‖W 1,∞

∥∥εhu∥∥0
‖θ,σ‖0 .

For the second term, we first observe that〈
εhu,−mεIû∗ − κd× (n× εI

(b̂
∗
)t

)
〉

=
〈
εhu,−(w − P0w) · nεIû∗ − κ(d− P0d)× (n× εI

(b̂
∗
)t

)
〉
.

By the Hölder inequality,∣∣∣〈εhu,−mεIû∗ − κd× (n× εI
(b̂
∗
)t

)
〉∣∣∣ ≤ ∥∥εhu∥∥∂Ωh

(
‖w − P0w‖L∞(∂Ωh) ‖u

∗ − P1u
∗‖∂Ωh

+ κ ‖(d− P0d)‖L∞(∂Ωh) ‖b
∗ − P0b

∗‖∂Ωh

)
,

where we used the fact that Π∗b̂∗ and Π∗û∗ are the best approximations on ∂Ωh. By
Lemma A.2 this can be estimated by

(
hκ ‖d‖W 1,∞ + h2 ‖w‖W 1,∞

) ∥∥εhu∥∥0
‖θ,σ‖0. As

a consequence,

|−κI6 + I7| .
(
hκ ‖d‖W 1,∞ + h2 ‖w‖W 1,∞

) ∥∥εhu∥∥0
‖θ,σ‖0 .(4.21)

Estimation for I3, I8, and I9: Integrating I3 by parts (see (3.7)) gives

κI3 = κ
(
εIu∗ ,d×

(
∇× εhb

))
+ κ

〈
n×

(
εIu∗ × d

)
, εhb
〉
.

Some algebraic manipulations give

κI3 + I8 + I9 = κ
(
εIu∗ ,d×

(
∇× εhb

))
+
〈
εhbt , κn× (εIû∗ × d)

〉
+

〈
εh
b̂
t − εhbt ,

1

2
κn× ((εIû∗ − εIu∗)× d)− n× εIJ∗ − α2ε

I
(b∗)t

〉
.

The first term is easily estimated by

|
(
εIu∗ ,d×

(
∇× εhb

))
| = |

(
εIu∗ , (d− P0d)×

(
∇× εhb

))
|

. h ‖d‖W 1,∞

∥∥εhb∥∥0
‖θ,σ‖0 .

For the second term we have∣∣〈εhbt , κn× (εIû∗ × d)
〉∣∣ ≤ κ∥∥εhbt

∥∥
∂Ωh
‖u∗ − Pku∗‖∂Ωh

‖d− P0d‖L∞(∂Ωh)

. h2κ ‖d‖W 1,∞

∥∥εhb∥∥0
‖θ,σ‖0 ,

where we used Lemma A.2 and the discrete trace inequality. Using the Cauchy–
Schwarz inequality, (B.24), and Lemma A.2, the third term is bounded by

h
1
2 (κ ‖d‖L∞ + α2 + 1)

∥∥∥εh
b̂
t − εhbt

∥∥∥
∂Ωh

‖σ,θ‖0 .
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Combining the above estimates we conclude

(4.22) |κI3 + I8 + I9| .
(
hκ ‖d‖W 1,∞

∥∥εhb∥∥0

+h
1
2 (κ ‖d‖L∞ + α2 + 1)

∥∥∥εh
b̂
t − εhbt

∥∥∥
∂Ωh

)
‖σ,θ‖0 .

Estimation for I10: Using the approximation capability of the projector Π (see
Appendix B) we have∣∣∣∣〈n× εIJ − 1

2
κn× ((εIu + εIû)× d) + α2ε

I
bt ,Π∗b

∗ − Peb∗
〉∣∣∣∣(4.23)

. h
1
2

(∥∥εIJ∥∥∂Ωh
+ κ ‖d‖L∞

∥∥εIu∥∥∂Ωh
+ α2

∥∥εIb∥∥∂Ωh

)
‖θ,σ‖0 .

At this point we are ready to estimate the discretization errors for L, J , u, and
b. For readability let us absorb α1, α2, α3, Re, Rm, κ, and the norms on d and w
into the implicit constants.

Theorem 4.6. Suppose that α1− 1
2 ‖w‖L∞ , α2, and α3 are chosen to be positive

constants independent of h, Re, Rm, κ, d, and w. Suppose also that h is sufficiently
small, i.e.,

h ≤ C � 1(4.24)

with C (depending on the coefficients in estimates (4.21) and (4.22)). Then it holds
that

Eh . hk+ 1
2 ‖L,J ,u, b, r, p‖k+1(4.25)

and the following error estimates hold:

‖L−Lh,J − Jh‖0 . hk+ 1
2 ‖L,J ,u, b, r, p‖k+1 ,(4.26)

‖b− bh,u− uh‖0 . hk+1 ‖L,J ,u, b, r, p‖k+1 .(4.27)

Proof. We proceed by taking θ = εhu, σ = εhb in (4.12). If we use (4.16), the
estimates (4.17)–(4.23), and Young’s inequality, we can obtain∥∥εhb , εhu∥∥0

.
∥∥εIb∥∥0

+ h
∥∥εIL, εhL, εIu∥∥0

+ h
∥∥εhu, εhb∥∥0

(4.28)

+ h
1
2

∥∥εIJ , εIu, εIb∥∥∂Ωh
+ h

1
2

∥∥∥εh
b̂
t − εhbt

∥∥∥
∂Ωh

,

which can be simplified to become∥∥εhb , εhu∥∥0
.
∥∥εIb∥∥0

+ h
∥∥εIL, εhL, εIu∥∥0

(4.29)

+ h
1
2

∥∥εIJ , εIu, εIb∥∥∂Ωh
+ h

1
2

∥∥∥εh
b̂
t − εhbt

∥∥∥
∂Ωh

,

if the constants that multiply
∥∥εhu∥∥0

and
∥∥εhb∥∥0

in (4.21) and (4.22) are sufficiently
small, which is true under the assumptions we have made on α1, α2, and α3 together
with (4.24). The discretization error terms on the right hand side of (4.29) (i.e., terms
with superscript “h”) are bounded by Eh (see definition of Eh in (4.9)). This implies∥∥εhb , εhu∥∥0

.
∥∥εIb∥∥0

+ h
∥∥εIL, εIu∥∥0

+ h
1
2

∥∥εIJ , εIu, εIb∥∥∂Ωh
+ h

1
2Eh.(4.30)
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Applying Young’s inequality to the right side of (4.11) for
∥∥εhu∥∥0

,
∥∥εhb∥∥0

, and using
(4.30), we get

E2
h .

∥∥εIJ , εIu, εIb∥∥2

∂Ωh
+
∥∥εIL, εIu, εIb∥∥2

0
.

Then (4.25) follows from the approximation properties of εIJ , ε
I
u, ε

I
b, ε

I
L with the trace

inequality Lemma A.2 discussed in Appendix B and A, respectively. Further, it gives∥∥εhL, εhJ∥∥0
+
∥∥∥εhu − εhû, εhbt − εh

b̂
t , εhr − εhr̂

∥∥∥
∂Ωh

. Eh . hk+ 1
2 ‖L,J ,u, b, r, p‖k+1 ,

where the first inequality is from the definition of Eh in (4.2). Then (4.26) follows
from the triangle inequality. Finally, the above estimate with (4.30) and the triangle
ineqality give (4.27).

What remains is to estimate
∥∥εhp∥∥0

and
∥∥εhr∥∥0

, and to that end we extend the
argument in [8] for our MHD system.

Theorem 4.7. There holds:∥∥εhp∥∥0
.
∥∥εhL, εhu, εhb , εIb∥∥0

+ h
1
2Eh . hk+ 1

2 ‖L,J ,u, b, r, p‖k+1 , k ≥ 0.

Proof. We consider a projection operator Π̃ :
[
H1(Ω)

]d → [Pk(Ωh)]
d

defined by(
Π̃ϑ− ϑ,v

)
K

= 0, v ∈ [Pk−1(K)]
d
,〈

(Π̃ϑ− ϑ) · n,µ · n
〉
∂K

= 0, µ ∈
[
P⊥k (K)

]d
,

for ϑ ∈
[
H1(Ω)

]d
and K ∈ Ωh, where P⊥k (K) is the subspace of Pk(K) which

is orthogonal to Pk−1(K) in L2(K). Its well-posedness is based on the orthogonal
decomposition (see [17, Lemma 4.1])

Pk(∂K) = {v · n|∂K : v ∈
[
P⊥k (K)

]d} ⊕ {q|∂K : q ∈ P⊥k (K)},

and it has optimal approximation property by the Bramble–Hilbert lemma.
Since Πp is the L2-projection, from (3.11) we have(

εhp , 1
)

= −(εIp, 1) = 0,

that is, εhp has zero mean. It is known [27] that there exists a function ϑ ∈
[
H1

0 (Ω)
]d

that ∇ · ϑ = εhp and ‖ϑ‖1 .
∥∥εhp∥∥0

. For such a ϑ, we have

∥∥εhp∥∥2

0
=
(
εhp ,∇ · ϑ

)
= −

(
∇εhp ,ϑ

)
+
〈
εhp ,ϑ · n

〉
(4.31)

= −
(
∇εhp , Π̃ϑ

)
+
〈
εhp ,ϑ · n

〉
=
(
εhp ,∇ · Π̃ϑ

)
+
〈
εhpn,ϑ− Π̃ϑ

〉
where we have performed integration by parts twice and used the definition of the
projector Π̃. Since the exact solution (L, p,u, b) and its trace also satisfy the HDG
local (sub-) equation (3.8b), we can add and subtract the corresponding projections
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in (B.1) to obtain(
εhp ,∇ · Π̃ϑ

)
=
(
εhL,∇Π̃ϑ

)
−
(
εhu, (w · ∇)Π̃ϑ

)
+ κ

(
εhb ,∇×

(
Π̃ϑ× d

))
+

〈
mεhu − εhLn+ εhpn+

1

2
κd×

(
n×

(
εhbt + εh

b̂
t

))
+ α1

(
εhu − εhû

)
, Π̃ϑ

〉
(4.32)

+ κ
(
εIb,∇×

(
Π̃ϑ× d

))
,

where we have taken Π̃ϑ as the test function in (3.8b).
Combining (4.31) and (4.32) yields∥∥εhp∥∥2

0
=
(
εhL,∇Π̃ϑ

)
−
(
εhu, (w · ∇)Π̃ϑ

)
+ κ

(
εhb ,∇×

(
Π̃ϑ× d

))
+

〈
mεhu − εhLn+

1

2
κd×

(
n×

(
εhbt + εh

b̂
t

))
+ α1

(
εhu − εhû

)
, Π̃ϑ

〉
+ κ

(
εIb,∇×

(
Π̃ϑ× d

))
+
〈
εhpn,ϑ

〉
,

which can be further simplified using two facts: first, integrating by parts twice and
using the definition of Π̃ give(

εhL,∇Π̃ϑ
)

=
(
εhL,∇ϑ

)
−
〈
εhLn,ϑ

〉
+
〈
εhLn, Π̃ϑ

〉
;

and second, we combine the first equation in (3.9) and (B.1k) to have〈
−εhLn+ εhpn,ϑ

〉
=
〈
−εhLn+ εhpn,Peϑ

〉
= −

〈
mεhu +

1

2
κd×

(
n×

(
εhbt + εh

b̂
t

))
+ α1

(
εhu − εhû

)
,Peϑ

〉
.

In particular, we obtain∥∥εhp∥∥2

0
=
(
εhL,∇ϑ

)
−
(
εhu, (w · ∇)Π̃ϑ

)
+ κ

(
εhb ,∇×

(
Π̃ϑ× d

))
+

〈
mεhu +

1

2
κd×

(
n×

(
εhbt + εh

b̂
t

))
+ α1

(
εhu − εhû

)
, Π̃ϑ− Peϑ

〉
+ κ

(
εIb,∇×

(
Π̃ϑ× d

))
.

By the triangle and Hölder inequalities,∥∥εhp∥∥2

0
.
∥∥εhL∥∥0

‖∇ϑ‖0 + ‖w‖L∞
∥∥εhu∥∥0

∥∥∥∇Π̃ϑ
∥∥∥

0
+ κ ‖d‖W 1,∞

∥∥εhb , εIb∥∥0

∥∥∥∇Π̃ϑ
∥∥∥

0

+

(
‖w‖L∞

∥∥εhu∥∥∂Ωh
+ κ ‖d‖L∞

∥∥∥εhbt , εhbt − εh
b̂
t

∥∥∥
∂Ωh

+ α1

∥∥εhu − εhû∥∥∂Ωh

)∥∥∥Π̃ϑ− Peϑ
∥∥∥
∂Ωh

.
(∥∥εhL, εhu, εhb , εIb∥∥0

+ h
1
2Eh

)∥∥εhp∥∥0

where we have used Lemma A.3, the approximation capability of Π̃ and the L2-
projection, definition of Eh in (4.2), the property of ϑ, and we absorb all mesh in-
dependent parameters into the implicit constant in the final inequality. As a conse-
quence, we have

∥∥εhp∥∥0
.
∥∥εhL, εhu, εhb , εIb∥∥0

+ h
1
2Eh. Then the conclusion follows from

the triangle inequality and the estimates of
∥∥εhL, εhu, εhb , εIb∥∥0

and Eh.
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For an analogous result for
∥∥εhr∥∥0

, we make use of the following Lemma.

Lemma 4.8. There exists some
[
ϑ ∈ H1(Ω)

]d
such that ∇ · ϑ = εhr , n × ϑ = 0

on ∂Ω, and ‖ϑ‖1 .
∥∥εhr∥∥0

.

Proof. Let εhr be the mean-value of εhr in Ω and 1Ω be the indicator function on

Ω. It is well known that there exists ϑ0 in
[
H1

0 (Ω)
]d

such that ∇ · ϑ0 = εhr − εhr1Ω,

‖ϑ0‖1 . ‖εhr − εhr1Ω‖0. Since Ω is a bounded domain with polyhedral boundary, ∂Ω
consists of finitely many piecewise smooth (d− 1)-dimensional components, so there
exists a nonnegative smooth function φ0 6= 0 on ∂Ω supported on the interior of the
smooth components. Let φ be the renormalized function of φ0 satisfying

∫
∂Ω
φ =

εhr |Ω|. Then φn ∈ [H1/2(∂Ω)]d holds because φ is a smooth function on ∂Ω, and
there is Φ ∈ [H1(Ω)]d such that Φ|∂Ω = φn and (cf. [24, Theorem II.4.3])

‖Φ‖1 . ‖φn‖H1/2(∂Ω) . ‖φ0n‖H1/2(∂Ω) ‖εhr1Ω‖0.

According to a result in [24, p.176], there exists ϑ1 in
[
H1(Ω)

]d
such that ∇ · ϑ1 =

εhr1Ω, ϑ1 = φn on ∂Ω, and also satisfies

‖ϑ1‖1 . ‖εhr1Ω‖0 + ‖∇ · Φ‖0 . ‖εhr1Ω‖0 + ‖Φ‖1 . ‖εhr1Ω‖0.

The conclusion follows by taking ϑ = ϑ0 + ϑ1.

Theorem 4.9. There holds:

‖r − rh‖0 .
∥∥εhJ , εIu, εhu∥∥0

+ h
1
2Eh . hk+ 1

2 ‖L,J ,u, b, r, p‖k+1 , k ≥ 0.

Proof. First choose a function ϑ that satisfies the statements of Lemma 4.8, and
consider ∥∥εhr∥∥2

0
=
(
εhr ,∇ · ϑ

)
=
(
εhr ,∇ · Π̃ϑ

)
+
〈
εhrn,ϑ− Π̃ϑ

〉
.

From (4.4e) with c = Π̃ϑ, we have(
εhr ,∇ · Π̃ϑ

)
=
(
εhJ ,∇× Π̃ϑ

)
− κ

(
εhu,d×

(
∇× Π̃ϑ

))
+

〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α3

(
εbt − ε

b̂
t

)
, Π̃ϑ

〉
− κ

(
εIu,d×

(
∇× Π̃ϑ

))
.

If we use this to the previous identity, and also use the flux condition (4.6b) with Peϑ
as the test function, we have∥∥εhr∥∥2

0
=
(
εhJ ,∇× Π̃ϑ

)
− κ

(
εhu,d×

(
∇× Π̃ϑ

))
+

〈
n× εJ + εr̂n−

1

2
κn× ((εu + εû)× d) + α3

(
εbt − ε

b̂
t

)
, Π̃ϑ− Peϑ

〉
− κ

(
εIu,d×

(
∇× Π̃ϑ

))
+
〈
εhrn,ϑ− Π̃ϑ

〉
where the surface integrals on the domain boundary are zero due to the fact that
n× ϑ = 0 on ∂Ω and (4.6f). Note that〈

εIr̂n, Π̃ϑ− Peϑ
〉

= 0,
〈
εhr̂n, Π̃ϑ− Peϑ

〉
=
〈
εIr̂n, Π̃ϑ− ϑ

〉
.
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With these identities and (4.6b) we have∥∥εhr∥∥2

0
=
(
εhJ ,∇× Π̃ϑ

)
− κ

(
εhu,d×

(
∇× Π̃ϑ

))
+

〈
n× εhJ −

1

2
κn×

((
εhu + εhû

)
× d

)
+ α3(εhbt − εh

b̂
t), Π̃ϑ− Peϑ

〉
− κ

(
εIu,d×

(
∇× Π̃ϑ

))
+
〈

(εhr − εhr̂ )n,ϑ− Π̃ϑ
〉

By the triangle, Hölder, and trace inequalities,∥∥εhr∥∥2

0
.
∥∥εhJ∥∥0

∥∥∥∇Π̃ϑ
∥∥∥

0
+ κ

∥∥εhu∥∥0
‖d‖L∞

∥∥∥∇Π̃ϑ
∥∥∥

0
+
∥∥εIu∥∥0

‖ϑ‖1

+

(
h−

1
2

∥∥εhJ , εhu∥∥0
+
∥∥∥εhu − εhû, εhbt − εh

b̂
t , εhr − εhr̂

∥∥∥
0,Eh

)
h

1
2 ‖ϑ‖1 .

Since
∥∥∥∇Π̃ϑ

∥∥∥
0
. ‖ϑ‖1 and ‖ϑ‖1 .

∥∥εhr∥∥0
, we have∥∥εhr∥∥0

.
∥∥εhJ , εIu, εhu∥∥0

+ h
1
2Eh.

The conclusion follows from the triangle inequality and the estimates of
∥∥εhJ , εIu, εhu∥∥0

and Eh.

5. Numerical Results. In this section we apply the proposed HDG scheme for
2D MHD problems. The application for large-scale 3D problems is ongoing and will
be presented elsewhere. The first problem we consider is the Hartmann flow whose
analytical solution exists and is one dimensional in nature. The second problem is
posed on a non-convex domain to demonstrate the approximation capability of our
proposed HDG scheme though the non-convexity is not covered by our theory. To
further challenge the proposed HDG approach, we will consider a singular problem as
the third example.

Before presenting the results for each example, we make some general observations
to differentiate the proposed HDG scheme from the DG method of [32]. First, recalling
the primary motivation of HDG schemes, we have a reduced global system to solve
for, which offers computational savings, especially for high-order solution of large-
scale problems. Second, the HDG scheme allows the convenience of equal polynomial
order approximations of all unknowns with direct approximations of ∇u and ∇× b.
On the other hand, the DG method of [32] employs polynomials of order k − 1 and
k+ 1 for ph and rh, respectively, where k is the order of approximation of uh and bh,
and ∇u, ∇× b are approximated by the derivatives of uh and bh. These differences
make a direct comparison of the two methods difficult. The DG scheme is proven to
be optimal (converging with O(hk)) in the DG energy norms for sufficiently smooth
solutions. By the definitions of these norms in [32], uh, ∇uh, bh, and ∇ × bh are
proven to converge at worst with O(hk) in the L2 norm. Optimal L2 convergence
of O(hk+1) for uh and bh is not proven in [32], but is demonstrated in all numerical
examples with smooth solutions. On the other hand, the HDG scheme is proven
to be L2 optimal (O(hk+1)) for uh and bh and quasi-optimal (O(hk+ 1

2 )) for the
remaining local quantities. These rates are demonstrated (and sometimes exceeded)
in the numerical examples involving smooth solutions. For the numerical example
involving a singular solution, the HDG scheme gives similar L2 error magnitudes and
convergence rates as in the DG scheme for uh and bh for the same polynomial order
k.
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We note that the numerical solutions uh and bh in the numerical results be-
low satisfy the divergence-free constraint in the weak sense. However, the pointwise
divergence-free constraint can be fulfilled by a post-processing procedure outlined in
Appendix D, which shows that convergence rates of the post-processed solutions to
the exact solutions are as good as those of uh and bh. For that reason, we do not use
the post-processed solution in the error computation.

5.1. Hartmann Flow. In this numerical study, we consider a conducting incom-
pressible fluid (liquid metal, for example) in a domain [−∞,∞]× [−l0, l0]× [−∞,∞]
(bounded by infinite parallel plates in the x2 direction [32, 49]). The fluid is subject
to a uniform pressure gradient G := − ∂p

∂x1
in the x1 direction, and a uniform exter-

nal magnetic field b0 in the x2 direction. If we consider no-slip boundary conditions
on the x2 boundaries, the resulting flow pattern is known as Hartmann flow which
admits an analytical solution which is one dimensional in nature. We assume that
the infinite parallel plates are perfectly insulating. Here, we consider the Hartmann
flow in a 2D domain Ω = [0, 0.025] × [−1, 1]. If we define the characteristic veloc-
ity as u0 :=

√
Gl0/ρ, and consider the driving pressure gradient G as a forcing term

(incorporated in g), the non-dimensionalized solution with g = (1, 0), f = (0, 0) reads

u =

(
Re

Ha tanh(Ha)

[
1− cosh(Hax2)

cosh(Ha)

]
, 0

)
, p = − 1

2κ

[
sinh(Hax2)

sinh(Ha)
− x2

]2

− p0,

b =

(
1

κ

[
sinh(Hax2)

sinh(Ha)
− x2

]
, 1

)
, r = 0,

where Ha := κReRm, and p0 is a constant that enables p to satisfy the zero average
pressure condition (3.5). We set w = u and d = b, and we enforce the boundary
conditions on ∂Ω using the exact solution, i.e., uD = u, hD = bt, and rD = 0.

At refinement level l, the domain is divided into l × 80l squares, each of which
is divided into two triangles from top right to bottom left. In Figure 5.1 are the
convergence plots with Re = Rm = 7.07 and κ = 200. The convergence rates for Lh,
uh, ph, Jh, bh, and rh are observed to be approximately k + 1

2 , k + 1, k + 1
2 , k + 1,

k + 1, and k + 1, respectively. These observed rates approximately match or exceed
their respective theoretical rates of k+ 1

2 , k+ 1, k+ 1
2 , k+ 1

2 , k+ 1, and k+ 1
2 which

were proven in Section 4.

5.2. Non-convex Domain. This example illustrates the convergence of the
HDG scheme applied to a problem posed on the non-convex domain Ω = (−1, 1) ×
(−1, 1) \ [0, 1) × (−1, 0] in Figure 5.2 (similar to Section 5.1.1 in [32]). We take
Re = Rm = κ = 1, w = (2, 1), and d = (x1,−x2). We set g and f such that the
manufactured solution for (3.1) is the following

u = (− [x2 cos(x2) + sin(x2)] ex1 , x2 sin(x2)ex1) , p = 2ex1 sin(x2)− p0,

b = (− [x2 cos(x2) + sin(x2)] ex1 , x2 sin(x2)ex1) , r = − sin(πx1) sin(πx2),

where p0 is the constant that enables p to satisfy the zero average pressure condition
(3.5). We use the exact solution to enforce the boundary conditions ∂Ω, i.e., uD = u,
hD = bt, and rD = r.

At refinement level l, each quadrant of the domain (see Figure 5.2 for an example
with l = 4) is subdivided into l× l squares, each of which is divided into two triangles
from top right to bottom left. In Figure 5.3 are the convergence plots. For this
problem, we observe the optimal convergence rates of k+1 for all of the local variables,
which matches or exceeds the rates proven in Section 4.
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Fig. 5.1. Hartmann flow problem: L2 convergence plots for Lh, uh, ph, Jh, bh, and rh.

Fig. 5.2. Geometry of the non-convex domain with a mesh at refinement level l = 4.
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Fig. 5.3. Non-convex domain (L-shaped) problem: L2 convergence plots for Lh, uh, ph, Jh,
bh, and rh.

5.3. Singular Solution. Although we do not discuss the implications of singular
solutions on the theoretical convergence rates of the HDG scheme, applying the scheme
to such a problem is instructive in assessing its robustness. This example illustrates
the convergence of the HDG scheme using a manufactured solution with a singularity
(similar to the example in Section 5.2 of [32]). In particular, we consider the same
non-convex domain and mesh refinement as in the previous example (see Figure 5.2).
We take Re = Rm = κ = 1, w = 0, and d = (−1, 1). We choose g and f such that
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the analytical solution of (3.1) has the form

u =

(
ρλ [(1 + λ) sin(φ)ψ(φ) + cos(φ)ψ′(φ)] ,
ρλ [−(1 + λ) cos(φ)ψ(φ) + sin(φ)ψ′(φ)]

)
, b = ∇

(
ρ2/3 sin

(
2φ

3

))
,

p = −ρλ−1 (1 + λ)2ψ′(φ) + ψ′′′(φ)

1− λ
, r = 0,

where

ψ(φ) = cos(λw)

[
sin((1 + λ)φ)

1 + λ
− sin((1− λ)φ)

1− λ

]
− cos((1 + λ)φ) + cos((1− λ)φ),

w =
3π

2
, λ ≈ 0.54448373678246.

On ∂Ω we use the exact solution to set the boundary condition, i.e., uD = u, hD = bt,

and rD = r. For this problem, it is known that u ∈
[
H1+λ(Ω)

]2
, p ∈ Hλ(Ω),

and b ∈
[
H2/3(Ω)

]2
, and that the solution contains magnetic and hydrodynamic

singularities that are among the strongest singularities [32].
Convergence results for this problem are shown in Figure 5.4. For the fluid vari-

ables Lh, uh, and ph, we observe convergence rates of approximately λ, 2λ, and λ,
respectively. For the magnetic variables Jh, bh, and rh, we observe convergence rates
of approximately 1/2, 2/3, and 1/3, respectively.

5.4. 3D numerical experiments on cubical meshes. We show numerical
results for a three dimensional problem with our HDG method adapted to hexahedral
meshes with tensor product polynomial spaces. Our theoretical analysis is only on
the method on tetrahedral meshes, so it does not support this method on cubical
meshes. Nonetheless we present this numerical result here in order to demonstrate
that the HDG method can be applied to 3D problems and can be implemented using
hexahedral meshes.

We set Ω = [0, 1]3, w = (1, 2,−4), d = (−3, 1, 5), and set the forcing functions
and boundary conditions to solve for the manufactured solution

u = b =

 sin(2πx1) sin(2πx2) sin(2πx3),
sin(2πx1) cos(2πx2) cos(2πx3),

cos(2π(x1 − x3)) sin(2πx2)

 ,

p = e(x1− 1
2 )

2
+(x2− 1

2 )
2
+(x3− 1

2 )
2

− π 3
2 erf

(
1

2

)3

, r = 0,

with Dirichlet boundary conditions applied on ∂Ω for u, r, and the tangential com-
ponents of b.

Convergence rates of L2-errors with respect to uniform mesh refinements are given
in Figure 5.5. The convergence rates of p and r are optimal with order k+ 1, and the
convergence rate of u is suboptimal with k + 1

2 . On the contrary, the errors of L, J ,
b seem to have slightly lower convergence rates between k and k + 1

2 .

6. Conclusions and future work. In this paper we have constructed an HDG
method for a linearization of the incompressible resistive magnetohydrodynamics
equations. We have carried out the a priori error analysis using elaborate interpola-
tion operators, a duality argument with elliptic regularity assumptions, and an energy
approach. Specifically, this allows us to prove optimal convergence for the velocity
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Fig. 5.4. Singular solution problem: L2 convergence.

variable, u, and the magnetic field variable, b, and quasi-optimal convergence for the
remaining quantities L, p, J , and r. Numerical performances of the method are tested
on three examples: the Hartmann flow, a manufactured solution over a non-convex
domain, and singular solution on a non-convex domain. The numerical results show
that the theoretical convergence rates of all the unknowns are obtained for smooth
solutions even when the elliptic regularity assumption of domain fails to hold. Ongo-
ing work includes 3D computation on parallel computers for large-scale problems and
extensions of our HDG method to nonlinear time-dependent magnetohydrodynamics



32 J. LEE, S. SHANNON, T. BUI-THANH, AND J. N. SHADID

Fig. 5.5. 3D problem with hexahedral mesh: L2 convergence.

equations.

Appendix A. Auxiliary results. In this appendix we collect some technical
results that are useful for our analysis.

Lemma A.1 (Inverse Inequality. [44, Lemma 1.44]). For v ∈ Pk(K) with K ∈
Ωh, there exists C > 0 independent of h such that

‖∇v‖0,K ≤ Ch
−1
K ‖v‖0,K .

Lemma A.2 (Trace inequality. [44, Lemma 1.49]). For v ∈ H1(Ωh) and for
K ∈ Ωh with e ⊂ ∂K, there exists C > 0 independent of h such that

‖v‖20,e ≤ C
(
‖∇v‖0,K + h−1

K ‖v‖0,K
)
‖v‖0,K .
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Applying the arithmetic-geometric mean inequality to the right side, we can derive

‖v‖0,e .
(
h

1
2

k ‖∇v‖0,K + h
− 1

2

K ‖v‖0,K
)
.(A.1)

If v ∈ H1(Ωh) is in piecewise polynomial spaces, we can derive the following inequality
from Lemma A.2 and the inverse inequality (Lemma A.1):

‖v‖0,e . h
− 1

2

K ‖v‖0,K .(A.2)

Lemma A.3. Suppose that Π : H1(K)→ Pk(K) is a bounded interpolation which
is a projection on Pk(K). Then

‖∇Πv‖0,K . ‖v‖1,K .

Proof. For any constant c, ∇Πv = ∇ (Πv − c), so

‖∇Πv‖0,K = ‖∇(Πv − c)‖0,K
. h−1 ‖Πv − c‖0,K . h−1

(
‖Πv − v‖0,K + ‖v − c‖0,K

)
. ‖v‖1,K ,

where we have used the Poincaré inequality and the approximation property of Π in
the last inequality.

Appendix B. Definition of projections and their properties. In this
section we use Pk, Pk, P̃k for spaces of scalar, d-dimensional vector, d × d matrix-

valued polynomials. By P⊥k , P⊥k , P̃⊥k we denote the spaces of polynomials of order
at most k orthogonal to all polynomials of order at most (k − 1). Pt

k(e) contains the
tangential component of all polynomials in Pk(e). We desire to have error equations
conform to the original equations to facilitate the error analysis. To begin, we define

a collective interpolation operator Π
(
L,u, p,J , b, r, û, b̂

t
, r̂
)

implicitly through the

interpolation errors εIu = u−Πu, εIb = b−Πb, etc, where Πu, Πb, etc, are components
of the collective interpolator Π on u, b, etc. Specifically:

• L2 projections on e ∈ Eh or on K ∈ Ωh are defined as:〈
εIr̂ , γ

〉
e

= 0, γ ∈ Pk (e) ,(B.1a) 〈
εIû,µ

〉
e

= 0, µ ∈ Pk (e),(B.1b) 〈
εI
b̂
t ,λ

t
〉
e

= 0, λt ∈ Pt
k (e),(B.1c) (

εIJ ,H
)
K

= 0, H ∈ [Pk (K)]
d̃
,(B.1d) (

εIp, q
)
K

= 0, q ∈ Pk (K) .(B.1e)

• On each K ∈ Ωh and e ∈ Eh, e ⊂ ∂K, Πb and Πr are defined as

(εIb, c)K = 0, c ∈ Pk−1(K),(B.1f)

(εIr , s)K = 0, s ∈ Pk−1(K),(B.1g) 〈
εIb · n+ α3ε

I
r , γ
〉
e

= 0, γ ∈ Pk(e).(B.1h)
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• On each K ∈ Ωh and e ∈ Eh, e ⊂ ∂K, ΠL and Πu are defined as

−
(
εIL,G

)
K

+
(
εIu ⊗w,G

)
K

= 0, G ∈ P̃k−1 (K),(B.1i) (
εIu,v

)
K

= 0, v ∈ Pk−1 (K),(B.1j) 〈
−εILn+ (m+ α1) εIu,µ

〉
e

(B.1k)

= −〈εIpn+
1

2
κd× (n×(εIbt + εI

b̂
t)),µ〉e, µ ∈ Pk (e).

The well-definedness and optimality of the L2-projections are clear. The coupled
projector Π (b, r) := (Πb,Πr) has been studied in [15], and in particular we have

‖εIb‖0,K . hk+1 ‖b‖k+1,K + α3h
k+1 ‖r‖k+1,K ,(B.2a)

‖εIr‖0,K . α−1
3 hk+1 ‖∇ · b‖k,K + hk+1 ‖r‖k+1,K ,(B.2b)

where, again, for simplicity we choose the same solution order k for all the unknowns.

Here, we assume that b and r are sufficiently smooth, that is, b ∈
[
Hk+1 (Ω)

]d
and

r ∈ Hk+1 (Ω).
To understand the approximation capability of the coupled projector Π (L,u) :=

(ΠL,Πu) we need to recall a result in [15, Lemma A.1].

Lemma B.1. Suppose that w ∈ P⊥k (K). Then, for any e ⊂ ∂K, the map w 7→
w|e ∈ Pk(e) is an isomorphism and ‖w‖20,K ∼ hK‖w‖20,e holds with a constant inde-
pendent of hK .

Lemma B.2 (Estimation for εIu). Suppose u ∈
[
Hk+1 (Ω)

]d
, L ∈

[
Hk+1 (Ω)

]d×d
,

r ∈ Hk+1 (Ω), b ∈
[
Hk+1 (Ω)

]d
, and p ∈ Hk+1 (Ω). The projection Πu is well-defined

and optimal, i.e.,

‖εIu‖0 . C(α1,w)[(α1 + ‖w‖L∞ + h ‖w‖W 1,∞)hk+1‖u‖k+1

+ hk+1‖∇ ·L−∇p‖k + κhk+1‖d‖L∞ (‖b‖k+1 + α3‖r‖k+1)]

where C(α1,w) = 1/(α1 − 1
2 ‖w‖L∞).

Proof. We extend the proof of a result in [8]. To begin, we define g := − 1
2κd ×(

n×
(
εIbt + εI

b̂
t

))
, take µ = v|∂K for some v ∈ P⊥k (K) which will be determined

later, and rewrite (B.1k) as〈
(α1 +m) εIu,v

〉
∂K

=
〈
εILn− εIpn+ g,v

〉
∂K

=
(
∇ · εIL,v

)
K

+
(
εIL,∇v

)
K
−
(
∇εIp,v

)
K
−
(
εIp,∇ · v

)
K

+ 〈g,v〉∂K(B.3)

= (∇ ·L−∇p,v)K +
(
εIu ⊗w,∇v

)
K

+ 〈g,v〉∂K
where we have used the integration by parts in the second equality, definitions of
the projections ΠL, Πu, and Πp, the orthogonality between ∇ · (ΠL) ,∇ (Πp) and
v ∈ P⊥k (K), and the orthogonality εIp ⊥ ∇ · v in the last equality. Now, let Pku
be the L2 projection of u and define δIu := u − Pku. By the triangle inequality, it
suffices to estimate the approximation capability of δu := Pku−Πu. From the above
formula, we have

〈(α1 +m) δu,v〉∂K − (δu ⊗w,∇v)K

= −
〈
(α1 +m) δIu,v

〉
∂K

+
(
δIu ⊗w,∇v

)
K︸ ︷︷ ︸

=:Fu(v)

+ (∇ ·L−∇p,v)K︸ ︷︷ ︸
=:FL(v)

+ 〈g,v〉∂K︸ ︷︷ ︸
=:Fg(v)

.
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Since δu ∈ P⊥k (K), we can take v = δu to obtain〈(
α1 +

m

2

)
δu, δu

〉
∂K

= Fu(δu) + FL(δu) + Fg(δu)

where we have used ∇ ·w = 0 in the integration by parts

− (δu ⊗w,∇δu)K = −1

2
(w,∇ (δu · δu))K

=
1

2
((∇ ·w)δu, δu)K −

1

2
〈w · nδu, δu〉∂K = −

〈m
2
δu, δu

〉
∂K

.

By Lemma B.1 and the fact that α1 >
1
2 ‖w‖L∞ , we have

‖δu‖20,K . hK ‖δu‖20,∂K .
hK

α1 − 1
2 ‖w‖L∞(K)

〈(
α1 +

m

2

)
δu, δu

〉
∂K

(B.4)

=
hK

α1 − 1
2 ‖w‖L∞(K)

(Fu(δu) + FL(δu) + Fg(δu)) .

We now estimate |Fu(δu)|. Defining δw = w−P0w, note that (δIu⊗w,∇δu)K =
(δIu ⊗ δw,∇δu)K holds due to the definition of δIu. Thus, we have

|Fu(δu)| =
∣∣〈(m+ α1)δIu, δu

〉
∂K

+
(
δIu ⊗ δw,∇δu

)
K

∣∣
. (‖w‖L∞(∂K) + α1)h−1

K

(
‖δIu‖0,K + hK‖∇δIu‖0,K

)
‖δu‖0,K

+ ‖δIu‖0,K‖w‖W 1,∞(K)‖δu‖0,K

where we have used ‖δw‖L∞(K) . hK‖w‖W 1,∞(K), the inverse inequality, and the
continuous and discrete trace inequalies ((A.1) and (A.2), respectively) in the last
step. Taking the approximation capability of Pku into account, we get

|Fu(δu)| .
(
α1 + ‖w‖L∞(∂K) + hK‖w‖W 1,∞(K)

)
hkK‖u‖k+1,K ‖δu‖0,K .(B.5)

The estimate of |FL(δu)| is straightforward since δu ∈ P⊥k (K):

|FL(δu)| ≤ ‖∇ ·L−∇p− Pk−1(∇ ·L−∇p)‖0,K‖δu‖0,K(B.6)

. hkK‖∇ ·L−∇p‖k,K‖δu‖0,K .

For the estimate of |Fg(δu)|, note that∥∥∇εIb∥∥0,K
≤ ‖∇ (b− Pkb)‖0,K + ‖∇ (Pkb−Πb)‖0,K(B.7)

. ‖b− Pkb‖1,K + h−1
K ‖Pkb−Πb‖0,K

. ‖b− Pkb‖1,K + h−1
K ‖Pkb− b‖0,K + h−1

K ‖b−Πb‖0,K
. hkK ‖b‖k+1,K + h−1

K

∥∥εIb∥∥0,K
.

Using the definition of Π∗b̂
t

as the L2-projection, the continuous and discrete trace
inequalies ((A.1) and (A.2), respectively), the above estimate of

∥∥∇εIb∥∥0,K
(B.7), and
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finally the estimate of
∥∥εIb∥∥0,K

in (B.2a), we have

|Fg(δu)| . κ ‖d‖L∞(∂K)

(∥∥εIbt

∥∥
0,∂K

+
∥∥∥εI

b̂
t

∥∥∥
0,∂K

)
‖δu‖0,∂K(B.8)

. κ ‖d‖L∞(∂K)

∥∥εIbt

∥∥
0,∂K

‖δu‖0,∂K
. κ ‖d‖L∞(∂K)

(
h−1
K ‖ε

I
b‖0,K + ‖∇εIb‖0,K

)
‖δu‖0,K

. κ ‖d‖L∞(∂K)

(
h−1
K ‖ε

I
b‖0,K + hkK ‖b‖k+1,K

)
‖δu‖0,K

. κ ‖d‖L∞(∂K) h
k
K

(
‖b‖k+1,K + α3 ‖r‖k+1,K

)
‖δu‖0,K .

Using (B.5), (B.6), and (B.8) in (B.4), and using the triangle inequality ‖εIu‖0,K .
‖u− Pku‖0,K + ‖δu‖0,K ends the proof.

To estimate ‖εIL‖0,K , we need some auxiliary results. We first recall a result with
a sketch of its proof.

Lemma B.3. Let eK be a fixed face of the simplex K. For R ∈ [L2(K)]d and
g ∈ L2(∂K), we define Π(R, g) ∈ Pk(K) as

(Π(R, g), τ )K = (R, τ )K , ∀τ ∈ Pk−1(K),

〈Π(R, g) · n, µ〉e = 〈g, µ〉e , ∀µ ∈ Pk(e) for e 6= eK .

Then, ‖Π(R, g)‖K . ‖R‖K + h
1/2
K ‖g‖∂K .

Proof. We refer to [11] for the existence and uniqueness of Π(R, g). Let σ1 =
Π(R, 0) and σ2 = Π(0, g). By the standard scaling argument,

‖σ1‖0,K . ‖Pk−1σ1‖0,K ≤ ‖R‖0,K .

To estimate σ2, note that there exists ae ∈ R, e 6= eK such that (1 0 0)T =∑
e,e 6=eK aene, and the first component of σ2, say σ1

2, is

σ1
2 =

∑
e,e 6=eK

ae(σ2 · ne).

Since σ2 · ne ⊥ Pk−1(K) by the definition of σ2, ‖σ2 · ne‖0,K . h
1/2
K ‖σ2 · ne‖0,e .

h
1/2
K ‖g‖0,e by Lemma B.1. The estimate ‖σ2‖0,K . h

1/2
K ‖g‖0,∂K follows easily by

using this inequality to each component of σ2.

We now recall other known facts without proofs (cf. Lemma 4.8 in [14]).

Lemma B.4. For a face e of K, let Be be an orthogonal basis of the vectors or-
thogonal to ne, and let B = {Id} ∪ {t⊗ ne, t ∈ Be}. This B is a basis of the space of
d× d matrices.

Lemma B.5 (Estimation for εIL). Assume u ∈
[
Hk+1 (Ω)

]d
, L ∈

[
Hk+1 (Ω)

]d×d
,

r ∈ Hk+1 (Ω) , b ∈
[
Hk+1 (Ω)

]d
, and p ∈ Hk+1 (Ω). Furthermore, suppose the trace

of the tensor L vanishes, i.e., trL = 0. There holds:∥∥εIL∥∥0
. hk+1 ‖p‖k+1 + hk+1 ‖L‖k+1 + κ ‖d‖L∞

(
hk+1 ‖b‖k+1 + α3h

k+1 ‖r‖k+1

)
+ (α1 + ‖w‖L∞ + h ‖w‖W 1,∞)

∥∥εIu∥∥0
+ (α1 + ‖w‖L∞)hk+1 ‖u‖k+1 .



AN HDG METHOD FOR MHD 37

Proof. We proceed in a manner similar to [8, Theorem 2.3] with adaptations
corresponding to our more complicated projectors Π (L,u).

The dual basis of B (see Lemma B.4) can be written as

B∗ =

{
1

d
Id
}
∪ {We,t : e ⊂ ∂K, t ∈ Be} ,

where We,t : (t ⊗ ne) = 1 for the e and t corresponding to the subscripts of W , and
0 otherwise. Any d× d matrix, A, can be written as

A =
∑
e

∑
t∈Be

(A : (t⊗ ne))We,t +
trA

d
Id =

∑
e

∑
t∈Be

(Ane · t)We,t +
trA

d
Id,

so

εIL =
∑
e

∑
t∈Be

(εILne · t)We,t +
tr εIL
d

Id.(B.9)

Since We,t is an element of B∗ independent of mesh size, this identity reduces the
estimate of ‖εIL‖0,K to the estimates of ‖εILne · t‖0,K with t ∈ Be and ‖ tr εIL‖0,K .

We first estimate ‖εILn · t‖0,K with n = ne for some e. Let eK be a fixed face of

K and define Π1L,Π2L ∈ P̃1(K) as

(Π1L,G)K = (L,G)K , ∀G ∈ P̃k−1(K),(B.10a)

〈Π1Ln,µ〉e = 〈Ln,µ〉e , ∀µ ∈ Pk(e), e 6= eK .(B.10b)

and

(Π2L,G)K = (L,G)K −
(
εIu ⊗ δw,G

)
K
, ∀G ∈ P̃k−1(K),(B.11a)

〈Π2Ln,µ〉e = 〈Ln,µ〉e , ∀µ ∈ Pk(e), e 6= eK .(B.11b)

The existence and uniqueness of Π1L and Π2L follow from Lemma B.3. By the
triangle inequality,

(B.12) ‖εILn · t‖0,K
≤ ‖Ln · t−Π1Ln · t‖0,K + ‖(Π1 −Π2)Ln · t‖0,K + ‖(Π2 −Π)Ln · t‖0,K .

Again by the triangle inequality, we bound the first term in (B.12) as

‖Ln · t−Π1Ln · t‖0,K ≤ ‖L−Π1L‖0,K(B.13)

≤
∥∥L−ΠRTNL

∥∥
0,K

+
∥∥ΠRTNL−Π1L

∥∥
0,K

where ΠRTN is the row-wise canonical Raviart-Thomas-Nédélec (RTN) interpolation
operator into the row-wise (k + 1)-th order RTN element, which contains P̃k(K) for
all K ∈ Ωh. From [11, Proposition 2.1 (vi)], we have that

∥∥ΠRTNL−Π1L
∥∥

0,K
.

hk+1
K ‖Pk∇ ·L‖k, and from a well known property of the canonical RTN interpolation

operator we have that
∥∥L−ΠRTNL

∥∥
0,K

. hk+1
K ‖L‖k+1. Therefore, for the first term

of (B.12) we have

‖L−Π1L‖0,K . hk+1
K ‖L‖k+1,K .
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Note that ΠRTNL is not necessarily in P̃k(Ωh) but the above argument does not
require ΠRTNL ∈ P̃k(Ωh).

For the estimate of the second term in (B.12), note that the definitions of Π1 and
Π2 give

(Π1L−Π2L,G)K =
(
εIu ⊗ δw,G

)
K
, ∀G ∈ P̃k−1(K),(B.14a)

〈Π1Ln−Π2Ln,µ〉e = 0, ∀µ ∈ Pk(e), e 6= eK .(B.14b)

By Lemma B.3, we can estimate the second term in (B.12) as

‖(Π1 −Π2)Ln · t‖0,K ≤ ‖Π1L−Π2L‖0,K . ‖εIu ⊗ δw‖0,K(B.15)

. hK‖εIu‖0,K‖w‖W 1,∞(K).

For the estimate of the third term in (B.12), recalling (B.1i), (B.1j), and (B.11a),
we derive (Π2L−ΠL,G)K = 0 for all G ∈ P̃k−1(K). Selecting G = (t⊗ n) q with
q ∈ Pk−1(K), we have that (Π2 −Π)Ln · t ∈ P⊥k (K), and by Lemma B.1,

‖(Π2 −Π)Ln · t‖0,K . h
1
2

K ‖(Π2 −Π)Ln · t‖0,e
for any e of ∂K. From (B.1k) and (B.11b), we have, for e 6= eK

〈(Π2 −Π))Ln,µ〉e =
〈
(m+ α1)εIu + εIpn− g,µ

〉
e
∀µ ∈ Pk(e),

with g := − 1
2κd×

(
n×

(
εIbt + εI

b̂
t

))
. Choosing µ = [(Π2 −Π)Ln · t] t and applying

the Cauchy-Schwarz inequality to the above expression, we have

‖(Π2 −Π)Ln · t‖0,e .
∥∥(m+ α1)εIu − g

∥∥
0,e

.
(
α1 + ‖w‖L∞(K)

)∥∥εIu∥∥0,e
+ κ ‖d‖L∞(K)

∥∥εIb∥∥0,e

.
(
α1 + ‖w‖L∞(K)

)(
h
− 1

2

K

∥∥εIu∥∥0,K
+ h

1
2

K

∥∥∇εIu∥∥0,K

)
+ κ ‖d‖L∞(K)

(
h
− 1

2

K

∥∥εIb∥∥0,K
+ h

1
2

K

∥∥∇εIb∥∥0,K

)
.
(
α1 + ‖w‖L∞(K)

)(
h
− 1

2

K

∥∥εIu∥∥0,K
+ h

k+ 1
2

K ‖u‖k+1,K

)
+ κ ‖d‖L∞(K)

(
h
− 1

2

K

∥∥εIb∥∥0,K
+ h

k+ 1
2

K ‖b‖k+1,K

)
,

where we have used the fact that
∥∥∥εI

b̂
t

∥∥∥
0,e
≤
∥∥εIbt

∥∥
0,e

, the continuous trace inequality

(A.1), the bound on
∥∥∇εIb∥∥0,K

given by (B.7), and a similar bound for
∥∥∇εIu∥∥0,K

given by ∥∥∇εIu∥∥0,K
. hkK ‖u‖k+1,K + h−1

K

∥∥εIu∥∥0,K
.(B.16)

Combining the previous expressions, we have

‖(Π2 −Π)Ln · t‖0,K .
(
α1 + ‖w‖L∞(K)

)(∥∥εIu∥∥0,K
+ hk+1

K ‖u‖k+1,K

)
+ κ ‖d‖L∞(K)

(∥∥εIb∥∥0,K
+ hk+1

K ‖b‖k+1,K

)
.
(
α1 + ‖w‖L∞(K)

)(∥∥εIu∥∥0,K
+ hk+1

K ‖u‖k+1,K

)
(B.17)

+ κ ‖d‖L∞(K)

(
hk+1
K ‖b‖k+1,K + α3h

k+1
K ‖r‖k+1,K

)
,
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where we have used (B.2a) in the final step, but for simplicity in writing have not
expanded

∥∥εIu∥∥0,K
. Thus, from the three estimates (B.13), (B.15), (B.17) with (B.12),

we have ∥∥εILn · t∥∥0,K
. hk+1

K ‖L‖k+1,K +
(
α1 + ‖w‖L∞(K)

)
hk+1
K ‖u‖k+1,K(B.18)

+
(
α1 + ‖w‖L∞(K) + hK ‖w‖W 1,∞(K)

)∥∥εIu∥∥0,K

+ κ ‖d‖L∞(K)

(
hk+1
K ‖b‖k+1,K + α3h

k+1
K ‖r‖k+1,K

)
.

To complete the estimate of ‖εIL‖0,K , we need to estimate ‖ tr εIL‖0,K . First, by
taking G = qI in (B.1i) with q ∈ Pk−1(K), we get(

tr εIL, q
)
K

=
(
tr(εIu ⊗ δw), q

)
K

=
(
Pk−1 tr(εIu ⊗ δw), q

)
K
, q ∈ Pk−1(K)(B.19)

where Pk−1 is the orthogonal L2 projection into Pk−1(K). For a fixed eK ⊂ ∂K,
taking µ = wneK with w ∈ P⊥k (K) in (B.1k) and using (B.9), we also get〈

tr εIL, w
〉
eK

= 〈ζ, w〉eK = 〈PeK ζ, w〉eK ,(B.20)

where ζ is a scalar function on K defined by

ζ := −

((∑
e

∑
t∈Be

(εILne · t)We,t

)
neK

)
· neK + εIp|eK + (α1 +m)εIu · neK − g · neK

and PeK is the orthogonal L2 projection into Pk(eK). We define ΠeK (f, g) ∈ Pk(K)
for f ∈ L2(K) and g ∈ L2(eK) as

(ΠeK (f, g), q)K = (f, q)K , ∀q ∈ Pk−1(K),

〈ΠeK (f, g), µ〉e = 〈g, µ〉e , ∀µ ∈ Pk(e), e = eK .

We refer to [11, Lemma 3.1] for well-posedness of this interpolation and optimal
approximation property. By an argument similar to Lemma B.3, we have

‖ΠeK (f, g)‖0,K . ‖f‖0,K + h
1
2

K ‖g‖0,eK .

For simplicity, we will use ΠeKf if g = f |eK .
Note that tr εIL is an element-wise polynomial because trL = 0, so tr εIL =

ΠeK tr εIL. From this, the identities (B.19) and (B.20), and the above inequalities
from scaling argument, we have

∥∥tr εIL
∥∥

0,K
=
∥∥ΠeK tr εIL

∥∥
0,K

.
∥∥Pk−1 tr(εIu ⊗ δw)

∥∥
0,K

+ h
1
2

K ‖PeK ζ‖0,eK .

The optimality of the orthogonal L2 projection and the inverse trace inequality give

h
1
2

K ‖PeK ζ‖0,eK ≤ h
1
2

K ‖Pkζ‖0,eK . ‖Pkζ‖0,K ≤ ‖ζ‖0,K ,
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and using this and the previous estimate, we can write∥∥tr εIL
∥∥

0,K
.
∥∥εIu ⊗ δw∥∥0,K

+ ‖ζ‖0,K
. hK ‖w‖W 1,∞(K)

∥∥εIu∥∥0,K
+ hk+1

K ‖p‖k+1,K

+
∑
e

∑
t∈Be

∥∥(εILne) · t
∥∥

0,K
+
∥∥(α1 +m)εIu − g

∥∥
0,K

. hk+1
K ‖p‖k+1,K + hk+1

K ‖L‖k+1,K +
(
α1 + ‖w‖L∞(K)

)
hk+1
K ‖u‖k+1,K

+ κ ‖d‖L∞(K)

(
hk+1
K ‖b‖k+1,K + α3h

k+1
K ‖r‖k+1,K

)
+
(
α1 + ‖w‖L∞(K) + hK ‖w‖W 1,∞(K)

)∥∥εIu∥∥0,K

and here we used previous results on
∥∥εILn∥∥0,K

and
∥∥(α1 +m)εIu − g

∥∥
0,K

in the final

inequality. We completed the estimate of ‖εIL‖0,K .

We now define the adjoint projection Π∗(L∗,u∗, p∗,J∗, b∗, r∗, û∗, (b̂
∗
)t, r̂∗). As

in the splitting of errors with Π, we define

εIσ∗ = σ∗ −Π∗σ∗

for an adjoint unknown σ∗. We first define Π∗J∗, Π∗p∗, Π∗û∗, Π∗(b̂
∗
)t, Π∗r̂∗ as L2

projections into relevant polynomials spaces, and define Π∗b∗, Π∗r∗ to satisfy

(εIb∗ , c)K = 0, ∀c ∈ Pk−1(K),(B.21a)

(εIr∗ , s)K = 0, ∀s ∈ Pk−1(K),(B.21b) 〈
−εIb∗ · n+ α3ε

I
r∗ , γ

〉
e

= 0, ∀γ ∈ Pk(e).(B.21c)

We then choose Π∗L∗, Π∗u∗ to satisfy

(εIL∗ ,G)K + (εIu∗ ⊗w,G)K = 0, ∀G ∈ P̃k−1(K),(B.22a)

(εIu∗ ,v)K = 0, ∀v ∈ Pk−1(K),(B.22b) 〈
−εIL∗n+ α1ε

I
u∗ ,µ

〉
e

= 〈g,µ〉e , ∀µ ∈ Pk(e)(B.22c)

where

g = εIp∗n−
1

2
κd×

(
n×

(
−(εIb∗)

t + εI
(b̂
∗
)t

))
.

Assuming that (L∗,u∗, p∗,J∗, b∗, r∗, û∗, (b̂
∗
)t, r̂∗) are sufficiently regular, we can

show that the interpolation Π∗ is well-defined and provides optimal approximations.
Due to the similarity between (Πb,Πr) and (Π∗b∗,Π∗r∗), we can conclude∥∥εIb∗∥∥0,K

. hk+1 ‖b∗‖k+1,K + α3h
k+1 ‖r∗‖k+1,K ,(B.23a) ∥∥εIr∗∥∥0,K

. α−1
3 hk+1 ‖∇ · b∗‖k,K + hk+1 ‖r∗‖k+1,K .(B.23b)

It can also be shown that

‖εIu∗‖0 . (α1 −
1

2
‖w‖L∞)−1

[
(α1 + h ‖w‖W 1,∞)hk+1‖u∗‖k+1

+hk+1‖∇ ·L∗ +∇p∗‖k + κhk+1‖d‖L∞ (‖b∗‖k+1 + α3‖r∗‖k+1)
]
,∥∥εIL∗∥∥0

. hk+1 ‖p∗‖k+1 + hk+1 ‖L∗‖k+1 + κhk+1 ‖d‖L∞
(
‖b∗‖k+1 + α3 ‖r∗‖k+1

)
+ (α1 + h ‖w‖W 1,∞)

∥∥εIu∗∥∥0
+ α1h

k+1 ‖u∗‖k+1 ,
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assuming trL∗ = 0. The proofs are analogous to those for the Π projections, with
the only differences resulting from the absence of m from (B.22c). As a consequence,
from the elliptic regularity assumption (4.13), we have

max
{∥∥εIL∗∥∥0

,
∥∥εIu∗∥∥0

,
∥∥εIp∗∥∥0

,
∥∥εIb∗∥∥0

,
∥∥εIr∗∥∥0

}
. h ‖σ,θ‖0(B.24)

and the implicit constant depends on d, w, α1, α2, α3 but not h.

Appendix C. Well-posedness and regularity of the adjoint problem.
In this section, we discuss the well-posedness of the adjoint equation (4.12) and

conditions under which the regularity result (4.13) holds. For the well-posedness of
(4.12) we can adapt the approach in [32]. In particular, since (4.12b) and (4.12e)
satisfy the following antisymmetry:

((w · ∇)u∗,u∗) = 0, −(κd× (∇× b∗),u∗) + (κ∇× (u∗ × d), b∗) = 0,

we can invoke a similar argument as in [32] to conclude

‖u∗‖1 + ‖p∗‖0 + ‖r∗‖1 + ‖b∗‖0 + ‖∇ × b∗‖0 . ‖θ,σ‖0 .(C.1)

because J∗ = ∇×b∗. We next assume that solutions of the Stokes and time-harmonic
Maxwell equations (with 0 frequency) satisfy higher order regularities, i.e., when
w = d = 0 in (4.12), the solution u∗, p∗, b∗ satisfy ‖u∗‖2 + ‖p∗‖1 . ‖σ‖0 and
‖b∗‖2 . ‖θ‖0. Sufficient conditions for these assumptions are known but the details
are beyond the scope of this paper, so we refer the readers to [21, 31, 38]. We now
assume that (u∗,L∗, p∗, b∗,J∗, r∗) is the solution of (4.12). From (4.12) and the
regularity assumptions of the Stokes and Maxwell equations, we have

‖u∗‖2 + ‖p∗‖1 . ‖(w · ∇)u∗ + κd× (∇× b∗) + θ‖0
. ‖w‖L∞ ‖u

∗‖1 + ‖d‖L∞ ‖∇ × b
∗‖0 + ‖θ‖0

. (‖w,d‖L∞ + 1) ‖θ,σ‖0 ,
‖b∗‖2 . ‖−κ∇× (u∗ × d) + σ‖

. ‖u∗‖1 ‖d‖L∞ + ‖u∗‖0 ‖d‖W 1,∞ + ‖σ‖0

. (‖d‖W 1,∞ + 1) ‖θ,σ‖0 .

The regularity of ‖r∗‖1 is already given in (C.1) and the regularity of ‖L∗‖0 and
‖J∗‖0 is obvious from the identities L∗ = ∇u∗ and J∗ = ∇× b∗.

Appendix D. Divergence-free post-processing of uh and bh.
In this appendix we adapt a postprocessing procedure in [14] to enforce the point-

wise solenoidal constraint on u and b. For simplicity the exposition is done only for
d = 3. For completeness, error estimates of the post-processed solutions will also be
derived. To begin, let λ0, λ1, λ2, λ3 be the barycentric coordinates of a tetrahedron
K, and BK be a symmetric matrix-valued bubble function defined by

BK =

3∑
i=0

λiλi+1λi+2 (∇λi+3 ⊗∇λi+3) ,

with the index i counted modulo 4. Let Nk be the space of R3-valued polynomials

Nk(K) = Pk−1(K)⊕N ′k(K),
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where N ′k(K) is the space of homogeneous R3-valued polynomials v of degree k such
that v · x = 0. We define Sk(K) by

Sk(K) = {v ∈ Nk(K) : (v,∇φ)K = 0 for all φ ∈ Pk(K)} .

We recall an alternative characterization of the interpolation of the Brezzi–Douglas–
Marini (BDM) element [14, Proposition A.1]:〈

(ΠBDMu− u) · n, µ
〉
e

= 0, µ ∈ Pk(e),(D.1a) (
ΠBDMu− u,∇w

)
K

= 0, w ∈ Pk−1(K),(D.1b) (
∇×

(
ΠBDMu− u

)
, (∇× v)BK

)
K

= 0, v ∈ Sk−1(K).(D.1c)

Our post-processed solution ūh|K ∈ Pk(K) is defined as

〈(ūh − ûh) · n, µ〉e = 0, µ ∈ Pk(e),(D.2a)

(ūh − uh,∇w)K = 0, w ∈ Pk−1(K),(D.2b) (
∇× ūh −Lskwh , (∇× v)BK

)
K

= 0, v ∈ Sk−1(K),(D.2c)

where Lskwh = (Lh,32 −Lh,23,Lh,13 −Lh,31,Lh,21 −Lh,12). In two dimensions, i.e.
d = 2, n × a, ∇ × u, and BK are replaced by n1a2 − n2a1, ∂1u2 − ∂2u1, and the
standard bubble function on K, respectively.

The post-processed solution ūh is in the BDM space, so its divergence is well-
defined. Further, it is divergence-free because, for any q ∈ Pk−1(Ωh),

(∇ · ūh, q) = 〈ūh · n, q〉 − (ūh,∇q) = 〈ûh · n, q〉 − (uh,∇q) = 0

where the last equality is due to (3.8c). For error analysis, it is enough to estimate
δu := ūh −ΠBDMu. Using ∇× u = Lskw together with (D.1) and (D.2) gives

〈δu · n, µ〉e = 〈εû · n〉e , µ ∈ Pk(e),(D.3a)

(δu,∇w)K = (u− uh,∇w)K , w ∈ Pk−1(K),(D.3b)

(∇× δu, (∇× v)BK)K =
(
(L−Lh)skw, (∇× v)BK

)
K
, v ∈ Sk−1(K).(D.3c)

Using a scaling argument yields

‖δu‖0,K .
(
h

1/2
K ‖εû‖0,e + ‖u− uh‖0,K + hK ‖L−Lh‖0,K

)
.

On the other hand, by the triangle inequality we have

‖u− ūh‖0 .
∥∥u−ΠBDMu

∥∥
0

+ h1/2 ‖εû‖∂Ωh
+ ‖u− uh‖0 + h ‖L−Lh‖0.

Thus, the convergence rates of ‖ūh − u‖0 and ‖uh − u‖0 are the same.
To post-process bh, we define b̄h|K ∈ Pk(K) as〈(

b̄h − bh − α2 (rh − r̂h)
)
· n, µ

〉
e

= 0, µ ∈ Pk(e),(D.4a) (
b̄h − bh,∇w

)
K

= 0, w ∈ Pk−1(K),(D.4b) (
∇× b̄h − Jh, (∇× v)BK

)
K

= 0, v ∈ Sk−1(K),(D.4c)

Then the divergence of b̄h is well-defined and ∇ · b̄h = 0 by (3.8f). By a completely
analogous argument as above and the fact J = ∇× b, we can conclude∥∥b− b̄h∥∥0

.
∥∥b−ΠBDMb

∥∥
0

+ h ‖εb, εr‖1 + h1/2 ‖εr̂‖∂Ωh
+ h ‖J − Jh‖0 ,

hence the convergence rates of
∥∥b− b̄h∥∥0

and ‖b− bh‖0 are the same.
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