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Abstract

Regime-switching processes contain two components: continuous component and discrete

component, which can be used to describe a continuous dynamical system in a random

environment. Such processes have many different properties than general diffusion processes,

and much more difficulties are needed to be overcome due to the intensive interaction between

continuous and discrete component. We give conditions for the existence and uniqueness of

invariant measures for state-dependent regime-switching diffusion processes by constructing a

new Markov chain to control the evolution of the state-dependent switching process. We also

establish the strong convergence in the L1-norm of the Euler-Maruyama’s approximation and

estimate the order of error. A refined application of Skorokhod’s representation of jumping

processes plays a substantial role in this work.
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1 Introduction

The regime-switching diffusion processes have drawn much attention owing to the demand of

modeling, analysis and computation of complex dynamical systems. Classical models using de-

terministic differential equations and stochastic differential equations alone are often inadequate,
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and many models having considered the random switching of the environment are extensively

proposed and investigated in control engineering, queueing networks, filtering of dynamic sys-

tems, ecological and biological systems, mathematical finance etc. recently. This kind of process

has been studied by Skorokhod [30], where it was called a process with a discrete component to

emphasize the difference caused by the application of discrete topology for some component of

the investigated process. Precisely, the regime-switching diffusion process (RSDP) concerned in

this work have two components (X(t),Λ(t)). (X(t)) is used to describe the continuous dynamical

system satisfying the following stochastic differential equation (SDE):

dX(t) = b(X(t),Λ(t))dt+ σ(X(t),Λ(t))dW (t), t > 0,X0 = x ∈ R
n, Λ(0) = i ∈ S, (1.1)

where b : Rn × S → R
n, σ : Rn × S → R

n ⊗ R
n, and S = {1, 2, . . . , N} with N < ∞. (Λ(t)) is

used to describe the switching of regimes or the change of environment in which (X(t)) lives.

(Λ(t)) is a jumping process on S with the transition rate satisfying

P(Λ(t+∆) = j|Λ(t) = i, X(t) = x) =

{

qij(x)∆ + o(∆), j 6= i,

1 + qii(x)∆ + o(∆), j = i
(1.2)

provided ∆ ↓ 0. When qij(x) is independent of x for all i, j ∈ S, (X(t),Λ(t)) is called a

state-independent RSDP or a RSDP with Markovian switching. Otherwise, it is called a

state-dependent RSDP.

Although the RSDPs are seemingly similar to the well-known diffusion processes with

time-dependent coefficients, their properties are quite different from those of the usual diffusion

processes. Compared with the diffusion process in a fixed environment, the RSDP owns much

more complicated behavior. The random switching of the environment has essential impact

on the properties of this system, for example, the properties of recurrence, stability, and tail

behavior of the stationary distribution. Pinsky and Scheutzow in [24] constructed two examples

on the half line, which showed that even if the RSDP in every fixed environment is recurrent (or

transient), this process itself could be transient (or recurrent respectively) under certain random

switching rate of the environment. Similar phenomenon appears in the study of stability of the

RSDP, and we refer to the works [2, 3, 12, 16, 25] and references therein for the study of stability

of theRSDP. The monographs [19] and [37] provide good summaries of the recent progress in the

study of state-independent and state-dependent RSDPs respectively. As shown in [11], [6] for

the Ornstein-Uhlenbeck process with Markovian switching, and in [15] for the Cox-Ingeroll-Ross

process with Markovian switching, the stationary distributions of the corresponding processes

with switching could be heavy-tailed, but the stationary distributions of the processes without

switching must be light-tailed. Therefore, the heavy-tailed empirical evidence promotes the

application of models with regime-switching.
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The recurrent property of RSDP has been extensively investigated; see, for example,

[7, 10, 23, 25, 26, 27] for the setting of state-independent switching processes, [7, 10, 26] for the

setup of bounded state-dependent switching processes, [17] for the framework of unbounded and

state-dependent switching processes. So far, there are several approaches to explore ergodicity

for RSDPs; see, for instance, [7, 26] via probabilistic coupling argument, [10, 17] by weak

Harris’ theorem, [23, 26, 27] based on the theory of M-matrix, Perron-Frobenius theorem and

the Fredholm alternative. In particular, to study the ergodicity and stability of RSDP with

infinitely countable regimes, we have proposed two methods in [25, 26, 27], i.e. finite partition

method based on the M-matrix theory and the principal eigenvalue of bilinear forms method.

Recently, previously introduced RSDPs have been extended in two directions: one is to

extend SDEs driven by Brownian motion to those driven by general Lévy processes (e.g. [31,

36, 33]); anther is to extend SDEs to functional SDEs (e.g. [18, 29, 5]) or the discrete switching

process depending on the past of the continuous process in order to deal with the past dependence

of the system in practice (e.g. [21]).

The purpose of current work is to study the existence of invariant measures and Euler-

Maruyama’s approximation of state-dependent RSDP. For RSDPs with Markovian switching,

these two problems have relatively been well studied. See, for instance, [10, 26, 4] for existence of

invariant measures, [35, 20] for the numerical approximation of state-independent RSDP under

Lipschitz and non-Lipschitz conditions. However, these two problems for the state-dependent

RSDPs are not well studied. In [37], some types of Foster-Lyapunov conditions were given on

the recurrence of state-dependent RSDPs by viewing (X(t),Λ(t)) as a special kind of jump-

diffusions. But, it is very hard to find suitable Lyapunov functions for state-dependent RSDPs.

In [26], we simplified the transition rate matrices of (Λ(t)) by introducing a new transition rate

matrix and its associated Markov chain, then used the M-matrix theory to give out a criterion

on the recurrence of (X(t),Λ(t)). The regime-switching systems are rather complicated, and it

is usually impossible to get explicit solutions of such systems. So the numerical approximation

is an important alternative of such systems. However, there was few work besides [34] on the

numerical approximation of state-dependent RSDPs due to the close interaction between the

continuous component and the discrete component. In [34], the weak convergence of numeri-

cal approximation was established by constructing a sequence of discrete-time Markov chains.

This method is different to the usual time-discretizing Euler-Maruyama’s approximation, and

is difficult to obtain the order of error. The main difficulty is that the evolution of (Λ(t)) is

much more complicated due to its dependence on the continuous-state process (X(t)), which

makes the transition rate matrices of (Λ(t)) are different for every step of jumps. Much care

and more techniques need to be exercised to handle the mixture of (X(t)) and (Λ(t)). In this

work, we aim to establish the strong convergence of the time-discretizing Euler-Maruyama’s

approximation and estimate its order of error.
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In this work, the existence and uniqueness of invariant measure for (X(t),Λ(t)) is established

by the convergence of the distribution of (X(t),Λ(t)) in the Wasserstein distance as in [10] and

[27]. We construct the coupling by reflection of (X(t),Λ(t)), and provide explicit conditions to

guarantee this coupling to be successful. This result also weakens the conditions imposed in

[32] on the successful coupling of state-dependent RSDPs. Here, we show that the coupling is

successful if the corresponding coupling process in at least one fixed environment is successful

uniformly relative to the initial points. In [32], it needs that the corresponding coupling processes

in every fixed environment is successful uniformly with respect to the initial points. An important

technique in this procedure is the construction of an auxiliary Markov chain to control the

evolution of the state-dependent jumping process (Λ(t)) based on its Skorokhod’s representation

(see Lemma 2.1 and Lemma 2.8 below).

Let (X(t),Λ(t)) be the solution of (1.1) and (1.2) with additive noise, i.e. σ(x, i) ≡
σ ∈ R

n×n. In present work, we consider the following Euler-Maruyama’s approximation of

(X(t),Λ(t)): for δ ∈ (0, 1), define

dXδ(t) = b(Xδ(t),Λδ(t))dt+ σdW (t),

dΛδ(t) =

∫

[0,M ]
h(Xδ(t),Λδ(t−), z)N1(dt,dz),

with (Xδ(0),Λδ(0)) = (X(0),Λ(0)), where tδ = [t/δ]δ, and [t/δ] denotes the integer part of t/δ.

Under some hypotheses, we show in Theorem 3.3 that there exists some constant C > 0 such

that for T > 0,

E
[

sup
0≤t≤T

|X(t)−Xδ(t)|
]

≤ Cδ
1
2 .

To show this strong convergence, the main difficulty comes from the estimation of

∫ t

0
P(Λ(s) 6= Λδ(s))ds, t > 0. (1.3)

Using Skorokhod’s representations of (Λ(t)) and (Λδ(t)), we show that the Lipschitz continuity

of the transition rate function x 7→ qij(x) can yield that there is a constant C > 0 such that

∫ t

0
P(Λ(s) 6= Λδ(s))ds ≤ Cδ

1
2 + C

∫ t

0
E|X(s)−Xδ(s)|ds. (1.4)

Due to the importance of the quantity (1.3) in the analysis of state-dependent regime-switching

processes, this type of estimate (1.4) is of great interest by itself.

This paper is organized as follow. In Section 2, we investigate the existence of the invariant

measure for state-dependent RSDPs. We apply the coupling method to prove the convergence

of the distributions of (X(t),Λ(t)) in the Wasserstein distance to its unique invariant measure.
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We construct the coupling by reflection for RSDP. To guarantee this coupling to be successful,

we improve the result in [32] by providing weaker and more explicit conditions. Owing to the

state-dependence, the transition rate matrices of the jumping process (Λ(t)) may be different for

every step of jumps. The usual technique to handle Markovian switching diffusions, i.e. ensuring

first the discrete component meet together, then the continuous component meet together, does

not work any more. For the state-dependent case, we have to make two components meet

together at the same time. In order to control the state-dependent jumping process (Λ(t)), we

construct a state-independent Markov chain (Λ̄(t)) so that almost surely Λ(t) ≤ Λ̄(t) for all

t ≥ 0 and provide explicit condition in terms of (Λ̄(t)) to control the the exponential functional

of (Λ(t)), i.e.

Ee
∫ t

0
λΛ(s)ds

where λ : S → R. The limitation of our construction is that the jumping process for each

continuous-state x should be of birth-death form, i.e. qij(x) = 0 for any i, j ∈ S, |i − j| ≥ 2,

and x ∈ R
n.

In Section 3, we explore the Euler-Maruyama’s approximation for state-dependent RSDPs.

The key point is the estimate given in Lemma 3.2. The strong convergence of Euler-Maruyama’s

approximation is presented in Theorem 3.3 with the order of error being
√
δ. Note that this

order of error consists with the order of error provided by [35] for numerical approximation of

Markovian regime-switching diffusion processes.

2 Invariant measures

Consider the state-dependent RSDP (X(t),Λ(t)) defined by (1.1) and (1.2). The assumptions

used in this work on the coefficients and transition rate matrix are collected as follows.

For the transition rate matrix Q(x) := (qij(x))i,j∈S , we shall use the following conditions:

(Q1) For each x ∈ R
n, (qij(x)) is conservative and irreducible.

(Q2) H := maxi∈S supx∈Rn qi(x) < ∞, where qi(x) =
∑

j 6=i qij(x) for i ∈ S, x ∈ R
n.

(Q3) There exists a constant cq so that |qij(x)− qij(y)| ≤ cq|x− y|, ∀ x, y ∈ R
n, i, j ∈ S.

Concerning the coefficients of SDE (1.1), we shall use the following conditions:

(A1) There exist constants αi ∈ R, i ∈ S, such that

2〈x− y, b(x, i) − b(y, i)〉 + 2‖σ(x, i) − σ(y, i)‖2HS ≤ αi|x− y|2, x, y ∈ R
n, i ∈ S.
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(A2) There exists a constant C1 such that

|b(x, i)| + ‖σ(x, i)‖HS ≤ C1, x ∈ R
n, i ∈ S.

(A3) There exist constants C2 > 0 such that

u∗σ(x, i)∗u ≥ C2, ∀ u ∈ R
n, |u| = 1, x ∈ R

n, i ∈ S.

(A4) There exist some state i0 ∈ S, constants p > 2, C3 > 0 and β ∈ R such that

〈x− y, b(x, i0)− b(y, i0)〉+ ‖σ(x, i0)− σ(y, i0)‖2HS ≤ β|x− y|2 − C3|x− y|p, x, y ∈ R
n.

The conditions (Q1)-(Q3) and (A1)-(A2) are used to guarantee the existence of unique non-

explosive strong solution of (1.1) and (1.2) (cf. for example, [28]). Besides, condition (Q3)

also plays important role in the estimation of P
(

∫ t
0 1{Λ(s)6=Λ′(s)}ds

)

when studying numerical

approximation of state-dependentRSDPs. Condition (A4) is used to guarantee the constructed

coupling processes of the state-dependent RSDP to be successful, which improves the result in

[32] on successful coupling in two aspects: first, the condition (A4) is more explicit than the

condition (T1) in [32], and hence is easier to be verified; second, in this work it only needs that

(A4) holds for at least one state of S, however, the condition (T1) in [32] must hold for all

states in S.
Next, we introduce Skorokhod’s representation of Λ(t) in terms of the Poisson random

measure as in [30, Chapter II-2.1] or [37]. For each x ∈ R
n, we construct a family of intervals

{Γij(x); i, j ∈ S} on the half line in the following manner:

Γ12(x) = [0, q12(x))

Γ13(x) = [q12(x), q12(x) + q13(x))

. . .

Γ1N (x) = [
N−1
∑

j=1

q1j(x), q1(x))

Γ21(x) = [q1(x), q1(x) + q21(x))

Γ23(x) = [q1(x) + q21(x), q1(x) + q21(x) + q23(x))

. . .

and so on. Therefore, we obtain a sequence of consecutive, left-closed, right-open intervals

Γij(x), each having length qij(x). For convenience of notation, we set Γii(x) = ∅ and Γij(x) = ∅
if qij(x) = 0. Define a function h : Rn × S × R → R by

h(x, i, z) =
∑

l∈S

(l − i)1Γil(x)(z).
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Then the process (Λ(t)) can be expressed by the SDE

dΛ(t) =

∫

[0,M ]
h(X(t),Λ(t−), z)N1(dt,dz), (2.1)

where M = N(N −1)H, N1(dt,dz) is a Poisson random measure with intensity dt×m(dz), and

m(dz) is the Lebesgue measure on [0,M ]. Let p1(t) be the stationary point process corresponding

to Poisson random measure N1(dt,dz). Due to the finiteness of m(dz) on [0,M ], there is only

finite number of jumps of the process p1(t) in each finite time interval. Let 0 = ς0 < ς1 < . . . <

ςn < . . . be the enumeration of all jumps of p1(t). It holds that limn→∞ ςn = +∞ almost surely.

Due to (2.1), it follows that, if Λ(0) = i,

Λ(ς1) = i+
∑

l∈S

(l − i)1Γil(X(ς1))(p1(ς1)). (2.2)

This yields that (Λ(t)) has a jump at ς1 (i.e. Λ(ς1) 6= Λ(ς1−)) if p1(ς1) belongs to the interval

Γil(X(ς1)) for some l 6= i. At any other cases, (Λ(t)) admits no jump. So the set of jumping

times of (Λ(t)) is a subset of {ς1, ς2, . . .}. This fact will be used below without mentioning it

again.

To make our computation below more precise, we give out an explicit construction of the

probability space used in the sequel. Let

Ω1 = {ω| ω : [0,∞) → R
n is continuous with ω(0) = 0},

which is endowed with the locally uniform convergence topology and the Wiener measure P1

so that the coordinate process W (t, ω) := ω(t), t ≥ 0, is a standard n-dimensional Brownian

motion. Let (Ω2,F2,P2) be a probability space and ΠR be the totality of point functions on R.

For a point function (p(t)), Dp denotes its domain, which is a countable subset of [0,∞). Let

p1 : Ω2 → ΠR be a Poisson point process with counting measure N1(dt,dz) on (0,∞) × [0,M ]

defined by

N1((0, t) × U) = #{s ∈ Dp1 | s ≤ t, p1(s) ∈ U}, t > 0, U ∈ B([0,M ]), (2.3)

and its intensity measure is dt×m(dz). Set (Ω,F ,P) = (Ω1 × Ω2,B(Ω1)× F2,P1 × P2), then

under P = P1 × P2, for ω = (ω1, ω2), t 7→ ω1(t) is a Wiener process, which is independent of

the Poisson point process t 7→ p1(t, ω2). Throughout this work, we will work on this probability

space (Ω,F ,P).

2.1 Two points state space case

To emphasize the idea, we restrict ourself to the situation that the state space S contains only

two points in this subsection. We first present an estimate on the exponential functional of
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the state-dependent jumping process by comparing it with a state-independent Markov chain

through constructing a coupling process of (Λ(t)) using Skorokhod’s representation in (2.1). This

estimate plays an important role in controlling the evolution of this regime-switching system.

Lemma 2.1 (Estimate of exponential functional of (Λ(t))) Let (X(t),Λ(t)) satisfy (1.1)

and (1.2) with S = {1, 2}. Let (λi)i∈S be a nondecreasing sequence, i.e. λ1 ≤ λ2. Set q̄12 =

supx∈Rn q12(x), q̄21 = infx∈Rn q21(x), q̄1 = −q̄11 = q̄12, and q̄2 = −q̄22 = q̄21. Assume

q̄21 > 0, q̄12 + q̄21 ≤ q12(x) + q21(x) for every x ∈ R
n. (2.4)

Set

Q̄λ =

(

−q̄1 q̄12
q̄21 −q̄2

)

+

(

λ1 0

0 λ2

)

,

and η̄ = −maxγ∈specQ̄λ
Re γ. Then there exists a constant C > 0 such that

Ee
∫ t
0 λΛ(s)ds ≤ Ce−η̄t, for all t > 0. (2.5)

Proof. Set Γ̄12 = [0, q̄12), Γ̄21 = [q̄12, q̄12 + q̄21), g(1, z) = 1Γ̄12
(z), and g(2, z) = −1Γ̄21

(z). Let

(Λ̄(t)) be the solution of the following SDE

dΛ̄(t) =

∫

[0,M ]
g(Λ(t−), z)N1(dt,dz), Λ̄(0) = Λ(0). (2.6)

Then (Λ̄(t)) is a jumping process with the transition rate matrix (q̄ij). Note that the process

(Λ̄(t)) is independent of ω1 ∈ Ω1, which is a crucial point used in the deduction below. Recall

that {ςk; k ≥ 1} denotes the set of all jumps of Poisson point process (p1(t)), thus the processes

(Λ(t)) and (Λ̄(t)) have no jumps out of the set {ςk; k ≥ 1} due to the representations (2.1) and

(2.6). Hence, in order to show that almost surely Λ(t) ≤ Λ̄(t) for all t > 0, we only need to show

almost surely Λ(ςk) ≤ Λ̄(ςk) for all k ≥ 1.

If Λ(0) = Λ̄(0) = 1, then

Λ(ς1) = 1 + 1Γ12(X(ς1))(p1(ς1)),

Λ̄(ς1) = 1 + 1Γ̄12
(p1(ς1)).

By the definition of Γ12(x) and Γ̄12, it is easy to see that when p1(ς1) ∈ Γ12(X(ς1)), it must hold

that p1(ς1) ∈ Γ̄12. Hence, when Λ(ς1) = 2, it must hold that Λ̄(ς1) = 2. So Λ(ς1) ≤ Λ̄(ς1) a.s..

If Λ(0) = Λ̄(0) = 2, then

Λ(ς1) = 2− 1Γ21(X(ς1))(p1(ς1)),
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Λ̄(ς1) = 2− 1Γ̄21
(p1(ς1)).

If Λ̄(ς1) = 1, then p1(ς1) ∈ Γ̄21, which implies p1(ς1) ≤ q̄12 + q̄21, and p1(ς1) ≥ q̄12 ≥ q12(X(ς1)).

Invoking the condition that q̄12 + q̄21 ≤ q12(x) + q21(x) for every x ∈ R
n, we have p1(ς1) ∈

Γ21(X(ς1)), and hence Λ(ς1) = 1. So Λ(ς1) ≤ Λ̄(ς1) a.s. whatever the initial value of Λ(0) = Λ̄(0)

is 1 or 2. In the same manner, we can prove that Λ(ςk+1) ≤ Λ̄(ςk+1) a.s. if Λ(ςk) = Λ̄(ςk), k ≥ 2.

Now, assuming Λ(ςk) = 1 < Λ̄(ςk) = 2, we go to prove that Λ(ςk+1) ≤ Λ̄(ςk+1) almost

surely. In this case,

Λ(ςk+1) = 1 + 1Γ12(X(ςk+1))(p1(ςk+1)),

Λ̄(ςk+1) = 2− 1Γ̄21
(p1(ςk+1)).

If Λ̄(ςk+1) = 1, then p1(ςk+1) ∈ Γ̄21, and hence q̄12 + q̄21 > p1(ςk+1) ≥ q̄12 ≥ q12(X(ςk+1)).

Together with the condition that q̄12 + q̄21 ≤ q12(x) + q21(x), we get q12(X(ςk+1)) ≤ p1(ςk+1) <

q12(X(ςk+1))+ q21(X(ςk+1)), which implies that p1(ςk+1) ∈ Γ21(X(ςk+1)) and further Λ(ςk+1) =

1 = Λ̄(ςk+1). If Λ̄(ςk+1) = 2, it is trivial to see that Λ(ςk+1) ≤ Λ̄(ςk+1) a.s.. Consequently, we

obtain Λ(ςk+1) ≤ Λ̄(ςk+1) a.s.. In all, we have proved that

Λ(t) ≤ Λ̄(t) a.s.. (2.7)

By virtue of the nondecreasing property of (λi)i∈S , it follows that λΛ(t) ≤ λΛ̄(t) almost

surely, and hence

Ee
∫ t
0 λΛ(s)ds ≤ Ee

∫ t

0
λΛ̄(s)ds, t > 0.

According to [6, Proposition 4.1], there exists a constant C > 0 such that

Ee
∫ t
0 λΛ(s)ds ≤ Ee

∫ t

0
λΛ̄(s)ds ≤ Ce−η̄t, t > 0,

and the proof is complete.

Remark 2.2 In Lemma 2.1, the definition of the process (Λ̄(t)) depends on the monotonicity

of (λi)i∈S . If λ1 > λ2, in order to control the functional
∫ t
0 λΛ(s)ds of (Λ(t)) via a Markov chain,

we need to modify the definition of (q̄ij) as follows:

q̄12 = inf
x∈Rn

q12(x), q̄21 = sup
x∈Rn

q21(x).

Then it still holds

Ee
∫ t
0 λΛ(s)ds ≤ Ee

∫ t

0
λΛ̄(s)ds ≤ Ce−η̄t,

where η̄ is corresponding to Q̄λ using the new definition of q̄ij as above.
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The existence and uniqueness of the invariant measure for (X(t),Λ(t)) is deduced by ana-

lyzing the convergence of its distribution in the Wasserstein distance. This idea has been used

in [10] and [27]. The dependence of the transition rate of (Λ(t)) on the process (X(t)) makes

it much difficulty to ensure the coupling process to be successful. Next, we shall introduce our

coupling process for (X(t),Λ(t)) and prove it to be successful after some necessary preparations.

Let (Xx,i(t),Λx,i(t)) and (Xy,j(t),Λy,j(t)) denote the solutions of (1.1) and (1.2) starting

from (x, i) and (y, j) respectively. To estimate the Wasserstein distance between (Xx,i(t),Λx,i(t))

and (Xy,j(t),Λy,j(t)), we introduce the coupling by reflection as follows: Set

a(x, i) = σ(x, i)σ(x, i)∗ , a(x, i, y, j) =

(

a(x, i) c(x, i, y, j)

c(x, i, y, j) a(y, j)

)

, x ∈ R
n, i ∈ S, (2.8)

where

c(x, i, y, j) = σ(x, i)
(

I− 2ūū∗
)

σ(y, j)∗,

and ū = (x− y)/|x− y|. Here A∗ denotes the transpose of the matrix A. Consider the following

SDEs:

d

(

X(t)

Y (t)

)

=

(

b(X(t),Λ(t))

b(Y (t),Λ′(t))

)

+G(X(t),Λ(t), Y (t),Λ′(t))dW̃ (t), (2.9)

where the matrix G(x, i, y, j) satisfies G(x, i, y, j)G∗(x, i, y, j) = a(x, i, y, j), and (W̃ (t)) denotes

the 2n-dimensional Wiener process;

dΛ(t) =

∫

[0,M ]
h(X(t),Λ(t−), z)N1(dt,dz)

dΛ′(t) =

∫

[0,M ]
h(Y (t),Λ′(t−), z)N2(dt,dz),

(2.10)

satisfying (X(0),Λ(0)) = (x, i) and (Y (0),Λ′(0)) = (y, j), where N1(dt,dz) and N2(dt,dz) are

mutually independent Poisson random measures with intensity measure dtm(dz). The existence

of solution of SDEs (2.9) and (2.10) can be established in the same way as (1.1) and (1.2). Then

(X(t),Λ(t), Y (t),Λ′(t)) is known as a coupling by reflection of the processes (Xx,i(t),Λx,i(t))

and (Xy,j(t),Λy,j(t)).

Lemma 2.3 Assume that (Q1)-(Q3) and (A1), (A2) hold. Define

qα12 = sup
x∈Rn

q12(x), qα21 = inf
x∈Rn

q21(x), if α1 ≤ α2;

otherwise,

qα12 = inf
x∈Rn

q12(x), qα21 = sup
x∈Rn

q21(x).
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Put qα1 = −qα11 = qα12, q
α
2 = −qα22 = qα21. Set Qα = (qαij), Q2 = Qα + diag(α1, α2). Suppose Qα is

irreducible and

ηα := − max
ζ∈spec(Q2)

Re ζ > 0. (2.11)

Then there exists a constant C > 0 such that

E|X(t)− Y (t)|2 ≤ C|x− y|2e−ηαt, t > 0. (2.12)

Proof. For simplicity of notation, set Z(t) = X(t) − Y (t). According to the construction of

a(x, i, y, j), it holds

tr(a(x, i, y, j))

= tr
(

σ(x, i)σ(x, i)∗ + σ(y, j)σ(y, j)∗ − 2σ(x, i)σ(y, j)∗
)

+ 4
(x− y)∗

|x− y| σ(y, j)
∗σ(x, i)

(x − y)

|x − y|

= ‖σ(x, i) − σ(y, j)‖2HS + 4
(x− y)∗

|x− y| σ(y, j)
∗σ(x, i)

(x − y)

|x − y| .

By (A1), (A2) and Itô’s formula, we obtain, for any γ > 0,

d|Z(t)|2 =
{

2〈Z(t), b(X(t),Λ(t)) − b(Y (t),Λ′(t))〉
+ tr(a(X(t),Λ(t), Y (t),Λ′(t)))

}

dt+ dMt

≤
{

αΛ(t)|Z(t)|2 + 2〈Z(t), b(Y (t),Λ(t)) − b(Y (t),Λ′(t))〉

+ 2‖σ(Y (t),Λ(t)) − σ(Y (t),Λ′(t))‖2HS

+ 4
(X(t) − Y (t))∗

|X(t)− Y (t)| σ(Y (t),Λ(t))∗σ(X(t),Λ(t))
(X(t) − Y (t))

|X(t) − Y (t)|
}

dt+ dMt

≤
{

(γ + αΛ(t))|Z(t)|2 + 4C2
1

γ
+ 12C2

1

}

dt+ dMt,

(2.13)

where (Mt) is a martingale with M0 = 0. By replacing q̄ij with qαij, similar to (2.6), we can

define a Markov chain (Λα(t)) with the transition rate matrix Qα and satisfying αΛ(t) ≤ αΛα(t)

for all t > 0 almost surely. Hence, for every λ > 0,

EP1

[

e−λt|Z(t)|2
]

≤ |x− y|2 +
∫ t

0
(4γ−1 + 12)C2

1e
−λsds+ EP1

∫ t

0
(−λ+ γ + αΛ(s))e

−λs|Z(s)|2ds

≤ |x− y|2 + (4γ−1 + 12)C2
1

λ
+

∫ t

0
(−λ+ γ + αΛα(s))e

−λs
EP1 |Z(s)|2ds.

By Gronwall’s inequality, we get

e−λt
EP1 |Z(t)|2 ≤

(

|x− y|2 + (4γ−1 + 12)C2
1

λ

)

e
∫ t
0 (−λ+γ+αΛα(s))ds.

11



Then, taking expectation w.r.t. P2 in both sides of the previous inequality and applying [6,

Proposition 4.1], we obtain that there exists a C > 0 such that

E|Z(t)|2 ≤ C
(

|x− y|2 + (4γ−1 + 12)C2
1

λ

)

e(γ−η2)t, t > 0. (2.14)

By the arbitrariness of γ and λ, letting first λ → +∞ then γ ↓ 0 in (2.14), we obtain that

E|Z(t)|2 ≤ C|x− y|2e−ηαt, (2.15)

and further that

sup
t>0

E|Z(t)|2 < ∞

due to the positiveness of ηα.

Lemma 2.4 Under the same assumptions and notation of Lemma 2.3, it holds that

sup
t≥0

E|Xx,i(t)|2 ≤ C(1 + |x|2), x ∈ R
n, i ∈ S, (2.16)

where C is a constant.

Proof. Note that condition (A1) implies that for any ε > 0, there exists a constant Cε > 0

such that

2〈x, b(x, i)〉 + ‖σ(x, i)‖2HS ≤ Cε + (ε+ αi)|x|2, x ∈ R
n, i ∈ S. (2.17)

By (2.17) and applying Itô’s formula to X(t) = Xx,i(t) yields that

d|X(t)|2 ≤ (Cε + (ε+ αΛ(t))|X(t)|2)dt+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉.

For every λ > 0, we have

d
[

e−λt|X(t)|2
]

≤e−λt
{

−λ|X(t)|2+Cε+(ε+αΛ(t))|X(t)|2
}

dt+ 2e−λt〈X(t), σ(X(t),Λ(t))dW (t)〉.

Taking expectation in both sides w.r.t. P1 and noting αΛ(t) ≤ αΛα(t) a.s. by Lemma 2.1, we can

deduce that

e−λt
EP1 |X(t)|2 ≤ |x|2 + Cε

λ
+

∫ t

0
(ε+ αΛ(s) − λ)e−λs

EP1|X(s)|2ds

≤ |x|2 + Cε

λ
+

∫ t

0
(ε+ αΛα(s) − λ)e−λs

EP1 |X(s)|2ds.
(2.18)

Using Gronwall’s inequality, this yields

e−λt
EP1 |X(t)|2 ≤ (|x|2 + Cε

λ
)e

∫ t
0 (ε+αΛα(s)−λ)ds.

12



Therefore, by [6, Proposition 4.1], there exists a constant C such that

E|X(t)|2 ≤
(

|x|2 + Cε

λ

)

Ee
∫ t

0
ε+αΛα(s)ds ≤ C

(

|x|2 + Cε

λ

)

e−(ηα−ε)t. (2.19)

Setting ε = 1
2ηα > 0, we can deduce from (2.19) that

sup
t≥0

E|X(t)|2 ≤ C(1 + |x|2).

Lemma 2.5 Assume that (Q1)-(Q3), (A1)-(A4) and (2.4) hold. Then the coupling
(

X(t),Λ(t),

Y (t),Λ′(t)
)

determined by (2.9) and (2.10) is a successful coupling, that is,

T := inf{t > 0; (X(t),Λ(t)) = (Y (t),Λ′(t))} < ∞ a.s.

Proof. Without loss of generality, we can assume that the condition (A4) holds for i0 = 1.

Otherwise, we can rearrange the order of S.

If (Λ(0),Λ′(0)) 6= (1, 1), the proof is divided into three steps. Otherwise, we can start

directly from the second step below.

Step 1: Set

τ = inf{t ≥ 0; Λ(t) = Λ′(t) = 1}, (2.20)

and we shall first show the stopping time τ is almost surely finite. Set

q̄12 = sup
x∈Rn

q12(x), q̄21 = inf
x∈Rn

q21(x).

Assume that q̄12, q̄21 > 0. Define Γ̄12, Γ̄21, g(1, z) and g(2, z) in the same way as Lemma 2.1.

Set

dΛ(1)(t) =

∫

[0,M ]
g(Λ(1)(t−), z)N1(dt,dz), Λ(1)(0) = Λ(0),

dΛ(2)(t) =

∫

[0,M ]
g(Λ(2)(t−), z)N2(dt,dz), Λ(2)(0) = Λ′(0).

(2.21)

According to (2.7) in Lemma 2.1, it holds almost surely Λ(t) ≤ Λ(1)(t) and Λ′(t) ≤ Λ(2)(t),

t ≥ 0. The mutual independence of N1(dt,dz) and N2(dt,dz) yields that (Λ
(1)(t)) and (Λ(2)(t))

are also mutually independent. Put

τ ′ = inf{t ≥ 0; Λ(1)(t) = Λ(2)(t) = 1}
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Then it is easy to see that

τ ≤ τ ′, a.s. (2.22)

(Λ(1)(t),Λ(2)(t)) is an independent coupling corresponding to the operator Q̄ = (q̄ij) and itself

(cf. for instance, [8]). Due to the irreducibility of Q̄ and the finiteness of S × S, there exists a

positive constant θ such that

P(τ ′ ≥ t) ≤ e−θt, t > 0.

Invoking (2.22), it holds that

P(τ ≥ t) ≤ P(τ ′ ≥ t) ≤ e−θt, t > 0, (2.23)

and hence P(τ = ∞) = 0.

Step 2: Using the notation introduced in (2.9), let (X(1)(t), Y (1)(t)) be the solution of the

following SDE:

d

(

X(1)(t)

Y (1)(t)

)

=

(

b(X(1)(t), 1)

b(Y (1)(t), 1)

)

dt+G(X(1)(t), 1, Y (1)(t), 1)dW̃ (t), (2.24)

satisfying (X(1)(0), Y (1)(0)) = (x, y), which is the corresponding diffusion process of (X(t), Y (t))

in the fixed environment (i, j) = (1, 1). We shall use the criteria established in [9] to verify this

is a successful coupling. To estimate the coupling time, as done in [9], we introduce the following

notation:

A(x, y) = a(x, 1) + a(y, 1)− 2c(x, 1, y, 1),

B(x, y) = 〈x− y, (b(x, 1) − b(y, 1))(x − y)〉,
Ā(x, y) = 〈(x− y), A(x, y)(x − y)〉/|x− y|2, x 6= y.

By the condition (A3), it holds

inf
|x−y|=r

Ā(x, y) = inf
|x−y|=r

|(σ(x, 1) − σ(y, 1))ū|2 + 4(ū∗σ∗(x, 1)ū)(ū∗σ(y, 1)∗ū)

≥ 4C2
2 ,

where ū = (x− y)/|x− y|. According to the condition (2),

sup
|x−y|=r

tr(A(x, y)) − Ā(x, y) + 2B(x, y)

Ā(x, y)

≤ sup
|x−y|=r

β|x− y|2 − C3|x− y|p
Ā(x, y)

− 1 ≤ βr2 − C3r
p

4C2
2

.
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Set α(r) = 4C2
2 , γ(r) =

βr2−C3rp

4C2
2

, and

C(r) = exp
[

∫ r

1

γ(u)

u
du
]

.

Analogous to [9, Theorems 4.2 and 5.1], for positive integers ℓ and k, set

T (1) = inf{t ≥ 0;X(1)(t) = Y (1)(t)},
Sℓ = inf{t ≥ 0; |X(1)(t)− Y (1)(t)| > ℓ},

Tk = inf{t ≥ 0; |X(1)(t)− Y (1)(t)| < 1

n
}.

Put Tk,ℓ = Tk ∧ Sℓ, and

Fk,ℓ(r) = −
∫ r

1/k
C(s)−1

(

∫ ℓ

s

C(u)

α(u)
du
)

ds.

Then it holds

−∞ < Fk,ℓ(r) ≤ 0, F ′
k,ℓ(r) ≤ 0,

F ′′
k,ℓ(r) +

F ′
k,ℓ(r)γ(r)

r
=

1

α(r)
.

Applying Dynkin’s formula, we get that

Ex,yFk,ℓ(|X(1)(t ∧ Tk,ℓ)− Y (1)(t ∧ Tk,ℓ)|)− Fk,ℓ(|x− y|)

=
1

2
Ex,y

∫ t∧Tk,ℓ

0
Ā(X(1)(s), Y (1)(s))F ′′

k,ℓ(|Z(1)(s)|) + F ′
k,ℓ(|Z(1)(s)|)

[

trA(X(1)(s), Y (1)(s))

− Ā(X(1)(s), Y (1)(s)) + 2B(X(1)(s), Y (1)(s))
]/

|Z(1)(s)| ds

≥ 1

2
Ex,y

(

t ∧ Tk,ℓ

)

Letting t → ∞, this yields that

Ex,y Tk,ℓ ≤ −2Fk,ℓ(|x− y|).

Set

F (r) = lim
k→∞

lim
ℓ→∞

Fk,ℓ = −
∫ r

0
C(s)−1

(

∫ ∞

s

C(u)

α(u)
du
)

ds.

Letting ℓ → ∞ and then k → ∞, we obtain

Ex,y T
(1) ≤ −2F (|x− y|) (2.25)
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It is simple to check that

C(s)−1

∫ ∞

s

C(u)

α(u)
du ∼ s1−p, as s → ∞.

As p > 2, this yields that

lim
r→∞

F (r) = −
∫ ∞

0
C(s)−1

(

∫ ∞

s

C(u)

α(u)
du
)

ds > −∞,

and further

sup
x,y∈Rn

Ex,yT
(1) < ∞. (2.26)

Therefore, by Chebyshev’s inequality, there exists t0 > 0 such that for any initial point (x, y),

P(T (1) < t0) ≥
1

2
. (2.27)

Step 3: Define

η1 = inf{t ≥ 0; (Λ(t),Λ′(t)) 6= (Λ(0),Λ′(0))}.

By (2.10) and the property of Poisson point process, it is easy to see that η1 ≥ ς
(1)
1 ∧ ς

(2)
1 ,

where ς
(1)
1 and ς

(2)
1 are the first jumping times of the Poisson point processes (p1(t)) and (p2(t))

respectively. So

P(η1 ≥ t) ≥ P(ς
(1)
1 ≥ t)P(ς

(2)
1 ≥ t) = e−2Mt, t > 0.

Set ζ0 = 0,

ζ1 = inf{t ≥ 0; (Λ(t),Λ′(t)) 6= (Λ(0),Λ′(0))},
ζ2m = inf{t ≥ ζ2m−1; (Λ(t),Λ

′(t)) = (Λ(0),Λ′(0))},
ζ2m+1 = inf{t ≥ ζ2m; (Λ(t),Λ′(t)) 6= (Λ(0),Λ′(0))}, m = 1, 2, . . . .

We have the following estimate on the coupling time T :

P
(x,1,y,1)(T ∈ [0, ζ1)) = P

(x,1,y,1)(T ∈ [0, η1))

≥ P
(x,1,y,1)(η1 ≥ t0)P

(x,1,y,1)(T ∈ [0, η1)|η1 ≥ t0)

≥ P
(x,1,y,1)(η1 ≥ t0)P

(x,y)(T (1) < t0)

≥ e−2Mt0/2 =: δ2 > 0,

(2.28)
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where t0 is determined by (2.27) and is independent of the initial point of (X(1)(t), Y (1)(t)).

Therefore,

P
(x,i,y,j)(T = ∞) = P

(x,i,y,j)
(

1{τ<∞}P
(X(τ),Λ(τ),Y (τ),Λ′(τ))(T = ∞)

)

≤ P
(x,i,y,j)

(

1{τ<∞}P
(X(τ),1,Y (τ),1)

(

T 6∈
K
⋃

m=0

[ζ2m, ζ2m+1)
)

)

≤ P
(x,i,y,j)

(

1{τ<∞}P
(X(τ),1,Y (τ),1)

(

T 6∈
K−1
⋃

m=0

[ζ2m, ζ2m+1)
)

· P(X(ζ2K),1,Y (ζ2K),1)
(

T 6∈ [0, ζ1)
)

)

≤ P
(x,i,y,j)

(

1{τ<∞}P
(X(τ),1,Y (τ),1)

(

T 6∈
K−1
⋃

m=0

[ζ2m, ζ2m+1)
)

)

(1− δ2)

≤ (1− δ2)
K+1,

(2.29)

where in the last step we have used the estimate (2.28) recursively. Letting K tend to ∞, we

finally get the desired estimate that P(x,i,y,j)(T = ∞) = 0, and complete the proof.

Remark 2.6 In [32], together with F. Xi, we have discussed the question on the existence of

successful couplings for state-dependent regime-switching processes. In that work, we imposed

a condition (Assumption 2.4 (i) therein) which means that for every fixed environment the

corresponding coupling process is successful uniformly relative to the initial points in some

sense. Here, Lemma 2.5 weakens this condition to assume only that there exists at least a fixed

environment so that the corresponding coupling process in this fixed environment is successful

uniformly with respect to initial points.

Now we introduce the Wasserstein distance used in this work. Set

ρ((x, i), (y, j)) = 1i 6=j + |x− y|, x, y ∈ R
n, i, j ∈ S.

The Wasserstein distance between every two probability measures ν1, ν2 on R
n × S is defined

by

Wρ(ν1, ν2) = inf
π∈C (ν1,ν2)

{

∫

(Rn×S)2
ρ((x, i), (y, j))dπ((x, i), (y, j))

}

, (2.30)

where C (ν1, ν2) denotes the set of all couplings of ν1 and ν2 on (Rn×S)2. This kind of Wasserstein

distance has been used in [27] to investigate the recurrent property of regime-switching diffusion

process. [10] used further a truncation from above on ρ to define the Wasserstein distance.

Theorem 2.7 Let (X(t),Λ(t)) be the solution of (1.1) and (1.2) with initial value (X(0),Λ(0)) =

(x, i). Denote the distribution of (X(t),Λ(t)) with initial value (X(0),Λ(0)) = (x, i) in R
n×S by
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δ(x,i)Pt for t ≥ 0. Assume (Q1)-(Q3), and (A1)-(A4) hold. Suppose Qα defined as in Lemma

2.1 is irreducible and (2.11) hold. Then there exists a unique invariant probability measure µ on

R
n × S such that µPt = µ for every t > 0, every (x, i) ∈ R

n × S, and

lim
t→∞

Wρ(δ(x,i)Pt, µ) = 0 for any (x, i) ∈ R
n × S.

Proof. In order to estimate the Wasserstein distance between δ(x,i)Pt and δ(y,j)Pt with i 6= j,

we use the coupling process determined by (2.9) and (2.10).

For κ ∈ (0, 1), it holds that

Wρ(δ(x,i)Pt, δ(y,j)Pt) ≤ E
[

|X(t)− Y (t)|+ 1Λ(t)6=Λ′(t)

]

= E
[(

|X(t) − Y (t)|+ 1Λ(t)6=Λ′(t)

)

1{τ<κt}

]

+ E
[(

|X(t) − Y (t)|+ 1Λ(t)6=Λ′(t)

)

1{τ≥κt}

]

≤ E
[

1{τ<κt}E
[(

|X(t)− Y (t)|+ 1Λ(t)6=Λ′(t)

)
∣

∣Fτ

]]

+ E
[

(1 + |X(t)|+ |Y (t)|)1{τ≥κt}

]

≤ E
[

1{τ≤κt}E[|X(t)− Y (t)|
∣

∣Fτ ]
]

+ E
[

1{τ≤κt}1Λ(t)6=Λ′(t)

]

+
√

E[(1 + |X(t)| + |Y (t)|)2]
√

P(τ ≥ κt)

≤ c(1 + |x|+ |y|)(e− 1
2
θκt + e−

ηα
2
(1−κ)t) + E

[

1{τ≤κt}1Λ(t)6=Λ′(t)

]

,

where in the last step we have used the estimates (2.23), Lemma 2.3, and Lemma 2.4.

Note that after the stopping τ , the processes (Λ(t)) and (Λ′(t)) do not necessarily move

together due to the dependence of (qij(x)) on the component x. But, after the coupling time

T given in Lemma 2.5, the processes (X(t),Λ(t)) and (Y (t),Λ′(t)) will move together. This

difficulty does not exist for state-independent switching, and we can get exponential convergence

of the Wasserstein distance between δ(x,i)Pt and δ(y,j)Pt. Refer to [27] and [4] for more details.

However, under the help of Lemma 2.5, we have

E
[

1{τ≤κt}1Λ(t)6=Λ′(t)

]

≤ E
[

1{T≥t}1Λ(t)6=Λ′(t)

]

+ E
[

1{T<t}1Λ(t)6=Λ′(t)

]

≤ E[1{T≥t}] −→ 0, as t → ∞.
(2.31)

Consequently, we have

lim
t→∞

Wρ(δ(x,i)Pt, δ(y,j)Pt) = 0. (2.32)

According to Lemma 2.4, E[|Xt|2] is bounded for all t > 0, which yields that the family of

probability measures (δ(x,i)Pt)t>0 is tight. Moreover, this yields that (δ(x,i)Pt)t>0 is uniformly

integrable w.r.t. the Euclidean metric | · | in R
n. Hence, (δ(x,i)Pt)t>0 is compact in P(Rn)

w.r.t. the Wasserstein distance Wρ (cf. for instance, [1, Proposition 7.1.5]). There exists a
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subsequence (δ(x,i)Ptk)k≥1 with tk → ∞ as k → ∞ converging to some probability measure µ on

R
n. Moreover, (2.32) implies that for all (y, j) ∈ R

n×S, δ(y,j)Pt converges in Wρ-metric to µ as

k → ∞, and further that ν0P1,tk :=
∑

j∈S

∫

Rn P
y,j
1,t ν0(dy) converges in Wρ-metric to µ for every

probability measure ν0 on R
n satisfying

∫

Rn |y|ν0(dy) < ∞. Invoking Lemma 2.3, we get that

for every s > 0, δ(x,i)PsPtk converges in Wρ-metric to µ. Since δ(x,i)PsPtk = δ(x,i)PtkPs and the

latter term converges weakly to µPs, this yields that µPs = µ. Hence, µ is the unique invariant

measure of the process (X(t),Λ(t)).

2.2 General finite state space

In this part, we extend our results in last subsection to regime-switching processes in a general

finite state space. However, we need to assume further that the jumping process is of a birth-

death type, i.e. qij(x) = 0 for all i, j ∈ S with |i− j| ≥ 2 for every x ∈ R
n.

Lemma 2.1 is the key point to extend Theorem 2.7 to deal with regime-switching diffusions

in a general state space, since it provides a control of the state-dependent jumping process

(Λ(t)) via a state-independent Markov chain (Λ̄(t)). Using this technique, we also ensure that

the coupling process of state-dependent jumping process (Λ(t),Λ′(t)) can always meet some fixed

point in S ×S, then further guarantee the coupling to be a successful coupling. In the following,

we provide the extension of Lemma 2.1 and give out its proof. However, the corresponding

extensions of Lemmas 2.3, 2.4, 2.5 can be established in a completely similar way, and hence are

omitted.

Lemma 2.8 Assume qij(x) = 0 for every i, j ∈ S with |i − j| ≥ 2 and every x ∈ R
n. Let

(λi)i∈S be a nondecreasing sequence. Set q̄i,i+1 = supx∈Rn qi,i+1(x), q̄i+1,i = infx∈Rn qi+1,i(x),

q̄i = −q̄ii =
∑

j 6=i q̄ij for i ∈ S. Suppose that the matrix (q̄ij) is irreducible. Assume

for 1 ≤ i ≤ N − 2, qi,i+1(x) + qi+1,i(x) is independent of x,

q̄N−1,N + q̄N,N−1 ≤ qN−1,N(x) + qN,N−1(x), ∀x ∈ R
n.

(2.33)

Set

Q̄λ = (q̄ij) + diag(λ1, . . . , λN ),

where diag(λ1, . . . , λN ) denotes the diagonal matrix generated by the vector (λ1, . . . , λN ). Set

η̄ = − max
γ∈spec Q̄λ

Re γ.

Then there exists a constant C > 0 such that

Ee
∫ t

0
λ(s)ds ≤ Ce−η̄t, for all t > 0. (2.34)
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Proof. Corresponding to (q̄ij), we can define Γ̄ij similarly to Γij(x) as follows: Γ̄12 = [0, q̄12),

Γ̄21 = [q̄12, q̄12 + q̄21), Γ̄23 = [q̄12 + q̄21, q̄12 + q̄21 + q̄23),

Γ̄i,i−1 =
[

i−1
∑

j=1

q̄j ,

i−1
∑

j=1

q̄j + q̄i,i−1

)

, Γ̄i,i+1 =
[

i−1
∑

j=1

q̄j + q̄i,i−1,

i
∑

j=1

q̄j
)

, i ≥ 3.

Set

h̄(i, z) =
∑

ℓ∈S

(ℓ− i)1Γ̄iℓ
(z),

and

dΛ̄(t) =

∫

[0,M ]
h̄(Λ̄(t−), z)N1(dt,dz), Λ̄(0) = Λ(0), (2.35)

then (Λ̄(t)) is a continuous time Markov chain with transition rate matrix (q̄ij). Recall that (ςk)

denotes the jumping time of the Poisson point process (p1(t)), so

Λ̄(ςk+1) = Λ̄(ςk) + 1Γ̄Λ̄(ςk),Λ̄(ςk)+1
(p1(ςk+1))− 1Γ̄Λ̄(ςk),Λ̄(ςk)−1

(p1(ςk+1)). (2.36)

Note that (2.33) implies

q̄i,i+1 + q̄i+1,i = qi,i+1(x) + qi+1,i(x), ∀x ∈ R
n, 1 ≤ i ≤ N − 2. (2.37)

Indeed, denote by ei = qi,i+1(x) + qi+1,i(x) for 1 ≤ i ≤ N − 2. Then, by the definition of q̄ij, for

any ε > 0, there exists xε, x
′
ε ∈ R

n such that

q̄i,i+1 + q̄i+1,i ≤ qi,i+1(xε) + inf
x∈Rn

qi+1,i(x) + ε

≤ qi,i+1(xε) + qi+1,i(xε) + ε

= ei + ε,

and

q̄i,i+1 + q̄i+1,i ≥ sup
x∈Rn

qi,i+1(x) + qi+1,i(x
′
ε)− ε

≥ qi,i+1(x
′
ε) + qi+1,i(x

′
ε)− ε

= ei − ε.

Letting ε ↓ 0, we obtain (2.37).

Moreover, by (2.37) and the definition of q̄ij, it holds that for every x ∈ R
n,

i−1
∑

j=1

qj(x) + qi,i−1(x) =

i−1
∑

j=1

(

qj,j+1(x) + qj+1,j(x)
)

20



=
i−1
∑

j=1

(

q̄j,j+1 + q̄j+1,j

)

=
i−1
∑

j=1

q̄j + q̄i,i−1, 2 ≤ i ≤ N − 1,

and
i
∑

j=1

qj(x) =

i−1
∑

j=1

(

q̄j,j+1 + q̄j+1,j

)

+ qi,i+1(x) ≤
i−1
∑

j=1

(

q̄j,j+1 + q̄j+1,j

)

+ q̄i,i+1, 1 ≤ i ≤ N − 1.

Therefore, for every x ∈ R
n,

Γi,i+1(x) ⊂ Γ̄i,i+1, 1 ≤ i ≤ N − 1; Γ̄i,i−1 ⊂ Γi,i−1(x), 2 ≤ i ≤ N.

Case 1: Λ̄(ςk) = Λ(ςk). For simplicity of notation, denote Λ̄(ςk) = Λ(ςk) = i.

• If Λ(ςk+1) = i + 1, then it must hold p1(ςk+1) ∈ Γi,i+1(X(ςk+1)), and further p1(ςk+1) ∈
Γ̄i,i+1. Thanks to (2.36), Λ̄(ςk+1) = i+ 1 = Λ(ςk+1).

• If Λ̄(ςk+1) = i− 1, then p1(ςk+1) ∈ Γ̄i,i−1. As Γ̄i,i−1 ⊂ Γi,i−1(X(ςk+1)), we have p1(ςk+1) ∈
Γi,i−1(X(ςk+1)) and Λ(ςk+1) = i− 1. Therefore, Λ(ςk+1) = Λ̄(ςk+1) = i− 1.

Consequently, if Λ̄(ςk) = Λ(ςk), we always have Λ̄(ςk+1) ≥ Λ(ςk+1).

Case 2: Λ̄(ςk) > Λ(ςk). As the processes (Λ(t)) and (Λ̄(t)) can both jump forward or backward

at most 1, we only need to consider the situation that Λ(ςk) = i − 1 and Λ̄(ςk) = i for some

i ∈ S. For other cases, it obviously holds Λ̄(ςk+1) ≥ Λ(ςk+1).

• If Λ(ςk+1) = i + 1, then p1(ςk+1) ∈ Γi,i+1(X(ςk+1)), and hence p1(ςk+1) ∈ Γ̄i,i+1. This

implies that Λ̄(ςk+1) = Λ̄(ςk) = i+ 1.

Therefore, when Λ̄(ςk) > Λ(ςk), it must hold Λ̄(ςk+1) ≥ Λ(ςk+1).

According to the previous discussion, and invoking the monotonicity of (λi)i∈S , it holds

Ee
∫ t
0 λΛ(s)ds ≤ Ee

∫ t
0 λΛ̄(s)ds. Applying [6, Proposition 4.1], there exists a constant C > 0 such that

Ee
∫ t
0 λΛ(s)ds ≤ Ee

∫ t
0 λΛ̄(s)ds ≤ Ce−η̄t, t > 0.

The proof is complete.

Based on Lemma 2.8, we can obtain our main result in this subsection:

Theorem 2.9 Let (X(t),Λ(t)) be the solution of (1.1) and (1.2) with N < ∞. Assume (Q1)-

(Q4), (A1)-(A4) hold and α1 ≤ α2 ≤ · · · ≤ αN . Q̄ = (q̄ij) is defined as in Lemma (2.8). We

assume Q̄ is irreducible and satisfies the condition (2.33). Then there exists a unique invariant

probability measure µ on R
n × S such that µPt = µ for every t > 0, and

lim
t→∞

Wρ(δ(x,i)Pt, µ) = 0 for any (x, i) ∈ R
n × S.

The proof of this theorem is omitted since it is similar to that of Theorem 2.7.
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3 Euler-Maruyama’s approximation

Due to the complexity of the regime-switching systems, numerical approximation is frequently

an important alternative of closed-form solutions of such systems. Being extremely important,

numerical methods have drawn much attention. Starting from the work [35], numerical ap-

proximation of state-independent regime-switching processes has been studied. See also [20].

Besides, the approximation of the invariant measures was investigated in [4]. Unlike the state-

independent regime-switching diffusions, less result is known for the state-dependent case since

the transition rate matrix of the switching process is different at every jumping step due to its

dependence on the continuous-state process. To overcome the complex caused by the mixture of

(Λ(t)) and (X(t)), [34] used the local analysis and weak convergence to construct a sequence of

discrete-time jumping process to approximate the state-dependent regime-switching diffusions.

Their approximation sequence is different to the usual time-discretizing EM’s approximation

sequence, and using this method the order of error is hard to be estimated. In this work, we

shall investigate the time-discretizing EM’s approximation of the state-dependent RSDP, and

show its strong convergence in L1-norm. The order of error is estimated which is consistent with

that obtained in [35] for state-independent RSDP in suitable sense. Our approach relies on the

refined estimate of switching process based on Skorokhod’s representation of jumping process.

Consider the following EM’s approximate solution to equations (1.1) and (1.2): for δ ∈ (0, 1),

dY (t) = b(Y (tδ),Λ
′(tδ))dt+ σ(Y (tδ),Λ

′(tδ))dW (t), (3.1)

Λ′(t) = i+

∫ t

0

∫

[0,M ]
h(Y (sδ),Λ

′(s−), z)N1(ds,dz), (3.2)

where N1(dt,dz) is a Poisson random measure used in (2.1) to determine the process (Λ(t))

with Λ(0) = i. Here and in the sequel, for the ease of notation, we use (Y (t),Λ′(t)) instead

of (Xδ(t),Λδ(t)) to denote the EM’s approximation of (X(t),Λ(t)) for some given δ. Then, by

Skorokhod’s representation, it holds

P(Λ′(t+∆) = k|Λ′(t) = j, Y (tδ) = y) =

{

qjk(y)∆ + o(∆), k 6= j,

1 + qjj(y)∆ + o(∆), k = j,
(3.3)

provided ∆ ↓ 0. Set (Y (0),Λ′(0)) = (X(0),Λ(0)) = (x, i). Note that (Λ′(t)) is a continuous time

jumping process whose transition rate depends on the process (Y (t)). In (3.1), the evolution of

Y (t) depends only on the embedded chain (Λ′(kδ))k≥1 of the process (Λ′(t)), which coincides

with the EM’s approximate solution to state-independent regime-switching process studied in

[19, Chapter 4].

In this section, we further assume the following conditions hold:
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(H1) σ(x, i) is a constant matrix independent of x and i.

(H2) There exists a constant C4 > 0 such that

|b(x, i) − b(y, i)| ≤ C4|x− y|, x, y ∈ R
n, i ∈ S.

Moreover, it is easy to see that under the conditions (Q1)-(Q3) and (A1), the existence of the

solution of (3.1) and (3.2) is easily established by considering recursively these equations for

t ∈ [kδ, (k + 1)δ), k ≥ 0.

The main difficult and different part to study the EM’s approximation of state-dependent

regime-switching diffusions against the state-independent ones is the requirement of the estima-

tion of the term
∫ t

0
P(Λ(s) 6= Λ′(s))ds. (3.4)

We shall use Skorokhod’s representation to provide a suitable estimate of (3.4). To make our

calculation clear, we present a more concrete construction of the Poisson point process (p1(t))

introduced in Section 1 (cf. for example [22, Chapter 1]).

Let ξi, i = 1, 2, . . . , be random variables satisfying P2(ξi ∈ dx) = m(dx)/M . Let τi, i =

1, 2, . . . , be nonnegative random variables such that P2(τi > t) = exp(−tM), t ≥ 0. Suppose

that (ξi), (τi) are mutually independent. Set

ς1 = τ1, ς2 = τ1 + τ2, . . . , ςk = τ1 + . . . + τk, . . . ,

Dp1 =
{

ς1, ς2, . . . , ςk, . . .
}

,

and

p1(ςk) = ξk, k = 1, 2, . . . .

Then (p1(t)) is a Poisson point process as desired. Set N(t) = #{k; ςk ≤ t} standing for the

number of jumps of the process (p1(t)) before time t.

We also need a preliminary result, which was first shown in [26, Lemma 2.1].

Lemma 3.1 Assume the conditions (Q2), (Q3) hold. Denote A∆B = (A\B)∪(B\A) for Borel
measurable sets A and B, and |A∆B| its Lebsegue measure. Then

|Γij(x)∆Γij(y)| ≤ K̃|x− y|, for every i, j ∈ S, (3.5)

where K̃ = 2(N − 1)Ncq + 1.
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Proof. For the sake of completeness, we provide a proof using the technique raised in [26]. To

make the idea clear, we first consider the simple case that S = {1, 2}. By (Q3), it is easy to

check that

|Γ12(x)∆Γ12(y)| = |q12(x)− q12(y)| ≤ cq|x− y|,
|Γ21(x)∆Γ21(y)| = |q12(x)− q12(y)|+ |q12(x) + q21(x)− q12(y)− q21(y)|

≤ 2|q12(x)− q12(y)|+ 3|q21(x)− q21(y)|
≤ 3cq|x− y|.

For general S = {1, 2, . . . , N},

|Γij(x)∆Γij(y)| =
∣

∣

i−1
∑

k=1

qk(x) +

j−1
∑

k=1,k 6=i

qik(x)−
i−1
∑

k=1

qk(y)−
j−1
∑

k=1,k 6=i

qik(y)
∣

∣

+
∣

∣

i−1
∑

k=1

qk(x) +

j
∑

k=1,k 6=i

qik(x)−
i−1
∑

k=1

(y)−
j
∑

k=1,k 6=i

qik(y)
∣

∣

≤ 2
∣

∣

i−1
∑

k=1

qk(x) +

j
∑

k=1,k 6=i

qik(y)−
i−1
∑

k=1

qk(y)−
j
∑

k=1,k 6=i

qik(y)
∣

∣ + |qij(x)− qij(y)|

≤ 2(j − 1)Ncq|x− y|+ cq|x− y| ≤ K̃|x− y|,

which is the desired result.

Lemma 3.2 Assume (Q1)-(Q3), (A1), (A2), (H1) and (H2) hold. Let (X(t),Λ(t)) and

(Y (t),Λ′(t)) be determined by (1.1), (1.2) and (3.1), (3.2) respectively. Then, for any t > 0,

there exists a positive constant C independent of δ such that
∫ t

0
P(Λ(s) 6= Λ′(s))ds ≤ Cδ

1
2 + C

∫ t

0
E|X(s)− Y (s)|ds. (3.6)

Proof. We divide this proof into three steps.

Step 1: For t ∈ (0, δ], noting that Λ(0) = Λ′(0) = i, we have

P(Λ(t) 6= Λ′(t)) = P(Λ(t) 6= Λ′(t), N(t) ≥ 1)

= P(Λ(t) 6= Λ′(t), N(t) = 1) + P(Λ(t) 6= Λ′(t), N(t) ≥ 2).

For the first term, it is easy to check that there is some C̃ > 0 so that

P(Λ(t) 6= Λ′(t), N(t) ≥ 2) ≤ P(N(δ) ≥ 2) =

∞
∑

k=2

(Mδ)k

k!
e−Mδ

= 1− e−Mδ −Mδe−Mδ ≤ C̃δ2.

(3.7)
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To deal with the second term, since Λ(0) = Λ′(0), we get

{ω; Λ(t) 6= Λ′(t), N(t) = 1}
=
{

ω; τ1 < t, τ1 + τ2 ≥ t, p1(τ1) 6∈ ∪j∈S

(

Γij(X(τ1)) ∩ Γij(Y (τ1δ)
)}

.

Hence,

P(Λ(t) 6= Λ′(t), N(t) = 1) =

∫ t

0
P(Λ(t) 6= Λ′(t), τ1 ∈ ds, τ2 > t)

=

∫ t

0
P

(

ξ1 6∈
⋃

j∈S

(

Γij(X(s)) ∩ Γij(Y (sδ))
)

, τ1 ∈ ds
)

e−M(t−s).

By virtue of Lemma 3.1, the Lebesgue measure of Γij(x)∆Γij(y) can be controlled by |x − y|.
Hence,

P(ξ1 ∈ Γij(X(s))∆Γij(Y (sδ))|τ1 ∈ ds) ≤ K̃

M
E|X(s)− Y (sδ)|, (3.8)

where we have used the fact that both X(s) and Y (s) are independent of ξ1 under the condition

τ1 = s. Indeed, as τ1 = s ∈ (0, δ), we have

X(s) = x+

∫ s

0
b(X(r), i)dr +

∫ s

0
σdW (r),

Y (s) = x+

∫ s

0
b(x, i)dr +

∫ s

0
σdW (r).

Above equations show that X(s) and Y (s) are completely determined by (W (r), 0 ≤ r ≤ s).

Then the independence between (W (t)) and ξ1 yields that both X(s) and Y (s) are independent

of ξ1. Consequently, for t ∈ (0, δ],

P(Λ(t) 6= Λ′(t)) ≤ C̃δ2 + K̃

∫ δ

0
E|X(s)− Y (sδ)|ds. (3.9)

Step 2: We proceed to estimating P(Λ(kδ) 6= Λ′(kδ)) for k ≥ 2 recursively. Denote by N([s, t))

the number of jumps of (p1(t)) during the period of [s, t). Note that (p1(t)) is a stationary point

process. Set τ δ1 be the first jumping time of (p1(t)) after time δ, then τ δ1 has the same law as τ1,

i.e. P2(τ
δ
1 > s) = exp(−Ms) for s ≥ 0. We have

P(Λ(2δ) 6= Λ′(2δ)|Λ(δ) = Λ′(δ))

= P(Λ(2δ) 6= Λ′(2δ), N([δ, 2δ)) ≥ 2|Λ(δ) = Λ′(δ))

+ P(Λ(2δ) 6= Λ′(2δ), N([δ, 2δ)) = 1|Λ(δ) = Λ′(δ))
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≤ P(N([δ, 2δ)) ≥ 2) + P(Λ(2δ) 6= Λ′(2δ), N([δ, 2δ)) = 1|Λ(δ) = Λ′(δ))

≤ C̃δ2 +

∫ 2δ

δ
P
(

ξ1 6∈ ∪j∈S

(

ΓΛ(δ)j(X(s)) ∩ ΓΛ′(δ)j(Y (sδ)), τ
δ
1 ∈ ds

))

e−M(2δ−s)

≤ C̃δ2 + K̃

∫ 2δ

δ
E|X(x)− Y (sδ)|ds

Combining with the estimation in step 1, we obtain that

P(Λ(2δ) 6= Λ′(2δ))

≤ P(Λ(2δ) 6= Λ′(2δ)|Λ(δ) = Λ′(δ)) + P(Λ(δ) 6= Λ′(δ))

≤ K̃

∫ 2δ

δ
E|X(s)− Y (sδ)|ds+ C̃δ2 + P(Λ(δ) 6= Λ′(δ))

≤ K̃

∫ 2δ

0
E|X(s)− Y (sδ)|ds+ 2C̃δ2.

Deducing recursively, we have

P(Λ(kδ) 6= Λ′(kδ)) ≤ K̃

∫ kδ

0
E|X(s)− Y (sδ)|ds+ kC̃δ2, k ≥ 1. (3.10)

Step 3: It is standard to deduce that E|X(s) − Y (sδ)| is bounded for s ∈ [0, T ] from the

condition (A1). For t > 0, we denote by tk = kδ for k ≤ N(t) and tK+1 = t if N(t) = K. Then,

∫ t

0
P(Λ(s) 6= Λ′(s)|Λ(sδ) = Λ′(sδ))ds

≤
∫ t

0

(

K̃

∫ δ

0
E|X(sδ + r)− Y (sδ)|dr + C̃δ2

)

ds

= K̃

N(t)
∑

k=0

∫ tk+1

tk

∫ δ

0
E|X(sδ + r)− Y (sδ)|drds+ C̃δ2t

= K̃

N(t)
∑

k=0

∫ tk+1

tk

∫ tk+1

tk

E|X(r)− Y (rδ)|drds+ C̃δ2t

= K̃δ

∫ t

0
E|X(s)− Y (sδ)|ds+ C̃δ2t.

(3.11)

Therefore, by (3.10) and (3.11),

∫ t

0
P(Λ(s) 6= Λ′(s))ds

=

∫ t

0
P(Λ(s) 6=Λ′(s),Λ(sδ)=Λ′(sδ))ds+

∫ t

0
P(Λ(s) 6= Λ′(s),Λ(sδ) 6=Λ′(sδ))ds
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≤
∫ t

0
P(Λ(s) 6= Λ′(s)|Λ(sδ)=Λ′(sδ))ds+

∫ t

0
P(Λ(sδ) 6= Λ′(sδ))ds

≤
∫ t

0
P(Λ(s) 6= Λ′(s)|Λ(sδ)=Λ′(sδ))ds+

K
∑

k=0

δP(Λ(kδ) 6= Λ′(kδ))

≤
∫ t

0
P(Λ(s) 6= Λ′(s)|Λ(sδ)=Λ′(sδ))ds+

K
∑

k=0

δ
[

K̃

∫ kδ

0
E|X(s)− Y (sδ)|ds+ kC̃δ2

]

≤
∫ t

0
P(Λ(s) 6= Λ′(s)|Λ(sδ)=Λ′(sδ))ds+

C̃δ(t+ 1)t

2
+ (t+ δ)K̃

∫ t

0
E|X(s)− Y (sδ)|ds

≤ K̃(t+ 2δ)

∫ t

0
E|X(s)− Y (sδ)|ds+ C̃δ2t+

C̃δ(t + 1)t

2
.

By (3.16) below, it holds

∫ t

0
E|X(s)− Y (sδ)|ds ≤

∫ t

0
E|X(s)− Y (s)|ds+ 2C1δ

1
2 ,

and hence

∫ t

0
P(Λ(s) 6= Λ′(s))ds

≤ K̃(t+ 2δ)

∫ t

0
E|X(s)− Y (s)|ds+ 2C1K̃(t+ 2δ)δ

1
2 + C̃δ2t+

C̃(t+ 1)t

2
δ.

(3.12)

This yields immediately the estimate (3.6) holds for some constant C independent of δ.

Theorem 3.3 Assume (Q1)-(Q3), (A1), (A2), (H1) and (H2) hold. Let (X(t),Λ(t)) and

(Y (t),Λ′(t)) be determined by (1.1), (1.2) and (3.1), (3.2) respectively. Then it holds

E
[

sup
0≤t≤T

|X(t)− Y (t)|
]

≤ Cδ
1
2 , (3.13)

for some constant C > 0 depending on T and independent of δ, which yields that

lim
δ→0

E
[

sup
0≤t≤T

|X(t)− Y (t)|
]

= 0. (3.14)

Proof. Set Z(t) = X(t)− Y (t) for t ≥ 0, then Z(0) = X(0) − Y (0) = 0 and

Z(t) =

∫ t

0
b(X(s),Λ(s)) − b(Y (sδ),Λ

′(sδ))ds, t > 0.
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By (H2), it holds

E sup
0≤s≤t

|Z(s)|

≤ E

∫ t

0
|b(X(s),Λ(s)) − b(Y (sδ),Λ

′(sδ))|ds

≤ E

∫ t

0

{

|b(X(s),Λ(s)) − b(Y (s),Λ(s))| + |b(Y (s),Λ(s)) − b(Y (sδ),Λ(s))|

+|b(Y (sδ),Λ(s))−b(Y (sδ),Λ
′(s))|+|b(Y (sδ),Λ

′(s))−b(Y (sδ),Λ
′(sδ))|

}

ds

≤ E

∫ t

0

{

C4

(

|Z(s)|+ |Y (s)− Y (sδ)|
)

+ 2C1

(

1{Λ(s)6=Λ′(s)} + 1{Λ′(s)6=Λ′(sδ)}

)

}

ds

(3.15)

By (3.1) and condition (A2), we get

E|Y (s)− Y (sδ)| ≤ E

∫ s

sδ

|b(Y (rδ,Λ
′(rδ))|dr +

(

E

∫ s

sδ

‖σ‖2HSdr
)

1
2

≤ C1δ + C1δ
1
2 ≤ 2C1δ

1
2 .

(3.16)

For t > 0, set K = [t/δ], tk = kδ for k ≤ K and tK+1 = t. Then, according to (3.3) and (Q2),

∫ t

0
E1{Λ′(s)6=Λ′(sδ)}ds =

K
∑

k=0

∫ tk+1

tk

P(Λ′(s) 6= Λ′(tk))ds ≤ Hδt+ o(δ). (3.17)

According to the Lemma 3.2, there exists a constant C > 0 depending on t such that

∫ t

0
P(Λ(s) 6= Λ′(s))ds ≤ Cδ

1
2 + C

∫ t

0
E|Z(s)|ds. (3.18)

Inserting (3.16), (3.17), (3.18) into (3.15), we obtain

E
[

sup
0≤s≤t

|Z(t)|
]

≤ Cδ
1
2 + C

∫ t

0
E
[

sup
0≤r≤s

|Z(r)|
]

ds.

By Gronwall’s inequality, we obtain that

E
[

sup
0≤t≤T

|Z(t)|
]

≤ C(T )δ
1
2 ,

which yields the desired conclusion.
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2005.

[2] G.K. Basak, A. Bisi, M.K. Ghosh, Stability of a random diffusion with linear drift, J.

Math. Anal. Appl., 202 (1996), 604-622.

[3] G.K. Basak, A. Bisi, M.K. Ghosh, Stability of a degenerate diffusions with state-dependent

switching, J. Math. Anal. Appl., 240 (1999), 219-248.

[4] J. Bao, J. Shao, C. Yuan, Approximation of invariant measures for regime-switching diffu-

sions, Potential Anal. 44 (2016), no. 4, 707-727.

[5] J. Bao, J. Shao, C. Yuan, Invariant measures for path-dependent random diffusions,

arXiv:1706.05638

[6] J. Bardet, H. Guerin, F. Malrieu, Long time behavior of diffusions with Markov switching,

ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 151-170.

[7] M. Benaim, S. Le Borgne, F. Malrieu, P.-A. Zitt, Quantitative ergodicity for some switched

dynamical systems, Electron. Commun. Probab., 17 (2012), 1-14.

[8] M.-F. Chen, From Markov chains to non-equilibrium particle systems, 2nd ed. Singapore:

World Scientific, 2004.

[9] M.-F. Chen, S. Li, Coupling methods for multidimensional diffusion processes, Ann. Probab.

17 (1989), 151-177.

[10] B. Cloez, M. Hairer, Exponential ergodicity for Markov processes with random switching,

Bernoulli, 21 (2015), no. 1, 505-536.

[11] B. de Saporta, J.-F. Yao, Tail of linear diffusion with Markov switching, Ann. Appl. Probab.

15 (2005), 992-1018.

[12] M. Fragoso, O. Costa, A unified approach for stochastic and mean square stability of

continuous-time linear systems with Markovian jumping parameters and additive distur-

bances, SIAM J. Control Optim. 44 (2005), 1165-1191.

[13] M. Ghosh, A. Arapostathis, S. Marcus, Optimal control of switching diffusions with appli-

cation to flexible manufacturing systems, SIAM J. Control Optim. 30 (1992), 1-23.

29

http://arxiv.org/abs/1706.05638


[14] I. Gikhman, A. Skorokhod, The theory of stochastic processes I, II, III, Springer-Verlag,

2004.

[15] T. Hou, J. Shao, Heavy tail and light tail of Cox-Ingersoll-Ross processes with regime-

switching, arXiv:1709.01691

[16] R.Z. Khasminskii, C. Zhu, G. Yin, Stability of regime-switching diffusions, Stoch. Process.

Appl., 117 (2007), 1037-1051.

[17] A.J. Majda, X. Tong, Geometric ergodicity for piecewise contracting processes with applica-

tions for tropical stochastic lattice models, Comm. Pure Appl. Math. 69 (2016), 1110-1153.

[18] X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete

time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.

[19] X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial

College Press, London, 2006.

[20] X. Mao, C. Yuan, G. Yin, Approximations of Euler-Maruyama type for stochastic dif-

ferential equations with Markovian switching, under non-Lipschitz conditions. Journal of

Computational and Applied Mathematics, 205 (2007), 936-948.

[21] D. Nguyen, G. Yin, Modeling and analysis of switching diffusion systems: past-dependent

switching with a countable state space, SIAM J. Control Optim. 54 (2016), no. 5, 2450-2477.

[22] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-

Holland Mathematical Library 24. Amsterdam-New York, North-Holland Publ. Co. 1981.

[23] M. Pinsky, R. Pinsky, Transience recurrence and central limit theorem behavior for diffu-

sions in random temporal environments, Ann. Probab. 21 (1993), 433-452.

[24] R. Pinsky, M. Scheutzow, Some remarks and examples concerning the transience and re-

currence of random diffusions, Ann. Inst. Henri. Poincaré, 28 (1992), 519-536.
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