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Abstract

In this paper we consider the cubic regularization (CR) method for minimizing a twice con-

tinuously differentiable function. While the CR method is widely recognized as a globally conver-

gent variant of Newton’s method with superior iteration complexity, existing results on its local

quadratic convergence require a stringent non-degeneracy condition. We prove that under a local

error bound (EB) condition, which is much weaker a requirement than the existing non-degeneracy

condition, the sequence of iterates generated by the CR method converges at least Q-quadratically

to a second-order critical point. This indicates that adding a cubic regularization not only equips

Newton’s method with remarkable global convergence properties but also enables it to converge

quadratically even in the presence of degenerate solutions. As a byproduct, we show that with-

out assuming convexity, the proposed EB condition is equivalent to a quadratic growth condition,

which could be of independent interest. To demonstrate the usefulness and relevance of our con-

vergence analysis, we focus on two concrete nonconvex optimization problems that arise in phase

retrieval and low-rank matrix recovery, respectively, and prove that with overwhelming probability,

the sequence of iterates generated by the CR method for solving these two problems converges at

least Q-quadratically to a global minimizer. We also present numerical results of the CR method

when applied to solve these two problems to support and complement our theoretical development.
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1 Introduction

Consider the unconstrained minimization problem

min
x∈Rn

f(x), (1)
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where f : Rn → R is assumed to be twice continuously differentiable. Newton’s method is widely

regarded as an efficient local method for solving problem (1). The cubic regularization (CR) method,

which is short for cubic regularized Newton’s method, is a globally convergent variant of Newton’s

method. Roughly speaking, given the current iterate xk, the CR method determines the next one by

minimizing a cubic regularized quadratic model of f at xk; i.e.,

xk+1 ∈ Argmin
x∈Rn

{
f(xk) +∇f(xk)T (x− xk) +

1

2
(x− xk)T∇2f(xk)(x− xk) +

σk
6
‖x− xk‖3

}
, (2)

where the regularization parameter σk > 0 is chosen such that f(xk+1) ≤ f(xk). The idea of using

cubic regularization first appeared in Griewank [15], where he proved that any accumulation point of

{xk}k≥0 generated by the CR method is a second-order critical point of f ; i.e., an x ∈ Rn satisfying

∇f(x) = 0 and ∇2f(x) � 0. Later, Nesterov and Polyak [24] presented the remarkable result that

the CR method has a better global iteration complexity bound than that for the steepest descent

method. Elaborating on these results, Cartis et al. [10, 11] proposed an adaptive CR method for

solving problem (1), where {σk}k≥0 are determined dynamically and subproblems (2) are solved

inexactly. They showed that the proposed method can still preserve the good global complexity

bound established in [24]. Based on these pioneering works, the CR method has been attracting

increasing attention over the past decade; see, e.g., [9, 29, 32] and references therein.

In addition to these global convergence properties, the CR method, as a modified Newton’s method,

is also expected to attain a fast local convergence rate. It is known that if any accumulation point x̄

of the sequence {xk}k≥0 generated by the CR method satisfies

∇f(x̄) = 0 and ∇2f(x̄) � 0, (3)

then the whole sequence {xk}k≥0 converges at least Q-quadratically to x̄; see [15, Theorem 4.1]

or [24, Theorem 3].† Nevertheless, the non-degeneracy condition (3) implies that x̄ is an isolated local

minimizer of f and hence does not hold for many nonconvex functions in real-world applications.

For example, consider the problem of recovering a positive semidefinite matrix X∗ ∈ Rn×n with rank

r � n, given a linear operator A : Rn×n → Rm and a measurement vector b = A(X∗). A practically

efficient approach for recovering X∗ is to solve the following nonconvex minimization problem (see,

e.g., [4]):

min
U∈Rn×r

f(U) :=
1

4m
‖A(UUT )− b‖2.

Noticing that f(U) = f(UR) for any U ∈ Rn×r and any orthogonal matrix R ∈ Rr×r, it is not

hard to see that there is no isolated local minimizer of f when r ≥ 2, which implies that there is

no U ∈ Rn×r such that ∇f(U) = 0 and ∇2f(U) � 0 when r ≥ 2. Similar degeneracy features can

also be found in various nonconvex optimization formulations used in phase retrieval [28] and deep

learning [34]. In view of this, it is natural to study the local convergence properties of the CR method

for solving problems with non-isolated minimizers. Moreover, the non-degeneracy condition (3) seems

too stringent for the purpose of ensuring quadratic convergence of the CR method. Indeed, one can

observe from (2) that due to the cubic regularization, the CR method is well defined even when the

†A sequence of vectors {wk}k≥0 in Rn is said to converge Q-quadratically to a vector w∞ if there exists a positive

constant M such that ‖wk − w∞‖/‖wk − w∞‖2 ≤M for all sufficiently large k; see, e.g., [25, Appendix A.2].
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Hessian at hand has non-positive eigenvalues. In addition, the CR method belongs to the class of

regularized Newton-type methods, many of which have been shown to attain a superlinear or quadratic

convergence rate even in the presence of non-isolated solutions. For instance, Li et al. [18] considered

a regularized Newton’s method for solving the convex case of problem (1). They proved that if

f satisfies a local error bound condition, which is a weaker requirement than (3), then the whole

sequence {xk}k≥0 converges superlinearly or quadratically to an optimal solution. Yue et al. [33]

extended such result to a regularized proximal Newton’s method for solving a class of nonsmooth

convex minimization problems. Other regularized Newton-type methods that have been shown to

attain superlinear or quadratic convergence for problems with non-isolated solutions include, among

others, the classic Levenberg-Marquardt (LM) method [31, 13] for nonlinear equations, Newton-type

methods for complementarity problems [30], and regularized Gauss-Newton methods for nonlinear

least-squares [2].

In this paper we establish the quadratic convergence of the CR method under the assumption of

the following local error bound condition.

Definition 1 (EB Condition). We say that f satisfies the local error bound (EB) condition if there

exist scalars κ, ρ > 0 such that

dist(x,X ) ≤ κ‖∇f(x)‖ whenever dist(x,X ) ≤ ρ, (4)

where X is the set of second-order critical points of f and dist(x,X ) denotes the distance of x to X .

As we shall see in Section 3, the above local EB condition is a weaker requirement than the non-

degeneracy condition (3). We prove that if f satisfies the above local EB condition, then the whole

sequence {xk}k≥0 generated by the CR method converges at least Q-quadratically to a second-order

critical point of f . This, together with the pioneering works [15, 24, 10], indicates that adding a

cubic regularization not only equips Newton’s method with superior global convergence properties

but also enables it to converge quadratically even in the presence of degenerate solutions. We remark

that our proof of quadratic convergence is not a direct extension of those from the aforementioned

works on regularized Newton-type methods. In particular, a major difficulty in our proof is that the

descent direction dk = xk+1 − xk of the CR method is obtained by minimizing a nonconvex function,

as one can see from (2). By contrast, the descent directions of the regularized Newton-type methods

in [18, 33, 31, 13, 2] are all obtained by minimizing a strongly convex function. For instance, the LM

method for solving the nonlinear equation F (x) = 0 computes its descent direction by solving the

strongly convex optimization problem

dk = argmin
d∈Rn

{
‖F (xk) + F ′(xk)d‖2 + µk‖d‖2

}
, (5)

where F ′ is the Jacobian of F and µk > 0 is the regularization parameter; see [17, 22]. Consequently,

we cannot utilize the nice properties of strongly convex functions in our proof. Instead, we shall

exploit the fact that any accumulation point of the sequence {xk}k≥0 generated by the CR method is

a second-order critical point of f in our analysis. It is also worth noting that our convergence analysis

unifies and sharpens those in [24] for the so-called globally non-degenerate star-convex functions and

gradient-dominated functions (see Section 2 for the definitions). In particular, we show that when
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applied to these two classes of functions, the CR method converges quadratically, which improves

upon the sub-quadratic convergence rates established in [24].

Besides our convergence analysis of the CR method, the proposed local EB condition could also

be of independent interest. A notable feature of the EB condition (4) is that its target set X is the set

of second-order critical points of f . This contrasts with other EB conditions in the literature, where

X is typically the set of first-order critical points (see, e.g., [21]) or the set of optimal solutions (see,

e.g., [14, 35]). Such feature makes our EB condition especially useful for analyzing local convergence

of iterative algorithms that are guaranteed to cluster at second-order critical points. Moreover, we

prove that under some mild assumptions, our local EB condition is equivalent to a quadratic growth

condition (see Theorem 1 (ii) for the definition). Prior to this work, the equivalence between these

two regularity conditions was established when f is convex [1] or when f is nonconvex but satisfies

certain quadratic decrease condition [12]. Our result indicates that if the target set X is the set of

second-order critical points, then the equivalence of the two regularity conditions can be established

without the need of the aforementioned quadratic decrease condition.

To demonstrate the usefulness and relevance of our convergence analysis, we apply it to study

the local convergence behavior of the CR method when applied to minimize two concrete nonconvex

functions that arise in phase retrieval and low-rank matrix recovery, respectively. A common feature

of these nonconvex functions is that they do not have isolated local minimizers. Motivated by recent

advances in probabilistic analysis of the global geometry of these nonconvex functions [28, 4], we

show that with overwhelming probability, (i) the set of second-order critical points equals the set of

global minimizers and (ii) the local EB condition (4) holds. As a result, our analysis implies that

with overwhelming probability, the sequence of iterates generated by the CR method for solving these

nonconvex problems converges at least Q-quadratically to a global minimizer. Numerical results of

the CR method for solving these two nonconvex problems are also presented, which corroborate our

theoretical findings.

The rest of this paper is organized as follows. In Section 2, we review existing results on the

convergence properties of the CR method. In Section 3, we study the local EB condition (4) and prove

its equivalence to a quadratic growth condition. In Section 4, we prove the quadratic convergence

of the CR method under the local EB condition. In Section 5, we study the CR method for solving

two concrete nonconvex minimization problems that arise in phase retrieval and low-rank matrix

recovery, respectively. In Section 6, we present numerical results of the CR method for solving these

two nonconvex problems. Finally, we close with some concluding remarks in Section 7.

1.1 Notations

We adopt the following notations throughout the paper. Let Rn be the n-dimensional Euclidean

space and 〈·, ·〉 be its standard inner product. For any vector x ∈ Rn, we denote by ‖x‖ =
√
〈x, x〉

its Euclidean norm. Given any x̄ ∈ Rn and ρ > 0, we denote by B(x̄; ρ) the Euclidean ball with

center x̄ and radius ρ; i.e., B(x̄; ρ) := {x ∈ Rn : ‖x − x̄‖ ≤ ρ}. For any matrix X ∈ Rm×n, we

denote by ‖X‖ and ‖X‖F its operator norm and Frobenius norm, respectively. If in addition X is

symmetric, we write λ1(X) ≥ · · · ≥ λn(X) as the eigenvalues of X in decreasing order. Moreover, we

write X � 0 if X is positive semidefinite. We denote by Or the set of r× r orthogonal matrices; i.e.,

QTQ = QQT = Ir for any Q ∈ Or, where Ir is the r × r identity matrix. For any complex vector

4



z ∈ Cn, we denote by <(z) and =(z) its real and imaginary parts, respectively. Moreover, we let z be

the conjugate of z, zH = zT be the Hermitian transpose of z, and ‖z‖ =
√
zHz be the norm of z. For

any closed subset C ⊂ Rn, we denote by dist(x,C) the distance of x ∈ Rn to C. In addition, we use

N (C; ρ) with some ρ > 0 to denote the neighborhood N (C; ρ) := {x ∈ Rn : dist(x,C) ≤ ρ} of C.

For any x ∈ Rn, we define L(f(x)) := {y ∈ Rn : f(y) ≤ f(x)}. We say that x ∈ Rn is a second-

order critical point of f if it satisfies the second-order necessary condition for f ; i.e., ∇f(x) = 0 and

∇2f(x) � 0. Unless otherwise stated, we use X to denote the set of second-order critical points of

f and X ∗ to denote the set of global minimizers of f . It is clear that X ∗ ⊂ X . Moreover, since f is

twice continuously differentiable, both X and X ∗ are closed subsets of Rn. We assume throughout

the paper that X ∗ is non-empty.

2 The Cubic Regularization Method

In this section, we review the cubic regularization (CR) method for solving problem (1) and some

existing results on its convergence properties.

Given a vector x ∈ Rn, we define the cubic regularized quadratic approximation of f at x as

fσ(p;x) = f(x) +∇f(x)T (p− x) +
1

2
(p− x)T∇2f(x)(p− x) +

σ

6
‖p− x‖3, (6)

where σ > 0 is the regularization parameter. In addition, we define

f̄σ(x) := min
p∈Rn

fσ(p;x) and pσ(x) ∈ Argmin
p∈Rn

fσ(p;x). (7)

In principle, starting with an initial point x0 ∈ Rn, the CR method generates a sequence of iterates

{xk}k≥0 by letting xk+1 = pσk(xk) for some σk > 0 such that

f(pσk(xk)) ≤ f̄σk(xk). (8)

Notice that this requires the computation of pσ(x), which is a global minimizer of fσ(·;x). Although

fσ(·;x) is in general nonconvex, it has been shown in [24] that pσ(x) can be computed by solving

a one-dimensional convex optimization problem. Moreover, the optimality condition for the global

minimizers of fσ(·;x) is very similar to that of a standard trust-region subproblem [10, Theorem 3.1].

Such observation has led to the development of various efficient algorithms for finding pσ(x) in [10].

More recently, it is shown in [8] that the gradient descent method can also be applied to find pσ(x).

For the global convergence of the CR method, we need the following assumption.

Assumption 1. The Hessian of the function f is Lipschitz continuous on a closed convex set F with

L(f(x0)) ⊂ int(F); i.e., there exists a constant L > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ F . (9)

A direct consequence of Assumption 1 is that for any x ∈ F , it holds that f(pσ(x)) ≤ f̄σ(x)

whenever σ ≥ L (see [24, Lemma 4]). This further implies that for all k ≥ 0, we can find a σk ≤ 2L

such that (8) holds. Indeed, if the Lipschitz constant L is known, we can let σk = L. If not, by using

a line search strategy that doubles σk after each trial [24, Section 5.2], we can find a σk ≤ 2L such

that (8) holds. We now state the details of the CR method as follows.
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Algorithm 1 (The Cubic Regularization Method).

0. Input an initial point x0 ∈ Rn, a scalar σ̄ ∈ (0, L], and set k = 0.

1. Find σk ∈ [σ̄, 2L] such that

f(pσk(xk)) ≤ f̄σk(xk). (10)

2. Set xk+1 = pσk(xk) and k = k + 1, and go to Step 1.

End.

The following result, which can be found in [15, Theorem 4.1] and [24, Theorem 2], shows that any

accumulation point of the sequence {xk}k≥0 generated by the CR method is a second-order critical

point of f .

Fact 1. Suppose that Assumption 1 holds. Let {xk}k≥0 be the sequence of iterates generated by the

CR method. If L(f(xk)) is bounded for some k ≥ 0, then the following statements hold.

(i) v := limk→∞ f(xk) exists.

(ii) limk→∞ ‖xk − xk−1‖ = 0.

(iii) The sequence {xk}k≥0 has at least one accumulation point. Moreover, every accumulation point

x̄ of {xk}k≥0 satisfies

f(x̄) = v, ∇f(x̄) = 0, ∇2f(x̄) � 0.

We next review some existing results on the local convergence rate of the CR method. We start

with the following result, which can be found in [15, Theorem 4.1].

Fact 2. Suppose that Assumption 1 holds. Let {xk}k≥0 be the sequence generated by Algorithm 1 for

solving problem (1). If an accumulation point x̄ of {xk}k≥0 satisfies

∇f(x̄) = 0, ∇2f(x̄) � 0, (11)

then the whole sequence {xk}k≥0 converges at least Q-quadratically to x̄.

As discussed in the Introduction, the non-degeneracy condition (11) implies that x̄ is an isolated

local minimizer of f , which does not hold in many applications. In an attempt to overcome such

limitation, Nesterov and Polyak [24] considered two classes of functions for which there can be non-

isolated second-order critical points and showed that Algorithm 1 converges superlinearly locally

when applied to these functions. The first class is the so-called globally non-degenerate star-convex

functions.

Definition 2. We say that f is star-convex if for any x∗ ∈ X ∗,

f(αx∗ + (1− α)x) ≤ αf∗ + (1− α)f(x), ∀x ∈ Rn, ∀α ∈ [0, 1]. (12)

Definition 3. We say that the optimal solution set X ∗ of f is globally non-degenerate if there exists

a scalar α > 0 such that

f(x)− f∗ ≥ α

2
· dist2(x,X ∗), ∀x ∈ Rn. (13)
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Fact 3 ([24, Theorem 5]). Suppose that Assumption 1 holds, f is star-convex, and X ∗ is globally

non-degenerate. Then, there exist a scalar γ > 0 and an integer k0 ≥ 0 such that

f(xk+1)− f∗ ≤ γ
(
f(xk)− f∗

) 3
2
, ∀k ≥ k0.

The second class of functions studied in [24] is the so-called gradient-dominated functions.

Definition 4. We say that f is gradient-dominated of degree 2 if there exists a scalar τf > 0 such

that

f(x)− f∗ ≤ τf‖∇f(x)‖2, ∀x ∈ Rn. (14)

It is worth mentioning that the inequality (14) is an instance of the  Lojasiewicz inequality, which

has featured prominently in the convergence analysis of iterative methods; see, e.g., [19] and the

references therein. Indeed, recall that f is said to satisfy the  Lojasiewicz inequality with exponent

θ ∈ [1
2 , 1) at x̄ ∈ Rn if there exist a scalar c > 0 and a neighborhood U of x̄ such that

|f(x)− f(x̄)|θ ≤ c‖∇f(x)‖, ∀x ∈ U .

Hence, the inequality (14) is simply the  Lojasiewicz inequality at any global minimizer of f with θ = 1
2

and U = Rn.

Fact 4 ([24, Theorem 7]). Suppose that Assumption 1 holds and f is gradient-dominated of degree 2.

Then, there exist a scalar γ > 0 and an integer k0 ≥ 0 such that

f(xk+1)− f∗ ≤ γ
(
f(xk)− f∗

) 4
3
, ∀k ≥ k0.

From the definitions, it is not hard to see that both globally non-degenerate star-convex functions

and gradient-dominated functions can be nonconvex and can have non-isolated second-order critical

points. Nevertheless, the convergence rates obtained in Facts 3 and 4 are weaker than that in Fact

2 in the following two aspects: (i) only superlinear rates of order 3
2 and 4

3 are established for these

two classes respectively, while a quadratic rate is achieved in Fact 2; (ii) only the convergence rate of

the objective values {f(xk)}k≥0 is proved for these two classes, which is weaker than the convergence

rate of the iterates {xk}k≥0 in Fact 2. As we shall see in Section 4, using our analysis approach,

the superlinear convergence rates of {f(xk)}k≥0 in Facts 3 and 4 can be improved to the quadratic

convergence rate of {xk}k≥0.

3 Error Bound for the Set of Second-Order Critical Points

Recall that X is the set of second-order critical points of f , which is a closed subset of Rn and assumed

to be non-empty. In this section, we are interested in the local error bound (EB) condition (5) for X ,

which we repeat here for the convenience of the readers.

Assumption 2 (EB Condition). There exist scalars κ, ρ > 0 such that

dist(x,X ) ≤ κ‖∇f(x)‖, ∀x ∈ N (X ; ρ). (15)
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Assumption 2 is much weaker than the non-degeneracy assumption (11). Indeed, if x̄ ∈ X satisfies

condition (11), then it is routine to show that x̄ is an isolated second-order critical point and there

exist scalars κ, ρ > 0 such that dist(x,X ) ≤ κ‖∇f(x)‖ whenever ‖x − x̄‖ ≤ ρ. On the other hand,

the EB condition (15) can still be satisfied when f has no isolated second-order critical points. For

instance, it is not hard to verify that f(x) = (‖x‖2 − 1)2, whose set of second-order critical points

is X = {x : ‖x‖ = 1}, satisfies the EB condition (15). Furthermore, at the end of this section we

shall show that both the globally non-degenerate star-convex functions and the gradient-dominated

functions considered in Facts 3 and 4 satisfy Assumption 2. In Section 5 we shall show that certain

nonconvex functions that arise in phase retrieval and low-rank matrix recovery satisfy Assumption 2

with overwhelming probability.

In what follows, we prove that under some mild assumptions, the EB condition (15) is equivalent

to a quadratic growth condition. For any x ∈ Rn, we denote by x̂ a projection of x onto X ; i.e.,

x̂ ∈ Argminz∈X ‖x− z‖.

Theorem 1. Suppose that ∇2f(x) is uniformly continuous on N (X ; γ) for some γ > 0. Also, suppose

that f satisfies the following separation property: there exists an ε > 0 such that ‖x− y‖ ≥ ε for any

x, y ∈ X with f(x) 6= f(y). Then, the following statements are equivalent.

(i) There exist scalars κ, ρ > 0 such that

dist(x,X ) ≤ κ‖∇f(x)‖, ∀x ∈ N (X ; ρ). (16)

(ii) There exist scalars α, β > 0 such that

f(x) ≥ f(x̂) +
α

2
· dist2(x,X ), ∀x ∈ N (X ;β). (17)

Before presenting the proof, some remarks on the assumptions in Theorem 1 are in order. First,

the uniform continuity of ∇2f(x) on N (X ; γ) for some γ > 0 holds if X is a compact set. Second,

the separation property in Theorem 1 has appeared in [21], in which it was referred to as proper

separation of isocost surfaces, and has long played a role in the study of error bounds. It holds for

many nonconvex functions in applications and holds trivially if f is convex.

Proof of Theorem 1. We first prove (i) ⇒ (ii). Suppose that (16) holds with some κ, ρ > 0. Since

∇2f(x) is uniformly continuous on N (X ; γ), there exists a scalar β0 > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ 1

4κ
, ∀x, y ∈ N (X ; γ) with ‖x− y‖ ≤ β0. (18)

Let β1 := min{β0, ρ, γ} > 0, x ∈ N (X ;β1) be arbitrarily chosen, and x(t) = x̂+ t(x− x̂) for t ∈ [0, 1].

Thus, ‖x(t)− x̂‖ ≤ ‖x− x̂‖ ≤ β1 for any t ∈ [0, 1]. By (18), we have

‖∇2f(x(t))−∇2f(x̂)‖ ≤ 1

4κ
, ∀t ∈ [0, 1].

This, together with the inequality |λmin(A)− λmin(B)| ≤ ‖A−B‖ for any real symmetric matrices A

and B (see, e.g., [3, Corollary III.2.6]), yields

λmin[∇2f(x(t))] ≥ λmin[∇2f(x̂)]− 1

4κ
≥ − 1

4κ
, ∀t ∈ [0, 1], (19)
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where the last inequality is due to ∇2f(x̂) � 0. By the integral form of Taylor’s series, we have

f(x)− f(x̂) = 〈∇f(x̂), x− x̂〉+

∫ 1

0
(1− t)(x− x̂)T∇2f(x(t))(x− x̂)dt.

This, together with (19), ∇f(x̂) = 0, and ‖x− x̂‖ = dist(x,X ), yields

f(x)− f(x̂) ≥ − 1

8κ
· dist2(x,X ), ∀x ∈ N (X ;β1). (20)

Our next goal is to prove that there exists a scalar β > 0 such that

f(x) ≥ f(x̂) +
1

16κ
· dist2(x,X ), ∀x ∈ N (X ;β). (21)

This would then imply that statement (ii) holds. Suppose that (21) does not hold for any β >

0. Then, there exist a sequence {xk}k≥0 and a sequence of positive scalars {tk}k≥0 such that

limk→∞ dist(xk,X ) = 0 and

f(xk) ≤ f(x̂k) +
1

16κ
· dist2(xk,X )− tk, ∀k ≥ 0. (22)

Without loss of generality, we assume that xk ∈ N (X ;β1) for all k ≥ 0. By (22), we have xk /∈ X for

all k ≥ 0. Let λk := 1
2 ·dist(xk,X ). Hence, limk→∞ λk = 0 and λk > 0 for all k ≥ 0. Given any k ≥ 0,

consider the problem

vk := min

{
f(x) +

1

8κ
· dist2(x,X )

}
s.t. x ∈ N (X ;β1) ∩ B

(
x̂k;

ε

3

)
.

(23)

Since x̂k is feasible for (23) and x̂k ∈ X , we have vk ≤ f(x̂k). Let x be an arbitrary feasible point

of (23). Then, it follows from (20) that f(x)+ 1
8κ ·dist2(x,X ) ≥ f(x̂). In addition, since x ∈ B

(
x̂k; ε3

)
,

we have ‖x̂ − x̂k‖ ≤ ‖x − x̂‖ + ‖x − x̂k‖ ≤ 2‖x − x̂k‖ ≤ 2
3ε < ε. This, together with the fact that

x̂, x̂k ∈ X and our assumption in Theorem 1, implies that f(x̂) = f(x̂k). Hence, every feasible point x

of (23) satisfies f(x)+ 1
8κ ·dist2(x,X ) ≥ f(x̂k), which implies that vk ≥ f(x̂k). Thus, we can conclude

that vk = f(x̂k). Combining this with (22), we obtain

f(xk) +
1

8κ
· dist2(xk,X ) ≤ vk + τk, ∀k ≥ 0, (24)

where τk = 3
16κ · dist2(xk,X ) − tk. Since limk→∞ dist(xk,X ) = 0, there exists a k0 ≥ 0 such that xk

is feasible for (23) for any k ≥ k0. By this, (23), (24), and Ekeland’s variational principle (see, e.g.,

[23, Theorem 2.26]), there exists a sequence {zk}k≥k0 such that for all k ≥ k0, ‖xk − zk‖ ≤ λk and

zk = argmin

{
f(x) +

1

8κ
· dist2(x,X ) +

τk
λk
‖x− zk‖

}
s.t. x ∈ N (X ;β1) ∩ B

(
x̂k;

ε

3

)
.

(25)

Since limk→∞ λk = 0, we have limk→∞ ‖xk − zk‖ = 0. In addition, noticing that

dist(zk,X ) ≤ ‖zk − x̂k‖ ≤ ‖zk − xk‖+ ‖xk − x̂k‖ = ‖zk − xk‖+ dist(xk,X ),
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we obtain limk→∞ ‖zk − x̂k‖ = limk→∞ dist(zk,X ) = 0. Hence, there exists a k1 ≥ k0 such that zk

is in the interior of the feasible set of (25) for all k ≥ k1. Consequently, by the generalized Fermat’s

rule (see, e.g., [26, Theorem 10.1]), we have

0 ∈ ∂
(
f(·) +

1

8κ
· dist2(·,X ) +

τk
λk
‖ · −zk‖

)
(zk), ‡ ∀k ≥ k1. (26)

Since f is continuously differentiable, we obtain from [23, Corollary 1.82] that ∂f(zk) = {∇f(zk)}.
In addition, we have

∂
(
dist2(·,X )

)
(zk) = 2 · dist(zk,X ) · ∂ (dist(·,X )) (zk) ⊂ 2 · dist(zk,X ) · B(0; 1),

where the equality follows from [23, Corollary 1.111(i)] and the inclusion is due to [26, Example 8.53].

Also, we have ∂
(
‖ · −zk‖

)
(zk) = B(0; 1). These, together with (26), yield

0 ∈ ∂
(
f(·) +

1

8κ
· dist2(·,X ) +

τk
λk
‖ · −zk‖

)
(zk)

= ∇f(zk) + ∂

(
1

8κ
· dist2(·,X ) +

τk
λk
‖ · −zk‖

)
(zk) (27)

⊂ ∇f(zk) + ∂

(
1

8κ
· dist2(·,X )

)
(zk) + ∂

(
τk
λk
‖ · −zk‖

)
(zk) (28)

⊂ ∇f(zk) +

(
1

4κ
· dist(zk,X ) +

τk
λk

)
B(0; 1), ∀k ≥ k1, (29)

where (27) and (28) are due to [26, Exercise 10.10]. By (29), we have

‖∇f(zk)‖ ≤ 1

4κ
· dist(zk,X ) +

τk
λk
, ∀k ≥ k1. (30)

Moreover, we have zk ∈ N (X ;β1) for all k ≥ k0 from (25). This, together with β1 ≤ ρ and (16),

yields dist(zk,X ) ≤ κ‖∇f(zk)‖ for all k ≥ k0. By this, k1 ≥ k0, and (30), we have

dist(zk,X ) ≤ κ‖∇f(zk)‖ ≤ 1

4
· dist(zk,X ) +

κτk
λk

, ∀k ≥ k1,

which results in dist(zk,X ) ≤ 4κτk
3λk

for all k ≥ k1. This further leads to

dist(xk,X ) = ‖xk − x̂k‖ ≤ ‖xk − ẑk‖ ≤ ‖xk − zk‖+ dist(zk,X ) ≤ λk +
4κτk
3λk

, ∀k ≥ k1.

By the definitions of τk and λk, the above yields

dist2(xk,X ) ≤ dist2(xk,X )− 4κtk
3

, ∀k ≥ k1,

which is a contradiction since κ > 0 and tk > 0 for all k ≥ 0. Therefore, there exists a scalar β > 0

such that (21) holds, which implies that statement (ii) holds.

We next prove (ii)⇒ (i). Suppose that (17) holds with some α, β > 0. Since ∇2f(x) is uniformly

continuous on N (X ; γ), there exists a scalar ρ0 > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ α

2
, ∀x, y ∈ N (X ; γ) with ‖x− y‖ ≤ ρ0. (31)

‡Given an extended-real-valued function h : Rn → (−∞,+∞] and an x ∈ dom(h) := {z ∈ Rn : h(z) <∞}, we denote

by ∂h(x) the limiting subdifferential (known also as the general or Mordukhovich subdifferential) of h at x; see, e.g., [23,

Definition 1.77].
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Let ρ1 = min{ρ0, β, γ} > 0, x ∈ N (X ; ρ1) be arbitrarily chosen, and x̃(t) = x+ t(x̂− x) for t ∈ [0, 1].

Using the same arguments as those for (19), one has

λmin[∇2f(x̃(t))] ≥ −α
2
, ∀t ∈ [0, 1]. (32)

By (17), (32), and the integral form of Taylor’s series, we obtain

〈∇f(x), x− x̂〉 = f(x)− f(x̂) +

∫ 1

0
(1− t)(x̂− x)T∇2f(x̃(t))(x̂− x)dt

≥ α

2
‖x− x̂‖2 − α

4
‖x− x̂‖2 =

α

4
‖x− x̂‖2.

Applying the Cauchy-Schwarz inequality and using dist(x,X ) = ‖x− x̂‖, the above yields

dist(x,X ) ≤ 4

α
‖∇f(x)‖, ∀x ∈ N (X ; ρ1).

Therefore, statement (i) holds as well.

Remark. When f is convex, X reduces to the set of optimal solutions to f and it is known that

the EB condition (16) is equivalent to the quadratic growth condition (17); see, e.g., [1]. When f is

nonconvex, Drusvyatskiy et al. [12] studied these two regularity conditions for the set of first-order

critical points (replacing X in both (16) and (17) by the set of first-order critical points) and proved

that they are equivalent under an additional quadratic decrease condition; see [12, Theorem 3.1].

Our Theorem 1 is motivated by [12, Theorem 3.1] and shows that for the set of second-order critical

points of a twice continuously differentiable function, the EB condition (16) and the quadratic growth

condition (17) are equivalent without requiring the said additional condition.

Corollary 1. Suppose that Assumption 2 and the premise of Theorem 1 hold. Then, any second-order

critical point of f is a local minimizer.

Proof. Let x̄ be an arbitrary second-order critical point of f . By Theorem 1 and Assumption 2,

the quadratic growth condition (17) holds for some α, β > 0. Let δ = min{β, ε3} and x be an

arbitrary point in N (x̄; δ). It then follows from (17) that f(x) ≥ f(x̂). Moreover, it holds that

‖x̂− x̄‖ ≤ ‖x− x̂‖+ ‖x− x̄‖ ≤ 2‖x− x̄‖ ≤ 2
3ε < ε. By this and the separation property in Theorem

1, we have f(x̂) = f(x̄). Hence, we obtain f(x) ≥ f(x̄) for all x ∈ N (x̄; δ), which implies that x̄ is a

local minimizer of f .

For the rest of this section, we show that the classes of functions considered in Facts 3 and 4

satisfy Assumption 2.

Proposition 1. Suppose that f is star-convex, X ∗ is globally non-degenerate, and ∇2f(x) is uniformly

continuous on N (X ∗; γ) for some γ > 0. Then, f satisfies Assumption 2.

Proof. We first show that for star-convex functions, the set of second-order critical points equals the

set of optimal solutions; i.e., X = X ∗. Since it is clear that X ∗ ⊂ X , it suffices to show that X ⊂ X ∗.
Suppose on the contrary that x /∈ X ∗ for some x ∈ X . Hence, ∇f(x) = 0 and f(x) > f(x∗) for any

x∗ ∈ X ∗. By this and (12), we have that for any x∗ ∈ X ,

〈∇f(x), x∗ − x〉 = lim
α↓0

f(x+ α(x∗ − x))− f(x)

α

≤ lim
α↓0

αf(x∗) + (1− α)f(x)− f(x)

α
= f(x∗)− f(x) < 0,

11



which contradicts with ∇f(x) = 0. Hence, we obtain X = X ∗. This, together with our assumption in

Proposition 1, implies that ∇2f(x) is uniformly continuous on N (X ; γ) for some γ > 0. Also, since

X = X ∗, we have f(x) = f(y) = f∗ for any x, y ∈ X , which implies that the separation property

in Theorem 1 holds. Moreover, by X = X ∗ and the assumption that X ∗ is globally non-degenerate,

statement (ii) of Theorem 1 holds. Hence, statement (i) of Theorem 1 holds as well, which implies

that f satisfies Assumption 2.

Proposition 2. Suppose that f is gradient-dominated of degree 2 and ∇2f(x) is uniformly continuous

on N (X ∗; γ) for some γ > 0. Then, f satisfies Assumption 2.

Proof. Due to (14), one can see that for any x /∈ X ∗, we have ∇f(x) 6= 0, which immediately implies

that X ⊂ X ∗. This, together with X ∗ ⊂ X , yields X = X ∗. It then follows from the same arguments

as those in the proof of Proposition 1 that the premise of Theorem 1 holds. Our next goal is to prove

f(x)− f∗ ≥ 1

4τf
· dist2(x,X ∗), ∀x ∈ Rn. (33)

Notice that (33) holds trivially for x ∈ X ∗. Let x̃ ∈ Rn \ X ∗ be arbitrarily chosen. Consider the

differential equation {
u(0) = x̃,

u̇(t) = −∇f(u(t)), ∀t > 0.
(34)

Since ∇f is continuously differentiable on Rn, it is Lipschitz continuous on any compact subset of Rn.

It then follows from the Picard-Lindelöf Theorem (see, e.g., [16, Theorem II.1.1]) that there exists a

δ > 0 such that (34) has a unique solution ux̃(t) for t ∈ [0, δ]. Let [0, ν) be the maximal interval of

existence for ux̃(t), where ν ≤ ∞.∗ Define H(t) := f(ux̃(t))− f∗ for t ∈ [0, ν). Then, we have

Ḣ(t) = 〈∇f(ux̃(t)), u̇x̃(t)〉 = −‖∇f(ux̃(t))‖ · ‖u̇x̃(t)‖, ∀t ∈ [0, ν), (35)

where the second equality is due to (34). Using (14) and the definition of H, we get

Ḣ(t) ≤ −H(t)
1
2

√
τf
‖u̇x̃(t)‖, ∀t ∈ [0, ν).

Recall that ∇f(x) = 0 for any x ∈ X ∗. This implies that there does not exist a t̄ ∈ [0, ν) such

that ux̃(t̄) ∈ X ∗, for otherwise ux̃ ≡ ux̃(t̄) is the unique solution to (34), which contradicts with

ux̃(0) = x̃ /∈ X ∗. Hence, H(t) > 0 for all t ∈ [0, ν) and

‖u̇x̃(t)‖ ≤ −√τf
Ḣ(t)

H(t)
1
2

= −2
√
τf

[
H(t)

1
2

]′
. (36)

Then, for any 0 ≤ s1 < s2 < ν, we have

‖ux̃(s2)− ux̃(s1)‖ =

∥∥∥∥∫ s2

s1

u̇x̃(t)dt

∥∥∥∥ ≤ ∫ s2

s1

‖u̇x̃(t)‖dt

≤
∫ s2

s1

−2
√
τf

[
H(t)

1
2

]′
dt

= 2
√
τf

[
H(s1)

1
2 −H(s2)

1
2

]
. (37)

∗An interval [0, ν) is called a maximal interval of existence for ux̃(t) if there does not exist an extension ũx̃(t) of ux̃(t)

over an interval [0, ν̃) such that ũx̃(t) remains a solution to (34) and ν̃ > ν; see, e.g., [16, p. 12].
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Substituting s1 = 0 in (37) and using ux̃(0) = x̃ and H(t) > 0 for any t ∈ [0, ν), we obtain

‖ux̃(s2)− x̃‖ ≤ 2
√
τfH(0)

1
2 = 2

√
τf (f(x̃)− f∗)

1
2 , ∀s2 ∈ [0, ν). (38)

Next, we claim that ν =∞. Suppose to the contrary that ν <∞. Then, it follows from [16, Corollary

II.3.2] that ‖ux̃(t)‖ → ∞ as t↗ ν. However, the above inequality implies that

‖ux̃(t)‖ ≤ ‖x̃‖+ ‖ux̃(t)− x̃‖ ≤ ‖x̃‖+ 2
√
τf (f(x̃)− f∗)

1
2 , ∀t ∈ [0, ν),

which yields a contradiction. Hence, the claim ν = ∞ is true. In addition, we have Ḣ(t) ≤ 0 for

all t ∈ [0,∞) from (35), which implies that H(t) is non-increasing on [0,∞). This, together with

H(t) > 0 for all t ∈ [0,∞), implies that limt→∞H(t) exists. It then follows from this and (37) that

ux̃(t) has the Cauchy property and hence limt→∞ ux̃(t) exists. Let ux̃(∞) := limt→∞ ux̃(t). We claim

that ∇f(ux̃(∞)) = 0. Indeed, if ∇f(ux̃(∞)) 6= 0, then by (34), (35), and the continuity of ∇f , we

have

lim
t→∞

Ḣ(t) = − lim
t→∞
‖∇f(ux̃(t))‖ · ‖u̇x̃(t)‖ = − lim

t→∞
‖∇f(ux̃(t))‖2 = −‖∇f(ux̃(∞))‖2 < 0,

which contradicts with the fact that limt→∞H(t) exists. Hence, we have ∇f(ux̃(∞)) = 0. This,

together with (14), yields f(ux̃(∞)) = f∗ and hence ux̃(∞) ∈ X ∗. By (38), this gives

dist(x̃,X ∗) ≤ ‖ux̃(∞)− x̃‖ = lim
t→∞
‖ux̃(t)− x̃‖ ≤ 2

√
τf (f(x̃)− f∗)

1
2 ,

which implies that (33) holds for x = x̃. Since x̃ ∈ Rn\X ∗ is arbitrary, we conclude that (33) holds for

all x ∈ Rn. By (33) and the fact that X = X ∗, statement (ii) of Theorem 1 holds. Hence, statement

(i) of Theorem 1 holds as well, which implies that f satisfies Assumption 2.

4 Quadratic Convergence of the CR Method

In this section, we establish the quadratic rate of convergence of the CR method under the local EB

condition proposed in Section 3. To proceed, we start with the following consequence of Assumption 1.

Fact 5 ([24, Lemma 1]). Suppose that Assumption 1 holds. Then, for any x, y ∈ F ,

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ L

2
‖y − x‖2. (39)

We next prove the following intermediate lemma.

Lemma 1. Suppose that Assumption 1 holds. Let x ∈ F and x̂ be a projection point of x to X . If

x̂ ∈ F , then for any σ > 0, we have

‖pσ(x)− x‖ ≤

1 +
L

σ
+

√(
1 +

L

σ

)2

+
L

σ

 · dist(x,X ). (40)

Proof. For simplicity, we denote x+ := pσ(x). By (7) and the first-order optimality condition of (6),

one has

0 = ∇f(x) +∇2f(x)(x+ − x) +
σ

2
‖x+ − x‖(x+ − x). (41)
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Since x̂ ∈ X , we have ∇f(x̂) = 0 and ∇2f(x̂) � 0. By (41) and ∇f(x̂) = 0, it is not hard to verify

that (
∇2f(x̂) +

σ‖x+ − x‖
2

In

)
(x+ − x̂) = ∇f(x̂)−∇f(x)−∇2f(x̂)(x̂− x)

− σ

2
‖x+ − x‖(x̂− x)−

(
∇2f(x)−∇2f(x̂)

)
(x+ − x).

Since ∇2f(x̂) � 0, we have∥∥∥∥(∇2f(x̂) +
σ‖x+ − x‖

2
In

)
(x+ − x̂)

∥∥∥∥ ≥ σ

2
‖x+ − x‖ · ‖x+ − x̂‖.

This, together with the above equality, yields

σ

2
‖x+ − x‖ · ‖x+ − x̂‖ ≤ ‖∇f(x̂)−∇f(x)−∇2f(x̂)(x̂− x)‖+

σ

2
‖x+ − x‖ · ‖x− x̂‖

+ ‖∇2f(x)−∇2f(x̂)‖ · ‖x+ − x‖

≤ L

2
‖x− x̂‖2 +

(σ
2

+ L
)
‖x+ − x‖ · ‖x− x̂‖,

where the second inequality is due to Fact 5 and the assumption that x̂ ∈ F . Using the triangle

inequality ‖x+ − x̂‖ ≥ ‖x+ − x‖ − ‖x− x̂‖, we further obtain

σ

2
‖x+ − x‖2 ≤ L

2
‖x− x̂‖2 + (σ + L)‖x+ − x‖ · ‖x− x̂‖.

By solving the above quadratic inequality, one has

‖x+ − x‖ ≤

1 +
L

σ
+

√(
1 +

L

σ

)2

+
L

σ

 · ‖x− x̂‖.
Noticing that x+ = pσ(x) and dist(x,X ) = ‖x− x̂‖, we obtain the desired inequality (40).

Remark. As we shall see in the sequel, Lemma 1 implies that there exists a c1 > 0 such that

‖xk+1 − xk‖ ≤ c1 · dist(xk,X ) (42)

for all sufficiently large k, where {xk}k≥0 is the sequence generated by Algorithm 1. It is known

that establishing (42) is an important step for analyzing local convergence of Newton-type methods

with non-isolated solutions. However, our proof of Lemma 1 is novel. Indeed, in most cases (42) is

obtained based on the property that xk+1 is the minimizer of a strongly convex function (see, e.g.,

[18, 33, 31, 13, 2]), which does not apply to the CR method. Moreover, in our proof of Lemma 1, the

fact that ∇2f(x) � 0 for any x ∈ X plays a crucial role.

Now we are ready to present the main result of this section.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let {xk}k≥0 be the sequence of iterates generated

by the CR method. If L(f(xk)) is bounded for some k ≥ 0, then the whole sequence {xk}k≥0 converges

at least Q-quadratically to a point x∗ ∈ X .
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Proof. Let x̂k be a projection point of xk to X ; i.e., x̂k ∈ Argminz∈X ‖z − xk‖. Let X̄ be the set of

accumulation points of {xk}k≥0. By (10), we have f(xk+1) ≤ f̄σk(xk) ≤ f(xk) for all k. This, together

with the boundedness of L(f(xk)) for some k ≥ 0, implies the boundedness of {xk}k≥0. Hence, X̄
is non-empty and bounded, and we have limk→∞ dist(xk, X̄ ) = 0. By Fact 1 (iii), we have X̄ ⊂ X .

Thus, limk→∞ dist(xk,X ) = limk→∞ ‖xk − x̂k‖ = 0. It then follows from Assumption 2 that there

exists a k1 ≥ 0 such that

dist(xk,X ) ≤ κ‖∇f(xk)‖, ∀k ≥ k1.

In addition, since xk ∈ L(f(x0)) ⊂ int(F) for all k ≥ 0 and {xk}k≥0 is bounded, there exists

a compact set M ⊂ int(F) such that {xk}k≥0 ⊂ M. Also, it follows from {xk}k≥0 ⊂ M and

limk→∞ ‖xk − x̂k‖ = 0 that limk→∞ dist(x̂k,M) = 0. This, together with M ⊂ int(F) and the

compactness of M, implies that x̂k ∈ int(F) for all sufficiently large k. Hence, there exists a k2 ≥ 0

such that

xk ∈ F , x̂k ∈ F , ∀k ≥ k2. (43)

Hence, for any k ≥ k̄ := max{k1, k2}, we have

dist(xk+1,X ) ≤ κ‖∇f(xk+1)‖

= κ
∥∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)− σk

2
‖xk+1 − xk‖(xk+1 − xk)

∥∥∥
≤ κ‖∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)‖+

κσk
2
‖xk+1 − xk‖2

≤ κ(L+ σk)

2
‖xk+1 − xk‖2 ≤ 3

2
κL‖xk+1 − xk‖2,

(44)

where the equality is due to the first-order optimality condition of (6), the third inequality is by (43)

and Fact 5, and the last inequality is by σk ≤ 2L for all k ≥ 0. Using (43), Lemma 1, and σk ≥ σ̄ > 0

for all k, we get

‖xk+1 − xk‖ ≤ c1 · dist(xk,X ), ∀k ≥ k̄, (45)

where c1 =

(
1 + L

σ̄ +

√(
1 + L

σ̄

)2
+ L

σ̄

)
. Combining (44) and (45), we obtain

dist(xk+1,X ) ≤ c2 · dist2(xk,X ), ∀k ≥ k̄, (46)

where c2 = 3
2κc

2
1L. We next show that the whole sequence {xk}k≥0 is convergent. Let η > 0 be

arbitrary. Since limk→∞ dist(xk,X ) = 0, there exists a k3 ≥ 0 such that

dist(xk,X ) ≤ min

{
1

2c2
,
η

2c1

}
, ∀k ≥ k3.

It then follows from (46) that

dist(xk+1,X ) ≤ c2 · dist2(xk,X ) ≤ 1

2
dist(xk,X ), ∀k ≥ max{k3, k̄}.

This, together with (45), implies that for any k ≥ max{k3, k̄} and any j ≥ 0, we have

‖xk+j − xk‖ ≤
∞∑
i=k

‖xi+1 − xi‖ ≤
∞∑
i=k

c1 · dist(xi,X )

≤ c1 · dist(xk,X ) ·
∞∑
i=0

1

2i
≤ 2c1 · dist(xk,X ) ≤ η,

(47)
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which implies that {xk}k≥max{k3,k̄} is a Cauchy sequence. Therefore, the whole sequence {xk}k≥0 is

convergent. Finally, we study the convergence rate of {xk}k≥0. Let x∗ := limk→∞ x
k. By Fact 1, we

have x∗ ∈ X . It follows from (46) and (47) that for any k ≥ max{k3, k̄},

‖x∗ − xk+1‖ = lim
j→∞

‖xk+1+j − xk+1‖ ≤ 2c1 · dist(xk+1,X ) ≤ 2c1c2 · dist2(xk,X ).

Combining this with dist(xk,X ) ≤ ‖xk − x∗‖, we obtain

‖xk+1 − x∗‖
‖xk − x∗‖2

≤ 2c1c2, ∀k ≥ max{k3, k̄}.

Therefore, {xk}k≥0 converges at least Q-quadratically to an element x∗ in X .

Equipped with Theorem 2 and Propositions 1 and 2, we can improve the results in [24] on the local

convergence rate of the CR method when applied to globally non-degenerate star-convex functions

and gradient-dominated functions.

Corollary 2. Suppose that Assumption 1 holds, f is star-convex, and X ∗ is globally non-degenerate.

If L(f(xk)) is bounded for some k ≥ 0, then the whole sequence {xk}k≥0 converges at least Q-

quadratically to a point x∗ ∈ X ∗.

Proof. Since L(f(xk)) is bounded for some k ≥ 0, we have that X ∗ is bounded. This, together with

Assumption 1, implies that ∇2f(x) is uniformly continuous on N (X ∗; γ) for some γ > 0. The premise

of Proposition 1 then holds. Hence, by Proposition 1 and its proof, we obtain that Assumption 2

holds and X = X ∗. The conclusion of Corollary 2 then follows from Theorem 2.

Corollary 3. Suppose that Assumption 1 holds and f is gradient-dominated with degree 2. If L(f(xk))

is bounded for some k ≥ 0, then the whole sequence {xk}k≥0 converges at least Q-quadratically to a

point x∗ ∈ X ∗.

Proof. Using the same arguments as those in the proof of Corollary 2, we have that the premise of

Proposition 2 holds. Hence, by Proposition 2 and its proof, we obtain that Assumption 2 holds and

X = X ∗. The conclusion of Corollary 3 then follows from Theorem 2.

5 Applications to Structured Nonconvex Optimization Problems

In this section, we study the CR method for solving two concrete nonconvex minimization problems

that arise in phase retrieval and low-rank matrix recovery, respectively.

5.1 Phase Retrieval

In this subsection, we consider the application of the CR method for solving (noiseless) phase retrieval

problems. Specifically, the problem of interest is to recover an unknown complex signal z? = x?+iy? ∈
Cn from the measurements

bj = |aHj z?|, j = 1, . . . ,m, (48)

where {aj}mj=1 ⊂ Cn are assumed to be independently sampled from the standard complex Gaussian

distribution CN (0, In). For non-triviality, we assume that z? 6= 0. Since for any φ ∈ [0, 2π), z?eiφ
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provides exactly the same measurements, we can only expect to recover z? up to this ambiguity.

Such problem has broad applications in science and engineering, including optics, signal process-

ing, computer vision, and quantum mechanics. For more discussions on its applications and recent

developments, the readers are invited to the survey papers [27, 20].

Given the form (48), the following optimization formulation arises naturally:

min
z∈Cn

fc(z) :=
1

2m

m∑
j=1

(
|aHj z|2 − b2j

)2
. (49)

Let Z? := {z?eiφ : φ ∈ [0, 2π)} be the set of target signals. Observe that fc(z) ≥ 0 for any z ∈ Cn

and f(z) = 0 for any z ∈ Z?. Hence, any z ∈ Z? is a global minimizer of (49). By letting

f(x, y) := fc(x+ iy), the corresponding real-variable problem of (49) is given by

min
x,y∈Rn

f(x, y) =
1

2m

m∑
j=1

∥∥∥∥∥∥
(
<(aj) −=(aj)

=(aj) <(aj)

)T (
x

y

)∥∥∥∥∥∥
2

− b2j

2

. (50)

Let X ? := {(x? cosφ − y? sinφ, x? sinφ + y? cosφ) : φ ∈ [0, 2π)}. Using similar arguments, one can

verify that any (x, y) ∈ X ? is a global minimizer of (50). Also, it holds that (x, y) ∈ X ? if and only

if x + iy ∈ Z?. Hence, as long as we obtain an element (x, y) ∈ X ?, the phase retrieval problem is

solved by letting z = x+ iy.

We now state the main result of this subsection.

Theorem 3. There exist constants c0, c1 > 0 such that when m ≥ c0n log3 n, it holds with probability

at least 1−c1m
−1 that with any arbitrary initialization, the sequence of iterates {(xk, yk)}k≥0 generated

by Algorithm 1 for solving (50) converges at least Q-quadratically to an element in X ?.

The rest of this subsection is devoted to proving the above theorem. Before we proceed, let

us lay out the concepts of Wirtinger calculus that are necessary for our developments on complex-

variable functions. Let hc : Cn → R be a real-valued function on Cn and h : R2n → R be defined as

h(x, y) = hc(x+ iy) for any x, y ∈ Rn. We define

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

which can be understood as operators acting on real-valued functions of (x, y). Then, the Wirtinger

gradient ∇whc and Wirtinger Hessian ∇2
whc of hc are defined, respectively, as

∇whc :=

[
∂h

∂z
,
∂h

∂z̄

]H
and ∇2

whc =:

(
∂
∂z

(
∂h
∂z

)H ∂
∂z̄

(
∂h
∂z

)H
∂
∂z

(
∂h
∂z̄

)H ∂
∂z̄

(
∂h
∂z̄

)H
)
.

Define the matrix

J =
1

2

(
In iIn

In −iIn

)
,

which satisfies 2JJH = 2JHJ = I2n and

∇whc(x+ iy) = J∇h(x, y), ∇2
whc(x+ iy) = J∇2h(x, y)JH .
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In particular, for the function fc in (49), we have

∇wfc(z) =
1

m

m∑
j=1

 (|aHj z|2 − b2j) (aja
H
j )z(

|aHj z|2 − b2j
)

(aja
H
j )T z

 (51)

and

∇2
wfc(z) =

1

m

m∑
j=1

(2|aHj z|2 − b2j
)
aja

H
j (aHj z)

2aja
T
j

(aTj z)
2aja

H
j

(
2|aHj z|2 − b2j

)
aja

T
j

 (52)

for any z ∈ Cn; see, e.g., [6, Section 7.2].

5.1.1 Second-Order Critical Points and Local EB Condition

We first show that with high probability, the set of second-order critical points of f is X ?. Moreover,

we show that in a neighbourhood of X ?, the local EB condition (15) holds. For this purpose, we need

the following result, which is directly implied by [28, Theorem 2].

Fact 6. Let Uc be a neighbourhood of Z? defined as Uc :=
{
z ∈ Cn : dist (z,Z?) ≤ 1√

7
‖z?‖

}
. There

exist constants c2, c3 > 0 such that when m ≥ c2n log3 n, the following statements hold with probability

at least 1− c3m
−1.

(i) For any z /∈ Uc, if ∇wfc(z) = 0, then(
ẑ

ẑ

)H
∇2
wfc(z)

(
ẑ

ẑ

)
≤ −‖z

?‖4

100
, (53)

where ẑ is defined as the unique projection of z to Z?; i.e.,

ẑ = z?eiφ(z), with φ(z) = argmin
φ∈[0,2π)

∥∥∥z − z?eiφ∥∥∥ .
(ii) For any z ∈ Uc, it holds that(

g(z)

g(z)

)H
∇2
wfc(z)

(
g(z)

g(z)

)
≥ ‖z

?‖2

4
· ‖g(z)‖2, (54)

where g(z) := z − ẑ.

Proposition 3. There exist constants c2, c3 > 0 such that when m ≥ c2n log3 n, the following state-

ments on f hold with probability at least 1− c3m
−1.

(i) X ? equals the set of second-order critical points of f .

(ii) The following error bound holds:

dist
(
(x, y),X ?

)
≤ 4

‖z?‖2
‖∇f(x, y)‖ whenever dist

(
(x, y),X ?

)
≤ 1√

7
‖z?‖. (55)
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Proof. It suffices to prove that statements (i) and (ii) of Fact 6 lead to the statements (i) and (ii)

herein. We first prove (ii). Let (x, y) be an arbitrary point satisfying dist
(
(x, y),X ?

)
≤ 1√

7
‖z?‖ and

(x̂, ŷ) be the projection of (x, y) to X ?. By definition, one can easily verify that x+ iy ∈ Uc and the

projection of x+ iy to Z? is x̂+ iŷ. We assume that (x, y) /∈ X ? since (55) holds trivially otherwise.

Thus, x + iy /∈ Z? and we have g(x + iy) = x − x̂ + i(y − ŷ). This, together with the identity

∇2
wfc(z) = J∇2f(x, y)JH and (54), yields(

x− x̂
y − ŷ

)T
∇2f(x, y)

(
x− x̂
y − ŷ

)
≥ ‖z

?‖2

4
· ‖(x, y)− (x̂, ŷ)‖2 . (56)

Let (x(t), y(t)) = t · (x, y) + (1− t) · (x̂, ŷ) for t ∈ [0, 1]. Note that the projection of (x(t), y(t)) to X ?

is (x̂, ŷ) for any t ∈ [0, 1]. Using the same arguments, (56) holds if we substitute (x, y) by (x(t), y(t))

for any t ∈ [0, 1]. Hence, by the integral form of Taylor’s series, we obtain

f(x, y) = f(x̂, ŷ) +∇f(x̂, ŷ)T

(
x− x̂
y − ŷ

)
+

∫ 1

0
(1− t) ·

(
x− x̂
y − ŷ

)T
∇2f(x(t), y(t))

(
x− x̂
y − ŷ

)
dt

≥ f(x̂, ŷ) +∇f(x̂, ŷ)T

(
x− x̂
y − ŷ

)
+
‖z?‖2

8
· ‖(x, y)− (x̂, ŷ)‖2 ,

and similarly,

f(x̂, ŷ) ≥ f(x, y)−∇f(x, y)T

(
x− x̂
y − ŷ

)
+
‖z?‖2

8
· ‖(x, y)− (x̂, ŷ)‖2 .

Noticing that f(x̂, ŷ) = 0 and ∇f(x̂, ŷ) = 0 (by the global optimality of (x̂, ŷ)), we obtain (55) by

summing up the above two inequalities.

We next prove (i). Let X be the set of second-order critical points of f . Clearly, we have X ? ⊂ X
since any (x, y) ∈ X ? is a global minimizer of f . We now show that X ⊂ X ?. Let (x, y) ∈ X be

arbitrary. By definition, ∇f(x, y) = 0 and ∇2f(x, y) � 0. Using ∇f(x, y) = 0 and the result in (i),

we see that (x, y) ∈ X ? or dist
(
(x, y),X ?

)
> 1√

7
‖z?‖. If the latter holds, we have by definition that

x+ iy /∈ Uc. In addition, it holds that ∇wfc(x+ iy) = J∇f(x, y) = 0. Hence, the inequality (53) holds

for x+ iy. This, together with the identity ∇2
wfc(x+ iy) = J∇2f(x, y)JH , implies that ∇2f(x, y) � 0,

which contradicts with (x, y) ∈ X . Therefore, we have X ⊂ X ? and hence X = X ?.

5.1.2 Lipschitz Continuity of ∇2f

Our next step is to verify the Lipschitz continuity of ∇2f . Let A = (a1, . . . , am) ∈ Cn×m and

M = maxj ‖aj‖. We need the following result, which combines Lemma 23 and Lemma 28 of [28].

Fact 7. There exist constants c4, c5, c6 > 0 such that when m ≥ c4n, it holds with probability at least

1− c5 exp(−c6m) that
m

2
≤ λmin(AAH) ≤ λmax(AAH) ≤ 2m (57)

and
1

m

m∑
j=1

∣∣|aHj w|2 − |aHj w′|2∣∣ ≤ 3

2
‖w − w′‖

(
‖w‖+ ‖w′‖

)
, ∀w,w′ ∈ Cn. (58)
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Proposition 4. Suppose that (57) and (58) hold. Then, for any R > 0, ∇2f is Lipschitz continuous

on B(0;R) =
{

(x, y) ∈ R2n : ‖(x, y)‖ ≤ R
}

with Lipschitz constant L = 20M2R.

Proof. Let w = x+ iy and w′ = x′ + iy′ with (x, y), (x′, y′) ∈ B(0;R). Thus, ‖w‖ ≤ R and ‖w′‖ ≤ R.

By the identities ∇2
wfc(x+ iy) = J∇2f(x, y)JH and 2JHJ = I2n, we have

‖∇2f(x, y)−∇2f(x′, y′)‖ = sup
‖(u,v)‖=1

∣∣∣∣∣∣
(
u

v

)T [
∇2f(x, y)−∇2f(x′, y′)

](u
v

)∣∣∣∣∣∣
= sup
‖(u,v)‖=1

∣∣∣∣∣∣4
(
u

v

)T
JH
[
∇2
wfc(w)−∇2

wfc(w
′)
]
J

(
u

v

)∣∣∣∣∣∣
= sup
‖z‖=1

∣∣∣∣∣∣
(
z

z

)H [
∇2
wfc(w)−∇2

wfc(w
′)
](z

z

)∣∣∣∣∣∣ .
Using (52), (57), and (58), we further have

‖∇2f(x, y)−∇2f(x′, y′)‖

≤ sup
‖z‖=1

∣∣∣ 4

m

m∑
j=1

(
|aHj w|2 − |aHj w′|2

)
|aHj z|2

∣∣∣+
∣∣∣ 2

m

m∑
j=1

<
( [

(aHj w)2 − (aHj w
′)2
]

(zHaj)
2
)∣∣∣

≤ sup
‖z‖=1

4

m

m∑
j=1

∣∣|aHj w|2 − |aHj w′|2∣∣ |aHj z|2 +
2

m

m∑
j=1

|aHj w − aHj w′||aHj w + aHj w
′||aHj z|2

≤ 4M2 · 1

m

m∑
j=1

∣∣|aHj w|2 − |aHj w′|2∣∣+ 4M2R‖w − w′‖ ·
∥∥∥ 1

m

m∑
j=1

aja
H
j

∥∥∥
≤ 6M2‖w − w′‖(‖w‖+ ‖w′‖) +

4

m
M2R‖w − w′‖ · λmax(AAH)

≤ 20M2R‖(x, y)− (x′, y′)‖.

The proof is then completed.

5.1.3 Proof of Theorem 3

In view of Theorem 2, it suffices to prove that with high probability, the following statements hold

simultaneously: (i) Assumption 1 holds, (ii) Assumption 2 holds, (iii) L(f(xk, yk)) is bounded for

some k ≥ 0, and (iv) X ? equals the set of second-order critical points of f .

Let c0 := max{c2, c4} and m ≥ c0n log3 n. Suppose that (x0, y0) ∈ Rn × Rn is the initial point of

Algorithm 1. We define

R̄ :=

2
√

2√
m

√√√√2mf(x0, y0) +
m∑
j=1

b4j

 1
2

> 0,

F := B(0; 2R̄) = {(x, y) ∈ Rn × Rn : ‖(x, y)‖ ≤ 2R̄}.

Suppose that (57) and (58) hold. Let (x, y) be an arbitrary point in L(f(x0, y0)) and set z := x+ iy.

By definition, we have fc(z) = f(x, y) ≤ f(x0, y0). It then follows from (57) and the definition of A

20



that

‖(x, y)‖2 = ‖z‖2 ≤ 1

λmin(AAH)
· zHAAHz ≤ 2

m

m∑
j=1

|aHj z|2.

Using the inequality (
∑m

j=1 αj)
2 ≤ m

∑m
j=1 α

2
j , which holds for any real numbers {αi}mi=1, we further

have

‖(x, y)‖2 ≤ 2√
m
·

√√√√ m∑
j=1

|aHj z|4 ≤
2√
m
·

√√√√ m∑
j=1

[
2
(
|aHj z|2 − b2j

)2
+ 2b4j

]

=
2
√

2√
m

√√√√2mfc(z) +
m∑
j=1

b4j ≤
2
√

2√
m

√√√√2mf(x0, y0) +
m∑
j=1

b4j = R̄2.

By the definition of F , we have L(f(x0, y0)) ⊂ int(F) and L(f(x0, y0)) is bounded. In addition,

by Proposition 4, ∇2f is Lipschitz continuous on F with Lipschitz constant L = 40M2R̄. Hence,

statements (i) and (iii) above hold with probability at least 1 − c5 exp(−c6m). Furthermore, by

Proposition 3, statements (ii) and (iv) above hold with probability at least 1 − c4m
−1. Therefore,

there exists a c1 > 0 such that all the statements (i)–(iv) hold with probability at least 1 − c1m
−1.

The proof is then completed.

5.2 Low-Rank Matrix Recovery

In this subsection, we consider the application of the CR method for solving low-rank matrix recovery

problems. Specifically, the problem of interest is to recover an unknown low-rank matrix X? ∈ Rn1×n2

with rank(X?) = r � min{n1, n2} from the measurements

Rm 3 b = A(X?), (59)

where the linear operator A : Rn1×n2 → Rm is given by A(X) = (〈A1, X〉, . . . , 〈Am, X〉) for any

X ∈ Rn1×n2 . For simplicity, we assume that n1 = n2 = n, Ai’s are symmetric, and the target matrix

X? is symmetric and positive semidefinite.

Since X? � 0 with rank(X?) = r, we have X? = U?U?T for some U? ∈ Rn×r. This motivates the

following nonconvex formulation for recovering X?:

min
U∈Rn×r

f(U) :=
1

4m

∥∥A(UUT )− b
∥∥2
. (60)

By letting U := {U?Q : Q ∈ Or}, it holds that U = {U ∈ Rn×r : X? = UUT }. Hence, we can recover

the unknown matrix X? as long as we find any U ∈ U . Observe that f is non-negative and f(U) = 0

for any U ∈ U . Hence, any U ∈ U is a global minimizer of (60).

We next introduce the so-called restricted isometry property (RIP) of the operator A.

Definition 5. We say that the linear operator A satisfies (r, δr)-RIP if for any matrix X ∈ Rn×n

with rank(X) ≤ r,

(1− δr)‖X‖2F ≤
1

m

m∑
i=1

〈Ai, X〉2 ≤ (1 + δr)‖X‖2F .

The above definition has played an important role in the literature of low-rank matrix recovery.

One well-known case where the RIP holds is when A is a random measurement operator. For example,
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if {Ai}mi=1 are mutually independent random Gaussian matrices, then when m ≥ Dnr, A satisfies the

RIP for some δr < 1 with probability at least 1 − C exp(−dm), where C,D, d are absolute positive

scalars [7, Theorem 2.3].

We now state the main result of this subsection.

Theorem 4. Suppose that A satisfies (2r, δ2r)-RIP with δ2r <
1
10 . Then, with any arbitrary initial-

ization, the sequence of iterates {Uk}k≥0 generated by Algorithm 1 for solving (60) converges at least

Q-quadratically to an element in U .

The rest of this subsection is devoted to proving Theorem 4. Before we proceed, let us introduce

some notations and preliminaries. Since X? � 0 and rank(X?) = r, we have λ1(X?) ≥ · · · ≥
λr(X

?) > 0. As a result, the singular values of any U ∈ U are {
√
λi(X?)}ri=1. Let ∇f(U) ∈ Rn×r and

∇2f(U) ∈ R(nr)×(nr) be the gradient and Hessian of f at U , respectively. For problem (60), a routine

calculation gives

∇f(U) =
1

m

m∑
i=1

〈Ai, UUT −X?〉AiU (61)

and

vec(Z)T∇2f(U)vec(Z) =

〈
Z, lim

τ→0

∇f(U + τZ)−∇f(U)

τ

〉
=

1

m

m∑
i=1

2〈Ai, UZT 〉2 + 〈Ai, UUT −X?〉〈Ai, ZZT 〉,
(62)

where vec(Z) ∈ Rnr is the vector obtained by stacking the columns of Z. The following result, which

is stated in [4, Lemma 4.1] and is related to [5, Lemma 2.1], is crucial to our analysis.

Fact 8. For any X,Y ∈ Rn×n with rank(X), rank(Y ) ≤ r, if A is (2r, δ2r)-RIP, then it holds that∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≤ δ2r‖X‖F ‖Y ‖F .

5.2.1 Second-Order Critical Points and Local EB Condition

We first show that under the RIP, the set of second-order critical points of f is U . Moreover, we show

that in a neighbourhood of U , the local EB condition (15) holds. The following result is due to [4,

Theorem 3.2].

Fact 9. Suppose that A satisfies (2r, δ2r)-RIP with δ2r <
1
10 . Then, for any U ∈ Rn×r such that

∇f(U) = 0 and UUT 6= X?, it holds that

λmin

(
∇2f(U)

)
≤ −λr(X

?)

5
< 0.

Proposition 5. Suppose that A satisfies (2r, δ2r)-RIP with δ2r <
1
10 . Then, the following statements

hold.

(i) U equals the set of second-order critical points of f .

(ii) The following error bound holds:

dist(U,U) ≤ 2

λr(X?)
‖∇f(U)‖ whenever dist(U,U) ≤ 1

3

√
λr(X?). (63)
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Proof. By the global optimality of U , any U ∈ U is a second-order critical point of f . On the other

hand, due to Fact 9, any U /∈ U cannot be a second-order critical point of f if A satisfies (2r, δ2r)-RIP

with δ2r <
1
10 . Therefore, the result in (i) holds.

We next prove (ii). Let Û be the projection of U to U and ∆ := U−Û . Clearly, dist(U,U) = ‖∆‖F .

By the definition of U , we have Û = U?Q̄, where Q̄ = argminQ∈Or ‖U − U?Q‖2. Let U?TU = PΣRT

be the singular value decomposition of U?TU , where Σ ∈ Rr×r is diagonal and P,R ∈ Or. Then, one

can verify that Q̄ = PRT . Hence, it follows that

∆T Û = (U − U?Q̄)TU?Q̄ = RΣRT − ÛT Û = ÛT∆.

Using A(X?) = A(Û ÛT ) = b and (61), one has ∇f(U) = 1
m

∑m
i=1〈Ai, UUT − Û ÛT 〉AiU . It then

follows from Fact 8 that

〈∇f(U),∆〉 =
1

m

m∑
i=1

〈Ai, UUT − Û ÛT 〉〈Ai,∆UT 〉

≥ 〈UUT − Û ÛT ,∆UT 〉 − δ2r‖UUT − Û ÛT ‖F ‖∆UT ‖F .

(64)

Using U = ∆ + Û and ∆T Û = ÛT∆, we obtain

〈UUT − Û ÛT ,∆UT 〉 = 〈∆∆T + Û∆T + ∆ÛT ,∆∆T + ∆ÛT 〉

= 〈∆∆T ,∆∆T 〉+ 3〈Û∆T ,∆∆T 〉+ 2‖Û∆T ‖2F
≥ ‖∆∆T ‖2F − 3‖Û∆T ‖F ‖∆∆T ‖F + 2‖Û∆T ‖2F .

Also, we have

‖UUT − Û ÛT ‖F ‖∆UT ‖F = ‖∆∆T + Û∆T + ∆ÛT ‖F ‖∆∆T + ∆ÛT ‖F
≤ ‖∆∆T ‖2F + 3‖Û∆T ‖F ‖∆∆T ‖F + 2‖Û∆T ‖2F .

Hence, it follows from from (64) that

〈∇f(U),∆〉 ≥ (1− δ2r)‖∆∆T ‖2F − 3(1 + δ2r)‖Û∆T ‖F ‖∆∆T ‖F + 2(1− δ2r)‖Û∆T ‖2F

≥ ‖Û∆T ‖F
(

2(1− δ2r)‖Û∆T ‖F − 3(1 + δ2r)‖∆∆T ‖F
)
,

(65)

where the second inequality uses δ2r < 1. Since the smallest singular value of Û is
√
λr(X?), it holds

that ‖Û∆T ‖F ≥
√
λr(X?)‖∆‖F . This, together with ‖∆‖F ≤ 1

3

√
λr(X?) and δ2r <

1
10 , gives

2(1− δ2r)‖Û∆T ‖F − 3(1 + δ2r)‖∆∆T ‖F ≥ 2(1− δ2r)
√
λr(X?)‖∆‖F − (1 + δ2r)

√
λr(X?)‖∆‖F

≥
√
λr(X?)

2
‖∆‖F .

Substituting this into (65) and using ‖Û∆T ‖F ≥
√
λr(X?)‖∆‖F , we obtain

〈∇f(U),∆〉 ≥ λr(X
?)

2
‖∆‖2F ,

which, together with the Cauchy-Schwarz inequality, implies the required error bound (63).
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5.2.2 Lipschitz Continuity of ∇2f

We next verify the Lipschitz continuity of ∇2f .

Proposition 6. Suppose that A satisfies (2r, δ2r)-RIP with δ2r <
1
10 . Then, for any R > 0, ∇2f is

Lipschitz continuous on B(0;R) = {U ∈ Rn×r : ‖U‖F ≤ R} with Lipschitz constant L = 5R.

Proof. Let U,U ′ ∈ B(0;R). Hence, ‖U‖F ≤ R and ‖U ′‖F ≤ R. By (62) and Fact 8, we obtain

‖∇2f(U)−∇2f(U ′)‖ = max
‖Z‖F =1

∣∣vec(Z)T
(
∇2f(U)−∇2f(U ′)

)
vec(Z)

∣∣
= max
‖Z‖F =1

∣∣∣∣∣ 1

m

m∑
i=1

2〈Ai, UZT 〉2 − 2〈Ai, U ′ZT 〉2 + 〈Ai, UUT − U ′U ′T 〉〈Ai, ZZT 〉

∣∣∣∣∣
≤ (1 + δ2r) · max

‖Z‖F =1

[
‖(U + U ′)ZT ‖F ‖(U − U ′)ZT ‖F + ‖UUT − U ′U ′T ‖F ‖ZZT ‖F

]
≤ (1 + δ2r) ·

[
(‖U‖F + ‖U ′‖F )‖(U − U ′)‖F + ‖(U − U ′)UT + U ′(U − U ′)T ‖F

]
≤ (1 + δ2r) ·

[
(‖U‖F + ‖U ′‖F )‖(U − U ′)‖F + ‖U − U ′‖F ‖U‖F + ‖U ′‖F ‖U − U ′‖F

]
≤ 4(1 + δ2r)R · ‖U − U ′‖F ≤ 5R · ‖U − U ′‖F ,

where we use δ2r <
1
10 in the last inequality. The proof is then completed.

5.3 Proof of Theorem 4

In view of Fact 2, it suffices to prove that under the RIP assumption in Theorem 4, the following

statements hold: (i) Assumption 1 holds, (ii) Assumption 2 holds, (iii) L(f(Uk)) is bounded for some

k ≥ 0, and (iv) U equals the set of second-order critical points of f .

Suppose that U ∈ Rn×r is the initial point of Algorithm 1. Define

R̄ :=

(
10rf(U0) +

3r

m
‖b‖2

) 1
4

> 0,

F := B(0; 2R̄) = {U ∈ Rn×r : ‖U‖F ≤ 2R̄}.

Let U ∈ Rn×r be an arbitrary point in L(f(U0)). Let λ1 ≥ · · · ≥ λr ≥ 0 be the eigenvalues of UTU .

Then, it holds that ‖UUT ‖2F = ‖UTU‖2F = λ2
1 + · · ·+ λ2

r and ‖U‖2F = λ1 + · · ·+ λr. Hence, we obtain

‖U‖4F ≤ r‖UUT ‖2F . This, together with Definition 5 and f(U) ≤ f(U0), yields

‖U‖4F ≤ r‖UUT ‖2F ≤ r ·
1

(1− δ2r)m
‖A(UUT )‖2

≤ 2r

(1− δ2r)m

(
‖A(UUT )− b‖2 + ‖b‖2

)
≤ 8r

1− δ2r
f(U0) +

2r

(1− δ2r)m
‖b‖2 ≤ R̄4,

where we use δ2r <
1
10 in the last inequality. By the definition of F , we have L(f(U0)) ⊂ int(F) and

L(f(U0)) is bounded. In addition, by Proposition 6, ∇2f is Lipschitz continuous on F with Lipschitz

constant L = 10R̄. Hence, statements (i) and (iii) above hold. Note that Proposition 5 implies that

statements (ii) and (iv) hold. The proof is then completed.
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6 Numerical Experiments

In this section, we apply the CR method to solve nonconvex minimization problems considered in

Section 5. Our primary goal is to validate Theorems 3 and 4, which concern the global convergence of

Algorithm 1 to the target signals and its local quadratic convergence rate. All experiments are coded

in Matlab and run on a Dell desktop with a 3.40-GHz Intel Core i7-3770 processor and 16 GB of

RAM. The code to reproduce all the figures and numerical results in this section can be found online:

https://github.com/ZiruiZhou/cubicreg_app.git.

6.1 Phase Retrieval

Our setup of the experiments for phase retrieval is as follows. We first generate a complex signal z? ∈
Cn from the standard n-dimensional complex Gaussian distribution CN (0, In), which is considered

to be our target signal. Next, we generate the measurement vectors {aj}mj=1 independently and

identically from CN (0, In) and compute the measurements {bj}mj=1 by assigning bj = |aHj z?| for

each j. Here m is chosen to be m = d3n log3(n)e, which empirically guarantees that the event in

Theorem 3 holds with overwhelming probability. In addition, the set of target signals is given by

X ? = {(x? cosφ − y? sinφ, x? sinφ + y? cosφ) : φ ∈ [0, 2π)}, where x? and y? are the real and

imaginary parts of z?, respectively.

We then apply Algorithm 1 to solve the resulting optimization problem (50). For the initial point

(x0, y0), we draw the entries of x0 and y0 independently and identically from the uniform distribution

on the interval [−5, 5]. In the k-th iteration of Algorithm 1, we compute the relative error (RE) of

the iterate (xk, yk), which is defined as

RE(k) =
dist((xk, yk),X ?)
‖(x?, y?)‖

.

Moreover, we terminate Algorithm 1 when RE(k) < 10−8. As Theorem 3 suggests, with overwhelming

probability, {RE(k)}k≥0 converges to 0 and the local convergence rate is at least quadratic. To validate

such result, we present the logarithm of {RE(k)}k≥0 against the number of iterations in Figure 1.

Also, the time for reaching a required solution is recorded. It is clear from Figure 1 that {RE(k)}k≥0

converges to 0 and in the final stages of the algorithm, the convergence rate is at least superlinear.

6.2 Low-Rank Matrix Recovery

Our setup of the experiments for low-rank matrix recovery is as follows. First, we generate a positive

semidefinite matrix X? ∈ Rn×n with rank(X?) = r. In particular, we generate a matrix U? ∈ Rn×r

with its entries drawn independently and identically from the standard Gaussian distribution N (0, 1)

and set X? = U?U?T . Second, we generate the matrices {Aj}mj=1 ⊂ Rn×n that form the linear operator

A : Rn×n → Rm. For all i = 1, . . . ,m, entries of Ai are drawn independently and identically from

N (0, 1). Here m is chosen to be m = 3nr, which empirically guarantees that the event in Theorem 4

holds with overwhelming probability. Finally, we compute the measurements {bj}mj=1 by assigning

bj = 〈Aj , X?〉 for all j. In addition, the set of target matrices is given by U = {U?Q : Q ∈ Or}.
We then apply Algorithm 1 to solve the resulting optimization problem (60). We use a random

matrix U0 ∈ Rn×r, whose entries are drawn independently and identically from the uniform distribu-
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(c) n = 256, Time (sec.) = 129.6
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(d) n = 512, Time (sec.) = 577.6

Figure 1: The convergence behaviour of Algorithm 1 for solving phase retrieval.

tion on the interval [−5, 5], as the initial point. In the k-th iteration of Algorithm 1, we compute the

relative error (RE) of the iterate Uk, which is defined as

RE(k) =
dist(Uk,U)

‖U?‖F
.

Moreover, we terminate Algorithm 1 when RE(k) < 10−8. Note that Theorem 4 implies that,

with overwhelming probability, {RE(k)}k≥0 converges to 0 and the local convergence rate is at least

quadratic. To validate such result, we present the logarithm of {RE(k)}k≥0 against the number of

iterations in Figure 2. Also, the time for reaching a required solution is recorded. It is clear from

Figure 2 that {RE(k)}k≥0 converges to 0 and in the final stages of the algorithm, the convergence

rate is at least superlinear.
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(a) n = 32, r = 6, Time (sec.) = 9.9
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(b) n = 64, r = 4, Time (sec.) = 11.9
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(c) n = 128, r = 6, Time (sec.) = 455.0
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(d) n = 256, r = 8, Time (sec.) = 5017.6

Figure 2: The convergence behaviour of Algorithm 1 for solving low-rank matrix recovery.

7 Conclusions

In this paper we established the quadratic convergence of the CR method under a local EB condition,

which is much weaker a requirement than the non-degeneracy condition used in previous works. This

indicates that adding a cubic regularization not only equips Newton’s method with remarkable global

convergence properties but also enables it to converge quadratically even in the presence of degenerate

solutions. As a byproduct, we showed that without assuming convexity, the proposed EB condition

is equivalent to a quadratic growth condition, which could be of independent interest. In addition,

we studied the CR method for solving two concrete nonconvex optimization problems that arise in

phase retrieval and low-rank matrix recovery. We proved that with overwhelming probability, the

sequence of iterates generated by the CR method for solving these two problems converges at least

Q-quadratically to a global minimizer. Numerical results of the CR method for solving these two

problems corroborated our theoretical findings.

Our proof of the quadratic convergence of the CR method is not a direct extension of those for other
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regularized Newton-type methods. The fact that any accumulation point of the sequence generated

by the CR method is a second-order critical point plays a key role in our analysis. We believe that

similar approaches could be employed for analyzing the local convergence of other iterative algorithms

that cluster at second-order critical points, such as trust-region methods.
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