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A NEW CLASS OF SEMI-IMPLICIT METHODS WITH LINEAR

COMPLEXITY FOR NONLINEAR FRACTIONAL DIFFERENTIAL

EQUATIONS ∗

FANHAI ZENG† , IAN TURNER†,‡ , KEVIN BURRAGE†,§ , AND GEORGE EM

KARNIADAKIS¶

Abstract. We propose a new class of semi-implicit methods for solving nonlinear fractional
differential equations and study their stability. Several versions of our new schemes are proved to
be unconditionally stable by choosing suitable parameters. Subsequently, we develop an efficient
strategy to calculate the discrete convolution for the approximation of the fractional operator in the
semi-implicit method and we derive an error bound of the fast convolution. The memory requirement
and computational cost of the present semi-implicit methods with a fast convolution are about
O(N lognT ) and O(NnT lognT ), respectively, where N is a suitable positive integer and nT is the
final number of time steps. Numerical simulations, including the solution of a system of two nonlinear
fractional diffusion equations with different fractional orders in two-dimensions, are presented to
verify the effectiveness of the semi-implicit methods.

Key words. Fast convolution, semi-implicit methods, fractional linear multi-step methods,
nonlinear fractional differential equations, complex domain integration.
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1. Introduction. Anomalous diffusion equations have attracted considerable
interest over the last decade because of their ability to model transport dynamics
in complex systems [26, 28]. In these models, the underlying fractional differential
equations (FDEs) are nonlocal and time-dependent, which may cause computational
difficulties due to the nonlocality and singularity of the fractional operator [6, 2, 30,
35].

The aim of this paper is to develop a class of semi-implicit and fast time-stepping
methods to efficiently solve nonlinear time-fractional FDEs. We also focus on how to
reduce the memory requirement and the computational cost of the numerical methods
resulting from the nonlinearity and nonlocality of nonlinear time-dependent FDEs.
The singularity of the solution of the FDE is dealt with through the use of correction
terms, a topic that is not investigated in detail in this work. The interested reader is
referred to [7, 21, 39] for further details.

Semi-implicit methods have been widely applied to solve nonlinear integer-order
differential equations [1, 27, 16], as these methods are efficient and have larger stability
regions than explicit methods, giving rise to a linear system of equations to obtain
the numerical solutions. However, semi-implicit methods for nonlinear time-fractional
FDEs have not been fully addressed in the literature.

There have been some explicit and semi-implicit methods for solving fractional
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differential equations proposed recently. Garrappa and his collaborator have studied
explicit/semi-implicit methods for fractional ordinary differential equations (FODEs),
and also investigated the stability region of these methods, see e.g. [10, 11, 12, 13, 14].
Yuste and Acedo [37] proposed an explicit difference method for linear fractional dif-
fusion equations and a weighted average version of [37] was proposed in [36]. In 2015,
Cao et al. [4] proposed a time-splitting method for nonlinear FODEs based on linear
interpolation, and the stability of the method was studied numerically. Two implicit-
explicit time-stepping methods, one conditionally stable and the other unconditionally
stable, were proposed in [5], and stability analysis was given by following the idea in
[22]. The stability region of a predictor-corrector method [8] was investigated in [13].
The objective of this work is to present a new class of semi-implicit methods for non-
linear FODEs and apply them to solve nonlinear time-fractional FPDEs. The new
semi-implicit method yields a linear system with a constant coefficient matrix when
it is applied to nonlinear time-fractional differential equations.

A computational difficulty of numerical methods for time-dependent FDEs is
caused by the nonlocality of the fractional operator [2, 32]. The direct time-stepping

method for the time-fractional operator k−α ∗ u(t) =
∫ t
0 k−α(t − s)u(s) ds yields the

discrete convolution as

(1.1)

n∑

k=0

ωn−kuk, 0 ≤ n ≤ nT ,

which requires O(nT ) active memory and O(n2
T ) operations. For the case kα(t) =

tα/Γ(α), the convolution kα ∗ u(t) defines the fractional integral of order α for α > 0
(or Riemann–Liouville fractional derivative of order −α for α < 0), see [29, 38]. The
direct calculation of (1.1) becomes computationally expensive when it is applied to
discretize the time variable of high-dimensional time-fractional PDEs; see [35]. Some
progress on reducing the memory requirement and computational cost for calculating
(1.1) has been made, and we refer the reader to [23, 19, 17, 15, 25, 2, 35, 38], where the
coefficients ωn are obtained from interpolations and the kernel function tα−1/Γ(α) in
the fractional operator is approximated by a sum-of-exponentials. In the semi-implicit
methods analyzed in this paper, the coefficients ωn used in (1.1) are obtained from
the generating functions (see (2.5) and (2.6); and more generating functions can be
found in [21]). Therefore, the fast methods in [23, 19, 17, 15, 25, 2, 35, 38] are
difficult to be applied here. In [30], a fast calculation of (1.1) was developed, where
ωn is computed from generating functions that correspond to the fractional backward
difference formula (see (2.5)) or implicit Runge–Kutta methods. A key idea is to
re-express the weight ωn in (1.1) as a contour integral of the form

(1.2) ωn =
τ

2πi

∫

C

en(λτ)Fω(λ) dλ,

where τ is a time step size, and en and Fω depend on the specific discrete convolution
for the approximation of the corresponding integral operator, see Section 3 for more
details. In [30], the trapezoidal rules based on the Talbot contour and the hyperbolic
contour were proposed to approximate (1.2). Recently, Banjai et al. [3] have carefully
analysed the Runge–Kutta-based quadrature method and extended the fast method
proposed in [30] to solve linear hyperbolic problems. An equally important goal of
this paper is to develop a fast algorithm to calculate the discrete convolution (1.1)
appearing in the proposed semi-implicit methods.

The main contributions of this work are briefly summarised below.
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• i) A new class of semi-implicit methods for nonlinear FODEs is developed. The
stability of the present semi-implicit methods is investigated, and the stability cri-
teria are given and numerically verified. Several cases of the presented semi-implicit
methods are proved to be unconditionally stable and are verified by numerical sim-
ulations; see Theorems 2.1–2.3, Table 2.1, and Figure 4.1.

• ii) We reformulate the fast convolution in [30] to calculate the discrete convolutions
to approximate the fractional operator. This modification makes the present fast
method much easier to calculate for a wider class of discrete convolutions given by
(1.1) with the coefficients ωn defined by (2.5) or (2.6); see [21] for other choices
of ωn. An error bound of the fast convolution is obtained, depending only on the
discretization error of the contour integral, see (3.20), Table 4.6, and Figure 3.1.
The most important difference between our fast convolution approach and [30] is
that a series of auxiliary ODEs are solved by using the backward Euler method,
while the ODEs in [30] were solved by a multi-step method or an implicit Runge–
Kutta method according to the specific discrete convolutions to approximate the
fractional operator; see also [3].

We note that the use of the backward Euler method to solve the auxiliary ODEs
attributes no additional errors to the whole truncation error of our fast method as
was shown in [3, 30], which is verified by numerical simulations; see (3.20), Figure 3.1,
and Table 4.6. For the fast method based on interpolation given in [23, 19, 17, 15, 25,
2, 35, 38], the auxiliary ODEs can be solved exactly, see the detailed implementation
in [38].

We present several numerical simulations to verify the accuracy and efficiency of
the fast method, demonstrating significant savings in memory and cost, especially
when it is applied to solve high-dimensional time-fractional PDEs, see Example 4.2.

This paper is organized as follows. A new class of semi-implicit methods for
nonlinear FODEs is proposed in Section 2, and the linear stability of these methods is
also analyzed. A new fast implementation of the semi-implicit methods is presented
in Section 3. Numerical simulations are given to verify the effectiveness of the semi-
implicit and fast methods in Section 4 before the conclusion is given in the last section.

2. Semi-implicit time-stepping methods. Consider the following nonlinear
FODE

(2.1) CD
α
0,tu(t) = λu(t) + f(u(t), t), u(0) = u0, t ∈ (0, T ],

where 0 < α ≤ 1, λ ∈ C, Re(λ) < 0, and f(u, t) is a nonlinear function with respect
to u, and CD

α
0,t is the Caputo fractional derivative operator defined by

(2.2) CD
α
0,tu(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s) ds.

We also assume that the solution u(t) to (2.1) satisfies

(2.3) u(t)− u(0) =

m∑

n=1

cnt
σn + tσm+1 ũ(t), 0 < σn < σn+1,

where ũ(t) is uniformly bounded for t ∈ [0, T ]. The above assumption holds in real
applications, see, for example, [6, 9, 24, 20, 28], in which σn ∈ {i + jα, i, j ∈ Z+} if
f(u(t), t) is sufficiently smooth for t ∈ [0, T ].
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2.1. Derivation of the semi-implicit methods. Denote by tj = jτ (j ≥ 0)
the grid points, where τ = T/nT is the stepsize, and nT is a positive integer. Let
un = u(tn) and denote

(2.4) D(α,n,m,σ)
τ u =

1

τα

n∑

j=0

ω
(α)
n−j(uj − u0) +

1

τα

m∑

j=1

w
(α)
n,j (uj − u0),

where the quadrature weights ω
(α)
j satisfy the following generating functions [21]

ω(p, α, τ, z) =

(
1

τ

p∑

k=1

1

k
(1− z)k

)α
=

∞∑

n=0

ωnz
n =

1

τα

∞∑

n=0

ω(α)
n zn,(2.5)

or

ω(p, α, τ, z) =

(
1− z

τ

)α p∑

k=1

g
(α)
k−1(1− z)k−1 =

∞∑

n=0

ωnz
n =

1

τα

∞∑

n=0

ω(α)
n zn,(2.6)

in which g
(α)
p−1(1 ≤ p ≤ 6) are given by (see [10])

(2.7)

g
(α)
0 =1, g

(α)
1 =

α

2
, g

(α)
2 =

α2

8
+

5α

24
,

g
(α)
3 =

α3

48
+

5α2

48
+
α

8
, g

(α)
4 =

α4

384
+

5α3

192
+

97α2

1152
+

251α

2880
,

g
(α)
5 =

α5

3840
+

5α4

1152
+

61α3

2304
+

401α2

5760
+

19α

288
.

We refer readers to [21] for other choices of generating functions.

Once the quadrature weights ω
(α)
j are given, the starting weights w

(α)
n,j in (2.4) are

chosen such that

n∑

j=0

ω
(α)
n−juj +

m∑

j=1

w
(α)
n,juj =

Γ(σr + 1)

Γ(σr + 1− α)
nσr−α

for some u(t) = tσr , r = 1, 2, ...,m. We refer readers to [7, 21, 39] for more information
on how to determine the starting weights and their properties.

Using the relationship CD
α
0,tu(t) = k−α ∗ (u−u(0))(t) and (2.3), we can apply the

fractional linear multi-step method (FLMM) (2.4) to discretize the Caputo fractional
derivative operator in (2.1), which yields

(2.8) D(α,n,m,σ)
τ u = λun + fn +O(τptσm+1−p−α

n ) +O(τσm+1+1t−α−1
n ),

where fn = f(un, tn) and D
(α,n,m,σ)
τ is defined by (2.4).

Let Un be the approximate solution of u(tn). From (2.8), we derive the following
fully implicit method

(2.9) D(α,n,m,σ)
τ U = λUn + f(Un, tn),

where D
(α,n,m,σ)
τ is defined by (2.4). We present (2.9) in order that we can compare

it with the semi-implicit method developed in the following section.
Cao et al. [4] proposed two methods to linearize the nonlinear term f(un, tn) in

(2.8) (see Eq. (2.31) in [4]). We list the two linearization approaches below:

4



• Extrapolation with correction terms

(2.10) fn = 2fn−1 − fn−2 +

mf∑

j=1

w
(f)
n,j(fj − f0) +O(τ2t

δmf+1−2
n ),

where 0 < δr < δr+1, δr ∈ {σk} ∪ {σk − α}, and w(f)
n,j are chosen such that

fn = 2fn−1 − fn−2 +
∑mf

j=1 w
(f)
n,jfj for f = tδk , 1 ≤ k ≤ mf .

• Taylor expansion with corrections

(2.11)

fn ≈fn−1 + τ∂tf(un−1, tn−1) +

m1∑

j=1

W
(1)
n,j (fj − f0)

+ ∂uf(un−1, tn−1)
(
un − un−1 +

m2∑

j=1

W
(2)
n,j (uj − u0)

)
,

where the starting weights W
(1)
n,j and W

(2)
n,j are not used in this paper and the

interested readers can refer to [4].
Compared with (2.11), the first approach (2.10) is much simpler. We will make a

modification of (2.10) and (2.11) to derive the new semi-implicit methods. Here, we
mainly focus on a modification of (2.10), which is presented below

(2.12) fn =fn − E
n,mf ,δ
q (f)− κEn,mu,σ

q (u) +O(τqt
δmf+1−q
n ) +O(τqt

σmu+1−q
n ),

where κ is a constant that may depend on ∂uf(u, t), and E
n,m,σ
q (u) is given by

(2.13) En,m,σq (u) = Enq (u)−
m∑

j=1

w
(u)
n,j(uj − u0),

where {w(u)
n,j} are chosen such that En,m,σq (u) = 0 for u = tσr , r = 1, 2, · · · ,m. Here

Enq (u) is a qth-order perturbation that is defined by

(2.14) Enq (u) =

{
un − un−1, q = 1,

un − 2un−1 + un−2, q = 2.

We can interpret Enq (u) as a penalty term that balances the stability and accuracy
of the proposed method. Note that Enq (u) = O(τq) if u(t) is a smooth function for t ∈
[0, T ]. Higher-order perturbations Enq (u) = O(τq) of order q ≥ 3 can be constructed,
which are not investigated here. In real applications, the solution to the considered

FDE is often non-smooth, and therefore correction terms
∑mu

j=1 w
(u)
n,j(uj − u0) are

added in (2.13), such that En,m,σq (u) has smaller magnitude than Enq (u).
Combining (2.8) and (2.12), we have

(2.15) D(α,n,m,σ)
τ u =λun + fn − E

n,mf ,δ
q (f)− κEn,mu,σ

q (u) +Rn,

where the truncation error Rn satisfies
(2.16)

Rn = O(τptσm+1−p−α
n ) +O(τσm+1+1t−α−1

n ) +O(τqt
δmf+1−q
n ) +O(τqt

σmu+1−q
n ).
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From (2.15), we obtain the following semi-implicit scheme

(2.17) D(α,n,m,σ)
τ U = λUn + Fn − E

n,mf ,δ
q (F )− κEn,mu,σ

q (U),

where Fn = f(Un, tn), E
n,m,σ
q is defined by (2.13), and D

(α,n,m,σ)
τ is defined by (2.4).

We can also make a modification of (2.11) to derive another semi-implicit method,
i.e., we just need to replace ∂uf(un−1, tn−1)un in (2.11) with

−κun + (κ+ ∂uf(un−1, tn−1))
(
un − En,mu,σ

q (u)
)
.

From (2.12) and the above expression, we obtain the second semi-implicit method

(2.18)

D(α,n,m,σ)
τ U = (λ− κ)Un + Fn−1 + τ∂tf(Un−1, tn−1) +

m1∑

j=1

W
(1)
n,j (Fj − F0)

+ ∂uf(Un−1, tn−1)
(
− Un−1 +

m2∑

j=1

W
(2)
n,j (Uj − U0)

)

+
(
κ+ ∂uf(Un−1, tn−1)

)(
Un − En,mu,σ

q (U)
)
.

If all the correction terms in (2.17) and (2.18) are omitted, both modified methods
reduce to the same method for a linear problem for q = 2. Compared with the first
method (2.17), the second method (2.18) seems much more complicated and involves
using partial derivatives of the nonlinear term f(u, t). In the remaining sections of
this paper, we mainly focus on the theoretical analysis of the first method (2.17) and
its application to solving nonlinear FDEs.

2.2. Linear stability. We investigate the linear stability of the method (2.17) in
this subsection. Let f(u, t) = ρu. For simplicity, we first drop all the correction terms
since they do not affect the stability of the proposed method under some suitable
conditions. In such a case, (2.17) becomes

(2.19)
1

τα

n∑

j=0

ω
(α)
n−j(Uj − U0) = (λ+ ρ)Un − (ρ+ κ)Enq (U),

where ω
(α)
n satisfies ω(p, α, 1, z) =

∑∞

n=0 ω
(α)
n zn, and ω(p, α, τ, z) is defined by (2.5)

or (2.6).
In the following, we analyze the stability of (2.19) for q = 2. Eq. (2.19) becomes

(2.20)
1

τα

n∑

j=0

ω
(α)
n−j(Uj − U0) = (λ − κ)Un + (ρ+ κ)(2Un−1 − Un−2).

For q = 1, we need only to replace (ρ+κ)(2Un−1 −Un−2) in (2.20) with (ρ+κ)Un−1.
Define

(2.21) S = C \
{
ξ
∣∣ξα =

ω(p, α, 1, z)

(λ+ ρ)− (ρ+ κ)(1 − z)q
, |z| ≤ 1

}
,

where ω(p, α, τ, z) is defined by (2.5) or (2.6).
According to [4, 22], we have the following two theorems, the proofs of which are

given in Appendix A.
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Theorem 2.1. If τ ∈ S with S defined by (2.21), then method (2.19) for the
model problem CD

α
0,tu(t) = (λ+ ρ)u(t) is stable.

Theorem 2.2. If τ ∈ S with S defined by (2.21), σm < α + p, σmu
, δmf

< q,
then method (2.17) for the model problem CD

α
0,tu(t) = (λ+ ρ)u(t) is stable.

Remark 2.1. Let α > 0 be a rational number, i.e., α = n/r, r, n are positive
integers and gcd(r, n) = 1. Define the polynomial

P (ẑ) = ẑn
p∑

k=1

g
(α)
k−1ẑ

r(k−1) + τα(ρ+ κ)ẑqr − τα(λ+ ρ), ẑ = (1− z)1/r, |z| ≤ 1,

where g
(α)
k are defined by (2.7). If the generating function (2.6) is used and P (ẑ) has

no root in the domain defined by ẑ = (1 − z)1/r, |z| ≤ 1, then the method (2.19) is
stable.

Several special cases of (2.21) are given in the following theorem, the proof of
which is provided in Appendix B.

Theorem 2.3. Suppose that λ < 0, ρ ≤ 0. For p = 1, 2, the method (2.19) is
unconditionally stable if

(2.22) κ >

{
(λ− ρ)/2, q = 1,

(λ− 3ρ)/4, q = 2.

In our numerical simulations, we will apply the second-order generalized Newton-
Gregory formula to discretize the fractional derivative operators in the considered
FDEs, i.e., ω(p, α, τ, z) is chosen as ταω(p, α, τ, z) = (1− z)α(1+ α

2 − α
2 z). Therefore,

we first present the stability interval of the method (2.19) in Table 2.1, where we set
p = q = 2. From Table 2.1, we have the following observations:

• For a fixed fractional order α, the stability interval increases as κ increases.
• For a small κ, the stability interval may be very small when α tends to zero;
κ = 0 corresponds to the extrapolation method in [4].

• There exists a κ0 ≥ 0, such that the method (2.19) is stable for any τ > 0
and α ∈ (0, 1] if κ ≥ κ0. For the case shown in Table 2.1, κ0 = 1.25, which
verifies (2.22).

Table 2.1

Stability interval of (2.20) with a second-order generating function ω(p, α, τ, z) = τ−α(1 −
z)α(1 + α

2
− α

2
z) for different fractional orders α and κ, λ = −1, ρ = −2.

κ α = 0.1 α = 0.2 α = 0.5 α = 0.9
0 (0, 5.31× 10−7) (0, 1.59× 10−3) (0, 1.80× 10−1) (0, 6.83× 10−1)
0.2 (0, 3.04× 10−6) (0, 3.81× 10−3) (0, 2.55× 10−1) (0, 8.28× 10−1)
0.4 (0, 2.51× 10−5) (0, 1.10× 10−2) (0, 3.89× 10−1) (0, 1.05× 100)
0.6 (0, 3.67× 10−4) (0, 4.19× 10−2) (0, 6.66× 10−1) (0, 1.41× 100)
0.8 (0, 1.45× 10−2 (0, 2.63× 10−1) (0, 1.39× 100) (0, 2.12× 100)
1.0 (0, 5.19× 100) (0, 4.98× 100) (0, 4.50× 100) (0, 4.08× 100)
1.2 (0, 5.07× 107) (0, 1.56× 104) (0, 1.13× 102) (0, 2.44× 101)
1.24 (0, 4.95× 1014) (0, 4.86× 107) (0, 2.81× 103) (0, 1.46× 102)
1.25 (0,∞) (0,∞) (0,∞) (0,∞)
1.26 (0,∞) (0,∞) (0,∞) (0,∞)
1.40 (0,∞) (0,∞) (0,∞) (0,∞)

Next, we plot the stability region of the method (2.20) under some restrictions.
Let ρ = γλ, κ = −θρ = −θγλ, and ξ = ταλ. Then, the stability domain of the method

7



(2.19) can be expressed by

(2.23) D = C \
{
ξ
∣∣ξ = ω(p, α, 1, z)

(1 + γ)− γ(1− θ)(1 − z)q
, |z| ≤ 1

}
.

Figure 2.1 displays the stability region defined by (2.23) when Re(κ) < Re(λ −
3ρ)/4 and ω(2, α, 1, z) = (1− z)α(1+ α

2 − α
2 z). We see that as θ (or Re(κ)) increases,

the stability region (the shaded area) becomes larger for a fixed α.

(a) α = 0.1. (b) α = 0.5.

(c) α = 0.9. (d) α = 0.99.

Fig. 2.1. Stability region (the shaded area) of the method (2.19), q = 2, ρ = 2λ, κ = −θρ.

Figure 2.2 displays the stability region when Re(κ) > Re(λ − 3ρ)/4. We again
observe that the stability region becomes large as θ (or Re(κ)) increases and the
stability region contains the whole negative axis, which verifies Theorem 2.3.

Figure 2.3 shows the stability region of the method (2.19) when the generalized
Newton–Gregory formula of order p is applied, see (2.6). For θ = 0.5, we have
Re(κ) < Re(λ − 3ρ)/4; the method is conditionally stable and the stability region
becomes large as p increases. For Re(κ) > Re(λ − 3ρ)/4, i.e., θ = 0.63, the stability
region contains the negative axis, see Figure 2.4. For other fractional orders α ∈ (0, 1],
we have similar results. If the fractional backward difference formula (FBDF) of order
p is applied, the stability of the method (2.19) shows similar behavior as shown in
Figures 2.2–2.4, hence these results are not shown here.

2.3. System of equations. In this subsection, we extend the semi-implicit
method (2.17) to the following system of equations

(2.24) CD
~α
0,t~u(t) = A~u(t) + ~f(~u(t), t), ~u(0) = ~u0, t ∈ (0, T ],

where ~u(t) = (u(1)(t), ..., u(d)(t))T , ~α = (α(1), ..., α(d))T , α(j) ∈ (0, 1], A ∈ Cd×d,

CD
~α
0,t~u(t) = (CD

α(1)

0,t u
(1)(t), ...,CD

α(d)

0,t u
(d)(t))T , ~f(~u, t) = (f (1)(~u, t), ..., f (d)(~u, t))T ,

f (j)(~u, t) = f (j)(u(1), ..., u(d), t)T , and d ∈ N.

8



(a) α = 0.3. (b) α = 0.8.

Fig. 2.2. Stability region (the shaded area) of the method (2.19), q = 2, ρ = 2λ, κ = −θρ,
θ = 0.626, 0.63, 0.8, 0.7 in clockwise order starting from the upper left.

Fig. 2.3. Stability region of the method (2.19) based on generalized Newton–Gregory formula
of order p, α = 0.4, q = 2, ρ = 2λ, κ = −0.5ρ.

Fig. 2.4. Stability region of (2.19) based on the FBDF-p, α = 0.4, q = 2, ρ = 2λ, κ = −0.63ρ.
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Let ~Un = (U
(1)
n , U2

n, ..., U
(d)
n )T be the approximate solution of ~u(tn). Similar to

(2.17), we directly present the semi-implicit method for (2.24) as follows:

D(~α,n,~m,~σ)
τ

~U = A~Un + ~Fn − E
n,~mf ,~δ
q (~F )− κEn,~mu,~σ

q (~U),(2.25)

where ~m = (m(1), ...,m(d))T , ~σ = (σ(1), ..., σ(d))T , F
(j)
n = f (j)(~Un, tn), D

(~α,n,~m,~σ)
τ

~U

= (D
(α(1),n,m(1),σ(1))
τ U (1), ..., D

(α(d),n,m(d),σ(d))
τ U (d))T , D

(α(j),n,m(j),σ(j))
τ is defined by

(2.4), En,~m,~σq (~U) = (En,m
(1),σ(1)

q (U (1)), ..., En,m
(d),σ(d)

q (U (d)))T , En,m,σq is defined by
(2.13), and κ is a d× d matrix.

Next, we analyse the linear stability of (2.25). Let ~f = B~u,B ∈ Cd×d and omit
all the correction terms in (2.25). Then we obtain

D(~α,n,~m,~σ)
τ

~U = (A+B)~Un − (κ +B)Enq (
~U).(2.26)

Similar to the stability analysis given in the previous subsection, we can obtain that
the method (2.26) is stable if
(2.27)

det
(
diag(~ω(p, ~α, 1, z))− diag(τ ~α) [(A+B)− (B+ κ)(1− z)q]

)
6= 0, |z| ≤ 1,

where ~ω(p, ~α, 1, z)) = (ω(p, α(1), 1, z), ..., ω(p, α(d), 1, z))T , τ ~α = (τα
(1)

, ..., τα
(d)

)T ,

σ
(i)

m(i) < α(i) + p, σ
(i)

m
(i)
u

, δ
(i)

m
(i)
f

< q, 1 ≤ i ≤ d.

The matrix κ plays an important role in the stability of the method (2.25). From

(2.11), we find that κ may depend on the Jacobian of ~f(~u, t) with respect to ~u. It
is much more difficult to present an explicit criterion as shown in Theorem 2.3 for a
system equations. However, we can deduce that the stability of the method (2.26)
can be enhanced if κ is positive definite for q = 1, 2 with the generating function (2.6)

for p = 1, 2 applied. For example, let q = 1, p = 1 or 2, ~U0 = ~0, and choose a matrix
κ such that κ+B is symmetric and positive definite. Then

M∑

n=1

(~Un)
TD(~α,n,~m,~σ)

τ
~U −

M∑

n=1

(~Un)
T (A+B)~Un(2.28)

=−
M∑

n=1

(~Un)
T (κ+B)En1 (

~U) ≤ −1

2
(~UM )T (κ+B)~UM .

If A+B is negative definite, then (2.28) implies

(2.29) 2

M∑

n=1

(~Un)
TD(~α,n,~m,~σ)

τ
~U − 2

M∑

n=1

(~Un)
T (A+B)~Un + (~UM )T (κ+B)~UM ≤ 0.

Using
∑M

n=1(
~Un)

TD
(~α,n,~m,~σ)
τ

~U ≥ 0 (see [33]) yields ~Un = ~0.

A practical option can be κ = diag(κ1, κ2, ..., κd), κi ≥ 0, which is used in the
numerical simulations. From (2.28), we see that κ = diag(κ1, κ2, ..., κd) can signifi-
cantly enhance the stability of (2.26) when κi ≥ 0 is sufficiently large for q = 1, 2.
Next, we focus on the other important task of developing a fast method to calculate
the discrete convolutions in the semi-implicit methods.
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3. Fast implementation. In this section, we generalize and extend the ap-
proach in [30] to calculate the discrete convolution (1.1) originating from the dis-
cretization of the fractional integral and derivative operators, where ωn are the coef-
ficients of the generating function Fω(δ(ξ)/τ), i.e., Fω(δ(ξ)/τ) =

∑∞

n=0 ωnξ
n, which

has been discussed in the previous section. In [30], δ(ξ) is related to the linear multi-
step method for the first-order initial value problem. In the present fast method, we
assume δ(ξ) = 1− ξ, i.e., δ(ξ) corresponds to the backward Euler method.

3.1. Review of the existing method. We first recall the fast method proposed
in [30]. The key idea is to re-express the coefficient ωn in (1.1) using the integral
formula, and then approximate it using numerical quadrature.

By Cauchy’s integral formula, we have

(3.1) Fω(δ(ξ)/τ) =

∞∑

n=0

ωnξ
n =

1

2πi

∫

C

(
δ(ξ)

τ
− λ

)−1

Fω(λ) dλ,

where C is a suitable contour. Define en(z) as

(3.2) (δ(ξ)− z)
−1

=

∞∑

n=0

en(z)ξ
n.

Then ωn can be expressed by

(3.3) ωn =
τ

2πi

∫

C

en(λτ)Fω(λ) dλ.

Inserting (3.3) into (1.1) yields

(3.4) D(α,n)
τ u =

n∑

j=0

ωn−juj =
τ

2πi

n∑

j=0

∫

C

en−j(λτ)Fω(λ)uj dλ.

When the integral on the right-hand-side of the above equation is approximated by a
suitable quadrature method, we have the fast convolution developed in [30].

The fractional backward difference formula (FBDF) and implicit Runge–Kutta
method were investigated in [30]. For the FBDF of order p (FBDF-p), one has δ(ξ) =∑p

k=1
1
k (1 − ξ)k and Fω(λ) = λα, and the corresponding en(z) in (3.2) for p = 1, 2 is

given by

(3.5) en(z) =





(1 − z)−1−n, FBDF-1,

1

1 + 2z

(
(2−

√
1 + 2z)−1−n − (2 +

√
1 + 2z)−1−n

)
, FBDF-2.

It seems much more complicated to obtain en(z) for FBDF-p with p ≥ 3.
Next, we simplify the method in [30], that is, we will always have en(z) = (1 −

z)−1−n used in (3.2), and Fω(λ) in (3.3) is related to a fractional linear multi-step
method (FLMM) that discretizes the fractional integral or Riemann–Liouville (RL)
fractional derivative operator, which will be given later.

3.2. A new fast convolution. We consider (1.1) with the coefficients ωn de-
rived from the FBDF-p (1 ≤ p ≤ 6) for the fractional integral and RL derivative
operators, i.e., the coefficients ωn satisfy (2.5).
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Let δ(ξ) = 1 − ξ and repeat the procedures (3.1)–(3.3). Then the coefficient ωn
in (2.5) can also be expressed by

(3.6) ωn =
τ

2πi

∫

C

en(λτ)Fω(λ) dλ =
τ

2πi

∫

C

(1− λτ)−1−nFω(λ) dλ,

where C is a contour that surrounds the pole λ = 1
τ of en(λτ) and Fω(λ) is given by

(3.7) Fω(λ) = ω(p, α, τ, 1− τλ) = λα

(
p∑

k=1

1

k
(τλ)k−1

)α
.

By choosing a suitable contour, (3.6) can be approximated with high accuracy.
As was done in [30], we can apply the trapezoidal rule based on either a hyperbolic
contour or a Talbot contour to approximate (3.6), which is given by

(3.8) ωn ≈ ω̂n = Im

(
τ

N−1∑

k=−N

w
(ℓ)
k (1− λ

(ℓ)
k τ)−1−nFω(λ

(ℓ)
k )

)
,

where the quadrature points λ
(ℓ)
k and weights w

(ℓ)
k are defined later in this section,

see (3.14) or (3.15). If ωn in (1.1) is defined by (2.6), then Fω(λ) in (3.6) is given by

(3.9) Fω(λ) = ω(p, α, τ, 1− τλ) = λα
p−1∑

k=0

g
(α)
k (τλ)k.

We now present our fast method for calculating (1.1) in Algorithm 1.

Our goal below is to determine the quadrature points λ
(ℓ)
k and weights w

(ℓ)
k in

(3.11), such that û
(ℓ)
n is a good approximation of u

(ℓ)
n for any n ≥ n0. The trapezoidal

rule based on the Talbot contour [30, 34] or hyperbolic contour [18, 30] has been
applied to approximate 1

2πi

∫
Γℓ
en−j(τλ)Fω(λ) dλ in (3.11), which will be applied in

this work. We present the quadrature points λ
(ℓ)
k and weights w

(ℓ)
k used in (3.11).

• For the trapezoidal rule based on the optimal Talbot contour (see [34]), the quadra-

ture points λ
(ℓ)
k and weights w

(ℓ)
k are given by

(3.14) λ
(ℓ)
k = z(θk, N/Tℓ), w

(ℓ)
k = ∂θz(θk, N/Tℓ), θk =

(2k + 1)π

2N
,

where z(θ,N) = N (−0.4814 + 0.6443(θ cot(θ) + i0.5653θ)). Our numerical results
indicate that N = 30 works well when Tℓ = (2Bℓ− 2+n0)τ and B is not too large.

• For the trapezoidal rule based on the hyperbolic contour (see [18]), the quadrature

points λ
(ℓ)
k and weights w

(ℓ)
k are given by

(3.15) λ
(ℓ)
k = z(θk, µℓ), w

(ℓ)
k = ∂θz(θk, µℓ), θk = (k + 1/2)ĥ,

where z(θ, µℓ) = µℓ (1− sin(ψ + iθ)) + σ and ĥ is a step length parameter that

is chosen as ĥ = π/N in this paper. According to [18], we can choose σ = 0,
ψ = 0.4π, µℓ = N/(2Tℓ), Tℓ = (2Bℓ − 2 + n0)τ , and N = ⌈− log(τ1−αǫ)⌉ for
numerical simulations, where ǫ is a given precision. Readers can also refer to [30],
where a strategy was proposed to choose the parameters for the hyperbolic contour.
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Algorithm 1 Fast calculation of D
(α,n)
τ u = D

(α,n,0,σ)
τ u =

∑n
j=0 ωn−juj, where ωn

satisfies ω(p, α, τ, z) =
∑∞

n=0 ωnz
n, and ω(p, α, τ, z) can be defined by (2.5) or (2.6).

Input: The positive integers n0, N , and B ≥ 2, the real number α, the time stepsize

τ , the quadrature points {λ(ℓ)k } and weights {w(ℓ)
k } defined by (3.14) or (3.15), the

coefficients ωn defined by the generating function ω(z) = ω(p, α, τ, z) (see (2.5) or
(2.6)), and the function Fω(λ) (see (3.7) or (3.9)).

Output: FD
(α,n)
τ,n0 u.

• For each n ≥ n0, find the smallest integer L satisfying n− n0 + 1 < 2BL.
For ℓ = 1, 2, ..., L− 1, determine the integer qℓ such that

(3.10) b
(n)
ℓ = qℓB

ℓ satisfies n− n0 + 1− b
(n)
ℓ ∈ [Bℓ−1, 2Bℓ − 1].

Set b
(n)
0 = n− n0 and b

(n)
L = 0.

• Decompose the convolution
∑n
j=0 ωn−juj as

∑n
j=0 ωn−juj =

∑L
ℓ=0 u

(ℓ)
n , where

u
(0)
n =

∑n
j=n−n0

ωn−juj and u
(ℓ)
n =

∑b
(n)
ℓ−1−1

j=b
(n)
ℓ

ωn−juj.

• For every 1 ≤ ℓ ≤ L, approximate u
(ℓ)
n with û

(ℓ)
n , where

(3.11)

u(ℓ)n =

b
(n)
ℓ−1−1∑

j=b
(n)
ℓ

ωn−juj =
τ

2πi

∫

Γℓ

(1− τλ)−[n−(b
(n)
ℓ−1−1)]Fω(λ)y

(ℓ)(τλ) dλ

≈Im

{ N−1∑

k=−N

w
(ℓ)
k Fω(λ

(ℓ)
k )(1 − τλ

(ℓ)
k )−[n−(b

(n)
ℓ−1

−1)]y(τλ
(ℓ)
k )

}
= û(ℓ)n

with y(ℓ)(τλ) given by y(ℓ)(τλ) = τ
∑b

(n)
ℓ−1−1

j=b
(n)
ℓ

e
(b

(n)
ℓ−1−1)−j

(τλ)uj . Here y
(ℓ)(τλ) =

y(b
(n)
ℓ−1τ, b

(n)
ℓ τ, τλ) is the backward Euler approximation to the solution at t = b

(n)
ℓ−1τ

of the linear initial-value problem

(3.12) y′(t) = λy(t) + u(t), y(b
(n)
ℓ τ) = 0.

The quadrature points λ
(ℓ)
j and weights w

(ℓ)
j are given by (3.14) or (3.15).

• Calculate

(3.13) FD
(α,n)
τ,n0

u = u(0)n + û(1)n + · · ·+ û(L)n

with û
(ℓ)
n defined by (3.11).

Due to the symmetry of the trapezoidal rule, Eq. (3.11) can be replaced by û
(ℓ)
n =

Im
{
2
∑N−1
k=0 w

(ℓ)
k Fω(λ

(ℓ)
k )(1− τλ

(ℓ)
k )−[n−(b

(n)
ℓ−1−1)]y(τλ

(ℓ)
k )
}
, so that the computational

cost can be halved. The memory requirement and computational cost of the present
fast method are aboutO(log nT ) andO(NnT lognT ), respectively, when nT is suitably
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large; see also [19, 23, 35, 38].
Remark 3.1. For the contour integral (1.2) in this work, en(τλ) has a similar

property as exp(λtn) for Re(λ) ≤ 0 and Fω(λ) may have weak singularity. The
optimal Talbot contour z(θ,N/t) derived in [34] works very well for the numerical
inverse Laplace transform for a fixed t, where the optimal Talbot contour is obtained
by a numerical approach and the machine precision is obtained with N = 32. We find
that this optimal contour z(θ,N/Tℓ) still works well for the contour integral in the
current work for t ∈ [Bℓ−1, 2Bℓ], see Figure 3.1(b).

3.3. Error analysis. In this subsection, we analyse the error of Algorithm 1.
The error of the fast method depends only on the approximation ω̂n (see (3.8)) to the
contour integral (3.6). We have the following error bound.

Theorem 3.1. Let ω̂n be defined by (3.8), in which λ
(ℓ)
j and w

(ℓ)
j are given by

(3.15), and Fω(λ) is defined by (3.7) or (3.9). For t = nτ , n ∈ [Bℓ−1, 2Bℓ), and
n ≥ bµℓt ≥ 1, there exists a positive constant C independent of τ, n and N such that

|ω̂n − ωn| ≤Cτα
[
ea0µℓt/2

e2dπ/h − 1
+ e(a1−a2 cosh(Nh))µℓt/2(3.16)

+ea1µℓt/2

(
1 +

bµℓt

2(n−Q)
cosh(Nh)

)1−n+Q ]
,

where Q is chosen such that (τλ)α−1λαFω(λ)/(1 − τλ)Q+1 is bounded for λ(w) =
µℓ (1− sin(ψ + iw)) + σ, −d ≤ Im(w) ≤ d, 0 < ψ − d < ψ + d < π/2 − ϕ, ψ, d > 0,
and ϕ < π/2.

Proof. We follow the proof of Theorem 3 in [18] to prove (3.16), the detail is
omitted here. See also Theorem 3.1 in [30].

Given a precision ǫ, we can choose suitable parameters, such that |ω̂n−ωn| ≤ Cτǫ,
see [18, 30]. Combining (3.6), (3.8), and (3.11) yields

(3.17) |u(ℓ)n − û(ℓ)n | = |
b
(n)
ℓ−1−1∑

j=b
(n)
ℓ

(ωn−j − ω̂n−j)uj | ≤ Cτ(b
(n)
ℓ−1 − b

(n)
ℓ )‖u‖∞ǫ,

which leads to

(3.18) |FD(α,n)
τ,n0

u−D(α,n)
τ u| ≤ Ctn‖u‖∞ǫ.

Denote by

(3.19) FD
(α,n,m,σ)
τ,n0

u = FD
(α,n)
τ,n0

u+ τ−α
m∑

j=1

w
(α)
n,j (uj − u0),

where w
(α)
n,j is defined as in (2.4). Then from (2.8) and (3.18), the overall discretization

error of FD
(α,n,m,σ)
τ,n0 u is given by

(3.20)

|FD(α,n,m,σ)
τ,n0

u− k−α ∗ u(tn)| =|FD(α,n)
τ,n0

u−D(α,n)
τ u+D(α,n,m,σ)

τ u− k−α ∗ u(tn)|
≤|FD(α,n)

τ,n0
u−D(α,n)

τ u|+ |D(α,n,m,σ)
τ u− k−α ∗ u(tn)|

≤C
(
ǫtn‖u‖∞ + τptσm+1−p−α

n + τσm+1+1t−α−1
n

)
.
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The trapezoidal rule based on the optimal Talbot contour in [34] works well (see
(3.14)), and needs fewer quadrature points to achieve the desired accuracy.

Denote the relative pointwise error e
(T )
n as

e(T )
n = |FD(α,n)

τ,n0
u−D(α,n,0,σ)

τ u|/|D(α,n,0,σ)
τ u|,

where u(t) = t2 + t, D
(α,n,0,σ)
τ is defined by (2.4), and FD

(α,n)
τ,n0 is obtained from

Algorithm 1 based on the Talbot quadrature (see (3.14)). We can similarly define the

relative pointwise error e
(H)
n based on the hyperbolic contour quadrature (3.15).

Figure 3.1 displays the errors e
(H)
n and e

(T )
n , where we set α = 0.5, τ = 0.01, B = 5,

and n0 = 50 in the computation with the generating function defined by (2.6) and
p = 2. We can see that the fast method based on both the hyperbolic quadrature
and the Talbot quadrature shows highly accurate numerical approximations, and the
Talbot quadrature uses fewer quadrature points than that of the hyperbolic contour
quadrature defined by (3.15). In [30], a strategy for choosing the parameters for the
hyperbolic contour quadrature was proposed, which may help to reduce the number
of quadrature points.

If the generating function (2.6) with different p is applied, we obtained similar
results to those reported above, which are not shown here. For the generating function
defined by (2.5), n0 needs to be chosen up to 200 for p = 6 to ensure high accuracy.
One can verify that the present algorithm works well for α ∈ (−1, 1), these results are
not shown here.
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(a) The hyperbolic quadrature
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(b) The Talbot quadrature

Fig. 3.1. The relative pointwise errors of the fast method based on the hyperbolic contour
quadrature and Talbot quadrature, α = 0.5, τ = 0.01, B = 5.

4. Numerical examples. In this section, two examples are presented to verify
the effectiveness of the present semi-implicit and fast method when it is applied to
solve nonlinear FDEs. All the algorithms are implemented using MATLAB 2017b,
run on a 3.40 GHz PC having 16GB RAM and Windows 7 operating system.

Example 4.1. Consider the following scalar FODE

(4.1) CD
α
0,tu(t) = −u(t) + f(u, t), u(0) = u0, t ∈ (0, T ],

where 0 < α ≤ 1 and f(u, t) is a nonlinear function with respect u.
We apply the semi-implicit method (2.17) to solve (4.1), where we set λ = −1 in

(2.17) for this example. We also apply the fully implicit method (2.9) to solve (4.1)
for comparison, where the Newton iteration method is used to solve the corresponding
nonlinear system. When we say the fast method (2.17) or (2.9) is applied, we mean
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that the discrete operator D
(α,n,m,σ)
τ in (2.17) or (2.9) is replaced by FD

(α,n,m,σ)
τ,n0 ,

where FD
(α,n,m,σ)
τ,n0 is derived using Algorithm 1 (see (3.11)). We always choose the

basis B = 5, n0 = 50, and N = 32 when the fast method based on the Talbot contour
is applied. For simplicity, we also set mu = mf = m when (2.17) or (2.9) is applied.

The following three cases are considered in this example.
• Case I: For f = −2u and u0 = 3, the exact solution of (4.1) is u(t) =

Eα(−3tα), where Eα(t) =
∑∞

k=0
tk

Γ(kα+1) is the Mittag–Leffler function [28].

• Case II: Let f = −u2+g(t). Choose a suitable initial condition and g(t) such
that the exact solution of (4.1) is u(t) = 2 + t+ t2/2 + t3/3 + t4/4.

• Case III: Let f = u(1 − u2) + 2 cos(2πt) with the initial condition taken as
u0 = 1.

The maximum error is defined by

‖e‖∞ = max
0≤n≤T/τ

∣∣en
∣∣, en = u(tn)− Un,

where Un is either the numerical solution from the fast method or the direct method.
The purpose of Case I is to verify the effectiveness of the present semi-implicit

and fast method for non-smooth solutions. We demonstrate that adding correction
terms improves the accuracy of the numerical solutions significantly, see Tables 4.1
and 4.2, where the maximum relative error and the relative error at t = 40 for α = 0.4
are displayed. We see that adding correction terms increases the overall accuracy and
convergence rate, readers can refer to [7, 21, 39] for related results.

Table 4.1

The maximum relative error ‖e‖∞/‖u‖∞ of the semi-implicit method (2.17) with fast convo-
lution, Case I, σk = kα, α = 0.4, κ = 2, B = 5, N = 32, and T = 40.

τ m = 0 Order m = 1 Order m = 2 Order m = 3 Order
2−7 7.6319e-2 7.0844e-4 8.2078e-5 6.4330e-5
2−8 6.4796e-2 0.2361 4.8320e-4 0.5520 4.3412e-5 0.9189 3.2473e-5 0.9862
2−9 5.3713e-2 0.2706 3.1526e-4 0.6161 2.1695e-5 1.0007 1.5317e-5 1.0841
2−10 4.3664e-2 0.2988 1.9873e-4 0.6657 1.0359e-5 1.0664 6.7300e-6 1.1865
2−11 3.4942e-2 0.3215 1.2208e-4 0.7030 4.7706e-6 1.1187 2.8040e-6 1.2631

Table 4.2

The relative error |en| /‖u‖∞ of the semi-implicit method (2.17) with fast convolution at t = 40,
Case I, σk = kα, α = 0.4, κ = 2, B = 5, and N = 32.

τ m = 0 Order m = 1 Order m = 2 Order m = 3 Order
2−7 1.8929e-6 8.8630e-8 3.4878e-8 1.8337e-8
2−8 9.4643e-7 1.0000 3.1027e-8 1.5143 1.0813e-8 1.6895 6.6615e-9 1.4609
2−9 4.7322e-7 1.0000 1.0765e-8 1.5272 3.2796e-9 1.7212 2.2083e-9 1.5929
2−10 2.3661e-7 1.0000 3.7238e-9 1.5315 9.7775e-10 1.7460 6.8314e-10 1.6927
2−11 1.1830e-7 1.0000 1.2906e-9 1.5287 2.8842e-10 1.7613 2.0452e-10 1.7400

We now fix the fractional order α = 0.2 and let the time stepsize change. In Figure
4.1 (a), we let κ = 0 and τ = 1.4×10−3, 1.5×10−3, 1.59×10−3, 1.6×10−3, 1.7×10−3

in the computations. We can also see from Table 2.1 that the method (2.17) is stable
if τ < 1.59 × 10−3. We observe that the numerical solutions become unstable when
τ > 1.59 × 10−3. We also observe from Figure 4.1 (b) that the numerical solutions
diverge for κ = 0.4 when τ > 1.1× 10−2. These results verify the theoretical findings
shown in Table 2.1.
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Fig. 4.1. The pointwise errors of the semi-implicit method (2.17) with different time stepsizes,
Case I, α = 0.2, m = 1, B = 5, N = 32.

For Case II, we solve a nonlinear FODE with f = −u2 + g(t) and ∂uf ∈
[−434 5

6 ,−4] for t ∈ [0, 5]. Here we give a simple guideline for the choice of κ in the
method (2.17). From the linear stability analysis of the method (2.17), we have that
∂uf plays a similar role as ρ does in (2.19), which can be obviously observed from the
second semi-implicit method (2.18). Theorem 2.3 provides a practical guideline for se-
lecting κ in real applications, and the stability region of (2.17) becomes larger as κ in-
creases, see Figure 2.2. From (2.22), we can choose κ = 1

4 max(−1− 3∂uF ) = 325.875
for the computations. The relative absolute errors |en|/‖u‖∞ at t = 5 for different
fractional orders are shown in Table 4.3. We can see that the present semi-implicit
method exhibits good stability and second-order accuracy for Case II.

Table 4.3

The relative error |en|/‖u‖∞ of the semi-implicit method (2.17) with fast convolution at t = 5,
Case II, σ1 = 1, m = 1, B = 5, N = 32.

τ α = 0.2 Order α = 0.5 Order α = 0.8 Order
2−5 2.8685e-4 2.8700e-4 2.8694e-4
2−6 7.2141e-5 1.9914 7.2180e-5 1.9914 7.2156e-5 1.9915
2−7 1.8089e-5 1.9957 1.8099e-5 1.9957 1.8092e-5 1.9958
2−8 4.5288e-6 1.9979 4.5313e-6 1.9979 4.5296e-6 1.9979
2−9 1.1330e-6 1.9989 1.1337e-6 1.9989 1.1332e-6 1.9989

Next, we fix the stepsize τ = 1/256 and set different κ = 326, 350, 400, 500, 1000
in the computation for α = 0.2 and 0.8; the pointwise errors are shown in Figure 4.2.
The results shown in Figure 4.2 confirm the theoretical analysis displayed in Theorem
2.3. It can also be observed that very large κ may negatively impact the accuracy of
the numerical solutions. One remedy is to use a smaller stepsize, such that κ can be
chosen suitably large to ensure both stability and accuracy. Another choice is to use
high-order penalty terms Enq (U)(q ≥ 3) in (2.17), but the unconditional stability of
the derived method may not be guaranteed even for very large κ, i.e., q = 3. Higher
order stable semi-implicit methods will be studied in more detail in our future work.

Figures 4.3 (a)–(c) show the numerical solutions for Case III, where the exact
solution is not explicitly given. We can see that the solutions are bounded as theoret-
ically expected [31]. Figure 4.3 (d) shows that the fast method is much more efficient
than the direct method. We note that the fully implicit method with fast convolu-
tion has almost a similar computational cost as the semi-implicit method with fast
convolution. Compared with the computational cost from the discrete convolution,
the computational cost from the Newton iteration method to obtain the solution in
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Fig. 4.2. The relative pointwise errors of the semi-implicit method (2.17) with different κ, Case
II, m = 1, B = 5, N = 32.

the fully implicit method can almost be ignored here, which is different from solving
FPDEs as shown in the following example.
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Fig. 4.3. Numerical solutions and the computational cost of different methods, Case II, κ =
3, τ = 0.005, m = 1, B = 5, N = 32.

For Case III, we do not know the analytical solution and the reference solutions
are obtained using a smaller stepsize τ = 2−13 with two correction terms. Table
4.4 shows the relative error at t = 50 with one correction term, where second-order
accuracy is observed for different fractional orders.

Example 4.2. Consider the following system of FPDEs

(4.2)

{
CD

α1
0,tu(t) = µ1∆u(t) + f(u, v, x, y, t),

CD
α2
0,tw(t) = µ2∆v(t) + g(u, v, x, y, t)

subject to the homogenous boundary conditions, where 0 < α1, α2 ≤ 1, µ1, µ2 > 0,
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Table 4.4

The relative error |en| /‖u‖∞ of the semi-implicit method (2.17) with fast convolution at t = 50,
Case III, σk = kα, m = 1, κ = 3, B = 5, and N = 32.

τ α = 0.1 Order α = 0.2 Order α = 0.5 Order α = 0.8 Order
2−5 1.1791e-2 1.2422e-2 1.8310e-2 1.3701e-2
2−6 2.8763e-3 2.0354 3.4744e-3 1.8381 5.3884e-3 1.7647 2.8694e-3 2.2555
2−7 7.2408e-4 1.9900 8.6976e-4 1.9981 1.3788e-3 1.9664 6.4843e-4 2.1458
2−8 1.8166e-4 1.9949 2.1738e-4 2.0004 3.5033e-4 1.9767 1.5312e-4 2.0823
2−9 4.5338e-5 2.0025 5.4153e-5 2.0051 8.8143e-5 1.9903 3.7019e-5 2.0483

u(t) = u(x, y, t), v(t) = v(x, y, t), and (x, y, t) ∈ (0, 1) × (0, 1) × (0, T ]. The initial
conditions are taken as u(0) = u(x, y, 0) = u0(x, y) and v(0) = v(x, y, 0) = v0(x, y).

We focus on the three time-stepping methods for (4.2); the 2D space is discretized
using the standard second-order finite volume method (FVM) based on a uniform grid.
The second-order generating function ω(2, α, τ, z) =

(
1−z
τ

)α
(1 + α

2 − α
2 z) is applied,

see (2.6). For simplicity, no correction terms are applied in this example.

We first make a slight modification of the semi-implicit time-stepping method
(2.17) to (4.2), which yields the following semi-discrete method (see (2.25))

(4.3)

{
D(α1,n,0,σ)
τ U = µ1∆Un + Fn − En2 (F )− κ1E

n
2 (U),

D(α2,n,0,σ)
τ V = µ2∆Vn +Gn − En2 (G)− κ2E

n
2 (V ),

where Fn = f(Un, Vn, x, y, tn), Gn = g(Un, Vn, x, y, tn), D
(α,n,0,σ)
τ is defined by (2.4),

and En2 is defined by (2.14).

Applying the FVM to the space discretization of each equation in (4.3), we obtain

the fully discrete semi-implicit FVM with direct convolution. If D
(αk,n,0,σ)
τ in (4.3) is

replaced by FD
(αk,n,0,σ)
n0,τ , where FD

(αk,n,0,σ)
n0,τ is defined by (3.19), then the fully discrete

semi-implicit FVM with fast convolution is derived. The fully discrete implicit FVM
with direct convolution can be derived by applying the time discretization (2.9) to
each equation of (4.3) with space approximated by the FVM. When the new fast
method is applied, we always set B = 5, n0 = 50, N = 32.

• Case I: Let u0 = v0 = sin(πx) sin(πy), f = −vu2 + f̂(x, y, t), and g = −v2u +

ĝ(x, y, t). Choose suitable f̂ and ĝ such that the exact solution to (4.2) is

u = Eα1(−tα1) sin(πx) sin(πy), v = Eα2(−tα2) sin(πx) sin(πy).

• Case II: Let u0 = x(1− x)y(1− y), v0 = sin(πx) sin(πy), f = −u2v, and g = −v2u.
Table 4.5 compares the efficiency and accuracy of the implicit FVM and the semi-

implicit FVM for Case I, in which the nonlinear algebraic system arising due to the
coupling of the implicit FVM is solved by fixed point iteration. Obviously, the semi-
implicit method is faster than the implicit method, but is a little less accurate than
the implicit method, which can be explained from the truncation error Rn of the
semi-implicit method defined by (2.16), i.e., Rn = O(τ2tσ1−2−α

n ) + O(τσ1+1t−α−1
n ) +

O(τ2tδ1−2
n ) +O(τ2tσ1−2

n ). The time truncation error of the implicit method contains
only the first two terms of Rn. However, the truncation error of the semi-implicit
method also contains the third and fourth terms of Rn that may play dominant
roles here, which leads to a little less accurate numerical solution of the semi-implicit
method. Because of the symmetry, the same accuracy of the numerical solutions of u
and v are observed.
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Table 4.5

Comparison of the semi-implicit FVM and the implicit FVM at t = 2, Case I, µ1 = µ2 = 1,
α1 = α2 = 0.5, κ1 = κ2 = 2, and h = 1/256.

Semi-implicit method Fully implicit method
1/τ L2-error(u) L2-error(v) Time(s) L2-error(u) L2-error(v) Time(s)
8 8.8202e-4 8.8202e-4 0.7331 5.9450e-5 5.9450e-5 3.3517
16 2.2203e-4 2.2203e-4 1.5142 2.6788e-5 2.6788e-5 6.5332
32 5.6555e-5 5.6555e-5 3.4880 1.3454e-5 1.3454e-5 13.318
48 2.4377e-5 2.4377e-5 5.9117 9.7126e-6 9.7126e-6 20.602
64 1.2608e-5 1.2608e-5 8.7127 8.0249e-6 8.0249e-6 27.735

We compare in Table 4.6 the semi-implicit direct method with the semi-implicit
fast method for Case I. Clearly, the two methods achieve almost similar numerical
solutions. This can be explained from the fact that the time discretization error of
the fast method contains two parts, one part is the same as that of the direct method,
the other part is from the quadrature to disctetize the contour integral, which is
independent of and also far smaller than the first part due to the sufficient number of
quadrature points, see related results shown in Figure 3.1(b). The fast method is much
more efficient than the direct method. “Out of memory” occured for the direct method
when t > 1200, while the fast method works for t≫ 1200 and the computational cost
increases almost linearly, see Table 4.6. Theoretically, the computational time of the
direct method increases proportional to n2

T , so the computational time at t = 400 is
about 4× 19207.5798 seconds, but we did not obtain the results within the expected
time due to the memory problem.

Table 4.6

Comparison of the semi-implicit method with direct convolution and fast convolution, Case I,
α1 = 0.2, α2 = 0.8, h = 1/128, τ = 0.01, and κ1 = κ2 = 2.

Direct convolution Fast convolution
t L2-error(u) L2-error(v) Time(s) L2-error(u) L2-error(v) Time(s)
40 7.0926e-6 2.5317e-7 1253.9869 7.0926e-6 2.5317e-7 994.6982
100 6.4289e-6 1.4192e-7 4849.6792 6.4289e-6 1.4192e-7 2618.0711
200 5.7959e-6 8.0380e-8 19207.5798 5.7959e-6 8.0380e-8 5463.2218
300 5.7810e-8 5.7810e-8 43056.7172 5.7810e-8 5.7810e-8 7954.6040
400 - - - 5.2029e-6 4.5797e-8 11330.6522
1000 - - - 4.4865e-6 2.1880e-8 29548.2192
2000 - - - 3.9966e-6 1.2539e-8 60915.4783

For Case II, we do not have an explicit form of the analytical solution, we show
numerical solutions in Figures 4.4 and 4.5. Figures 4.4 (a) and (b) display, respectively,
the numerical solutions of u and v at t = 50 for (α1, α2) = (0.8, 0.2). Figures 4.4 (c)
and (d) show numerical solutions of u and v at different times with y = 0.5, we see
that the numerical solutions decay as time evolves, see also Figure 4.5. For other
fractional orders, similar behavior can be observed, see Figures 4.5 (a) and (b) for
α1 = α2 = 0.5.

5. Conclusion and discussion. In this paper, we considered how to efficiently
solve nonlinear time-fractional differential equations. The nonlinearity is resolved by
proposing a new class of semi-implicit time-stepping methods. The stability of the
new semi-implicit methods was investigated, and the stability interval was theoreti-
cally given and verified numerically. In particular, several cases of the semi-implicit
methods are unconditionally stable by choosing parameters that are explicitly given.
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Fig. 4.4. Numerical solutions for Case II, α1 = 0.8, α2 = 0.2, κ1 = κ2 = 2, τ = 0.01, h =
1/64, B = 5, N = 32.
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Fig. 4.5. Numerical solutions for Case II, α1 = α2 = 0.5, κ1 = κ2 = 2, τ = 0.01, h = 1/64, B =
5, N = 32.

We also extend the semi-implicit methods for a scalar equation to a system of equa-
tions with the stability condition given theoretically.

The nonlocality of the fractional operator leads to a discrete convolution, which
is costly by direct computation. This issue is resolved by the new fast and memory-
saving algorithm. The new approach simplifies and extends the method in [30] to a
wider class of discrete convolution methods for approximating the fractional operator
with coefficients generated from the generating functions [21]. We prove that the
error originating from the fast calculation can be arbitrarily small and is independent
of the truncation error of the direct method. In the fast method, a series of ODEs
with homogenous initial conditions need to be solved at each time step. These ODEs
were solved by the multi-step method that corresponds to the fractional multi-step
method for the fractional operator in [30]. However, in the current work, these ODEs
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are solved using the backward Euler method. If the k-step (k > 1) method is applied,
then additional errors may occur since k initial values are needed to start the ODE
solver, but only one initial value is known.

The semi-implicit methods in the present work achieve at most second-order ac-
curacy, even though a high-order time-stepping method for the fractional operator is
applied. In future work, we will consider how to construct uniformly stable high-order
semi-implicit methods for nonlinear time-fractional differential equations. Another
computational issue is to seek a uniform quadrature with high accuracy to discretize
the integral contour (3.3), which will make it easier to implement the present fast
method similarly to those given in [2, 15, 17].

Appendix A. Proofs of Theorems 2.1 and 2.2. Proof of Theorem 2.1.
Proof. Denote by U(z) =

∑∞

n=0 Unz
n, |z| ≤ 1. We have from (2.20)

∞∑

n=2

n∑

j=0

ω
(α)
n−j(Uj − U0)z

n = (λ− κ)τα
∞∑

n=2

Unz
n + (ρ+ κ)τα

∞∑

n=2

(2Un−1 − Un−2)z
n,

which leads to

(A.1)
ω(p, α, 1, z)U(z)− ω

(α)
0 U0 − (ω

(α)
0 U1 + ω

(α)
1 U0)z − U0

∞∑

n=2

n∑

j=0

ω
(α)
j zn

=(λ− κ)τα(U(z)− U0 − U1z) + (ρ+ κ)τα(2z(U(z)− U0)− z2U(z)),

where we have used the following property

ω(p, α, 1, z)U(z) =

∞∑

n=0

n∑

j=0

ω
(α)
n−jUjz

n.

Rewrite (A.1) into the following form

(A.2) U(z) =
H(z)

ω(p, α, 1, z)− τα(λ+ ρ) + τα(ρ+ κ)(1− z)2
,

where H(z) =
∑∞

n=0Hnz
n. According to Eq. (3.3) and Lemma 3.5 in [21], one

has
∑n

j=0 ω
(α)
j = n−α

Γ(1−α) + O(n−α−1), which yields Hn = O(n−α). On the other

hand, we have ω(p, α, 1, z) − τα(λ + ρ) − τα(ρ + κ)(1 − z)2 =
∑∞

n=0Qnz
n = Q(z)

with Qn = O(n−α−1), where ω
(α)
n = O(n−α−1) has been used [21]. According to

[22], Un → 0 as n → ∞ if Q(z) 6= 0, |z| ≤ 1, i.e., the method is stable if τα 6=
ω(p,α,1,z)

(λ+ρ)−(ρ+κ)(1−z)2 , |z| ≤ 1. The proof is complete.

Proof of Theorem 2.2.
Proof. Lemma 3.5 and Eq. (3.3) in [21] yield

n∑

j=0

ω
(α)
n−jj

σk =
nσk−α

Γ(1 + σk − α)
+O(nσk−α−p) +O(n−α−1),

which leads to

m∑

j=1

w
(α)
n,j j

σk = O(nσk−α−p) +O(n−α−1), 1 ≤ k ≤ m.
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The above linear system implies that the starting weights w
(α)
n,j in (2.4) satisfy

w
(α)
n,j = O(nσ1−α−p) +O(nσ2−α−p) + · · ·+O(nσm−α−p) +O(n−α−1).

By the same reasoning, we can obtain that the starting weights w
(f)
n,j and w

(u)
n,j used

in (2.12) satisfy

w
(u)
n,j = O(nσ1−q) +O(nσ2−q) + · · ·+O(nσmu−q),

w
(f)
n,j = O(nδ1−q) +O(nδ2−q) + · · ·+O(nδmf

−q).

Denote mmax = max{m,mu,mf}+ 1 and

U(z) =

∞∑

n=mmax

Unz
n.

For the method (2.17) with correction terms, we can similarly derive

(A.3) U(z) =
H(z) + Ĥ(z)

ω(p, α, 1, z)− τα(λ+ ρ) + τα(ρ+ κ)(1− z)2
,

where H(z) is similarly derived as in (A.2) with Hn → 0 as n → ∞, Ĥ(z) =∑∞

n=0 Ĥnz
n, Ĥn = 0, 0 ≤ n ≤ mmax, and

Ĥn = −
m∑

j=1

w
(α)
n,j (Uj − U0) + ρτα

mf∑

j=1

w
(f)
n,j(Uj − U0) + κτα

mu∑

j=1

w
(f)
n,j(Uj − U0)

for n ≥ mmax. Obviously, Ĥn → 0 as n→ ∞ if

σk − α− p < 0, σmu
− q < 0, σmf

− q < 0.

The above inequalities yield Theorem 2.2, which ends the proof.

Appendix B. Proof of Theorem 2.3. We prove Theorem 2.3 for p = q = 2
with ω(2, α, 1, z) = ταω(2, α, τ, z) = (1−z)α(1+ α

2 − α
2 z), other cases can be similarly

proved. The following notations are used to simplify the proof, i.e.,

(B.1)
D = {(x, y)|x2 + y2 < 1}, ∂D = {(x, y)|x2 + y2 = 1},
DU = {(x, y)|x2 + y2 < 1, 0 < y < 1}, ∂DU = ∂D

(1)
U ∪ ∂D(2)

U ,

where ∂D
(1)
U = {(x, y)| − 1 ≤ x ≤ 1, y = 0}, ∂D(2)

U = {(x, y)|x2 + y2 = 1, |x| < 1, 0 <
y < 1}. Denote D̄ = D ∪ ∂D and D̄U = DU ∪ ∂DU . Then, DU is the interior of
the upper semi-circular domain with boundary ∂DU . We can similarly define the
lower semi-circular domain D̄L. The proof of Theorem 2.3 is equivalent to proving

that f(z) = ω(2,α,1,z)
λ−κ+(ρ+κ)(2z−z2) is not positive real for z ∈ D̄. We just need to prove

that f(z) is not positive real for z ∈ D̄U , which also holds for z ∈ D̄L by the same
reasoning.

Proof. For simplicity, we denote W (x, y) = (1 − z)α(1 + α
2 − α

2 z), and V (x, y) =
λ−κ+(ρ+κ)(2z− z2), where z = x+ iy = r exp(iθ), i2 = −1, θ ∈ [−π, π], 0 ≤ r ≤ 1.
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Denote W (x, y) = W1(x, y) + iW2(x, y) and V (x, y) = V1(x, y) + iV2(x, y), where
W1,W2, V1, V2 are real. Then we have

(B.2)





W1(x, y) ≥ 0, |x|2 + |y|2 ≤ 1,

W2(cos θ, sin θ) ≥ 0, θ ∈ [−π, 0],
W2(cos θ, sin θ) ≤ 0, θ ∈ [0, π].

The first inequality can be found in [33]. Let φ(θ) =
(
2 sin θ

2

)α
. Then we have

W2(cos θ, sin θ) = φ(−θ)
[(

1+ α
2 − α

2 cos θ
)
sin α

2 (θ+π)− α
2 cos α2 (θ+π) sin(θ)

]
> 0, θ ∈

(−π, 0). The third inequality in (B.2) can be similarly derived from W2(cos θ, sin θ) =

φ(θ)
[(

1 + α
2 − α

2 cos θ
)
sin α

2 (θ − π)− α
2 cos α2 (θ − π) sin θ

]
< 0, θ ∈ (0, π).

For V1 and V2, we have the following results.

(B.3)





V1(x, y) < 0,
λ− 3ρ

4
< κ < −2λ− 3ρ, |x|2 + |y|2 ≤ 1,

V2(cos θ, sin θ) ≤ 0, κ > −ρ, θ ∈ [−π, 0],
V2(cos θ, sin θ) ≥ 0, κ > −ρ, θ ∈ [0, π].

The first inequality in (B.3) can be derived by checking V̂1(±1) < 0 and V̂1(1/2) < 0,

where V̂1(cos θ) = V1(cos θ, sin θ) = λ− κ+ (ρ+ κ)(2 cos θ− 2 cos2 θ+ 1). The second
and third inequalities in (B.3) can be easily deduced from V2(cos θ, sin θ) = (ρ +
κ)(2 sin θ − sin 2θ) = 2(ρ+ κ) sin θ(1− cos θ).

Next, we prove that f(z) = ω(2,α,1,z)
ψ2(z)

= W (x,y)
V (x,y) cannot be positive real on D̄U .

• Step 1) Assume that λ−3ρ
4 < κ < −2λ − 3ρ and there exists a positive constant

c > 0, such that f(z) = W1+iW2

V1+iV2
= c. Then we have W1 − cV1 = 0. Eqs. (B.2) and

(B.3) imply W1 − cV1 > 0 for all |z| ≤ 1, which yields a contradiction. Therefore,
f(z) cannot be a positive real number when λ−3ρ

4 < κ < −2λ− 3ρ.
• Step 2) Since ω(2, α, 1, z) is analytic for |z| < 1 and continuous for |z| = 1, the
imaginary part W2(x, y) of ω(2, α, 1, z) is a harmonic function in the interior of the
unit circular domain D̄ and is continuous on the boundary ∂D of D̄. It implies that
W2(x, y) (or V2(x, y)) is also analytic in DU and continuous on ∂DU . Therefore,
W2 (or V2) attains its maximum and minimum value on the boundary D̄U . From
(B.2) and (B.3), we have W2(x, y) ≥ 0 and V2(x, y) ≤ 0 for (x, y) ∈ D̄U if κ > −ρ.
For any (x, y) ∈ D̄U \ ∂D(1)

U , we assume that there exists a positive number c such
that f(z) = W1+iW2

V1+iV2
= c, which leads toW2− cV2 = 0. On the other hand, we have

V2(x, y) = (ρ+ κ)2r sin θ(1− r cos θ) > 0 for (x, y) = (r cos θ, r sin θ) ∈ D̄U \ ∂D(1)
U ,

which yields 0 = W2 − cV2 < 0. Therefore, f(z) cannot be positive real for z =

(x, y) ∈ D̄U \ ∂D(1)
U . If (x, y) ∈ ∂D

(1)
U , then f(z) is real and f(z) = W1

V1
≤ 0 due to

the fact W1 ≥ 0 and V1 < 0. Therefore, f(z) is not positive real on D̄U if κ > −ρ.
From Steps 1) and 2), we prove that f(z) is not positive real on D̄U if κ > λ−3ρ

4 .
We can similarly prove that f(z) is not positive real on D̄L f(z). Hence, f(z) is not
positive real for |z| ≤ 1, which implies the stability region S defined (2.21) contains
the interval (0,∞). The proof is completed.

Appendix C. The authors wish to thank the referees for their constructive com-
ments and suggestions, which greatly improve the quality of this paper.
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