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Abstract. We describe a framework for controlling and improving the quality of high-order finite
element meshes based on extensions of the Target-Matrix Optimization Paradigm (TMOP) of [24].
This approach allows high-order applications to have a very precise control over local mesh quality,
while still improving the mesh globally. We address the adaption of various TMOP components to the
settings of general isoparametric element mappings, including the mesh quality metric in 2D and 3D,
the selection of sample points and the solution of the resulting mesh optimization problem. We also
investigate additional practical concerns, such as tangential relaxation and restricting the deviation
from the original mesh. The benefits of the new high-order TMOP algorithms are illustrated on
a number of test problems and examples from a high-order arbitrary Eulerian-Lagrangian (ALE)
application [6]. Our implementation is freely available in an open-source library form [31].
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1. Introduction. High-order methods are becoming increasingly important in
computational science due to their potential for better simulation accuracy and fa-
vorable scaling on modern architectures [37, 13, 12, 9, 10]. A vital component of such
methods is the use of high-order representation not just for the physics fields, but also
for the geometry, represented by a high-order computational mesh. High-order finite
element meshes in particular, can be very beneficial in a wide range of applications,
where e.g. radial symmetry preservation, or alignment with physics flow or curved
model boundary is important [36, 14, 30, 20, 7]. Such applications can utilize static
meshes, where a good-quality high-order mesh needs to be generated only as an input
to the simulation, or dynamic meshes, where the mesh evolves with the problem and
its quality needs to be constantly controlled. In both cases, the quality of high-order
meshes can be difficult to control, because their properties vary in space on sub-zonal
level. Such control is critical in practice, as poor mesh quality leads to small time
steps or simulation failures.

In this paper we propose theory that defines high-order mesh quality, and us-
ing that theory we produce general and flexible mesh optimization tools for current
and future high-order applications, as well as low-order applications that use high-
order meshes. Our work is based on an extension of the Target-Matrix Optimization
Paradigm (TMOP) of [24], incorporating also some ideas from variational minimiza-
tion (VM) [8, 38, 16]. This approach provides a framework that can be tailored to the
application’s needs and is easy to use and freely available in a library form [31]. The
methods we develop are general (applicable to any element obtained through map-
ping from a reference element), but we illustrate them on quad/hex meshes mostly
focusing on purely geometric mesh optimization.

There is extensive literature on the generation, optimization, and adaptation of
unstructured meshes containing first-order element types. In comparison, there is
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a paucity of literature on generating meshes containing high-order elements; some
examples are [39, 35, 21, 26, 28, 33, 19, 25, 34]. While our focus on is on purely
geometric optimization, we note that there is also relatively little published concerning
solution-adapted meshes containing high-order elements [40, 30, 29, 1], not all of which
employ r-adaptivity.

TMOP is a general approach for controlling mesh quality, where mesh nodes
(vertices in the low-order case) are moved so-as to optimize a multi-variable objective
function that quantifies global mesh quality. Quality, in turn, is measured at a col-
lection of points within elements of the mesh by means of a local quality metric. The
metric is a function of a pair of matrices representing the Jacobian of the element map
and the ideal Jacobian (or target). The Jacobian matrix is a function of the mesh
node coordinates. By selecting appropriate target-matrices and local quality metrics,
optimization improves mesh quality in specific ways. TMOP is distinguished from
similar methods by its emphasis on target-matrix construction methods that permit
a greater degree of control over the optimized mesh. Element quality is not directly
computed but is itself an average over quality at local points within the element. It
is this property which allows TMOP to be extended to the optimization of high-order
meshes.

Controlling the quality of high-order meshes requires few adaptations and changes
to the TMOP theory developed for linear elements. However, TMOP for high-order
meshes has not been seriously implemented in code previously and thus its actual
performance in this context was unknown prior to this work. In this paper we explore
the application of TMOP to high-order meshes and report on the performance of the
resulting high-order TMOP algorithms for meshes arising in a high-order arbitrary
Eulerian-Lagrangian (ALE) application [6].

Our approach is based on a combination of TMOP and VM. In variational min-
imization, the mesh optimization problem is written as a sum of integrals over the
elements with the quality metric as the integrand. Consequently, the local optimiza-
tion problems are coupled through the high-order nodes of the mesh shared between
neighboring elements. An optimal target element is specified for each element, and
the local quality is measured based on the mapping to that element. Two natural
choices for the target elements are (a) a single optimal element, e.g., the unit square,
an equilateral triangle, the unit cube, etc. and (b) the elements of a good reference
mesh that has the same connectivity as the mesh to be optimized, with the goal being
to map the good mesh to a domain with a different shape or to r-adapt the mesh. The
integrals in the optimization problem are discretized using a quadrature rule, and the
quadrature points play the role of (weighted) sample points.

As with many methods for mesh generation and mesh quality improvement, our
approach may require the user to select values of certain numerical parameters which
appear in the target-matrices, the composite quality metrics, or in the number of
sample points. Some degree of trial-and-error on the part of the user may be necessary
to determine good values for the parameters. To make this selection process easier,
the parameters within the target-matrices and composite metrics have a clear meaning
and are often scaled to be in the range [0, 1]. Although our method is thus not always
fully automatic, these user-parameters lend considerable flexibility and capability to
the approach.

Section 2 reviews the representation of the high-order mesh, basic TMOP com-
ponents, and the objective function. Section 3 describes the TMOP target-matrices,
quality metrics, quadrature point selection, and how we numerically solve the opti-
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mization problem. Section 4 considers tangential relaxation of boundary node po-
sitions, composite metrics, and methods for restricted node movement. Section 5
presents numerical results which demonstrate the ability to control high-order meshes
using basic TMOP target-matrices and quality metrics.

2. Preliminaries. The goal of this section is to introduce the discrete mesh
representation that is used throughout the paper, the main components of TMOP,
and the corresponding notation. All these concepts are already described in previous
papers, but we repeat them here for completeness. The changes and adaptations in
the TMOP components for high-order meshes are discussed in the following section.

2.1. Discrete representation of the high-order mesh. Let d ∈ {1, 2, 3}
be the space dimension and V ⊂ [H1(Ω)]d be a space of continuous finite element
functions defined on Ω. In particular,

V =

{
{v ∈ [C0(Ω)]d | v|E ∈ (Qk)d} for quadrilateral/hexahedral meshes ,

{v ∈ [C0(Ω)]d | v|E ∈ (Pk)d} for triangular/tetrahedral meshes ,

where Qk is the space of polynomials of degree at most k in each variable, and Pk
is the space of polynomials of total degree at most k. We discretize mesh positions
by the high-order finite element function x ∈ V, i.e., on each element E we use the
expansion

x(x̄) =
N∑

i=1

xiwi(x̄) , (2.1)

where {wi}Ni=1 is the basis of V on E, x̄ are the fixed coordinates of the reference
element, and x is the coordinate vector, which contains the values of the finite element
degrees of freedom, of size Nd (each xi in (2.1) is of size d). The d × d Jacobian of
the transformation from reference to physical coordinates reads

A(x) =
∂x

∂x̄
=

N∑

i=1

xi∇wi(x̄) . (2.2)

2.2. Basic TMOP components. Assuming that all reference→ physical map-
pings are differentiable so that (2.2) is well defined, the first component of TMOP
is a set of sample points within the reference element. These points are extended to
the physical space by the (2.1) mapping. At each sample point (inside each mesh
element), TMOP uses two Jacobian matrices:

• The Jacobian matrix Ad×d of the transformation from reference to physical
coordinates, given by (2.2).

• The target matrix, Wd×d, which is the Jacobian of the transformation from
reference to the coordinates of a target element. The target elements are
defined according to a user-specified method prior to the optimization; they
define the desired elements in the optimal mesh.

The set of target matrices remains fixed during the optimization procedure while
A can change since it depends on the nodal coordinates. The weighted Jacobian
matrix, Td×d, defined by T (x) = A(x)W−1, represents the Jacobian of the transfor-
mation between the target and the physical coordinates. This matrix is used to
define the local quality measure, µ(T ), see Section 3.2. The quality measure can
evaluate shape, size, or alignment of the region around the sample point of interest.
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The goal of TMOP is to minimize a global objective function, F (µ) (see Section 2.3),
which combines the quality measures in the chosen set of sample points throughout
the mesh, so that the final mesh elements are as close as possible to the shape, size, or
alignment of their targets. The original mesh topology is preserved, i.e., optimization
is performed via node movement. The optimization procedure is also constrained by
boundary conditions. Additional details about TMOP and properties of the local
quality metrics can be found in [22, 23, 24].

2.3. Objective functions. The objective function (or norm) F (µ), in which the
mesh is optimized, can be defined in various ways. Two examples of such objective
functions are:

• The pointwise objective function, used by the original TMOP formulation:

FP (x) :=
∑

E∈E

∑

xs∈SE

cEs µ(T (xs)) , (2.3)

where E is the set of high-order elements in the mesh, SE is the set of sample
points within element E, cEs is a sample point trade-off coefficient, and T (xs)
is evaluated at the sample point xs of element E.

• The variational objective function:

FV (x) :=
∑

E∈E

∫

Et

µ(T (x))dxt =
∑

E∈E

∑

xq∈QE

wq det(W (xq))µ(T (xq)) , (2.4)

where Et is the target element corresponding to the physical element E, QE is
the set of quadrature points for element E, wq are the corresponding quadra-
ture weights, and both T (xq) and W (xq) are evaluated at the quadrature
point xq of element E.

Optimal mesh configuration is achieved by minimizing the objective function. The
two formulations are equivalent when the sample and quadrature points are chosen
to have the same positions, and cs = wq det(W (xq)) for the corresponding s and q
indices. Both formulations admit the inclusion of space-dependent weights for each
quadrature point, which would make some parts of the domain more important than
others. In this paper, we focus on the FV (x) objective function.

The existence of a minimum for (2.4) has been explored theoretically in the con-
text of hyperelasticity [5], and applied to variational mesh optimization in [17, 18].
The cited work shows that there exists an elastic deformation (i.e., mesh configura-
tion x) that minimizes the deformation energy functional (F ), provided the elastic
potential (µ) is a polyconvex function and satisfies certain growth conditions.

3. High-order mesh optimization with TMOP. This section discusses the
application of TMOP to high-order meshes and highlights the algorithmic components
that are specifically relevant in this context.

3.1. TMOP target matrices. We start by extending the notion of target ma-
trices to sub-element level. In particular, we are free to specify the target matrix W
at every quadrature point, provided ω = det(W ) > 0. Defining target matrices at
quadrature points provides a way to enforce sub-element features in the high-order
mesh elements. As an (artificial) example, consider a high-order mesh that contains a
single element. Suppose the goal of the optimization is to stack the element’s quadra-
ture points towards the middle of the element, while the boundary of the element
stays fixed. Clearly, the target matrices of the inner-most quadrature points must
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incorporate the notion of smaller size. We present a similar (and more practical)
example in Section 5.2.4.

In the left-hand side of (2.4), we assumed that we are given a target element, Et,
for every element E in the mesh. Then, based on the mapping from the reference
element that defines Et, we computed the target Jacobian matrices {W (xq)} at the
quadrature points. We can generalize this definition of the target Jacobians, {W (xq)},
by allowing them to be defined directly. In other words, there is no need to assume
that {W (xq)} are obtained by differentiating a given target element mapping. Thus,
we can take the right-hand side of (2.4) as a more general definition of the variational
objective function, where {W (xq)} are given as input, e.g., constructed using a target
Jacobian construction algorithm. In this setting, the weighted Jacobian matrices, T ,
are computed as T = AW−1.

Several target sets are used in this paper, depending on the application. Below
we list their 2D versions, but all targets are easily extendable to 3D.

The first target-matrix set corresponds to the shape of an isotropic quadrilateral
element, namely a unit square. The resulting set of target matrices are W1 = I, the
identity matrix, constant over all quadrature points.

The second target-matrix set corresponds to the shape of an isotropic quadrilat-
eral element having a prescribed area. In particular, the target in this case is the
constant W2 =

√
ᾱ I, where

ᾱ =
1

NE

∫

Ω

1 dx , (3.1)

with NE being the number of elements in the mesh. The intent of this constant target
is to produce equal-area, square elements. In this case, if the optimization is perfect,
i.e., T = I everywhere, we would have det(A) = det(TW ) = ᾱ. Note that (3.1) can be
scaled additionally by a space-dependent factor. Such targets are useful when trying
to enforce certain sizes in specific regions of the mesh, see Section 5.2.4.

The third 2D target-matrix set corresponds to the shape of an isotropic quadri-
lateral element having a local area the same as the corresponding local area in the
initial mesh (assuming the local areas are non-negative). The target in this case is the
non-constant W3(x(x0)) =

√
det(A(x0)) I, where the determinant is evaluated on the

initial mesh. The intent of this target is to produce square elements while preserving
the local sizes of the initial mesh.

3.2. TMOP quality metrics in the high-order case. A main component
in TMOP is the local quality metric. A TMOP local quality metric is a functional
µ = µ(T ) from D ⊆ Md to the set of non-negative numbers. Here Md is the set
of all real d × d matrices d = 2, 3 1. For high-order meshes, the matrix T generally
varies within each element, hence it is important to evaluate µ(·) at various positions
(quadrature points) within the element. We say that a quality metric is well-behaved
when µ(T ) ≥ 0, with µ(T ) = 0 if and only if T = Tm, where Tm belongs to some
prescribed minimizing set M⊂ D.

Depending on M, TMOP metrics can be classified into a variety of canonical
types. The different metric types are defined through the standard decomposition of
the target Jacobian matrix into four d× d matrices [22]:

W = [volume][orientation][skew][aspect ratio] . (3.2)

1Extensions to manifolds can also be made, but we are not concerned with that topic in this
paper.



6

A metric µ(T ) is defined in a way that measures the difference between A and W
only in particular components of (3.2), and is invariant of the others. The metric
type depends on the set of chosen components.

• Shape (Sh) metrics control [skew] and [aspect ratio]. They are minimized
when A is a scaled rotation of W . Shape metrics are invariant of [rotation]

and [volume] of A. Example of a shape metric is µ2 = |T |2
2 τ − 1, where

τ = det(T ), and |T |2 = tr(T tT ).
• Size (Sz) metrics control [volume]. They are minimized then det(A) = detW ,

and are invariant to the other components of the decomposition. Example of

a size metric is µ77 = 0.5
(
τ − 1

τ

)2
.

• Alignment (Al) metrics control [orientation] and [skew]. They are minimized
when A = WD, where D is a diagonal matrix. Example of an alignment
metric is µ30(A,W ) = |a1||w1| − (a1 · w1) + |a2||w2| − (a2 · w2), where a
and w are the column vectors of A and W .

• The above three major types can be combined, e.g., into Shape+Size (SS)
metrics like µ7 = |T − T−t|2, or Shape+Size+Alignment (SSA) metrics like
µ14(T ) = |T − I|2. SS metrics are minimized when A is a rotation of W ,
while SSA metrics are minimized only when A = W , i.e., T = I.

Presenting a full list of our metrics and comparisons of their properties (e.g., convexity
and polyconvexity) will be the subject of a future work.

In addition to the metric type, another useful classification pertains to metric
category. Metric category has to do with the domain of metric and the method
it uses to avoid the creation of inverted optimal meshes. The highest level metric
categories are (a) non-barrier metrics and (b) barrier metrics. Under the non-barrier
category is a specialized category known as the pseudo-barrier category of metrics.
Under the barrier category are the ideal and shifted-barrier categories. Metrics whose
category is ideal-barrier have domain D equal to the set of all d × d matrices whose
determinant is positive. From a theoretical point of view, the ideal barrier category is
central, while from a practical viewpoint, the shifted- and pseudo-barrier categories
are important. Since none of the initial meshes used in this study contain negative
area at the quadrature points, we are concerned exclusively with ideal barrier metrics
in the paper.

Table 3.2 summarizes specific metrics used in this study to produce numerical
results in Section 5. In the formulas defining the local quality metrics τ is the deter-
minant of T, det(T ), and |T | is the Frobenius norm of T .

Note that metric µ1 does not fit the formal definition of any of the above types.
This metric optimizes towards the target shape, however, it is generally not well
behaved, as µ1(T ) would always approach zero when the size of the physical element
decreases, independent of the used target. Nevertheless, in practice the minimal size
of elements is usually restricted, e.g., because of boundary conditions. Thus, one can
think of µ1 as Shape+Smallest Possible Size metric. We include µ1 in this study as
its use has proven beneficial in cases that include additional limitations about the
decrease of the local mesh sizes, for example in Sections 5.2.3 and 5.2.4.

3.3. TMOP quadrature point selection in the high-order case. As pre-
viously noted, the local quality metrics are evaluated at quadrature points within
a given element. In general, one can use any quadrature rule for integrating (2.4).
The quadrature rule is selected prior to optimization. For example, for a 2D target
element, one could select the tensor product of N uniformly distributed points in
each of two directions, giving a total of N2 quadrature points. Alternatively, one can
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ID Dimension Type Category Formula

1 2 none No Barrier µ1 =| T |2

2 2 Sh Ideal Barrier µ2 = |T |2
2 τ − 1

9 2 SS Ideal Barrier µ9 = τ | T − T−t |2

77 2 Sz Ideal Barrier µ77 = 1
2 (τ − 1

τ )2

303 3 Sh Ideal Barrier µ303 = |T |2
3 τ2/3 − 1

Table 3.1
Examples of specific quality metrics of different type, dimension and category. We denote:

τ = det(T ), and |T |2 = tr(T tT ).

use any of the standard Gauss-Lobatto or Gauss-Legendre quadrature rules. In our
experience, we have not observed any systematic differences between using uniform,
Gauss-Lobatto, or Gauss-Legendre spacing and weights with equal number of points.

It is critical with high-order meshes to choose N sufficiently large in order to
obtain a good numerical solution to the optimization problem. At a minimum, the
number of quadrature points N should be one more than the order of the element
map. Experience shows that this generally suffices for map orders 1-3. For higher
order maps the number of quadrature points may need to be even larger in order
to avoid poor mesh quality resulting from under-sampling of the quality within the
element. If too few sample points are used, the numerical algorithm can produce
inverted and/or non-smooth optimized meshes, even when the underlying quality
metric is sound. On the other hand, choosing N too large gives diminishing returns
in terms of quality improvement and increases overall computational expense. Figure
3.1 shows that utilizing an insufficient number of quadrature points (in this case N = 5
points in each direction) can lead to inverted elements when smoothing a fourth order
mesh. This is avoided when N = 6 is used. In both cases, the optimization algorithm
converges successfully. Both results use the Gauss-Lobatto spacing and quadrature
coefficients.

Fig. 3.1. Comparison of the original mesh (left) with smoothed meshes: N = 6 (center) and
N = 5 (right).
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3.4. Solving the TMOP optimization problem. The global TMOP quality
functional defined in the previous sections is a nonlinear function with respect to
the node positions of the high-order mesh. Thus, to improve the mesh quality, we
need to apply methods from the field of nonlinear optimization. Full exploration
and evaluation of this field is outside the scope of this article. Instead, we describe
two simple optimization strategies that work well in practice and were used in our
numerical tests.

For both pointwise (2.3) and variational (2.4) objective functions, one can apply a
derivative-free optimization method. Our derivative-free implementation iterates over
all nodes and consecutively displaces each node xi to a position that minimizes the
local patch mesh quality, Q(xi), around the node. For (2.3) and (2.4), respectively,
we can use

Q(xi) =
∑

E∈Ni

∑

xs∈E
cEs µ(TEs ) , and Q(xi) =

∑

E∈Ni

∫

Et

µ(T (x))dxt , (3.3)

where Ni is the set of elements (neighbors) that contain the node xi. The local
minimization of xi’s coordinates is performed by the Nelder-Mead simplex method
[32, 27]. The outer iterations over the mesh nodes are terminated when

max
k

∣∣xm+1
k − xmk

∣∣ < t ,

where t > 0 is a user-specified tolerance that depends on the volume of the domain
(we use t = 10−5 for domains of unit volume), and m indicates the m-th iteration of
the procedure. The main advantages of this derivative-free method are its simplicity
and the ability to iterate over subsets of the domain. Its disadvantages are slow
convergence and difficult parallel implementation, as each displacement in the outer
iteration depends on the previously performed displacements (essentially a Gauss-
Seidel type of iteration). Optimizing this method will be an object of future work.

As an alternative, we utilize Newton’s method to solve the critical point equations,
∂F (x)/∂x = 0. For our variational objective function (2.4), this derivative has the
form

∂FV (x)

∂xi
=
∑

E

∫

Et

(
∂A(x)

∂xi
W−1

)
:
∂µ(T )

∂T
dxt =

∑

E

∫

Et

(
∇φ̃jW−1

)
:
∂µ(T )

∂T
dxt ,

where we used the identities

A(x) =
∑

j

xj∇φ̃j(x̃) ,

[
∂µ

∂T

]

kl

=
∂µ

∂Tkl
.

An expression for the Hessian of FV , which is required for the computation of the
system Jacobian, can be derived similarly, involving the computation of the second
derivatives of µ(T ) with respect to T . For easier derivations of these derivatives, it
is beneficial to define the quality metric µ(·) in terms of the 2D or 3D matrix invari-
ants (or other quantities with known derivatives). All results presented in Section 5
minimize the variational objective (2.4) with this Newton-based method.

Some metrics require det(T ) > 0 at every sample or integration point, which
constrains the admissible configurations of the mesh nodes. In our derivative-free
method, this is addressed by setting µ(T ) equal to a big value whenever det(T ) ≤ 0,
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causing the local Nelder-Mead method to avoid such configurations. When Newton’s
method is used, we consider the following scaling of the update:

xn+1 = xn − α
[
∂2FV (xn)

∂x2

]−1
∂FV (xn)

∂x
,

and decrease the scaling factor α until the new configuration The α factor is also
decreased when xn+1 does not satisfy the following:

• The objective function must decrease or increase by, at most, 20%.
• The last Newton residual norm must decrease or increase by, at most, 20%.

FV (xn+1) < 1.2FV (xn) ,

∣∣∣∣
∂FV (xn+1)

∂xi

∣∣∣∣
2

< 1.2

∣∣∣∣
∂FV (xn)

∂xi

∣∣∣∣
2

.

These modifications increase the probability of convergence significantly, i.e., the ro-
bustness of the method, but they may lead to more Newton iterations in the beginning
stages of the nonlinear solve. The Newton method terminates when a positive α
that satisfies the above requirements cannot be found.

4. Additional practical aspects. In this section we consider additional prac-
tical concerns beyond the quality of the optimized mesh.

4.1. Tangential relaxation. A common constraint on the mesh improvement
process is that nodes belonging to the domain boundary should respect the bound-
aries of the domain (and potentially some prescribed internal curves/surfaces). The
simplest way to accomplish this is to keep the boundary node coordinates fixed (i.e.,
unchanged) during the improvement process. At times, keeping boundary nodes fixed
can be an annoying restriction because it unnecessarily limits the quality improvement
that can be achieved. An alternative is to keep the boundary nodes on the domain
boundary, but allow most of them to move tangentially to the boundary.

In tangential relaxation we still optimize the objective function from (2.3) or (2.4),
but optimization of boundary nodes is treated differently. In 3D, surface nodes are
allowed only two degrees of freedom, and curve nodes are allowed only one, whereas
interior nodes have three. When the CAD description of the boundary is available,
both derivative-free and derivative-based solvers optimize the objective functions of
the boundary nodes in terms of their parametric coordinates. The positions of the
mesh nodes are updated through the CAD parametrization. Derivative-based solvers
require derivatives of the surface parametrization which are provided by the CAD
model. Examples of such methods can be found in [35, 39].

The above approach is limited to the case in which the boundary curves are given
parametrically. For cases in which the boundary is represented implicitly, one can still
develop a similar tangential relaxation method in which the boundary nodes have less
degrees of freedom, see [17].

Note that keeping the boundary nodes on the known boundary curve generally
does not guarantee that the mesh boundary agrees with the curve, as the intermediate
mesh positions depend on the chosen finite element space. In this paper we allow
boundary motion only on boundaries that are parallel to the coordinate axes. In
this case the motion restrictions are imposed as Dirichlet boundary conditions for the
displacement vectors.

4.2. Combination of metrics. Using any of the existing metrics, we can define
a composite metric as

µcombo = η1µi1(Ti1) + η2µi2(Ti2) + . . . (4.1)



10

Each of the utilized metrics can have a different weight and different target matrix.
The {ηk} weights can be constant throughout the domain or a function of the location
of the sample points. In time-dependent applications, they can also depend on time.
By using a combination of metrics, different kinds of features such as shape, size and
alignment can be emphasized in different regions of the mesh.

4.3. Restricting the amount of mesh displacement. In many applications
with moving meshes (e.g. Lagrangian and ALE simulations) there is a trade-off be-
tween mesh quality improvement and accuracy of the field data transfer step (known
as remap), see [4, 6]. While excessive node displacements may sometimes improve
mesh quality, they might also impact the field transfer accuracy. The reason for this
is that remap sub-steps, which are used to transfer a discrete field from one mesh
configuration to another, introduce some amount of numerical diffusion (especially
when the solution field is not smooth [3, 2]). Larger node displacements result in
higher number of remap sub-steps, leading to increased diffusion.

Let xinitk be the corresponding nodal coordinates of the initial mesh. Let d ≥ 0 be
some user-specified allowed displacement distance. Then, a natural way to formulate
the restricted node movement problem would be to use the above objective functions,
with the additional constraint

∣∣xk − xinitk

∣∣ ≤ d .

Unfortunately, the numerical solution of problems with inequality constraints requires
sophisticated solvers which can be expensive in practice. Here we present two alter-
native methods for restricting node movement during mesh optimization.

4.3.1. First restricted node movement algorithm. Let δ ≥ 0 be a user-
supplied weighting parameter. Starting with the (2.4) objective function, we can
define an alternative composite objective function of the form

F̃V (x) =
∑

E∈E

∫

Et

δ |x− xinit|2 + µ(T (x)) dxt . (4.2)

The optimization in the second restricted node movement algorithm is unconstrained
(except for the usual fixed boundary nodes) and uses standard termination criterion.
The movement away from the initial mesh will be reduced when δ is increased. A
drawback of this approach is that the appropriate value of δ depends on the magnitude
of µ(T ) relative to the displacement distance.

4.3.2. Second restricted node movement algorithm. In this algorithm,
node movement is restricted by using the following composite metric:

µ′(T0, T ) = (1− γ)µ98(T0) + γ µ(T ) ,

where

µ98(T ) ≡ |T − I|
2

τ

is the replication barrier metric.2 Here, T0 = AW−1
0 and the target-matrix W0 equals

Ainit, where Ainit is the Jacobian matrix at each sample point of the initial mesh.

2The metric type of µ98 is shape, size, and alignment.
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Further, T = AW−1, whereW is a different target-matrix which represents the desired
Jacobian matrix in the unrestricted node movement problem (for example, W = W1

could be the matrix corresponding to an ideal element shape). The metric µ′ is thus
really a function of A and uses two target matrices, as well as two quality metrics. If
γ = 0, then µ′ = µ98. At the first iteration of the optimization procedure, µ98 = 0,
i.e., the initial mesh is the minimizing mesh. Thus, optimization with γ = 0 replicates
the initial mesh and no node movement occurs. On the other hand, if γ = 1, µ′ = µ,
and the optimization problem reduces to the original unrestricted node movement
optimization problem. For intermediate values of γ, the optimization problem in the
second algorithm is a mixture of the unrestricted and fully restricted problems.

5. Numerical results. In this section we report some results from the algo-
rithms in the previous sections as implemented in the MFEM finite element library
[31]. This implementation is freely available at http://mfem.org.

All results below are calculated using the variational objective function (2.4) and
Gauss-Lobatto quadrature for the resulting integrals. Newton’s method, as described
in Section 3.4, is used to solve the nonlinear optimization problems. The Newton
relative tolerance is set to 10−12, and all of the presented results are fully converged
to this tolerance. The linear solve inside each Newton step is performed by the
standard minimum residual (MINRES) algorithm. Boundary nodes which are on
curved boundaries are always fixed, while the rest of the nodes are allowed to move
as long as the motion does not perturb the initial domain.

One of the features of the MFEM library is that automatically provides efficient
MPI parallelization of the evaluations of functionals, such as (2.4), which are assem-
bled element-by-element. Furthermore, MFEM includes algorithms for the efficient
assembly of the Hessian of FV and for its preconditioning in parallel, see [11, 10, 31].

5.1. High-order mesh for a turbine blade. We start with the test case that
was mentioned in Section 3.3, namely, a Q4 turbine blade mesh that is optimized
with respect to shape. Optimization is performed with respect to the shape metric
µ2, and the isotropic square target matrix W1. The integral computations utilize 6
quadrature points in each direction. The initial mesh, along with its metric values
µ2(T (x)) are shown on Figure 5.1. Note that all initial internal edges in the mesh
are straight by construction. The goal of the optimization is to derive appropriate
node displacements and curvature, so that the resulting node positions minimize the
integral (2.4).

The optimized mesh and its metric values are shown in Figure 5.2. The shape is
improved considerably, with larger final metric values around the 2 vertices that have
5 neighboring elements. Tangential relaxation allows node-movement on boundaries
parallel to the coordinate axes. The objective function is reduced by approximately
61%, from FV (x0) = 170.792 to FV (x) = 66.4977. The maximum metric values in
the initial and optimized meshes are 21.5 and 16.7, respectively.

In addition to shape optimization, a common objective in mesh optimization is to
preserve some boundary layer. As the original mesh has a well-pronounced boundary
layer, we can preserve it by restricting the mesh displacement, as in Section 4.3. We
repeat the above test by setting δ = 5000 in (4.2) to obtain the result in Figure 5.3.
The objective function is reduced by approximately 26%, from FV (x0) = 170.792 to
FV (x) = 126.28. The maximum metric values in the initial and optimized meshes are
21.5 and 6.12, respectively.
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Fig. 5.1. Initial Q4 blade mesh and the corresponding (µ2,W1) metric values (log scale).

Fig. 5.2. Optimized Q4 blade mesh and the corresponding (µ2,W1) metric values (log scale).

Fig. 5.3. Optimized Q4 blade mesh, with restricted mesh displacements, and the corresponding
(µ2,W1) metric values (log scale).

5.2. High-order ICF meshes. The following tests use a perturbed Q3 mesh,
see Figure 5.4. Similar meshes are often used for high-order ALE simulations [6]
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of Inertial Confinement Fusion (ICF) experiments, where preservation of radial sym-
metry is important. We use the following tests to demonstrate various capabilities
of the method, e.g., different target constructions for shape and size optimization,
composition of metrics, and restricting the amount of mesh displacement.

5.2.1. Shape + equal size optimization. In this test we use the SS metric
µ9 combined with the W2 target, i.e., the mesh is optimized with respect to shape, so
that the local size is uniform throughout the mesh. The integral computations utilize
6 quadrature points in each direction. The initial mesh, along with its metric values
µ9(T (x)) are shown on Figure 5.4.

The optimized mesh and its metric values are shown in Figure 5.5. We observe
good shape and symmetry, while the larger final metric values are at positions that
are slightly above or below the average local size. The objective function is reduced
by approximately 70%, from FV (x0) = 1.119 to FV (x) = 0.329. The maximum metric
values in the initial and optimized meshes are 298.6 and 28.58, respectively.

Fig. 5.4. Initial Q3 ICF mesh and the corresponding (µ9,W2) metric values (log scale).

Fig. 5.5. Optimized Q3 ICF mesh and the corresponding (µ9,W2) metric values (log scale).

5.2.2. Shape + initial size optimization. In this test we use the SS metric
µ9 combined with the W3 target, i.e., the mesh is optimized with respect to shape,
so that the local size around a given mesh node equals the local size around the
node’s initial position. The integral computations utilize 6 quadrature points in each
direction.

The initial metric values, optimized mesh, and its metric values are shown in
Figure 5.6. We observe improved shape and symmetry, while the initial local sizes are
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Fig. 5.6. Initial metric values (left), optimized Q3 ICF mesh (center), and the corresponding
(µ9,W3) metric values (log scale, right).

mostly preserved, except near the lower left corner. The objective function is reduced
by approximately 51%, from FV (x0) = 0.095 to FV (x) = 0.046. The maximum metric
values in the initial and optimized meshes are 50.19 and 31.37, respectively.

5.2.3. Shape and restricted node movement optimization. Next, we op-
timize the shape of the Q3 ICF mesh while also trying to keep the mesh displacement
small, as discussed in Section 4.3. We use the metric µ1 combined with the W1 target.
To reduce the mesh displacement we utilize the (4.2) objective function. The integral
computations utilize 6 quadrature points in each direction.

To stress the effects of the restriction, results with δ = 0 are presented, i.e., the
mesh is optimized with no considerations about the node movement. The result is
shown in Figure 5.7, which contains the initial µ1 metric values, the optimized mesh,
and its µ1 metric values. The shape is improved, but all elements are substantially
displaced and resized. The objective function is reduced by approximately 25%, from
FV (x0) = 0.189 to FV (x) = 0.141. The maximum metric values in the initial and
optimized meshes are 0.0083 and 0.0070, respectively.

Results obtained with δ = 10 are shown in Figure 5.8. The shape of the prob-
lematic elements is improved, while they remain close to their original positions.
The position displacement (left panel) is localized around the regions with bad ini-
tial shape quality. The objective function is reduced by approximately 2.76%, from
F̃V (x0) = 0.189 to F̃V (x) = 0.184.

Fig. 5.7. Initial metric values (left), optimized Q3 ICF mesh (center), and the corresponding
(µ1,W1) metric values (log scale), δ = 0 (right).

5.2.4. Combination of metrics. The goal of the next test is to optimize shape,
while keeping higher resolution in a particular region of the domain. The following
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Fig. 5.8. Amount of mesh displacement between the initial and optimized meshes (left),
optimized Q3 ICF mesh (center), and the corresponding (µ1,W1) metric values (log scale), δ = 10
(right).

objective function is used to optimize the perturbed ICF Q3 mesh:

FV (x) =
∑

E∈E

[∫

Et

µ1(x)dxt +

∫

Et

η(x)µ77(x)dxt

]
,

where the space-dependent weight function η is defined in terms of radius:

η(r) = 0.2+0.5
[

tanh

(
r − 0.16

0.002

)
−tanh

(
r − 0.17

0.002

)
+tanh

(
r − 0.23

0.002

)
−tanh

(
r − 0.24

0.002

)]
.

The µ1 part of the objective function is used to optimize the mesh with respect to
shape. The metric is combined with the W1 target construction. The µ77 contribution
optimizes the mesh with respect to size. It uses a target matrix of the form W2 =√

0.01ᾱ I, see (3.1). Such metric aims to achieve equal local sizes that are smaller than
the average local size of the mesh. As the space-dependent weight η(r) for µ77 stresses
particular regions, the optimization tries to achieve finer resolution in these regions.
This combination effectively forces shape and equal size optimization in most of the
domain, while the stressed (by η(r)) regions are optimized with respect to shape and
smaller size. The integral computations utilize 6 quadrature points in each direction.

The η weight and final mesh are shown in Figure 5.9. The shape is improved
throughout the mesh, while the regions, specified by η(r), are resolved better. The
final µ1 and µ77 metric values are shown in Figure 5.10. As µ1 has a constant weight
in space, its final values are mostly uniform throughout the domain. The plot of
µ77 shows that the stressed regions are optimized better in terms of the desired size.
The objective function is reduced by approximately 80%, from FV (x0) = 7.291 to
FV (x) = 1.421.

5.3. 3D mesh for a pinched sphere. The following tests use 3D perturbed
Q4 and Q2 spheres, see Figure 5.11. The internal shape of the meshes is optimized
with metric µ303 and the W1 target construction. This test demonstrates the benefits
of global mesh optimization and the method’s 3D mesh optimization functionality.

The Q4 mesh (448 elements) results are shown in the top panel of Figure 5.11.
The integral computations utilize 6 quadrature points in each direction. The shape of
the inside of the sphere is substantially improved. The objective function is reduced
by approximately 82%, from FV (x0) = 169.605 to FV (x) = 29.263.

The Q2 mesh (229,376 elements) results are shown in the bottom panel of Figure
5.11. The integral computations utilize 4 quadrature points in each direction. To
verify the parallel execution capabilities of our MFEM implementation, a finer Q2



16

Fig. 5.9. Space-dependent weight applied to µ77 (left) and optimized mesh (right).

Fig. 5.10. Final (µ1,W1) and (µ77,W2) metric values (log scale).

mesh (1.835 million elements) was also tested on 512 MPI tasks, producing similar
results (not shown here due to the density of elements).

Fig. 5.11. 3D Q4 (top) and a Q2 (bottom) perturbed and optimized meshes (slices are shown
in the middle and right panels).
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6. Conclusions and future work. This paper helps fill a gap in the high-
order mesh literature on mesh quality improvement. This has been accomplished
using the Target-matrix optimization paradigm via the important step of including
sub-element information that is used to define the local quality of high-order elements.
The paper demonstrates that this extension is sufficient to provide a degree of control
over the quality of high-order 2D and 3D meshes in terms of local shape and area.
The numerical method associated with high-order TMOP is implemented within the
MFEM library [31] to provide the wider community free access to this method. Our
approach is flexible and easy to incorporate in a wide range of current and future
high-order applications, as well as low-order applications that use high-order meshes.

Although this method is already being used in realistic applications such as the
BLAST code [6], considerably more work is needed to fully demonstrate the method,
particularly in 3D and on other realistic applications. In principle, the target-matrices
in TMOP provide the means to not only control local shape and size, but also to adapt
the mesh to the physical solution as it evolves within the simulation (r-adaptivity).
Some preliminary steps towards the goal of high-order r-adaptivity are reported in
[15]; we hope to do much more regarding this challenge in the future. Other topics that
will be addressed in our future work include: (1) tangential relaxation along curved
interfaces and domain boundaries which are not given analytically, (2) application to
realistic 3D simulations, (3) improvements in robustness and efficiency of the numeri-
cal algorithm and solvers, (4) investigation of additional target construction methods,
(5) testing on applications which can benefit from the use of shape+size+alignment
(SSA) metrics, and (6) coupling between node movement and adaptive mesh refine-
ment (AMR).
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