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Abstract

Extracting governing equations from dynamic data is an essential task in model
selection and parameter estimation. The form of the governing equation is rarely
known a priori; however, based on the sparsity-of-effect principle one may assume that
the number of candidate functions needed to represent the dynamics is very small.
In this work, we leverage the sparse structure of the governing equations along with
recent results from random sampling theory to develop methods for selecting dynamical
systems from under-sampled data. In particular, we detail three sampling strategies
that lead to the exact recovery of first-order dynamical systems when we are given fewer
samples than unknowns. The first method makes no assumptions on the behavior
of the data, and requires a certain number of random initial samples. The second
method utilizes the structure of the governing equation to limit the number of random
initializations needed. The third method leverages chaotic behavior in the data to
construct a nearly deterministic sampling strategy. Using results from compressive
sensing, we show that the strategies lead to exact recovery, which is stable to the
sparse structure of the governing equations and robust to noise in the estimation of the
velocity. Computational results validate each of the sampling strategies and highlight
potential applications.

Keywords— High-dimensional Dynamical Systems, Sparse Optimization, Model Selec-
tion, Exact Recovery, Under-sampled data, Chaos

1 Introduction

Since the scientific revolution in the seventeenth century, scientists have endeavored to ex-
tract increasingly sophisticated physical models from experimental and observational data.
This process is usually done manually in the sense that a scientist, with a strong expertise in
the field, must examine the data to uncover meaningful physical laws. Parsing through data
by hand is often time-consuming, expensive, and infeasible – especially when the dimension
of the system grows. However, with advances in computing and machine learning algorithms,
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automated discovery of physical models and mathematical equations directly from data is
becoming increasingly possible. Some applications of data-based modeling include (but are
certainly not limited to) weather predictions, controls for fluid flows [51, 52, 38], construction
of climate trend models [32], and disease control models [2, 27].

Over the last decade, data-driven methods have seen strong growth due to the abundance
of data and the development of sophisticated analytical tools. In this work, a computational
method for identifying high-dimensional differential equations (which we will refer to as the
‘model’) from under-sampled dynamical data is developed. We will restrict our attention
to quadratic models, which contain a large subset of potential physical laws and applica-
tions; for example, Lorenz-like systems used in atmospheric science, Fisher’s equation and
related reaction-diffusion systems, Vlasov-Poisson equations from plasma physics, and fluid
dynamics models like the Navier-Stokes equations. The governing equations for such systems
are often moreover sparse quadratic polynomials, in that the dynamics depend on a small
number of variables and second-order interactions. Indeed, this allows us to recover the
governing equations from under-sampled data: we only need to observe a number of samples
of the data roughly on the order of the sparsity level of the system. Our method learns the
governing models via a sparse optimization problem over a large set of potential candidate
functions. It will be shown the our method selects the correct governing dynamical system
(under certain conditions) even when the size of the candidate set far exceeds the size of the
data set. In this way, these methods are one of the first applications of compressive sensing
to model extraction for dynamical systems.

Recently, regression based methods have been developed and applied to model selection
and parameter estimation of dynamic data. The authors of [5, 53] first proposed the use
of regression to select physical laws from synthetic and experimental data. In particular,
a symbolic regression method was developed that compared computed derivatives of the
data to analytic derivatives of trial functions, while controlling for the total number of
trial functions selected (as to avoid overfitting). In [8], a sparsity-promoting method was
proposed for extracting dynamical systems by comparing the computed velocity to a large
set of potential trial functions. A sequential thresholded least-squares algorithm was used to
fit a (redundant) set of trial functions (typically in the form of monomials) to the velocity.
In [49, 44] sparsity-based methods were proposed for learning nonlinear partial differential
equations from spatio-temporal data. In [50], a non-convex sparse optimization method
was developed to identify the underlying dynamical system from noisy data sets using an
integrated trial set. In [31], the authors utilized the Akaike information criterion to rank
different sparse solutions using the method from [8], allowing for the automated selection
of different models when varying the method’s free parameter. Using a sparse regression
method along with the Takens’ embedding theorem, a data-driven method was proposed in
[9] to decompose chaotic systems into intermittently forced linear systems. A sparse convex
optimization method was proposed for joint outlier detection and model selection in [56],
when the observed data is locally corrupted by high variance noise. Unlike the previous
work in the literature, which was mostly empirical, the authors of [56] proved that the
separation between the outliers and the ‘clean’ data can be exactly recovered. The use of L1
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minimization has also appeared in various data-driven and scientific computing applications,
for example [48, 30, 25, 42, 1, 39, 55, 10, 37, 8, 7]. Other data-driven methods for learning
data structure and approximating dynamics include: the proper orthogonal decomposition
[3, 24], Koopman representations [22, 60], diffusion maps [17, 16, 35, 36], and dynamic mode
decomposition [51, 52].

These data-based regression methods often use the ℓ0 or ℓ1 penalty to promote sparsity
in the learned models (i.e. to select a small number of active candidates from the large set
of potential trial functions). Soft-thresholding (related to the ℓ1 penalty) for sparse recovery
and denoising was first proposed in [18]. The ℓ1 regularized least squares problem (referred
to as the least absolute shrinkage and selection operator or LASSO) was introduced in [54]
to reconstruct a sparse vector from linear observations. Conditions under which ℓ1 penalized
problems admit sparse solutions are detailed in [11, 12, 19] and have led to many applications
in imaging and signal processing. Refined conditions for the setting of function interpolation
and approximation were developed in [43, 40, 13].

In this work, we develop a model selection and parameter estimation method for learning
quadratic high-dimensional differential equations from under-sampled data. Using results
from compressive sensing and sampling theory, we show that given a certain sampling of the
initial data, a convex optimization problem can recover the coefficients and the governing
equations exactly even when the data is under-sampled. We detail three sampling strategies,
depending on the level of knowledge of the data or the governing equation. In particular,
one can decrease the number of samples needed by adding assumptions to the system. It is
important to note that the methodology presented in this work can be extended to higher-
order polynomial systems and, more generally, governing equations which are sparse with
respect to any given bounded orthogonal system. Also, this formulation benefits from well-
known numerical methods for solving ℓ1 penalized problems. 1

2 Problem Statement

Consider the dynamical variable x(t) ∈ Rn (n ≫ 1) governed by the equation ẋ = f(x) with
initial data x(t0) = x0. Assume that f(x) is a quadratic vector-valued equation in x, which
can be written component-wise as:





ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn).

(1)

The goal is to learn f1, . . . , fn, given x and ẋ. For a given initial condition x0, assume
that we can obtain a sequence of discrete measurements {x(t1), x(t2), . . . , x(tm−1)} through

1Our code is available on our github page:
https://github.com/GiangTTran/ExtractingSparseHighDimensionalDynamicsFromLimitedData.
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either simulations or observations; however, the function f(x) is unknown. The total number
of samples along a given trajectory (including the initialization), denoted as m, can be
small and thus we will refer to these measurements as a single burst. The key here is that
by using a small number of bursts corresponding to random initial data, we are able to
provide conditions on the recovery of the underlying dynamics. Although we will show the
construction and results for quadratic systems, it is important to note that it is possible to
generalized to high-order systems.

We construct the under-sampled measurements as follows. Let k be the index for a
given burst; that is, if we sample the initial data x(t0; k) from some random distribution, we
can observe the kth burst, i.e {x(t0; k), x(t1; k), x(t2; k), . . . , x(tm−1; k)}. The corresponding
velocity along the burst, denoted by {ẋ(t0; k), ẋ(t1; k), ẋ(t2; k), . . . , ẋ(tm−1; k)}, is either ob-
served or computed to some level of accuracy. The collection of trial functions corresponding
to the kth burst is denoted as:

A(k) =




1 x1(t0; k) x2(t0; k) · · · xn(t0; k) x2
1(t0; k) x1(t0; k)x2(t0; k) · · · x2

n(t0; k)
1 x1(t1; k) x2(t1; k) · · · xn(t1; k) x2

1(t1; k) x1(t1; k)x2(t1; k) · · · x2
n
(t1; k)

1 x1(t2; k) x2(t2; k) · · · xn(t2; k) x2
1(t2; k) x1(t2; k)x2(t2; k) · · · x2

n
(t2; k)

· · ·
· · ·
· · ·

1 x1(tm−1; k) x2(tm−1; k) · · · xn(tm−1; k) x2
1(tm−1; k) x1(tm−1; k)x2(tm−1; k) · · · x2

n(tm−1; k)




(2)

and the velocity matrix is denoted as:

V (k) =




ẋ1(t0; k) ẋ2(t0; k) · · · ẋn(t0; k)
ẋ1(t1; k) ẋ2(t1; k) · · · ẋn(t1; k)
ẋ1(t2; k) ẋ2(t2; k) · · · ẋn(t2; k)

· · ·
ẋ1(tm−1; k) ẋ2(tm−1; k) · · · ẋn(tm−1; k)




. (3)

Let cj be the vector of coefficients corresponding to the jth governing equation, 1 ≤ j ≤ n,
and define the coefficient matrix:

C =




| | |
c1 c2

... cn

| | |


 . (4)

Using the kth burst data leads to the subproblem: find c such that V (k) = A(k)C. Next, we
combine the data over all bursts k from 1, . . . , K by simply concatenating the burst arrays
vertically:

V =




V (1)

V (2)

|
V (K)


 and A =




A(1)

A(2)

|
A(K)




and thus the full problem is to find C such that V = AC. Let N :=
n2 + 3n+ 2

2
be the

number of monomials of n variables up to degree two, then the size of matrix A is mK ×N
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withmK < N therefore the linear inverse problem is ill-posed. Since the coefficient matrix C
is sparse, the inversion could be regularized by solving the non-convex optimization problem:

min
C

||C||0 subject to ‖AC − V ‖ ≤ σ,

where || · ||0 is the ℓ0 penalty, i.e. the number of nonzero terms and the norm || · || is the
maximum of the ℓ2 norm of each row. In this way, the inversion is component-wise separable.
The parameter σ > 0 controls for the error between the computed derivative and the true
velocity. For any fixed value of σ, the general ℓ0 penalized problem is NP hard [21]; and thus
we use the convex relaxation known as the ℓ1 basis pursuit method:

(M-BPσ) : min
C

||C||1 subject to ‖AC − V ‖ ≤ σ.

Note that if V and A are given with high accuracy then we can solve the following:

min
C

||C||1 subject to AC = V.

The procedure and optimization problem above will be referred to as the monomial basis
pursuit M-BP, since the trial set contains monomials up to degree two. We can also repeat the
process using the tensorized quadratic Legendre polynomials, which corresponds to changing
Equation (2) to:

A
(k)
L

=




1
√
3x1(t0; k) · · ·

√
3xn(t0; k)

√
5
3x2

1(t0; k)− 1

2
3x1(t0; k)x2(t0; k) · · ·

1
√
3x1(t1; k) · · ·

√
3xn(t1; k)

√
5
3x2

1(t1; k)− 1

2
3x1(t1; k)x2(t1; k) · · ·

1
√
3x1(t2; k) · · ·

√
3xn(t2; k)

√
5
3x2

1(t2; k)− 1

2
3x1(t2; k)x2(t2; k) · · ·

· · ·
1

√
3x1(tm−1; k) · · ·

√
3xn(tm−1; k)

√
5
3x2

1(tm−1; k)− 1

2
3x1(tm−1; k)x2(tm−1; k) · · ·




(5)

The resulting inverse problem will be referred to as the Legendre basis pursuit L-BP, and
we write it concisely as:

min
CL

||CL||1 subject to ALCL = V.

Note that sparsity of the solution of L-BP can be slightly larger than M-BP, since the ‘pure’
quadratic terms now include a constant term. In particular, if a component of the governing
equation is s-sparse with respect to A, then it is at most (s+ 1)-sparse with respect to AL.
A noise-robust extension of this is given by:

(L-BPσ) : min
CL

||CL||1 subject to ‖ALCL − V ‖ ≤ σ.
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3 Reconstruction Guarantee

Compressive sensing theory provides reconstruction guarantees for sparse solutions to ill-
posed linear inverse problems via the solution to ℓ1 optimization problems like L-BP – let
us recall the basics of this theory. Consider a general system of linear equations, y =
Ax. If A is underdetermined, or has fewer rows than columns, it is in general impossible
to determine x given only y and A. However, if we know a priori that x ∈ RN is s-
sparse, or only has s ≪ N non-zero entries, the locations of which are unknown, and if the
underdetermined matrix A is suitably incoherent, it is possible to recover such an x from only
M = O(s logN) measurements as the unique solution to the ℓ1-minimization problem x =
argminz ‖z‖1 subject to Az = y. Moreover, if there is noise on the measurements y = Ax+η,
then x is well-approximated by the solution x# ∈ argminz ‖z‖1 subject to ‖Az − y‖2 ≤ σ
for σ appropriately chosen. Thus, by leveraging sparsity, we can potentially overcome the
curse of dimensionality in the number of measurements we need to take, which often renders
high-dimensional inverse problems intractable.

In our setting, the matrix of coefficients C (equivalently, each of the n columns c1, c2, . . . , cn)
is s-sparse, and so we can ask: under what conditions on the measurement matrix A (or the
Legendre-transformed AL) can we apply compressive sensing results and conclude that C is
exactly recovered as the solution to M-BPσ (or L-BPσ)? As it turns out, if each of the K
bursts is initialized at a uniformly random point in [−1, 1]n, then the K × N measurement
matrix AL corresponding to only the K initialization measurements, has precisely the in-
coherence properties that provide optimal compressive sensing results. Thus, if each of the
coefficient vectors ck is s-sparse, then we only need to measure on the order of K ∼ s logN
bursts to recover the coefficients exactly. Each burst need only be measured long enough
to get an accurate approximation to the initial velocity. Informally, the size of the burst
should be large enough to get a stable approximation to the velocity via a finite difference
approximation.

The remarkable fact that sparse vectors can be exactly recovered from vastly underdeter-
mined linear systems of equations cannot be possible for just any underdetermined system
of equations Ax = y – for example, the M × N matrix A consisting of the first M rows of
the N ×N identity matrix maps all sparse vectors whose support does not intersect the first
M coordinates to its null space, rendering it impossible to distinguish them. Indeed, the
matrix A must have the incoherence property which implies that its null space only intersects
the set of sparse vectors trivially, and is sufficiently “well-conditioned” over the set of sparse
vectors to permit stability to noise. The Legendre-transformed matrix AL with burst length
m = 0 and with initializations x(t0; 1), . . . , x(t0;K) taken as independent and identically
distributed as uniform random variables [−1, 1]n satisfies these requirements; in particular,
it has two key properties which permit theoretical results on sparse recovery:

• Its rows ω1, ω2, . . . , ωK are independent realizations of an isotropic random variable ω;
that is, its covariance matrix is the identity matrix E[ωω∗] = 1N×N ,

• Its rows are uniformly bounded : max1≤i≤N,1≤j≤K |AL(i, j)|2 ≤ 9.
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Using these properties, we may apply Theorem 1.2 from [13] (see also Theorem 12.22 in [21])
to arrive at the reconstruction guarantee.

Theorem 3.1 Consider a dynamical system ẋ = f(x) to be recovered from snapshots
x(t0; k), . . . x(tm−1; k) and corresponding velocities ẋ(t0; k), . . . ẋ(tm−1; k), k = 1, 2, . . . , K.
Assume that each component f(x) = (f1(x), f2(x), . . . , fn(x)) is a quadratic vector-valued
equation in x, and that each of the fk has at most s out of N polynomial coefficients non-
zero. Suppose that the initialization x(t0; k) for each of the k = 1, 2, . . .K bursts is chosen
independently at random from the uniform distribution over [−1, 1]n. Suppose the number of
bursts satisfies

K ≥ 9c∗s log(N) log(ε−1) (6)

where c∗ is a universal constant. Then with probability 1 − ε, any particular component of
the n governing equations in the system ẋ = f(x) is recovered exactly via the polynomial
coefficients as the unique solution to (L-BP).

More generally, under the same conditions as above and with the same probability, if the
measured gradient terms are only approximate,

˜̇x(t0; k) = ẋ(t0; k) + τ0;k, . . . , ˜̇x(tm−1; k) = ẋ(tm−1; k) + τm−1;k,

such that

√
1
K

K∑
k=1

|τ0;k|2 ≤ η, then considering (L-BPσ) with matrix AL consisting of only the

initial burst data and with σ =
√
Kη, any particular coefficient vector ck is approximated by

a minimizer c#k of (L-BPσ) according to

‖c#k − ck‖2 ≤ c∗
√
sη

where c∗ is a universal constant.

The proof of Theorem 3.1 is deferred to the Appendix. We note that by the union bound
(Boole’s inequality), if we observe K ′ ≥ 9c∗s log(N) log(nε−1) bursts, then with probability
1−ε, the error bounds are guaranteed to hold uniformly for each of the n governing equations.
Also, the arguments require a uniform bound on the elements of the matrix AL restricted
to the initial data, which can be chosen to be uniform random variables on [−1, 1]n. In
general, trajectories of polynomial governing systems can become unbound in finite-time,
which would make a uniform bound on AL not possible. However, with the burst approach,
one should expect the trajectory to exist for a short time.

This sparse recovery result can be generalized in several ways; namely,

• The initializations should be independent and identically distributed random variables,
but it is not crucial that they be uniform random variables on [−1, 1]n. Using results
from [41], the initializations could instead be taken to be i.i.d. according to the Cheby-
shev measure on [−1, 1]n, any measure interpolating between the Chebyshev measure
and the uniform measure.
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• The cubic case is an important structure that can arise from special symmetries. Al-
though it is not directly considered here, our approach can be applied to extract cubic
governing equations from data. Theorem 3.1 holds if we modify Equation (6) to:

K ≥ 27c∗s log(N) log(ε−1)

since one can show that the matrix AL restricted to uniformly random measurements
satisfies the bound max1≤i≤N,1≤j≤K |AL(i, j)|2 ≤ 27. However, in the cubic case the
number of unknowns N can be quite large since N =

(
n+3
3

)
compared to the quadratic

case where N =
(
n+2
2

)
. Therefore, the number of basis elements N will be extremely

large for high-dimensional cubic systems, rendering the ℓ1 reconstruction algorithm
quite costly without taking into account additional assumptions on the sparsity struc-
ture. Constructing a computational efficient approach under reasonable structural
conditions will be explored in a future work.

• We could have derived reconstruction guarantees for higher-order polynomial systems.
As with the cubic case, the only difference in the theoretical result is that the uniform
bound max1≤i≤N,1≤j≤K |AL(i, j)|2 will grow with the maximal polynomial degree; the
constant 9 in Equation (6) will increase accordingly.

• We are not even restricted to consider governing equations which are sparse with
respect to the polynomial basis; one could consider a different orthonormal basis such
as e.g., sines and cosines which are uniformly bounded, and take the initializations of
the bursts as i.i.d. random variables according to the orthogonalization measure (or a
measure which is “close to” the orthogonalization measure) of that basis.

4 Ergodicity and the Number of Bursts

Theorem 3.1 says that any dynamical system described as a system of sparse quadratic
ordinary differential equations can be recovered exactly from a small number of randomly
initialized bursts. In particular, the number of bursts need only scale with the sparsity level
of the system, and only logarithmically with the ambient dimension. This result is true for
any such dynamical system, independent of the behavior of the trajectories along the bursts.
In this sense, it is a “worst-case” result. In many situations, the data x(t0), x(t1), . . . , x(tm−1)
along a single burst behaves chaotically, mimicking the behavior of a random sequence, and
in such cases the number of bursts actually required to achieve exact recover should be far
smaller – as our numerical evidence shows, even a single burst often suffices.

While theoretical results concerning the behavior of high-dimensional dynamical systems
have remained elusive, recent large-scale simulation studies, such as [34, 26] demonstrate
that high-dimensional dynamical systems described by polynomial systems of equations often
exhibit chaotic behavior; in fact, such behavior becomes more and more “probable” as the
dimension of the system increases. If we are in the regime of chaotic behavior, and if we
measure snapshots of the system at the time scale of the chaotic dynamics, then for a smooth
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function F , the sequence F (x(t0)), F (x(t1)), . . . , F (x(tm−1)) will satisfy a deterministic form
of the law of large numbers – the so-called Birkhoff Ergodic Theorem – which says that
the time average of the sequence will converge to the space average of F (x) with respect
to an underlying invariant measure [4]. For strongly ergodic systems, a stronger Central
Limit Theorem holds, and the convergence rate can be quantified. In particular, the rate
of convergence is faster if the correlation between successive observed values F (xk) and
F (xk+q) (for index q > 0) is smaller, starting with the works [45, 46, 47, 6]. There is a
rich theory on the decay of correlations for certain classes of low-dimensional dynamical
systems, beyond the scope of this article. Morally speaking, if we measure a single burst
which has the property that a smooth functional applied to the sequence exhibits a fast decay
of correlation, then the resulting matrix AL will have rows which are only weakly correlated,
and thus, should almost fit the theoretical requirements for a compressive sensing result of
the form of Theorem 3.1. It is worth noting that a more recent paper [28] generalizes the
results from [13] to accommodate matrices with only weakly-correlated rows. However, even
so, the existing compressive sensing theory does not extend to this situation exactly as the
sparse signal to be recovered is not independent of the measurement matrix. Exploring a
more precise relationship between the level of ergodicity in the system to recover and its
effect on reducing the required number of bursts remains an intriguing direction for future
study.

5 Sampling Strategies and Computational Results

In this section, we present three sampling strategies that will lead to exact recovery (with
high probability). In particular, Strategy 1 uses the construction from Section 2, Strategy 2 is
a reduction of Strategy 1 when one can limit the number of unknowns to an ℓ-sized neighbor
(i.e. when fj only depends on xi, for i ∈ [j − ℓ−1

2
, j + ℓ−1

2
] for odd ℓ), and lastly Strategy

3 shows that chaotic trajectories greatly reduce the number of random initializations. It is
worth noting that Strategy 1 makes no assumptions on the trajectories x(t) or the support
of the monomial basis for f(x), Strategy 2 incorporates information on the support of the
monomial basis for f(x) but makes no assumptions on the trajectories x(t), and Strategy 3
uses information about the trajectories x(t). In practice, we expect that some combination
of these three approaches could be optimal when dealing with various types of data. Note
that although we will show examples with quadratic governing equations, the number of
unknowns, N , is non-trivial and grows quickly with dimension.

In all cases, we have under-sampled the data and it is easy to check that standard
methods, like the least-squares algorithm, do not produce meaningful results. To validate
our approaches, we will apply these strategies to the Lorenz 96 system and a quadratic
reaction-diffusion equation. The Lorenz 96 system, introduced in [29] as an atmosphere
model, contains n > 3 variables x1, · · · , xn and satisfies

dxk
dt

= −xk−2 xk−1 + xk−1 xk+1 − xk + F, k = 1, · · · , n. (7)
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The constant F is independent of k and x0 = xn and xn+1 = x1. In both the standard
monomial basis and in the Legendre monomial basis, the system is 4-sparse (component-
wise). Unless otherwise stated, the number of variables is fixed to be n = 50 and the
constant is set to F = 8, where chaotic behavior is expected, see [29].

The second system we consider is known as the Fisher’s equation, a quadratic reaction-
diffusion equation, with reaction term F (x) = x−x2. This equation has applications ranging
from population dynamics to combustion physics. Its finite difference discretization of the
Fisher’s equation with n nodes is given by:

dxk
dt

= xk+1 − 2xk + xk−1 + γ(xk − x2
k), k = 1, . . . , n, (8)

where the coefficients and time-scale have been re-scaled by the grid-spacing and we impose
the periodicity condition: x0 = xn and xn+1 = x1. Reaction-diffusion systems have multi-
scale phenomena and can produce traveling waves, for more details see, for example, [33, 58].
In our examples, the solutions remain bounded since the initial data is sampled in the unit
box. Note that when transformed to the Legendre basis, each component of Equation (8) is
5-sparse.

Throughout this section, we denote K to be the number of initializations, m is the size
of each burst. For each burst, the time-derivative is approximated using central differenc-
ing except at the first and last time-step where we use forward and backward differencing
(respectively). The dynamical data is generated by solving the ODEs numerically using
Runge-Kutta 45 with a finer tolerance than the sampled time-step dt. To solve the L-BP
problem we use the spgl1 algorithm [57] for all examples here. Other algorithms that could
be successfully applied include: primal-dual [14], Douglas-Rachford [20], SpaRSA [59], or
the convex optimization package cvx [23].

5.1 Strategy 1: K ∼ c s log(N) Random Initializations

A direct consequence of Theorem 3.1 is that one can recover the governing equation with K
random initializations as long asK ≥ c s log(N). We first determine the number of uniformly
random initializations based on the theorem and collect a burst of size m generated from
the system starting with each initialization. The data matrix is concatenated vertically over
each burst. The parameters used are specified in each experiment.

First, we validate the recovery results by varying the number of initialization K and
measuring the probability that the governing system can be recovered. To test this we use
the 10th component of the Lorenz 96 system (see Equation (7)):

dx10

dt
= −x8 x9 + x9 x11 − x10 + 8.

For each K = 5, . . . ,
N

m
=

1326

m
, we repeat the simulation 100 times and record the number

of successes to calculate the probability p, see Figure 1. The maximum K is chosen so that
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we do not oversample the system. From Figure 1, we can see that for dt = 0.001, K = 80 is
needed to achieve 90% probability of success for both m = 5 and m = 10. For a larger time-
step, dt = 0.01, K = 130 is needed to achieve 90% probability of success for m = 5. This
is expected since the larger time-steps yield less accurate time-derivative approximations.
Note that the recovery degrades when the burst size (in terms of m and dt) increases due to
the propagation of error between time-steps. When the data is less correlated in time, the
degradation may not occur, see Strategy 3. It is worth noting that although the theoretical
universal constant c∗ in Equation (6) has a large upper bound, it is much smaller in practice.

We also verify the recovery results for Fisher’s equation for various γ. Table 1 displays the
values of the coefficients (as well as their support) when applying the proposed approach to
the first component of Equation 8. The initial data is sampled from the uniform distribution
over [0, 1]n and the full data matrix is transformed to [−1, 1]n. We set n = 200 (N = 20301),
the number of random samples to 159, and the size of the burst is 5 – this corresponds to
the bound provided in Theorem 3.1. By varying the model parameter γ, we show that the
method selects the correct basis terms and accurately approximates the parameter values
(within a few significant digits). It is worth highlighting that as γ decreases, the relative
scale between the maximum and minimum coefficient increases; however, the recovery results
remain relatively stable.

Note that once we have identified the support SL with respect to the Legendre dictionary
matrix, it is possible to “correct” the results from Table 1 by solving:

min
C

‖AM |SC|S − V ‖2

where AM |S is the monomial dictionary AM restricted to the corresponding support set S.
This debiasing step, when applied to the examples from Table 1, produces exact results (up
to the fourth significant digit).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

dt = 0.001, m = 5, no thres
dt = 0.01, m = 5, no thres
dt = 0.001, m = 10, no thres
dt = 0.01,m = 10,thres = 0.005

Figure 1: Probability of exact recovery versus the under-sampling rate K/N for the Lorenz
96 with n = 50 variables (N = 1326), and F = 8. For dt = 0.001, K = 80 is needed to
achieve 90% probability of success for both m = 5 and m = 10. For dt = 0.01, K = 130 is
needed to achieve 90% probability of success for m = 5.
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Terms γ = 0.25 γ = 0.1 γ = 0.01 γ = 0 true value
1 0.000 0.000 0.000 0.000 0
x1 −1.751 −1.901 −1.991 −1.999 −2 + γ
x2 1.000 1.000 1.000 0.999 1
x3 0 0 0 0 0

· · · · · · · · · · · · · · ·
xn−1 0 0 0 0 0
xn 0.999 0.999 1.000 0.999 1
x2
1 −0.248 -0.098 −0.008 0 −γ

x1 x2 0 0 0 0 0
· · · · · · · · · · · · · · ·

x2
n 0 0 0 0 0

Table 1: Fisher’s Equation: Recovery results from under-sampled data generated by Equa-
tion (8). The results are for the first component of Equation (8). As the parameter γ varies,
the support set of the recovered coefficients remains exact and the corresponding parameters
are estimated within a few significant digits. In all cases, we set n = 200, K = 159, and the
size of the burst is 5 (m = 5).

5.2 Strategy 2: K < c s log(N) Random Initializations with Local-

ization

For many ODEs, especially those related to finite dimensional approximations of local PDEs,
it is safe to assume that each variable xj only relates to its ℓ-neighbors xi, i ∈ [j− ℓ−1

2
, j+ ℓ−1

2
]

(ℓ odd). In particular, the assumption is that the governing equation satisfies:

ẋj = fj

(
xj− ℓ−1

2

, . . . , xj+ ℓ−1

2

)
,

for all j. With this additional assumption, the number of unknowns in the dictionary matrix
is reduced, and thus we can decrease the number of initial conditions needed to guarantee
exact recovery. In particular, with the same conditions in Theorem 3.1, if additionally it is
known that the sparse support is restricted to an ℓ-sized neighborhood, then if we sample the
initial data K times, with K ∼ c s log(ℓ) log(ε−1), then with probability 1 − ε, the system
ẋ = f(x) is recovered exactly by the unique solution to (L-BP).

Incorporating this additional condition simply amounts to downsampling the column
space of the dictionary A. In Table 2, we consider the n = 1000 dimensional Fisher’s
equation, which yields 501501 unknowns. By varying the size of the neighborhood, ℓ, we
calculate the minimum number of random initial samples needed for exact recovery. To
validate the theoretical scaling, the ratio between the samples needed versus the log of the
neighborhood size is shown to be nearly constant. Since the sampling rate is related to
the log of the number of unknowns, we see substantial gains between using all terms versus
restricting to a neighborhood, but further refinement is not needed. This highlights the
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ℓ neighborhood: All terms 101 51 31 11
min samples K: 95 50 43 36 25

ratio K
s log(ℓ)

: − 2.2 2.2 2.1 2.1

Table 2: Fisher’s Equation: For various window sizes ℓ, the minimum number of random
initialization needed for exact recovery is computed for the n = 1000 dimensional Fisher’s
equation (number of unknowns is equal to 501501). The ratio between the samples needed
versus the neighborhood size is nearly constant, validating the theory.

benefit of restricting the optimization to an ℓ-sized neighborhood, even when ℓ can only be
estimated. One key consequence from this strategy is that the sampling rate is independent
of the dimension of the ODE system n, allowing this approach to be applied to very large
systems.

5.3 Strategy 3: Chaotic Systems with K Small and m Large

In Strategies 1 and 2, we made no assumption on the behavior of the trajectories x(t). For
Strategy 3, we will assume that the data exhibits chaotic behavior, or uncorrelated long-time
behavior. Here we show that if this is the case, we can reduce the number of random initial
data needed. In particular, we will show an example of the extreme case where K = 1, since
including additional trajectories with random initial data will only improve the recovery.
Consider collecting data along one trajectory: {x(t0), x(t1), . . . , x(tm−1)} with time-steps
dt that are large enough so that x(ti) and x(tj) are sufficiently uncorrelated for i < j. The
velocity along the trajectory {ẋ(t0), ẋ(t1), . . . , ẋ(tm−1)} is either observed directly (possibly
with some error) or calculated by using a fine time-step (smaller than dt). In either case, the
data is under-sampled, i.e., m < N . In essence, taking large enough time-steps of a chaotic
system mathematically resembles a random “re-sampling” of the data, thus fitting in with
Strategies 1 and 2.

We test this strategy on the first component of the Lorenz 96 system, Equation (7),
with n = 50. In Table 3, we show that with 500 measurements and dt = 1.0, the solution
of L-BP identifies the correct terms and approximates the coefficients within the expected
error. This shows that it is possible to use the randomness of the data along one trajectory
to learn the governing equation. Adding more trajectories with initial data sampled i.i.d.
from the uniform distribution, while keeping the total size of the data fixed, only helps the
recovery processes.

5.4 Comparisons

For comparison, we apply Strategy 1, the standard least-square algorithm, and the linear
regression method with sequential thresholding proposed in [8] on both the Lorenz 96 and
Fisher’s equation. In Figure 2, the coefficients extracted using the L-BP method (left),
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Terms Recovered Coefficients True Value
1 7.986 8
x1 −0.9975 −1.0
x2 0.9996 1.0
x3 0 0
· · · · · · · · ·
x2 xd 0.9996 1.0
· · · · · · · · ·

xd−1 xd −0.9995 −1.0
x2
d 0 0

Table 3: Lorenz 96, one trajectory: Using one trajectory of the Lorenz 96 system with
dt = 1.0, the coefficients are learned using the L-BP. Strategy 3 identifies the correct terms
and approximates the coefficients within the expected error.

the least-square algorithm (middle), and the sequential thresholding algorithm (right) for
the 35th component of the Lorenz 96 equation with n = 50, dt = 0.001. The threshold
parameter for the least-square algorithm and the sequential thresholding algorithm is set to
λ = 0.05. In fact, the solutions of the least-square and the linear regression are the same for
this problem. This is the case for all reasonable λ > 0.

200 400 600 800 1000 1200

0

2

4

6

8
Nonzero Recovered Coefficients
Nonzero True Coefficients

200 400 600 800 1000 1200
-6

-4

-2

0

2

4

6

×107

200 400 600 800 1000 1200
-6

-4

-2

0

2

4

6

×107

Figure 2: Comparison. The coefficients learned from the L-BP method (left), the least-
square algorithm (middle), and the sequential thresholding algorithm (right) for the 35th
component of the Lorenz 96 equation with n = 50, dt = 0.001. The threshold parameter for
the least-square algorithm and the sequential thresholding algorithm is set to 0.05.

Next, we compare the recovery of the coefficients from the first component of the Fisher’s
Equation (8). The model parameter is set to γ = 0.1 and dimension is set to n = 100,
the number of random samples is set to 138, and the size of the burst is set to 5. The
least-squares solution is 653-sparse and has coefficients on the order of 104. Applying the
sequential thresholding algorithm proposed in [8] with threshold parameter λ ∈ [5, 5000]
results in a similar solution. The sparsity matches that of the least-square solution, with
s ∈ [579, 653] and has coefficients on the order of 104. Increasing λ to achieve a better sparsity
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level will yield the trivial solution (i.e. all zeros). This is likely an effect of their algorithm’s
dependence on the least-square solution. It is important to note that the algorithm proposed
in [8] was not intended for the case of under-sampling.

5.5 Measurement Noise

We consider the effects of noisy state-space measurements on the reconstruction of the sparse
coefficient vector. Let X be the data matrix:

X =




x1(t0; 1) x2(t0; 1) · · · xn(t0; 1)
x1(t1; 1) x2(t1; 1) · · · xn(t1; 1)

· · ·
x1(tm−1; 1) x2(tm−1; 1) · · · xn(tm−1; 1)

· · ·
x1(t0; k) x2(t0; k) · · · xn(t0; k)

· · ·
x1(tm−1; k) x2(tm−1; k) · · · xn(tm−1; k)

· · ·
x1(tm−1;K) x2(tm−1;K) · · · xn(tm−1;K)




and let Y = X + η be the matrix of noisy measurements, where η is random Gaussian noise. The
noise ratio is defined as:

Noise Ratio =
‖X − Y ‖2

‖X‖2
× 100%

and the relative ℓ2 error is define as:

relative ℓ2 error =
‖c− ctrue‖2
‖ctrue‖2

× 100%,

where c is the computed/learned vector of coefficients and ctrue is the true coefficients. We generate
the data from Equation (7) using F = 8 and dimension equal to 50. The parameters are set to
dt = 0.001, K = 200, and m = 3. By adding noise directly to the state-space, we can measure
the recovery when the measurements are corrupted. The state variable is corrupted by random
Gaussian noise before the derivatives are calculated, thus the value of V and the matrix A will be
inaccurate. This makes the problem challenging when the noise is large. The results are summarized
in Table 4. As we vary the noise level, we measure the relative ℓ2 error and the recovery of the
support set. For noise under 5%, the method is stable with respect to the noise. This is consistent
with Theorem 3.1. After 5% noise, the ℓ2 error jumps and after 6%, we cannot reliably recover the
support set. In particular, since we know that the true sparsity of Equation (7) is 4, we can check
if the largest four learned coefficients (in magnitude) coincide with the correct support set. After
about 6%, the largest four coefficients do not represent the correct support set. This is likely due
to the large inaccuracies in V , which is not stable to the noise, and inaccuracies in A, which scales
nonlinearly with the noise.
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6 Conclusion and Discussion

Extracting dynamical systems remains a difficult task with many open areas of research. Recent
work in sparse model selection for dynamical systems has focused on the overdetermined case,
where regression must be controlled so as to prevent overfitting. In this work, we utilized the
fundamental idea from compressive sensing to develop several sampling strategies for extracting
governing equations from high-dimensional dynamic data. In all cases, the number of measurements
is less than the number of unknowns. The main differences between these strategies is the degree
of prior knowledge about the data or the governing equations. If no assumptions on the evolution
can be made, then randomizing the initial data is sufficient. If some assumptions on the governing
equations are provided, such as locality induced by discretizing a local PDE, then the number
of random initial data can be reduced further, to be nearly independent of the dimension of the
dataset. In the third case, if the data is chaotic (or shows a low temporal correlation), then we may
reduce the number of initial samples to a fixed number. Using results from compressive sensing,
the first two strategies are shown to hold; however, more theory is needed to verify the last case. In
several of our experiments, we have shown that the three strategies are robust to various factors as
well as highlighted the benefits of this approach over existing methods. The effective combination
of reconstruction guarantees from compressive sensing with sparse learning for dynamical systems
presented here opens a wide range of applications. We are currently investigating the use of group
sparsity and random sampling approaches for learning dynamic models from multiple data sources.
In future work, we also would like to extend the current framework to other bounded orthonormal
bases and to learn the dynamics from noisy data.
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Appendix

For purposes of being as self-contained as possible, we first recall some background on the theory
of sparse recovery in bounded orthonormal systems via random sampling. We refer the reader to
the text [40] for more details.

Noise Level: 2.5% 5% 6% 7%
ℓ2 error: 2.6% 5% 10.2% 17.2%

Support Set: Y Y Y N

Table 4: We measure the effects of noise on the recovery of the sparse coefficient vector.
For noise under 5%, the method is stable to noise. At 5% noise, the ℓ2 error jumps and the
coefficient vector appears to be polluted by the inaccuracies caused by the noise.
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6.1 Random Sampling in Bounded Orthonormal Systems

Let D ⊂ R
n be endowed with a probability measure µ. Suppose that {φ1, φ2, . . . , φd} (d ≤ n) is a

(possibly complex-valued) orthonormal system on D:

∫

D

φj(t)φk(t)dµ(t) = δj,k =

{
0 if j 6= k

1 if j = k
(9)

We call {φ1, φ2, . . . , φd} a bounded orthonormal system with constant B ≥ 1 if moreover

‖φj‖∞ := supt∈D|φj(t)| ≤ B for all j ∈ 1, 2, . . . , d.

Suppose that t1, t2, . . . , tm ∈ D are sampling points which are drawn i.i.d. according to the orthog-
onalization measure µ, and consider the sampling matrix A ∈ C

m×n with entries

Aℓ,k = φk(tℓ), ℓ ∈ [m], k ∈ [n].

With high probability, a random matrix formed as such permits stable “inversion” of the (possibly
highly underdetermined) system y = Ax if x is sufficiently sparse, and if “inversion” is carried out
through e.g. solving an ℓ1-minimization problem. The following is a restatement of Theorem 12.22
in [40], which is a restatement of a result from [13].

Proposition 6.1 Let x ∈ C
n and let A ∈ C

m×n to be the random sampling matrix associated to a
BOS with constant B ≥ 1. For y = Ax+ e with ‖e‖2 ≤ η

√
m for some η ≥ 0, let x# be a solution

to
min
z∈Cn

‖z‖1 subject to ‖Az − y‖2 ≤ η
√
m.

If
m ≥ CB2s log(n) log(ε−1),

then with probability at least 1− ε, the reconstruction error satisfies

‖x− x#‖2 ≤ C1σs(x)1 + C2

√
sη

where σs(x)1 = infu:u is s-sparse ‖x− u‖1, and the constants C,C1, C2 > 0 are universal.

We apply this result to prove our reconstruction guarantee.

6.2 Proof of Theorem 3.1

Recall that AL is the K×N matrix consisting of those rows corresponding to the K initializations.
The tensor product of univariate Legendre polynomials, normalized as in the construction of AL,
forms a bounded orthonormal system with respect to the uniform measure over [−1, 1]n; precisely,
dµ = 1

2dx. The Legendre polynomials up to degree 2 are uniformly bounded in magnitude over
the domain [−1, 1]n by 3, as realized by the terms 3xjxk at xj, xk = ±1. Thus, AL satisfies
the requirements of Proposition 6.1 with K = 3. Moreover, by assumption, each column in the
coefficient matrix C associated to the underlying dynamical system consists of at most s nonzero
terms. Thus, after transforming to the Legendre basis, each column in the the Legendre coefficient
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matrix CL has at most s′ = s + 1 nonzero terms. Thus, we apply Proposition 6.1 with these
parameters to any particular one of the n ℓ1-minimization problems.

The recovery guarantee in the noiseless case (η = 0) moreover extends to the optimization
problem L-BP over the full set of measurement constraints, not just those constraints corresponding
to the burst initializations, since the domain corresponding to the full measurement set is strictly
included in the domain corresponding to the reduced measurement set, and the unique minimizer
over the reduced measurement set belongs to this subdomain.
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