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Abstract

This paper is concerned with a numerical method for a 3D coefficient inverse
problem with phaseless scattering data. These are multi-frequency data generated
by a single direction of the incident plane wave. Our numerical procedure con-
sists of two stages. The first stage aims to reconstruct the (approximate) scattered
field at the plane of measurements from its intensity. We present an algorithm
for the reconstruction process and prove a uniqueness result of this reconstruction.
After obtaining the approximate scattered field, we exploit a newly developed glob-
ally convergent numerical method to solve the coefficient inverse problem with the
phased scattering data. The latter is the second stage of our algorithm. Numerical
examples are presented to demonstrate the performance of our method. Finally, we
present a numerical study which aims to show that, under a certain assumption, the
solution of the scattering problem for the 3D scalar Helmholtz equation can be used
to approximate the component of the electric field which was originally incident
upon the medium.

Keywords. single measurement data, phaseless inverse scattering, uniqueness theo-
rem, numerical method

AMS subject classification. 35R30, 78A46, 65C20

1 Introduction

The goal of this paper is to develop a new numerical method for a 3D phaseless coefficient
inverse scattering problem in the case when the data to be inverted are generated by a
single measurement event at multiple frequencies. We assume that only the intensity, i.e.
the square modulus, of a complex valued wave field can be measured outside of scatterers
and phase cannot be measured. We use only a single direction of the incident plane wave.
In other words, we consider the phaseless coefficient inverse scattering problem with
single measurement data. Thus, this is a non-overdetermined case, i.e. the number of free
variables in the data equals to the number of free variables in the unknown coefficient.
We propose a two-stage reconstruction procedure. In the first stage we approximately
reconstruct the scattered wave field at the plane of measurements. Hence, this stage leads
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to a conventional phased coefficient inverse scattering problem: when the whole complex
valued wave field is known at a part of the measurement plane. Next, to reconstruct
the unknown coefficient of Helmholtz equation, we apply the newly developed globally
convergent algorithm of [32]. According to [8, 32], we call a numerical method for a
coefficient inverse problem globally convergent if a theorem is proven, which guarantees
that this method delivers at least one point in a sufficiently small neighborhood of the
exact solution without any a priori knowledge of this neighborhood.

Unlike the current paper, in [20] the case when the intensity is given on an interval
of frequencies for multiple point sources was considered. While locations and shapes of
unknown scatterers were imaged accurately in [20], the accuracy of reconstructed abnor-
mality/background contrasts was poor. This is because a linearization of the travel time
function was used in [20]. On the other hand, the globally convergent numerical inversion
method of [32] provides very accurate locations and contrasts of abnormalities for a single
measurement case. The latter was consistently demonstrated on both computationally
simulated [32] and experimental data [33, 41] including the case when unknown targets
were buried in a sandbox [40]. The arguments in this paragraph are the reasons of our
choice of the two-stage procedure.

The study of the coefficient inverse problem with phaseless scattering data is motivated
by applications in, e.g. imaging of nano-scale structures and biological cells. Typical nano
structures of interest have sizes of hundreds of nanometers (nm). Recall that 1 micron
(µm)= 103nm. Typical sizes of biological cells are in the range of (5, 100)µm [49, 50].
To image these, one should use optical sources with the same range of wavelengths.
However, the corresponding frequency is very large. For example, the wavelength λ = 1µm
corresponds to the frequency ω = 299, 792 GHz. Hence, only the intensity of the scattered
field can be measured while the phase is lost [12,13,17,48,54].

Solution of the coefficient inverse scattering problem without the phase information is a
long standing problem. For the first time, this problem was probably posed in [10, Chapter
10]. The first uniqueness result for this problem was established in [21] in the 1D case, also
see [1] for a follow up result. In 3D, the first uniqueness result was obtained in [22]. Later,
uniqueness theorems in 3D were established in [23–25,31,57]. The analytic reconstruction
procedures in 3D were proposed in [26, 27, 29, 30]. However, these procedures require
a large range of frequencies which might be unrealistic in practice. Hence, the method
of [29] was modified and made suitable for computations for a realistic range of parameters
in [20].

In publications [44–46] phaseless coefficient inverse scattering problems were consid-
ered. Their statements are different from the ones in papers cited above. Uniqueness
theorems were proved and reconstruction procedures were proposed in [44–46]. In [6, 7]
a phaseless coefficient inverse scattering problem for Helmholtz equation was solved nu-
merically using Kirchhoff migration and Born approximation. While coefficients of PDEs
are subjects of interests in the above cited works, there is also a significant interest in the
reconstruction of surfaces of scatterers from phaseless data. In this regard we refer to,
e.g. publications [2, 5, 15,16,38,58] and references cited therein.

Let k > 0 be the wave number. In fact, on the first stage of our procedure we
reconstruct the first term of the asymptotic expansion at k → ∞ of the solution of
Helmholtz equation at the measurement plane. We prove a theorem which claims that
this reconstruction is unique. In this paper, for simplicity, we use the Helmholtz equation
to model the light propagation. On the other hand, it is well-known that the wave field is
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governed by the Maxwell’s system. To validate our analysis, we numerically compare in
Appendix the solution of the Helmholtz equation with the one of the Maxwell’s system.
Another validation can be attributed to quite accurate results obtained by this group for
phased microwave experimental data [33,40,41] in which the Helmholtz equation was used
and the globally convergent numerical method of [32] was applied.

In the next section, we formulate the phaseless coefficient inverse scattering problem.
In Section 3, we prove a uniqueness result of the phase retrieval. In Section 4, we describe
our numerical approach to reconstruct the lost phase. In Section 5, we briefly summarize
our globally convergent method of [32] for the reader’s convenience. In Section 6, we
present our numerical results. In Section 7 we provide summary of our results. Finally, in
the Appendix, which is Section 8, we compare numerically solutions to Maxwell’s system
and Helmholtz equation.

2 Problem Statement

Let a laser beam illuminate the unknown nano-structure/biological cell, which plays the
role of a scatterer. The diameter of a laser beam is a few millimeters (mm) and 1mm =
103µm. Given that sizes of our scatterers do not exceed 100 µm = 0.1mm (section 1), these
scatterers “percept” that laser beam as a perfect plane wave. The laser beam scatters
after hitting the scatterers. It is well known that modern light detectors placed inside
of the laser beam are burned. Hence, one should place detectors outside of that beam.
However, outside of the laser beam the total wave field approximately equals the scattered
wave field. Hence, we assume below that we measure the intensity of the scattered wave at
a square Pmeas of a fixed plane, see Figure 1 for an illustration. The problem we consider
in this paper is to reconstruct the spatially distributed dielectric constant of the scatterer
from the measurements of the intensities of the scattered waves on Pmeas at an interval
of frequencies. We point out, however, that a precise mathematical modeling of the laser
beam is outside of the scope of this publication. So, the above considerations were given
only to explain why do we consider the intensity of the scattered rather than of the total
wave field.

Pmeas

Scattered waves

Figure 1: The experimental setup. The laser beam hits scatterer (dots) and causes scattered
wave. The intensity is measured on Pmeas.
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2.1 The phaseless coefficient inverse scattering problem

Denote x =(x1, x2, x3) ∈ R3. Let Ω be a bounded domain in R3 with a smooth boundary
∂Ω and such that Ω ⊂ {x3 > 0} . Let c(x), be a function satisfying the following conditions:

c(x) ∈ C15(R3), c(x) ≥ 1 for all x ∈ R3 and c(x) = 1 for all x ∈ R3 \ Ω. (2.1)

The function c(x) models the spatially distributed dielectric constant of the medium
consisting of the background and the scatterers. The condition c(x) = 1 in R3 \Ω means
that we suitably scale the dielectric constant, so that it equals to 1 in the background
(vacuum). The condition c(x) ≥ 1 means that the dielectric constant in the medium is
not less than in the vacuum. The Riemannian metric corresponding to the function c(x)
is given by

dτ(x) =
√
c(x)|dx|, |dx| =

√
(dx1)2 + (dx2)2 + (dx3)2.

Fix the number a > 0. Consider the plane Pa = {(x1, x2,−a) : x1, x2 ∈ R}.We impose the
following condition on the function c(x):

Assumption 2.1 (Assumption of Regularity of Geodesic Lines.). For any point x ∈ R3

there exists a unique geodesic line Γ(x, a), with respect to the metric dτ , connecting x with
the plane Pa and perpendicular to Pa.

The following sufficient condition of the regularity of geodesic lines was derived in [53]

3∑
i,j=1

∂2c (x)

∂xi∂xj
ξiξj ≥ 0,∀x ∈ Ω,∀ξ ∈ R3.

Remark 2.1. The smoothness condition (2.1) imposed on the function c(x) as well as
Assumption 2.1 are necessary for the theoretical purposes only: to derive the asymptotic
behavior (3.1). However, we do not verify neither condition (2.1) nor Assumption 2.1
in our numerical studies. Indeed, that asymptotic behavior is derived in Theorem 3.1
on the basis of the construction of the solution of the Cauchy problem for a hyperbolic
equation. However, this construction requires that c(x) ∈ C15(R3) [30, 52]. Besides, the
minimal smoothness of unknown coefficients is usually not of a great concern in studies
of coefficient inverse problems, see, e.g. [42, 43] and theorem 4.1 in [51].

The function τ(x) is the travel time from the plane Pa to the point x and [30]

τ(x) =

∫
Γ(x,a)

√
c (ξ)dσ. (2.2)

Lemma 2.1. For all x ∈ {x3 > −a} we have τ(x) ≥ x3. Consider the set Ω1,

Ω1 = {x : c (x) > 1} ⊂ Ω. (2.3)

Assume that the set (2.3) is convex and its boundary ∂Ω1 ∈ C1. Then τ(x) = x3 if and
only if Γ (x, a) = L (x, a) , where L (x, a) is the straight line connecting the point x with
the plane Pa and orthogonal to Pa. If τ(x) = x3, then for any point x′∈Γ (x, a) = L (x, a) ,
except of probably one point, there exists such a sufficiently small neighborhood O (x′) of
x′ that τ(x′′) = x′′3,∀x′′ = (x′′1, x

′′
2, x

′′
3) ∈ O (x′) .
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Proof. The inequality τ(x) ≥ x3 follows from (2.2) as well as from the fact that by (2.1)
c (x) ≥ 1. Suppose now that τ(x) = x3. If Γ (x, a) ∩ Ω1 6= ∅, then (2.2) implies that
τ(x) > x3. Hence, Γ (x, a) ∩ Ω1 = ∅. This means that Γ (x, a) = L (x, a) . Now, either
L (x, a)∩ ∂Ω1 = ∅ or, due to both the convexity of the domain Ω1 and the smoothness of
its boundary ∂Ω1, the straight line L (x, a) is the tangent line to ∂Ω1 at a certain unique
point. Obviously in both these two cases the assertion of this lemma about O (x′) is true.
� Let [k, k] be an interval of wave numbers k = 2π/λ ∈ [k, k] where λ is the dimensionless
wavelength. Consider the incident plane wave uinc(x, k) propagating along the x3 axis,

uinc(x, k) = exp(ikx3). (2.4)

The propagation of the total wave field u(x, k) is governed by the Helmholtz equation
and the outgoing Sommerfeld radiation condition,

u(x, k) = uinc(x, k) + usc(x, k), x ∈ R3, k ∈ [k, k], (2.5){
∆u(x, k) + k2c(x)u(x, k) = 0, x ∈ R3,
∂rusc(x, k)− ikusc(x, k) = o(r−1), as r = |x| → ∞. (2.6)

Let the number R > 0. Denote

Pmeas = {x = (x1, x2, x3) : −b < x1, x2 < b, x3 = R} (2.7)

the square on the plane P = {x3 = R} where measurements of the intensity |u(x, k)|2 are
conducted. Here R > 0 is the distance from the origin to the measurement plane and
b > 0 is the size of that rectangle. Assume that the plane P does not intersect with Ω,
Ω ∩ P = ∅. The phaseless coefficient inverse scattering problem is formulated as:

Phaseless Coefficient Inverse Scattering Problem (PCISP). Given the data

f(x, k) = |usc(x, k)|2, x ∈ Pmeas, k ∈ [k, k], (2.8)

determine the dielectric constant c(x) for x ∈ Ω.

Remark 2.2. 1. We model the wave propagation by the single Helmholtz equation with
the outgoing radiation condition instead of the full Maxwell’s system, see section 9
and a discussion in Introduction.

2. A natural question about the uniqueness of the PCISP arises. We prove in Section
3 that one can uniquely reconstruct the first term of the asymptotic expansion at
k → ∞ of the function u(x, k),x ∈ Pmeas from the data (2.8). Let the square
Pmeas ⊂ P, where P is the corresponding plane. The next question, however, is
about the uniqueness of the reconstruction of the coefficient c(x) for x ∈ Ω even in
the case when the whole function u(x, k) (rather than that first term only) is known
for all x ∈ P and for all k > 0. Addressing this question is a well known long
standing open problem. Indeed, all uniqueness theorems for n−D, n ≥ 2 coefficient
inverse problems with single measurement data are currently proven only by the
method, which was originally proposed in [9] in 1981, also see, e.g. the section 1.10
in the book [8], the book [18], the survey [19] and references cited in [19]. Carleman
estimates are the key ingredient of this method. However, in our specific case, this
method works only if the right hand side of Helmholtz equation (2.6) is non vanishing
in Ω. Hence, we just assume uniqueness of that second problem: for the purpose of
computations.
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2.2 The Lippman-Schwinger equation

Assume that the function c(x) satisfying (2.1) is known for all x ∈ R3. It follows from
the Helmholtz equation in (2.6) that

∆usc(x, k) + k2usc(x, k) + k2β(x)u(x, k) = 0, ∀x ∈ R3,

β(x) = c(x)− 1. (2.9)

Here, we have used (2.5) and the fact that ∆u0(x, k) + k2u0(x, k) = 0. This and the
outgoing Sommerfeld radiation condition in (2.6) imply that

usc(x, k) = k2

∫
R3

exp(ik|x− ξ|)
4π|x− ξ|

β(x)u(ξ, k)dξ. (2.10)

Using (2.5) and (2.10), we obtain the Lippmann-Schwinger equation

u(x, k) = uinc(x, k) + k2

∫
Ω

exp(ik|x− ξ|)
4π|x− ξ|

β(ξ)u(ξ, k)dξ. (2.11)

For an integer k ≥ 0 and for α ∈ (0, 1) let Ck+α(R3) be Hölder spaces. The following
result holds [11, Chapter 8]:

Theorem 2.1. Assume that c(x) ∈ Cα(R3) satisfies the rest of conditions (2.1). Then
the Lippmann-Schwinger equation (2.11) has unique solution u(x, k) ∈ C2+α(R3) for all
k > 0. Moreover, this function u(x, k) is the unique solution of the problem (2.6).

When using the globally convergent method [32] below, we solve equation (2.11) on
each iteration. To solve integral equation (2.11) numerically, we use the method developed
in [35,39].

3 Uniqueness result

In this section, we prove that the first term of the asymptotic expansion of the function
u (x, k) at k →∞ for points x ∈ Pmeas can be determined uniquely from the data f(x, k).
For any number θ > 0 we define the half-plane Cθ of the complex plane C as

Cθ = {z ∈ C : =z > −θ} .

Theorem 3.1. Assume that the function c (x) satisfies conditions (2.1). Suppose that the
Assumption of the Regularity of Geodesic Lines holds true. Let G ⊂ {x = (x1, x2, x3) :
x3 > −a} be an arbitrary bounded domain such that Pmeas ⊂ G. Then there exists a
number θ = θ(G) > 0 such that for all points x ∈ G, the solution u(x, k) of problem
(2.5)–(2.6) is analytic with respect to k ∈ R and can be analytically continued in the
half-plane Cθ. Furthermore, the function f(x, k) = |usc(x, k)|2,x ∈ Pmeas is analytic with
respect to k ∈ R. In addition, the following asymptotic behavior holds

usc(x, k) = A(x)eikτ(x) − eikx3 + µ(x, k), x ∈ G, k →∞, (3.1)
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where the function A(x) > 0, the function τ(x) is defined in Subsection 2.1, and the
function µ(x, k) is such that for j = 0, 1, 2

∂jkµ(x, k) = O(k−1), x ∈ G, k →∞. (3.2)

In the proof of this theorem, we modify the material of section 4 of [30]. Although
properties (3.1), (3.2) and the analyticity of the function u(x, k) follow from results of [30],
they are not explicitly formulated there.
Proof of Theorem 3.1. Consider the following auxiliary hyperbolic equation

c(x)vtt = ∆v, x ∈ R3, t ∈ R. (3.3)

And consider the solution of equation (3.1) in the form

v(x, t) = δ (t− x3) + ṽ(x, t), (3.4)

where ṽ(x, t) is such that
ṽ (x, t) = 0 for x3 < −a. (3.5)

Let T > 0 be an arbitrary number. Denote

D (T ) = {(x, t) : max (−a, τ (x)) < t < T} ,

H (t) =

{
1 t > 0,
0 t < 0.

It was proven in [30, Theorem 1] that the problem (3.3)-(3.5) has unique solution of the
form

v (x, t) = A (x) δ (t− τ (x)) +H (t− τ (x)) v̂ (x, t) , (3.6)

where the function A (x) > 0 and

v̂ (x, t) ∈ C2
(
D (T )

)
. (3.7)

Furthermore, Theorem 4 of Chapter 10 of [56] as well as Remark 3 after that theorem
guarantee that there exists a number θ = θ (c,G) > 0 and a number C1 = C1 (c,G) >
0, C2 = C2 (c,G) > 0, all three depending only on listed parameters, such that∣∣Dα

xD
k
t v̂ (x, t)

∣∣ ≤ C2e
−θt, ∀x ∈ G,∀t > C1, |α|+ k ≤ 2. (3.8)

Here α = (α1, α2, α3) is the multiindex with non-negative integer coordinates and |α| =
α1 +α2 +α3. By (3.6) and (3.8) we can consider Fourier transform of the function v (x, t) ,

V (x, k) =

∞∫
−∞

v (x, t) eiktdt = A (x) eikτ(x) +

∞∫
τ(x)

v̂ (x, t) eiktdt. (3.9)

Next, Theorem 3.3 of [55] and Theorem 6 of Chapter 9 of [56] imply that

V (x, k) = u (x, k) , ∀x ∈ R3,∀k > 0, (3.10)
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where u (x, k) is the solution of our original forward problem (2.5)–(2.6). Next, using
(3.6)-(3.8), (3.10) and the integration by parts in (3.9), we obtain

u (x, k) = A (x) eikτ(x) +
i

k
v̂ (x, τ (x)) eikτ(x) +

i

k

∞∫
τ(x)

∂tv̂ (x, t) eiktdt, k > 0,

which proves the asymptotic expansion (3.1), (3.2).
Next, it follows from (3.6)–(3.10) that

∂kV (x, k) = iA (x) τ (x) eikτ(x) + i

∞∫
τ(x)

v̂ (x, t) teiktdt, ∀k ∈ Cθ.

Hence, using (3.10), we conclude that the function u (x, k) has analytic continuation with
respect to k from the real line R in the half-plane Cθ. Finally, the analyticity of the
function f (x, k) = |usc (x, k)|2 with respect to k ∈ R follows from [25, Lemma 3.5]. �

Theorem 3.2 is similar with theorem 1 of [31, Lemma 3.5]. While theorem 1 of [31,
Lemma 3.5] works for the case when the wave field is generated by a point source, Theorem
3.2 is valid for the case of the incident plane wave. The proof here is different from the
one in [31, Lemma 3.5]. Two major differences are that neither an analog of Lemma 2.1
nor the derivative ϕ′ (k) in (3.17) were not considered in [31, Lemma 3.5].

Theorem 3.2. Assume that the function c (x) satisfies condition (2.1). Suppose that
the Assumption of the Regularity of Geodesic Lines holds true. In addition, assume that
conditions of Lemma 2.1 hold. Consider an arbitrary point x0 ∈ Pmeas. Also, consider the
function ϕ (k) ,

ϕ (k) = |usc (x0, k)|2 , k ∈
(
k, k
)
, (3.11)

where
(
k, k
)
⊂ R is a certain interval. Then the numbers τ (x0) and A (x0) in the asymp-

totic expansion (3.1), (3.2) are uniquely determined from the knowledge of the function
ϕ (k) in (3.11). Furthermore, if τ (x0) = x3,0 for x0 = (x1,0, x2,0, x3,0) , then A (x0) = 1.

Corollary 3.1 follows immediately from Theorem 3.2.

Corollary 3.1. Consider the PCISP. Then functions A (x) and τ (x) in the asymptotic
expansion (3.1), (3.2) are uniquely determined for x ∈ Pmeas from the knowledge of the
function f (x, k) in (2.8).

Proof of Theorem 3.2. For brevity denote A := A (x0) , τ := τ (x0) . Since by Theorem
3.1, the function ϕ (k) is analytic for k ∈ R, then we assume below in this proof that
the function ϕ (k) is given for all k ∈ R. Using (3.1), (3.2) and (3.11), we obtain for
sufficiently large k

ϕ (k) = A2 − 2A cos [k (τ − x3)] + p (k) , (3.12)

where the real valued function p (k) is such that

p(j) (k) = O
(
k−1
)
, k →∞, j = 0, 1, 2. (3.13)
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It follows from (3.12) and (3.13) that lim
k→∞

ϕ (k) exists if and only if τ = x3. Hence,

assume first that τ = x3. To find the number A, we use the formula (4.16) of [30, Theorem
1],

A (x0) = exp

−1

2

∫
Γ(x0,a)

1

c (ξ)
∆ξτ (ξ) dσ

 . (3.14)

By Lemma 2.1 Γ (x0, a) = L (x0, a) . Furthermore, it follows from the assertion of that
lemma about O (x′) that ∆ξτ (ξ) = 0 for all points ξ ∈ Γ (x0, a) , except of probably one
point. Hence, (3.14) implies that A (x0) = 1.

Consider now the case τ 6= x3. Denote

α (x0) = α = τ (x0)− x3. (3.15)

Lemma 2.1 implies that
α > 0. (3.16)

By (3.12) and (3.13)
ϕ′ (k) = 2Aα sin (kα) + p′ (k) . (3.17)

For sufficiently large k, consider the equation

ϕ′ (k) = 0. (3.18)

Consider the real valued function q (k) ,

q (k) = −p
′ (k)

2Aα
.

Then, using (3.13)-(3.17), we obtain that equation (3.18) is equivalent with

sin (kα) = q (k) , (3.19)

q (k) = O

(
1

k

)
, q′ (k) = O

(
1

k

)
, k →∞. (3.20)

Consider a sufficiently large integer n > 1. By (3.16) we can choose a sufficiently large
k > 0 such that

kα ∈ ((n− 1) π, nπ + 1) (3.21)

Since by (3.20) |q (k)| < 1 for sufficiently large k > 0, then it follows from (3.19)-(3.21)
that

kα = (−1)n arcsin (q (k)) + nπ. (3.22)

We show now that equation (3.22) has unique solution

k ∈
(

(n− 1) π

α
,
nπ + 1

α

)
= In.

Indeed, consider the function hn (k) ,

hn (k) = kα− (−1)n arcsin (q (k))− nπ, k ∈ In. (3.23)
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By (3.20) we can assume that

|arcsin (q (k))| < 1

2
, k ∈ In. (3.24)

Using (3.23) and (3.24), we obtain

hn

(
(n− 1) π

α

)
= −π − (−1)n arcsin

(
q

(
(n− 1)π

α

))
< −2 < 0, (3.25)

hn

(
nπ + 1

α

)
= 1− (−1)n arcsin

(
q

(
nπ + 1

α

))
>

1

2
> 0. (3.26)

It follows from (3.25) and (3.26) that the function hn (k) has at least one zero inside
of the interval In. To show that this zero is unique, consider the derivative h′n (k) ,

h′n (k) = α− (−1)n
q′ (k)√

1− q2 (k)
, k ∈ In.

Since n > 1 is sufficiently large and k ∈ In, we can assume by (3.20) that∣∣∣∣∣ q′ (k)√
1− q2 (k)

∣∣∣∣∣ < α

2
.

Hence, h′n (k) > α/2 > 0 for k ∈ In. Hence, the function hn (k) is monotonically increasing
on the interval In. Hence, the above mentioned zero of the function hn (k) on the interval
In is unique. We denote this zero kn.

By (3.20)–(3.22)

knα = nπ +O

(
1

n

)
, n→∞,

kn+1α = (n+ 1) π +O

(
1

n

)
, n→∞.

Hence,

(kn+1 − kn)α = π +O

(
1

n

)
, n→∞. (3.27)

In particular, it follows from (3.27) that kn+1 − kn ≥ π/2 6= 0 for sufficiently large n.
Thus, we obtain from (3.27)

α = lim
n→∞

π

kn+1 − kn
. (3.28)

Since the function ϕ′ (k) is known, then all its zeros are also known. Next, since equations
(3.18) and (3.19) are equivalent, then (3.28) uniquely defines the number τ = α + x3 as

τ = x3 + lim
n→∞

π

kn+1 − kn
.

Finally (3.13) and (3.17) imply that

A =
1

2α
lim
n→∞

ϕ′
[

1

α

(π
2

+ 2nπ
)]

.

The proof is complete. �
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4 Numerical method for the approximate phase re-

trieval for x ∈ Pmeas

In this section, we show how to recover functions τ(x) and A(x) for x ∈ Pmeas from the
function f (x, k) in (2.8). Everywhere in this section x ∈ Pmeas. By Theorem 3.1

u(x, k) = A(x) exp(ikτ(x))(1 +O(1/k)), k →∞, (4.1)

where the function u(x, k) is the solution of (2.6). In particular, this means that |u(x, k)| ≈
A(x) for sufficiently large k. We show below in this section how to approximate the func-
tions A(x) and τ(x) from the data f(x, k), x ∈ Pmeas, k ∈ [k, k]. Dropping the remainder
term O(1/k) in (4.1), we deduce from (2.5) that

usc(x, k) = A(x) exp(ikτ(x))− exp(ikx3). (4.2)

Hence, for α(x) defined in (3.15), the data is approximated as

f(x, k) = |usc(x, k)|2 = A2(x) + 1− 2A(x) cos(kα(x)). (4.3)

Remark 4.1 ( [29, 30]). Fix x in Pmeas. One can approximate A(x) and α(x) by calcu-
lating the period of the function k 7→ f(x, k). For instance, we can find two consecutive
local minimizers (or maximizers) κ1 and κ2 of f(x, k) in [k, k]. Thus, cos(κ1α(x)) =
cos(κ2α(x)) = 1 and

α(x) =
2π

|κ2 − κ1|
. (4.4)

This method can be used in theory. However, in some physical situations, the interval
[k, k] is not large enough for us to find two local minima of f(x, k). In addition, we might
have errors when finding local minimizers due to the noise added to the data, see Figure
2 for an illustration.

(a) Noiseless data. (b) Data with 10% noise (c) Data with 15% noise

Figure 2: A typical example for the data f(x, k) when k varies in [k, k] = [80, 85] where
[80, 85] is a realistic range of wave numbers, see Section 6.3. In (a), the data attains only
one minimum value, which does not provide enough data to apply (4.4). The reconstruc-
tion is even more inconvenient when the data, with noise, attains multiple extrema in the
case (b) and (c).

Modifying the phase reconstruction procedure of [20] where the incident wave is a point
source rather than the plane wave of our case, we propose the following reconstruction
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process. Fix a point x ∈ Pmeas and let k ∈
[
k, k
]
. Assuming that α(x) 6= 0, introduce

F1(x, k) as

F1(x, k) =

k∫
k

f(x, κ)dκ = (A2(x) + 1)(k − k)− 2A(x)

α(x)
(sin(kα(x))− sin(kα(x)))

= (A2(x) + 1)(k − k) +
2A(x)

α(x)
sin(kα(x))− 2A(x)

α(x)
sin(kα(x)).

Next, we define

F2(x, k) =

k∫
k

F1(x, κ)dκ =
(A2(x) + 1)

2
(k − k)2

+
2A(x) sin(kα(x))

α(x)
(k − k) +

2A(x)

α2(x)
cos(kα(x))− 2A(x)

α2(x)
cos(kα(x)). (4.5)

Combining (4.3) and (4.5) gives

α2(x)F2(x, k) =
α2(x)(A2(x) + 1)

2
(k − k)2

+ 2α(x)A(x) sin(kα(x))(k − k) + A2(x) + 1− f(x, k)− 2A(x) cos(kα(x)). (4.6)

Equation (4.6) can be rewritten as

F2(x, k)ξ1(x) + (k − k)2ξ2(x) + (k − k)ξ3(x) + ξ4(x) = f(x, k) (4.7)

for all k ∈ [k, k] where

ξ1(x) = α2(x), ξ2(x) = −α
2(x)(A2(x) + 1)

2
,

ξ3(x) = −2α(x)A(x) sin(kα(x)), ξ4(x) = A2(x)− 2A(x) cos(kα(x)) + 1.
(4.8)

Consider now the case α(x) = 0. Then by (4.8) ξ1(x) = ξ2(x) = ξ3(x) = 0 and
ξ4(x) = A2(x) − 2A (x) + 1. Hence, it follows from (4.3) that (4.7) remains valid for the
case α(x) = 0.

For each k ∈ [k, k], equation (4.7) is a linear equation with respect to the unknown
vector ξ(x) = (ξ1(x), ξ2(x), ξ3(x), ξ4(x)) . Consider the partition of the interval

[
k, k
]

with the uniform step size h = kj−1 − kj for all j ∈ {1, . . . , N},

kN = k < kN−1 < · · · < k1 < k0 = k. (4.9)

Then setting k = kj in (4.7), we obtain a linear algebraic system with respect to the
vector ξ. This system is over-determined since we have only 4 unknowns while N + 1, the
number of equations in the system, is much greater than 4. We write this over-determined
system as

Fξ = f, (4.10)
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where the jthrow of the (N + 1)× 4 matrix F is given by (F2(x, kj), (kj − k)2, (kj − k), 1)
and the jth component of the N + 1 dimensional vector f is f(x, kj), j = 0, N . Then, we
solve the following linear algebraic system

(FTF + εI4)ξ = FT f, (4.11)

where FT is F transpose and I4 is the 4× 4 identity matrix. The positive small number ε
plays the role of regularization and its presence guarantees that (4.11) is uniquely solvable.
In our computations, the number ε is chosen by a trial and error procedure (Section 6.3).
After solving (4.11), we use (4.8) to set:

α(x) = <(
√
ξ1(x)), τ(x) = α(x) + x3. (4.12)

Out of two possible values of
√
ξ1(x) we take the one for which <(

√
ξ1(x)) ≥ 0. After

obtaining α(x), we compute A(x) from (4.3) as

A(x) =
∣∣∣cos (kα (x)) +

√
cos2 (kα (x)) + f(x, k)− 1

∣∣∣ .
Let τ (x) and A(x) be two functions reconstructed by the method of this section. Then fol-
lowing Theorem 3.1, we obtain the following two approximate formulas for x = (x1, x2, x3) ∈
Pmeas :

u (x, k) = A (x) exp (ikτ (x)) , usc(x, k) = A (x) exp (ikτ (x))− exp (ikx3) (4.13)

To illustrate (4.13), we arrange a uniform 100 × 100 grid points {xn}10,000
n=1 in Pmeas

and show, in Figure 3, the true and reconstructed real and imaginary parts of usc(xn, k =
82.25) where n ∈ {4800, . . . , 5100}.

(a) The real parts of the true (solid
line) and reconstructed (dashed line)
scattered fields.

(b) The imaginary parts of the
true (solid line) and reconstructed
(dashed line) scattered fields.

Figure 3: An example of the reconstructed functions usc (x, k). The function usc (x, k) is
computed by formula (4.13) for k = 82.25. The data, with 5% noise, for these computa-
tions correspond to Case 1 of Section 6.4.

Remark 4.2. The reconstruction procedure described above is stable due to the stability
of the integration with respect to the noise. Indeed, our above analysis is based on the
integrals of the data.
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Remark 4.3 (shifting the interval of wave numbers). Formula (4.13) approximates usc(x, k)
for k ∈ [k, k]. However, numerical solution of Helmholtz equation for large values of the
wave number k is very computationally expensive. Thus, in our numerical tests, we ex-
tend (4.13) to another interval of wave numbers k ∈ [k′, k

′
] ⊂ (0,∞) with smaller values

of k, i.e. k
′
< k. To do this, we simply use in (4.13) values k ∈ [k′, k

′
]. Thus, we first

calculate A (x) and τ (x) using values of k ∈ [k, k] from the original interval and then

use in (4.13) k ∈ [k′, k
′
] . We assume everywhere below that this shift is made and, to

simplify notations, denote again k′ := k, k
′
:= k.

In Sections 5 and 6, we briefly outline our globally convergent algorithm of [32], which
is playing an important role in our method to solve the PCISP.

5 The phased inverse scattering problem

We explain in Section 6.2 how to approximately obtain the boundary function g (x, k) for
x ∈ ∂Ω, k ∈ [k, k] in (6.3) using (4.13). Hence, our inverse scattering problem becomes
now the phased inverse scattering problem:

Problem 5.1 (phased inverse scattering problem). Given

g(x, k) = u(x, k), x ∈ ∂Ω, k ∈ [k, k], (5.1)

where u(x, k) is the solution of (2.6), determine the function c(x) for x ∈ Ω.

The inverse problem (5.1) has a broad range of applications and has been widely
studied. As to its uniqueness, we refer to item 2 in Remarks 2.2. We refer to [?, 2–4, 8,
14, 32, 36, 37, 42, 43] and references therein for various studies of numerical methods and
reconstruction procedures for solving this inverse problem under a variety of assumptions
on the measurement setup. The globally convergent algorithm of [32] has been developed
to solve the inverse problem (5.1) with only a single measurement of multi-frequency
scattering data. In addition, we refer to [28, 34] and references cited therein for the
second globally convergent numerical method for the single measurement case, which is
based on the construction of weighted globally strictly convex Tikhonov-like functionals
with Carleman weight functions in them.

Below in this section we briefly describe the globally convergent numerical method
of [32]. We refer to [32] for details, which, in particular, include the global convergence
theorem 6.1.

5.1 An integro-differential equation

In this section, we assume that the function u(x, k) never vanishes. This assumption is true
when k is large due to (4.1), see [32] for more details. Since the vector ∇u(x, k)/u(x, k) is
curl free, we can follow a procedure in [32, Lemma 4.1] to find a smooth function v(x, k)
such that

exp(v(x, k)) = u(x, k), ∇v(x, k) =
∇u(x, k)

u(x, k)
x ∈ Ω, k ∈ [k, k]. (5.2)
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The function v can be understood as the natural logarithm of the function u. It satisfies

∆v(x, k) + (∇v(x, k))2 = −k2c(x), x ∈ Ω, k ∈ [k, k]. (5.3)

Defining

q(x, k) =
∂v(x, k)

∂k
, x ∈ Ω, k ∈ [k, k]

and differentiating (5.3) with respect to k, we obtain that the function q(x, k) satisfies

k

2
∆q(x, k) + k∇q(x, k) ·

− k∫
k

∇q(x, s)s+∇V (x)


= −

k∫
k

∆q(x, s)s+ ∆V (x) +

− k∫
k

∇q(x, s)s+∇V (x)


2

,x ∈ Ω, k ∈ [k, k] (5.4)

and that, due to (5.2), q(x, k) satisfies the following Dirichlet boundary condition

q(x, k) =
∂ku(x, k)

u(x, k)
x ∈ ∂Ω. (5.5)

The function V (x) is named the tail function.

5.1.1 The initial approximation V0(x) for the tail function

Solving Problem 5.1 is somewhat equivalent to finding the function q(x, k), x ∈ Ω. There-
fore, solving (5.4)–(5.5) is crucial. However, the vector function ∇V (x) is involved in
equation (5.4), where the tail function V (x) is still unknown. In this subsection, follow-
ing [32], we provide an initial approximation for ∇V (x) and denote this approximation
∇V0(x). Thus, ∇V0(x) is an important ingredient of the global convergence theorem
of [32]. We note that computing ∇V0(x) does not require any a priori knowledge of a
good initial guess for the true solution of Problem 5.1. This is unlike conventional locally
convergent numerical methods.

Recall that the tail function is defined as V (x) = v(x, k). Assuming that numbers k
and k are sufficiently large, dropping the term O(1/k) in (4.1) and using (5.2), we obtain

V (x) ≈ lnA(x) + ikτ(x) = ikτ(x)

(
1 +

lnA(x)

ikτ(x)

)
≈ ikτ(x), x ∈ Ω.

Therefore, the function q(x, k) can be approximated as

q(x, k) = ∂kv(x, k) |k=k≈ iτ(x) ≈ V (x)

k
, x ∈ Ω. (5.6)

Substituting (5.6) into (5.4) and setting in (5.4) k = k, we obtain

1

2
∆V (x) + (∇V (x))2 = ∆V (x) + (∇V (x))2 , x ∈ Ω,
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which yields
∆V (x) = 0, x ∈ Ω.

Note that only ∇V (x) and ∆V (x) = div(∇V (x)) are involved in equation (5.4). Hence,
rather that instead finding V (x), we compute directly the vector function ∇V (x) in our
numerical implementation. To do this, we solve the following problem{

∆(∇V (x)) = 0 in Ω,

∇V (x) = R(x, k) on ∂Ω,
(5.7)

where R(x, k) is a certain vector function, which is known approximately. We refer to [32,
Section 7.4] for all the details about the approximation of R(x, k) on the entire boundary
∂Ω using, in particular, (5.1) and (6.3). We consider the solution of problem (5.7) as
the first approximation ∇V0 of the vector function ∇V . We mention once again that the
globally convergent numerical method outlined in this Section 5, including the approxi-
mation of [32, Section 7.4] for the vector function R(x, k), has worked quite well for the
microwave experimental data, see references in Section 1.

5.1.2 The globally convergent algorithm

For N ∈ N, consider the uniform partition

kN = k < kN−1 < · · · < k1 < k0 = k (5.8)

of the interval [k, k] with the step size h = ki−1 − ki, 1 ≤ i ≤ N. Although this partition
is different from the one in (4.9), we keep the same notation here for brevity. For each
n ∈ {1, . . . , N}, denote

qn(x) = q(x, kn), un(x) = u(x, kn), x ∈ Ω. (5.9)

Recall that the first approximation ∇V0 for the gradient ∇V of the tail function is con-
structed in Section 5.1.1. We assume, inductively, that ∇Vn−1 is known, which implies
that ∆Vn−1 = div (∇Vn−1) is known as well, where n ∈ {1, . . . , N}. By (5.8) and (5.9)
the discrete, with respect to k, form of equation (5.4) is

kn∆qn(x)− 2kn∇qn(x) · ∇Qn−1(x) + 2kn∇qn · ∇Vn−1(x)

= −2∆Qn−1(x) + 2∆Vn−1(x) + 2 (−∇Qn−1(x) +∇Vn−1(x))2 , x ∈ Ω, (5.10)

where

Qn−1(x) = h

n−1∑
i=0

qn(x), x ∈ Ω. (5.11)

Here, we approximate the integral

∫ k

k

q(x, s)ds by Qn−1(x) instead of Qn(x) to remove

the nonlinearity of (5.4). The resulting error is O(h), as h→ 0. The boundary condition
for the function qn(x) is

qn(x) =
g(x, kn)− g(x, kn+1)

hg(x, kn)
, x ∈ ∂Ω. (5.12)
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Remark 5.1. Thus, (5.10)–(5.12) is the Dirichlet boundary value problem for an elliptic
equation (5.10). In [32], for the theoretical purpose, we make one more approximation
for equation (5.10) via replacing the term 2kn∇qn · ∇Vn−1(x) with the term 2kn∇qn−1 ·
∇Vn−1(x). The resulting error is still O(h) as h→ 0. In this paper, although we skip this
approximation and use (5.10) to calculate the function qn, the numerical results are still
accurate, see Section 6.

Remark 5.2. Although the derivative of the data with respect to k is calculated in (5.12)
via the finite difference, we have not observed any instabilities in our computations, prob-
ably because the step size h was not exceedingly small. The same is true for all above cited
publications about the globally convergent numerical methods of this group.

In short, the algorithm is based on the following iterative process: (1) given ∇Vn−1,
∆Vn−1, solve the Dirichlet boundary value problem (5.10)–(5.12); (2) use (5.3) at k := k
to calculate the function cn(x) via qn(x),∇Vn−1(x) and ∆Vn−1(x); (3) update ∇Vn(x) and
∆Vn(x) by solving the Lippmann-Schwinger equation (2.11) with β(x) := cn(x) − 1. To
increase the stability of this iterative process, we arrange internal iterations inside steps
(1)-(3). The whole algorithm is summarized as follows, see [32] for more details:

Algorithm 1 Globally convergent algorithm

1: Given ∇V0, set q0 := 0
2: for n = 1, 2, . . . , N do
3: Set qn,0 := qn−1 and ∇Vn,0 := ∇Vn−1

4: for i = 1, 2, . . . , IN do
5: Find qn,i by solving the elliptic boundary value problem (5.10)–(5.12).
6: Update ∇vn,i := −(h∇qn,i + h

∑n−1
j=0 ∇qj) +∇Vn,i−1 in Ω.

7: Update cn,i via (5.3).
8: Find un,i(x, k) by solving the Lippmann-Schwinger equation (2.11) in Ω with
β(x) := cn,i(x)− 1.

9: Update ∇Vn,i(x) := ∇un,i(x, k)/un,i(x, k).
10: end for
11: Update qn := qn,IN , cn := cn,IN and ∇Vn := ∇Vn,IN .
12: end for
13: Choose c by the-criterion-of-choice

Remark 5.3. The stopping rule for the iterative loops in Algorithm 1 is presented in [32,
33, 40, 41].

6 Numerical studies

6.1 Summary of our method for solving the PCISP

In this section, we summarize the whole procedure of the reconstruction of the coefficient
c(x) from the knowledge of |usc(x, k)|, x ∈ Pmeas and k ∈ [k, k] as follows:



18

Algorithm 2 Globally convergent algorithm for the phaseless inverse scattering problem

1: For each point x in Pmeas find numbers τ (x) and A (x) as described in section 4. Next,
approximate the function usc (x, k) via (4.13) for x ∈ Pmeas, k ∈

[
k, k
]
, where

[
k, k
]

is the “shifted” interval of wave numbers as in Remark 4.3.
2: Propagate the reconstructed usc(x, k) from Pmeas to the plane Pprop, see Section 6.2.

The plane Pprop is closer to the targets than Pmeas.
3: Consider the square Γ ⊂ ∂Ω in (6.2), which is a part of the propagated plane Pprop,

where Ω is the domain of our interest containing all targets. Assign the data on ∂Ω
as in (6.3).

4: Having approximated the function u(x, k) on ∂Ω as in (6.3), find c (x) by Algorithm
1.

6.2 Data propagation and completion

The data propagation is a procedure which enables us to “move” the data to a plane
which is closer to the target than the original measurement plane. Thus, we “propagate”
the reconstructed function usc in (4.13) from the square Pmeas ⊂ P to Pprop. Here Pmeas is
the square (2.7) on the measurement plane P = {x : x3 = R} and Pprop is a propagated
plane which is closer to the targets of our interest. This data propagation process has been
rigorously justified in [40]. By our experience in the previous works [33,40,41], this process
enables one not only to propagate the scattered wave but also to significantly decrease the
amount of noise in the data. Moreover, unlike the measured data, the propagated data
focuses more at the x1, x2 positions of the targets. We briefly outline the data propagation
method here.

Let the number R′ ∈ (0, R) . Assume that the domain Ω ⊂ {x3 ∈ (0, R′)}. So, we want
to propagate the function usc (x, k) given in (4.13) for k ∈ [k, k] from Pmeas to the plane
Pprop = {x3 = R′} . For any pair of real numbers kx1 , kx2 , define

ûsc(kx1 , kx2 , k) =
1

2π

∫
R2

usc(x1, x2, R) exp(i(kx1x1 + kx2x2))dx1dx2.

Here, we have extended usc(x, k) by zero for x = (x1, x2, R) 6∈ Pmeas. Then it was proved
in [40] that the propagated wave field usc(x, k) for 0 < R′ < R is given by

usc(x, k) =
1

2π

∫
{k2x1+k2x2<k

2}

ûsc(kx1 , kx2 , k) exp(−i(kx1x1 + kx2x2 − kx3(R′ −R)))dkx1dkx2 ,

(6.1)

where x = (x1, x2, R
′), kx3 = (k2− k2

x1
− k2

x2
)
1
2 and k ∈

[
k, k
]
. We use the same square on

the plane Pprop as in Pmeas (see (2.7)) and we do not count values of the function usc(x, k)
in (6.1) outside of this square. Thus, we denote that square on Pprop as

Γ = {x : |x1| < b, |x2| < b, x3 = R′} . (6.2)

We assume that Γ ⊂ ∂Ω.
The data for our globally convergent algorithm are u(x, k)|

∂Ω×[k′,k
′
]

[32]. Therefore,

we need to complement the data on ∂Ω \ Γ as it was done in [32]. We are doing so
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heuristically by simply setting usc(x, k) = 0 for x ∈ ∂Ω \ Γ. In other words, the input
u(x, k) |∂Ω:= g(x, k) for the globally convergent numerical method of [32] described above
is given by

g(x, k) =

{
usc(x, k) + exp(ikx3), x ∈ Γ, k ∈ [k, k],

exp(ikx3), x ∈ ∂Ω \ Γ, k ∈ [k, k],
(6.3)

see Remark 4.3 for [k, k].

Remark 6.1. It was shown in subsections 7.6 and 7.7 of [32] that in the case when
the correct computationally simulated data are assigned on the entire boundary ∂Ω, the
computational result is about the same as for the case when the boundary data given on a
part of the boundary are complemented as in (6.3). Also, it was demonstrated in all our
above cited works on experimental data that (6.3) works well.

6.3 Some details of numerical experiments

Our numerical studies are conducted for a realistic range of parameters which we have
extensively discussed with Professor Vasily Astratov from Center for Optoelectronics and
Optical Communications of the University of North Carolina at Charlotte.

In at least one experimental arrangement one wants to image dielectric balls whose
diameters are about 5µm. These balls are called “microspheres”. In our computations, the
measurement plane is about 25µm away from the domain Ω where these microspheres are
located. The size of the measurement square Pmeas is 100µm× 100µm. The wavelengths
of light λ ∈ [738, 785]nm = [0.738, 0.785]µm.

To make variables dimensionless, we consider the change of variables x′ = x/10µm
while leaving the same notations for brevity. Then the dimensionless wave number
k = 20π/λ′, where λ′ is the dimensionless wavelength. Hence, we obtain the interval
for the dimensionless k ∈ [80, 85] = [20π/0.785, 20π/0.738] . We then “shift” the interval
of wavelength to [20.4, 21] as in Remark 4.3 to make the whole procedure less computa-
tionally expensive. More precisely, we consider the following setup:

(a) The scattering balls are located near the x1x2−plane and their diameter is 0.5.

(b) The domain Ω = (−2.5, 2.5)× (−2.5, 2.5)× (−4, 1).

(c) The measurement square is Pmeas = {x : |x1|, |x2| ≤ 5, x3 = 2.5}.

(d) The propagated plane in Step 2 in Algorithm 2 is

Pprop = {x = (x1, x2, x3) : |x1|, |x2| ≤ 5, x3 = 1} .

Then, we choose Γ to be a subset of Pprop as

Γ = {x = (x1, x2, x3) : |x1|, |x2| ≤ 2.5, x3 = 1}.

The main reason for working with Γ instead of Pprop is that the data on Pprop \ Γ are
small and do not contribute the inversion process. Furthermore, this choice leads to a
smaller computational domain Ω. Thus, in notations of Section 6.2, R = 2 and R′ = 1.
We had 100× 100 uniform grid {xn} covering the square Pmeas. Functions A and τ were
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reconstructed at these grid points. We have chosen the regularization parameter ε = 0.03
in (4.11) by trial and error. Thus, we have obtained numbers A (xn) and τ (xn) .These
numbers were reconstructed from noisy data. For k ∈ [80, 85] the 5% random noise was
introduced as:

fnoise(x, k) = f(x, k) + 5%‖f‖L2(Pmeas×[k,k])rand(x,k)/‖rand‖L2(Pmeas×[k,k])

for x ∈ Pmeas, k ∈ [k, k] where rand(x,k) is a random number in (0, 1).

6.4 Numerical results

To make our spherical inclusions to be smoothly embedded in the background medium,
we consider the following construction. Let B(x0, r) be the ball of the radius r centered
at the point x0 ∈ R3. Define the function χB(x0,r)(x),

χB(x0,r)(x) =

{
exp(1− r2/(r2 − |x− x0|2)) x ∈ B(x0, r)

0 x ∈ R3 \B(x0, r).

Hence, the function χB(x0,r) ∈ C
∞(R3) and its support is B(x0, r). We present below the

following three cases of the numerical reconstruction of the functions c(x):

1. One inclusion: c(x) = 1 + χB(x0,r) where r = 0.25 and x0 = (0, 0, 0.25).

2. Two inclusions, which are symmetric with respect to the plane {x1 = 0}: c(x) =
1+χB(x(1),r)+χB(x(2),r) where r = 0.25, x(1) = (−0.5, 0, 0.25) and x(2) = (0.5, 0, 0.25).

3. Two inclusions which are non-symmetric with respect to the plane {x2 = 0} but
symmetric with respect to the plane {x1 = 0}: c(x) = 1+χB(x(3),r) +χB(x(4),r) where

r = 0.25, x(3) = (0.5, 0.5, 0.25) and x(4) = (−0.5,−0.25, 0.25).

Here, an inclusion means a connected component of the support of the function c(x)−1.
In labels for Figures 4–6 c∗ (x) and ccomp (x) mean the exact and computed coefficients
c(x), respectively. We display in these figures:

(a) A 2D cross-sectional view of the true inclusions through their center by a plane
which is orthogonal to the x1, x2−plane.

(b) A 3D view of the true inclusions by isosurfaces.

(c) A 2D cross-sectional view of the reconstructed inclusions on the same plane as in
(a).

(d) A 3D view of the reconstructed inclusions by isosurfaces.
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(a) Exact profile (cross-sectional view) (b) Exact profile (3D view)

(c) Reconstruction (cross-sectional view) (d) Reconstruction (3D view)

Figure 4: Reconstruction results for the case of one spherical inclusion: the above item 1.
The maximal value of c∗ (x) in this inclusion is 2. The maximal value of ccomp (x) in this
inclusion is 2.16. Hence, the error in computing this value is 8%

7 Summary

In this paper, we have developed a numerical method for solving a 3D phaseless inverse
scattering problem. Unlike the previous work [20] of this group, where overdetermined
data were used and a linearization of the travel time information was applied, we work
here with the data generated by a single measurement event using a single direction of the
incident plane wave and an interval of frequencies. Our procedure consists of two stages
and it does not use any linearization. On the first stage we reconstruct the first term of
the asymptotic expansion at k → ∞ of the function usc (x, k) for x ∈Pmeas. As a result,
we obtain a phased coefficient inverse scattering problem.

On the second stage, we solve the latter problem by the globally convergent numerical
method of [32]. Our results demonstrate a good reconstruction accuracy of locations
of abnormalities. In addition, the relative errors in abnormality/background contrasts,
which are the maximal values of the computed coefficients ccomp (x) of abnormalities,
do not exceed 8% in all cases. Given a significant complexity of the problem under
consideration and 5% random noise in the data, we consider this as a quite accurate
result.

As to the theoretical part, we prove here uniqueness Theorem 3.2 which claims that
the first term of the asymptotic expansion at k → ∞ of the function usc (x, k) can be
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(a) Exact profile (cross-sectional view) (b) Exact profile (3D view)

(c) Reconstruction (cross-sectional view) (d) Reconstruction (3D view)

Figure 5: Reconstruction results for two spherical inclusions: the above item 2. The
maximal value of c∗(x) in both inclusions are 2. Maximal value of the computed ccomp(x)
is 1.95 in both inclusions. Hence, the error in computing this value is 2.5%

uniquely reconstructed from our phaseless data.

8 Appendix - The full Maxwell’s equations and the

scalar 3D Helmholtz equation

In this section we present some numerical simulations, which aim to show that, under
some assumptions, the solution of the scalar 3D Helmholtz equation can be used to ap-
proximate such a component of the electric field satisfying the Maxwell’s equations, which
is originally incident upon the medium. We consider two cases here: the backscatter data
and the forward scatter data.

For the backscatter data, we want to verify the use of the Helmholtz equation in our
paper [32] as well as in our works on experimental microwave data [33,40,41]. Therefore,
we follow the same setup as in [32]. As to the forward scatter data, we test them to verify
the model problem studied in this paper.

Assume that the scattering objects are isotropic, non-magnetic and that they are
characterized by the dielectric constant c(x), which is a bounded real-valued function
satisfying

c(x) ≥ 1 for all x ∈ R3 and c(x) = 1 for all x ∈ R3 \ Ω.
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(a) Exact profile (cross-sectional view) (b) Exact profile (3D view)

(c) Reconstruction (cross-sectional view) (d) Reconstruction (3D view)

Figure 6: Reconstruction results for two non symmetric spherical inclusions: the above
item 3. The maximal value of c∗(x) in both inclusions is 2. The maximal value of the
computed coefficient ccomp (x) is 1.91 and 2.16 in the left and right inclusions respectively.
Hence, the error in computing this value is 4.5% and 8% respectively.

Let E be the electric field. The scattering of light in the frequency domain can be described
by the Maxwell’s equations for the electric field as follows:

∇×∇× E− k2c(x)E = 0, x ∈ R3, (8.1)

E(x, k) = Einc(x, k) + Esc(x, k), (8.2)

lim
|x|→∞

|x| (∇× Esc × x̂− ikEsc) = 0, x̂ = x/|x|. (8.3)

The total electric field E is the sum of the scattered field Esc = (Esc
1 , E

sc
2 , E

sc
3 ) and the

incident field Einc. We note that the scattered field Esc satisfies the Silver-Muller radiation
condition (8.3), which guarantees that it is an outgoing wave.

We now consider the scattering problem for the scalar Helmholtz equation as in [32],
where the incident wave is a plane wave propagating along the z−direction

∆u+ k2c(x)u = 0, x ∈ R3, (8.4)

u = eikz + usc, (8.5)

lim
r→∞

r (∂ru
sc − ikusc) = 0, r = |x|. (8.6)

The measurement square for the backscatter data is {x : |x1| , |x2| ≤ 5, x3 = −10},
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while the face of the scatterer is at {z = 0}. For the forward scatter data, we measure at
the same square Pmeas as in Section 6.3: Pmeas = {x : |x1|, |x2| ≤ 5, x3 = 2.5}.

We observed in our numerical simulation that if the incident field in (8.1)–(8.3)
Einc(x, k) = (0, 1, 0)eikx3 , then the second component of the electric scattered field Esc

2 on
the measurement square can be well-approximated by the scattered field of the Helmholtz
problem usc divided by a scalar multiplier d(k), defined by

d(k) =
max(|usc(x, k)|)
max(|Esc

2 (x, k)|)
,

where the maximal values are taken on the measurement square.
The observation above means that the experimental scattering data studied in [32,41],

which are supposed to be the second component of the electric scattered field, can be
calibrated and approximated by the solution to the scattering problem for the scalar
Helmholtz equation. The solution of Maxwell problem (8.1)–(8.3) and the scalar prob-
lem (8.4)–(8.6) was computed using the numerical solvers developed in [35] and [39],
respectively.

Now we present four numerical examples. In the first two examples (Figures 7 and 8),
we consider the backscatter data and the setup in [32]. More precisely, we consider wave
numbers k = 6.5 and k = 7.5, the measurement square [−5, 5]2 is uniformly discretized by
502 points. To show the fitting of the data in our simulations, we first transform the 50×50
data matrix in a vector of 2500 points (using the command : (colon) in MATLAB). Then
we choose the data points from 1200 to 1300, where the signals of the scattered fields are
the strongest, to present them in Figures 7 and 8. We note that the results are similar for
other measurement points, where the scattered fields are weaker. Figure 7 is dedicated to
the case of a spherical scattering object represented by a smooth function c(x), which is
similar to the model in Section 6.4 except max{c(x)} = 4.5 instead of 2. We consider in
Figure 8 the case of a rectangular scattering object represented by a piecewise constant
function c(x) with jumps across the boundary of the scatterer (c(x) = 4.5 inside the
scatterer).

In Figure 9 and Figure 10 we present the numerical simulations for the setup considered
in Section 6.4. More precisely, we consider the case of one inclusion and the case of two
inclusions there, where wave number k is 20.5 and 21.5. We have 1002 measurement
points and choose to present the points from 4900 to 5100, where scattered fields seem to
be strongest.
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(a) (b)

(c) (d)

Figure 7: The real and imaginary parts of Esc
2 and usc/R at the measurement points from

1200 to 1300. The scattering object is a sphere characterized by a smoothly decaying
function. (a) and (b) are for k = 6.5, (c) and (d) are for k = 7.5.
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