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Abstract

We discuss the pricing and hedging of volatility options in some rough volatility models.
First, we develop efficient Monte Carlo methods and asymptotic approximations for computing
option prices and hedge ratios in models where log-volatility follows a Gaussian Volterra process.
While providing a good fit for European options, these models are unable to reproduce the
VIX option smile observed in the market, and are thus not suitable for VIX products. To
accommodate these, we introduce the class of modulated Volterra processes, and show that
they successfully capture the VIX smile.
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1 Introduction

In the recent years, rough stochastic volatility models in which the trajectories of volatility are less
regular than those of the standard Brownian motion, have gained popularity among academics and
practitioners. As shown in [7, 24], replacing standard Brownian motion by its (rough) fractional
counterpart in volatility models allows to capture and explain crucial phenomena observed both
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in volatility time series and in the implied volatility of option prices. Since then, rough volatility
models have become the go-to models capable of reproducing stylised facts of financial markets and
of providing a unifying theory with implications branching across financial disciplines. A growing
number of research contributions has brought about justifications for this modelling choice, rooting
from market microstructural considerations [18], to short-term calibration of the SPX smile [4, 8, 21,
31], hedging [1, 20, 22] up to its potential (explored in [34]) to provide the sought-after parsimonious
model capable of jointly handling SPX and VIX derivatives; an aim that has been a central driving
factor of research in volatility modelling over the past decade [3, 5, 9, 11, 12, 13, 28, 29, 39].

From a practical perspective a natural question arises: What does the mantra of rough volatility
mean for a trader hedging his positions? Due to the non-Markovian nature of the fractional driver,
hedging under rough volatility poses a delicate challenge making even the very definition of hedging
strategies difficult. In particular, partial differential equations can no longer be used, and simulation
is the only available route so far. Despite the availability of efficient Monte Carlo schemes [10, 32,
38], pricing and model calibration in rough volatility models remain time consuming; this heavy
simulation procedure can be bypassed for affine rough volatility models [1, 19, 25, 27].

We focus here on the pricing and hedging of volatility options in rough volatility models. First,
we show that by focusing on the forward variance instead of the instantaneous volatility, one recovers
the martingale framework and in particular the classical martingale representation property of
option prices. This makes it possible to compute the hedge ratios, and although the model is non-
Markovian, in many cases options can be hedged with a finite number of liquid assets, as in the
classical setting. Our second objective is to assess the performance of rough volatility options for the
calibration of VIX option smiles. We confirm numerically and theoretically the observation of [7]
that lognormal rough volatility models are unable to calibrate VIX smiles because the VIX index
is very close to lognormal in these models. To accommodate the VIX smiles we therefore extend
the class of lognormal models by adding volatility modulation through an independent stochastic
factor in the Volterra integral. The independence of this additional factor preserves part of the
analytical tractability of the lognormal setting, and we are therefore able to develop approximate
option pricing and calibration algorithms based on Fourier transform techniques. Using real VIX
implied volatility data, we show that this new class of models is able to fully capture the skew of
VIX options.

The rest of the paper is structured as follows. In Section 2 we focus on a toy example where
the log volatility follows a Gaussian process, and consider an option written on the instantaneous
volatility. In spite of the absence of any Markovian structure, perfect hedging with a single risky
asset is possible, and the option price is given by the Black-Scholes formula. Armed with this
knowledge, in Section 3, we consider more realistic VIX index options in lognormal volatility models,
and again, show that perfect hedging is possible. Although explicit formulas for option prices are
not available in this case, we propose a very efficient Monte Carlo algorithm, and show that the
Black-Scholes formula still gives a good approximation to the option price. A drawback, however, is
that lognormal volatility models are unable to capture the smile observed in the VIX option market,
so in Section 4 we propose a new class of models to include stochastic volatility modulation, for
which we develop efficient calibration strategies, and test them on real market data.
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2 A toy example: instantaneous forward variance in lognor-
mal volatility models

We first consider here a simple example, namely pricing options on the instantaneous forward vari-
ance in lognormal (rough or not) volatility models, and show that despite the absence of Marko-
vianity for the volatility, pricing reduces to the Black-Scholes framework. We assume that the
instantaneous volatility process is given by

σt = ΞeXt ,

where X is a centered Gaussian process on R under the risk-neutral probability, and Ξ a strictly
positive constant. For all s ≥ 0, let F0

s := σ(Xr, r ≤ s), and Fs := ∩s<tF0
t . The interest rate is

taken to be zero. Fix a time horizon T , let Zt(T ) := E[XT |Ft], so that (Zt(T ))t≥0 is a Gaussian
martingale and thus a process with independent increments [33, Theorem II.4.36]), completely
characterised by the function

c(t) := E[Zt(T )2] = E[E[XT |Ft]2].

If we assume in addition that c(·) is continuous then (Zt(T ))t≥0 is almost surely continuous. Using
the total variance formula, the forward variance can be characterised as

ξt := E[σ2
T |Ft] = Ξ2E[e2XT |Ft] = Ξ2e2E[XT |Ft]+2Var[XT |Ft] = Ξ2 exp

{
2(Zt(T ) + E[X2

T ]− c(t))
}
.

The time-t price of a Call option expiring at T0 < T on the instantaneous forward variance is
given by Pt := E[(ξT0 − K)+|Ft]. Note that (ξt)t≥0 is a continuous lognormal martingale with
E[ξT0

|Ft] = ξt and, by the total variance formula,

Var[log ξT0
|Ft] = 4Var[E[XT |FT0

]|Ft] = 4(c(T0)− c(t)).

In other words, Pt = P (t, ξt), where P is a deterministic function given by

P (t, x) = E
[(
xeY−

1
2 Var(Y ) −K

)+
]
,

and Y a centered Gaussian random variable with variance 4(c(T0) − c(t)). Black-Scholes formula
then yields Pt = ξtN (d1

t )−KN (d2
t ), where N is the standard Normal distribution function, and

d1,2
t =

1
2 log ξt

K ± (c(T0)− c(t))√
c(T0)− c(t)

.

Applying Itô’s formula (ξt is a continuous martingale!) and keeping in mind the martingale property
of the option price, we obtain

dPt = N (d1
t )dξt.

Therefore, the forward variance option may be hedged perfectly by a portfolio containing the
instantaneous variance swap and the risk-free asset. This happens because the forward variance
process is a time-inhomogeneous geometric Brownian motion and therefore a Markov process in
its own filtration. In the rest of this paper we show that perfect hedging with a finite number of
assets is possible for more complex products. For reasons of analytical tractability, we focus on
the class of Gaussian processes which may be represented in the form of integrals with respect to a
finite-dimensional standard Brownian motion, called Volterra processes. These processes allow, in
particular, to easily introduce correlation between stock price and volatility.
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3 Lognormal rough Volterra stochastic volatility models

The previous section was a simple framework and only considered options on the instantaneous
forward variance. We now dive deeper into the topic, and consider, still in the context of lognormal
(rough) volatility models, options on the integrated forward variance, in particular VIX options.
To do so, we consider volatility processes of the form

σt = Ξ(t) exp{Xt} with Xt =

∫ t

0

g(t, s)>dWs, (1)

where W is a d-dimensional standard Brownian motion with respect to the filtration F ≡ (Ft)t∈R,
and g is a kernel satisfying the integrability condition∫ t

0

‖g(t, s)‖2ds <∞, for all t ≥ 0. (2)

The Gaussian process X in (1) is a Gaussian Volterra process. The representation given here is
rather general since it is a particular case of the so-called canonical representation of Gaussian
processes [30, Paragraph VI.2]. Every continuous Gaussian process satisfying certain regularity
assumptions admits such a representation [30, Theorem 4.1]. Here, Ξ(·) is a locally square integrable
deterministic function enabling the exact calibration of the initial variance curve.1 The Mandelbrot-
van Ness formulation [37] of fractional Brownian motion requires the integral to start from −∞
instead of 0. Since the volatility process is taken conditional on the pricing time zero, the two
formulations are in fact equivalent, and Ξ takes into account the past history of the process. The
formulation (1) extends the so-called rough Bergomi model introduced in [7]. The rough Bergomi
model corresponding to a one-dimensional Brownian motion W and a function g of the form

g(t, s) = α(t− s)H− 1
2 , for s ∈ [0, t), with α = 2ν

√
Γ(3/2−H)

Γ(H + 1)Γ(2− 2H)
, (3)

where ν > 0 is the volatility of volatility and H ∈ (0, 1) the Hurst parameter of the fractional
Brownian motion. This kernel g(·) clearly satisfies the integrability condition (2).

Our goal here is to develop the theory and provide numerical algorithms for pricing and hedging
options in generic models of the form (1). Empirical analysis of forward volatility curves with the
aim of choosing the adequate number of factors d and the suitable shapes of the kernel function
g is the topic of our ongoing research. Similarly to the toy example of the previous section, we
introduce the martingale framework by considering the conditional expectation process, which is
given, for any t ≤ u, by

Zt(u) := E[Xu|Ft] =

∫ t

0

g(u, s)>dWs.

Therefore the forward variance ξt(u) := E[σ2
u|Ft] has the explicit martingale dynamics

dξt(u) = 2ξt(u)g(u, t)>dWt, for t ≤ u. (4)

1The exact formulation from [7] uses the Doléans-Dade exponential instead of the simple exponential. The two
expressions are equivalent, as the additional deterministic term can be included in Ξ.
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We are interested here in pricing an option with pay-off at time T given by

f

(
1

Θ

∫ T+Θ

T

ξT (u)du

)
, (5)

for some time horizon Θ. Since the value of the VIX index at time T can be computed via the
continuous-time monitoring formula

VIXT :=

√
1

Θ

∫ T+Θ

T

ξT (u)du, (6)

with Θ being one month, the Call option on the VIX corresponds to f(x) = (
√
x−K)+. The time-t

price of such an option is given by

Pt := E

[
f

(
1

Θ

∫ T+Θ

T

ξT (u)du

)∣∣∣Ft] = F (t, ξt(u)T≤u≤T+Θ),

where F is a deterministic mapping from [0, T ]×H, with H := L2([T, T + Θ]) to R, defined by

F (t, x) := E

[
f

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)]
, (7)

where

Et,T (u) := E
(

2

∫ ·
t

g(u, s)>dWs

)
T

= exp

(
2

∫ T

t

g(u, s)>dWs − 2

∫ T

t

‖g(u, s)‖2ds

)
(8)

is the Doléans-Dade exponential. This representation allows to easily derive the hedging strategy
for such a product, as discussed in the following section.

3.1 Martingale representation and hedging of VIX options

The following theorem provides a martingale representation for the VIX options, which serves as a
basis for the hedging strategy.

Proposition 1. Let the function f be piecewise differentiable with f ′ piecewise continuous and
bounded. Then the option price Pt admits the martingale representation

PT = Pt−2

∫ T

t

∫ T+Θ

T

DxF (s, ξs)(u)ξs(u)g(u, s)>du dWs,

where the Fréchet derivative DxF is given by

DxF (t, x)(v) = E

[
f ′

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)
Et,T (v)

Θ

]
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Proof. Step 1. Let fε ∈ C2(R) be a mollified version of the function f such that f ′ε and f ′′ε are
bounded and continuous, |fε(x)| ≤ |f(x)|+C for all x, f ′ε is bounded uniformly on ε and converges
to f ′ at the points of continuity of f ′ and fε(x) converges to f(x) for all x as ε tends to zero. One
can for example take

fε(x) =

∫
R
f(x+ z)pε(z)dz,

where pε is a family of smooth compactly supported densities converging to the delta function as ε
approaches zero. The first step is to prove the martingale representation for the price of the option
with pay-off fε by applying the infinite-dimensional Itô formula. Let (v, w) ∈ [T, T+Θ]2, and define

Fε(t, x) := E

[
fε

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)]
,

with Et,T (·) defined in (8). For h ∈ H, the mean value theorem implies the existence of θδ ∈ [0, 1]
such that

lim
δ↓0

Fε(t, x+ δh)− Fε(t, x)

δ
= lim

δ↓0
E

[
f ′ε

(
1

Θ

∫ T+Θ

T

(x(u) + θδδh(u))Et,T (u)du

)
1

Θ

∫ T+Θ

T

Et,T (v)h(v)dv

]

=
1

Θ

∫ T+Θ

T

h(v)dvE

[
f ′ε

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)
Et,T (v)

]
,

where we have used the dominated convergence theorem and Fubini’s Theorem. Since the expec-
tation under the integral is bounded, the Fréchet derivative of Fε is then given by

DxFε(t, x)(v) = E

[
f ′ε

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)
Et,T (v)

Θ

]
∈ H.

Moreover, a similar argument shows that it is uniformly continuous in x on [0, T ] × H. Iterating
the procedure, we find the second Fréchet derivative

D2
xxFε(t, x)(v, w) = E

[
f ′′ε

(
1

Θ

∫ T+Θ

T

x(u)Et,T (u)du

)
Et,T (v)Et,T (w)

Θ2

]
∈ L(H,H),

which is also uniformly continuous, where L(H,H) denotes the class of linear operators from H
to H. Finally, for the derivative of Fε with respect to t, we can write

Fε(t+ δ, x)− Fε(t, x)

δ
= −1

δ
E

[
fε

(
1

Θ

∫ T+Θ

T

x(u)XuY ut+δdu

)
− fε

(
1

Θ

∫ T+Θ

T

x(u)XuY ut du

)]
,

with Xu := Et+δ,T (u) and Y ur := Et,r(u). For r ≤ t + δ, Xu and Y ur depend on the increments
of W over disjoint intervals, and so are independent; hence the infinite-dimensional Itô formula [16,
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Part I, Theorem 4.32] with respect to Y , keeping X constant, yields

fε

(
1

Θ

∫ T+Θ

T

x(u)XuY ut+δdu

)
− fε

(
1

Θ

∫ T+Θ

T

x(u)XuY ut du

)

= 2

∫ t+δ

t

f ′ε

(
1

Θ

∫ T+Θ

T

x(u)XuY ur du

)
1

Θ

∫ T+Θ

T

x(v)XvY vr g(v, r)>dvdWr

+
2

Θ2

∫ t+δ

t

f ′′ε

(
1

Θ

∫ T+Θ

T

x(u)XuY ur du

)∫ T+Θ

T

∫ T+Θ

T

x(v)x(w)XvY vr X
wY wr g(v, r)>g(w, r)dvdwdr.

After taking the expectation, the first term disappears due to the independence of X and Y .
Dividing by δ and taking the limit as δ tends to zero, we then obtain, by dominated convergence,

DtFε(t, x) = −2

∫ T+Θ

T

∫ T+Θ

T

x(v)x(w)g(v, t)>g(w, t)D2
xxFε(t, x)(v, w)dvdw.

It follows that

DtFε(t, ξt)dt = −1

2
〈dξt, D2

xxFε(t, x)dξt〉,

as expected from the local martingale property of Fε(t, ξt). Now, applying Itô’s formula, we obtain
a martingale representation for the regularised option price

Fε(T, ξT ) = Fε(t, ξt)−2

∫ T

t

∫ T+Θ

T

DxFε(s, ξs)(u)ξs(u)g(u, s)>du dWs.

Step 2. It remains to pass to the limit as ε tends to zero. By dominated convergence, Fε(T, ξT ) con-
verges to F (T, ξT ) and Fε(t, ξt) to F (t, ξt). For the convergence of the stochastic integral, we apply

also dominated convergence. First, observe that for x 6= 0, the random variable
∫ T+Θ

T
x(u)Et,T (u)

has no atom (Lemma 1 in the appendix). Then, dominated convergence allows us to conclude that
for every t, x and v, limε↓0DxFε(t, x)(v) = DxF (t, x)(v). In addition, this derivative is bounded by
supε,x |f

′
ε(x)|

Θ , which means that the inner integral∫ T+Θ

T

DxFε(s, ξs)(u)ξs(u)g(u, s)>du

converges and admits the following bound:∣∣∣∣∣
∫ T+Θ

T

DxFε(s, ξs)(u)ξs(u)g(u, s)>du

∣∣∣∣∣ ≤
∫ T+Θ

T

supε,x |f ′ε(x)|
Θ

ξs(u)‖g(u, s)‖ds.

This in turn implies that we can use dominated convergence for stochastic integrals (Theorem IV.32
in [40]) to prove the convergence of the outer integral.

3.2 Pricing VIX options by Monte Carlo

3.2.1 Discretisation schemes

From (7), the computation of a forward variance option price in a lognormal stochastic volatility
model reduces to the computation of the expected functional of an integral over a family of correlated
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lognormal random variables. To compute this option price by Monte Carlo, we approximate (7) by
discretising the integral. We shall consider the discretisation grid

Tκ :=

{
tni = T + Θ

(
i

n

)κ}
i=0,...,n

for κ > 0, (9)

and the following two discretisation schemes:

• the rectangle scheme on T1 (with ζni :=
∫ tni+1

tni
x(u)du and ηn(u) := max{tni : tni ≤ u}):

Fn(t, x) := E

[
f

(
1

Θ

n−1∑
i=0

ζni Et,T (tni )

)]
= E

[
f

(
1

Θ

∫ T+Θ

T

x(u)Et,T (ηn(u))du

)]
;

• the trapezoidal scheme on Tκ (with θn(u) :=
tni+1−u
tni+1−tni

and ηn(u) := min{tni : tni > u}):

F̂n(t, x) := E

[
f

(
1

Θ

n−1∑
i=0

∫ tni+1

tni

x(u)(θn(u)Et,T (tni ) + (1− θn(u))Et,T (tni+1))du

)]

= E

[
f

(
1

Θ

∫ T+Θ

T

x(u)(θn(u)Et,T (ηn(u)) + (1− θn(u))Et,T (ηn(u)))du

)]
.

Note that the sequence of random variables (Zi)
n−1
i=0 defined by

Zi := log Et,T (tni ) = 2

∫ T

t

g(tni , s)
>dWs − 2

∫ T

t

‖g(tni , s)‖2ds (10)

forms a Gaussian random vector with mean mi = −2
∫ T
t
‖g(tni , s)‖2ds and covariance matrix

Cij := Cov[Zi, Zj ] = 4

∫ T

t

g(tni , s)
>g(tnj , s)ds.

The following proposition, proved in Appendix A.3, characterises the convergence rate of these schemes.

Proposition 2. Let f be Lipschitz, x(·) bounded, and assume there exist β, c > 0 such that(∫ T

t

‖g(t2, s)− g(t1, s)‖2 ds

)1/2

≤ c(t2 − t1)(t2 − T )β−1, for all T ≤ t1 < t2.

• For the rectangle scheme on T1, |F (t, x)− Fn(t, x)| = O
(

1
n

)
;

• if in addition, for all T ≤ t1 ≤ t2 < t3,(∫ T

t

∥∥∥∥g(t2, s)−
t3 − t2
t3 − t1

g(t1, s)−
t2 − t1
t3 − t1

g(t3, s)

∥∥∥∥2

ds

)1/2

≤ c(t3 − t1)2(t3 − T )β−2,

then for the trapezoidal scheme on Tκ with κ(β + 1) > 2, |F (t, x)− F̂n(t, x)| = O
(

1
n2

)
.
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3.2.2 Control variate

In our model, the squared VIX index VIX2
T := 1

Θ

∫ T+Θ

T
ξT (u)du is an integral over a family of

lognormal random variables. Mimicking Kemna and Vorst [36]’s control variate trick (originally
proposed in the context of Asian options in lognormal models), it is natural to approximate this
integral by the exponential of an integral of a corresponding family of Gaussian random variables:

VIX
2

T := exp

(
1

Θ

∫ T+Θ

T

log ξT (u)du

)
. (11)

The corresponding approximation for the VIX option price, which can be used as a control variate
in the Monte Carlo scheme, is given by

P t := E
[
f
(

VIX
2

T

) ∣∣∣Ft] =: F (t, ξt(u)T≤u≤T+Θ) ,

with F (t, x) := E
[
f
(
eY
)]

, and Y Gaussian with mean mY and variance σ2
Y given by

mY =
1

Θ

∫ T+Θ

T

{
log x(u)− 2

∫ T

t

‖g(u, s)‖2ds

}
du,

σ2
Y =

4

Θ2

∫
[T,T+Θ]2

dudv

∫ T

t

g(u, s)>g(v, s)ds.

For a Call option on VIX, f(x) = (
√
x−K)+, the approximate price is therefore given by

P t = E
[(
e

1
2Y −K

)+
]

= YN

(
log Y

K + 1
8σ

2
Y

σY /2

)
−KN

(
log Y

K −
1
8σ

2
Y

σY /2

)
,

with Y = exp
(

1
2mY +

σ2
Y

8

)
.

3.3 Numerical illustration

Consider the model introduced in (1), together with the characterisation (2), essentially the rough
Bergomi model from [7]. From (4), the dynamics of the forward variance is

dξt(T )

ξt(T )
= 2α(T − t)H− 1

2 dWt, for all 0 ≤ t ≤ T.

Since all the forward variances are driven by the same Brownian motion, it is enough to invest into
a single variance swap to achieve perfect hedging. As an example, consider an option with pay-off

f

(
1

Θ

∫ T+Θ

T

ξT (u)du

)
,

and denote by Ft its price at time t, with Ft = F (t, ξt), with F as in (7). Using the Monte Carlo
method described in Section 3.2, the option price is approximated by

Fn(t, x) = E

[
f

(
1

Θ

n−1∑
i=0

ζni e
Zi

)]

9



in the rectangle discretisation or by

F̂n(t, x) = E

[
f

(
1

Θ

n−1∑
i=0

∫ tni+1

tni

x(u)(θn(u)eZi + (1− θn(u))eZi+1)

)]

in the trapezoidal discretisation, where (Zi)
n−1
i=0 is a Gaussian random vector with mean

mi = −2α2

∫ T

t

|ti − s|2H−1ds = −α2 |ti − T |2H − |ti − t|2H

H

and covariance matrix (Cij)i,j=0,...,n−1, which can be computed as follows: when i < j,

Cij = 4α2

∫ T

t

(ti − s)H−
1
2 (tj − s)H−

1
2 ds

= 4α2

∫ ti−t

0

(tj − ti + s)H−
1
2 sH−

1
2 ds− 4α2

∫ ti−T

0

(tj − ti + s)H−
1
2 sH−

1
2 ds

=
4α2

H + 1
2

(tj − ti)H−
1
2 (ti − t)H+ 1

2 2F1

(
1

2
−H, 1

2
+H,

3

2
+H,− ti − t

tj − ti

)
− 4α2

H + 1
2

(tj − ti)H−
1
2 (ti − T )H+ 1

2 2F1

(
1

2
−H, 1

2
+H,

3

2
+H,− ti − T

tj − ti

)
,

where 2F1 is the Hypergeometric function [26, integral 3.197.8], and when i = j,

Cii = 4α2

∫ T

t

(ti − s)2H−1ds =
2α2

H

[
(ti − t)2H − (ti − T )2H

]
.

The following corollary of Proposition 2 provides the convergence rates of the Monte Carlo scheme.
To simplify notation, we assume that t ≥ 0 for the rest of this section.

Corollary 1. Let f be Lipschitz and assume that x(·) is bounded. In the rough Bergomi model,

• for the rectangle scheme on T1, we have |F (t, x)− Fn(t, x)| = O
(

1
n

)
;

• for the trapezoidal scheme on Tκ (with κ(H + 1) > 2), we have
∣∣∣F (t, x)− F̂n(t, x)

∣∣∣ = O
(

1
n2

)
.

Figures 1 and 2 illustrate the convergence of the Monte Carlo estimator for the VIX option
price. The model parameters are α = 0.2, H = 0.1, flat forward variance with

√
ξ0 = 20%, time to

maturity T = 1 year, and Θ = 0.1. We used 50, 000 paths for all calculations. To decrease variance,
we use the discretised version of the control variate from Section 3.2.2, meaning that the integral
in (11) is replaced with the sum obtained using the corresponding discretisation scheme. This
replacement is done both in the Monte Carlo estimator and in the exact computation, so that the
control variate introduces no additional bias. To choose the discretisation dates for the trapezoidal
scheme, we took κ = 2. Figure 3 plots the implied volatility smiles in the rough Bergomi model for
different parameter values (parameters not mentioned in the graphs are the same as above). The
implied volatility of VIX options is defined assuming that the VIX future is lognormal and using
the model-generated VIX future as initial value. In this model where the volatility is lognormal,
the VIX smile is almost completely flat. This is of course due to the fact that the VIX itself is
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Figure 1: Convergence of the Monte Carlo estimator for the price of a Call option on the VIX with
zero strike. Top left: rectangle scheme. Bottom left: trapezoidal scheme. The right graphs show
the respective errors on a logarithmic scale. When the confidence interval contains zero, only the
upper bound is shown.

almost lognormal in the model, because the averaging interval Θ (one month) over which the VIX
is defined is rather short (in fact, this feature can be used efficiently for approximation purposes,
as in [34]). The actual implied volatility smiles observed in the VIX option market (Figure 4) are
of course not flat and exhibit a pronounced positive skew. This inconsistency, already observed
in [7], shows that while the rough Bergomi model fits accurately index option smiles, it is clearly
not sufficient to calibrate the VIX smile. In the following section we therefore propose an extension
of this model which makes such calibration possible.
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Figure 2: Convergence of the Monte Carlo estimator for the price of a Call option on the VIX with
strike K = 0.1. Top left: rectangle scheme. Bottom left: trapezoidal scheme. The right graphs
show the respective errors in the logarithmic scale. When the confidence interval contains zero,
only the upper bound is shown.
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Figure 3: VIX implied smiles in rough Bergomi under different parameter combinations.
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Figure 4: Actual VIX implied volatility smiles at different dates and for different maturities.
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4 Modulated Volterra stochastic volatility processes

We now propose a new class of rough volatility models, able to capture the specificities of the VIX
implied volatility smile. Specifically, we assume that the instantaneous volatility process satisfies

σt = Ξ(t)eXt , with Xt =

∫ t

0

√
Γsg(t, s)>dWs, (12)

where again Ξ(·) is a deterministic function used for the calibration of the initial forward variance
curve, W a d-dimensional standard Brownian motion with respect to the filtration F ≡ (Ft)t∈R+

, g a

kernel such that
∫ t

0
‖g(t, s)‖2ds is finite for all t ≥ 0, and Γ a time-homogeneous positive conservative

affine process independent of W . This model is reminiscent of Brownian semi-stationary processes,
introduced by Barndorff-Nielsen and Schmiegel [6]. However, the stochastic integral starts here at
time zero, instead of −∞, in order to avoid working with affine processes on the whole real line.
Following [17, Theorem 2.7 and Proposition 9.1], the infinitesimal generator of Γ takes the form

Lf(x) = k(θ − x)
∂f

∂x
(x) +

δ2x

2

∂2f

∂x2
(x) +

∫ ∞
0

{f(x+ z)− f(x)}{m(dz) + xµ(dz)},

where k, θ, δ ≥ 0 and m, µ are positive measures on (0,∞) such that
∫∞

0
(z ∧ 1){µ(dz) + m(dz)} is

finite. For later use, we define the functions

R(u) := −ku+
δ2

2
u2 +

∫ ∞
0

(ezu − 1)µ(dz) and F(u) := kθu+

∫ ∞
0

(ezu − 1)m(dz).

We further assume that the kernel g satisfies g(t, s) = g(t − s) for 0 ≤ s ≤ t, and we let G(t) :=∫ t
0
‖g(s)‖2ds. We next introduce the following technical assumption:

Assumption 1. For a fixed finite time horizon T , there exists A > 0 such that∫ ∞
1

zezA{µ(dz) + m(dz)} <∞ and 2G(T ) + T (0 ∨ R(A)) ≤ A.

This framework yields the following result:

Proposition 3. Under Assumption 1, the ordinary differential equations

∂tψ(t) = 2‖g(t)‖2 + R(ψ(t)) and ∂tφ(t) = F(ψ(t)),

together with initial conditions ψ(0) = φ(0) = 0, have solutions on [0, T ], with 0 ≤ ψ(·) ≤ A and
0 ≤ φ(·) ≤ TF(A), and for 0 ≤ t ≤ u ≤ t+ T ,

E(t,γ)

[
exp

(
2

∫ u

t

‖g(u− s)‖2Γsds

)]
= exp

{
γψ(u− t) + φ(u− t)

}
.

Here and after, we use the shorthand notation E(t,γ) to denote expectation conditional on the
event {Γt = γ}. Likewise, the notation Γ(t,γ) shall mean the process Γ started at γ at time t.
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Proof. We first show existence of solutions. With the function ϕ(t) := ψ(t) − 2G(t), the ODE in
the proposition is equivalent to the following:

∂tϕ(t) = R(ϕ(t) + 2G(t)). (13)

Consider now the modified ODE

∂tu(t) = R((u(t) + 2G(t)) ∧A).

Since the right-hand side is Lipschitz in u, by the Cauchy-Lipschitz theorem, this equation admits
a unique solution, denoted by ϕA(t). Since R(0) = 0, this solution is nonnegative. Moreover, in
view of the convexity of R, it can be bounded from above as follows:

max
0≤t≤T

ϕA(t) ≤ T max
0≤t≤T

R
(
(ϕA(t) + 2G(t)) ∧A

)
≤ T (0 ∨ R(A)).

If T (0 ∨R(A)) + 2G(T ) ≤ A, then this solution coincides on [0, T ] with the solution of the original
equation (13), which therefore exists and is bounded from above.

Let us now prove the formula for the Laplace transform. Consider the process

Ms := exp

{
2

∫ s

t

‖g(u− r)‖2Γ(t,γ)
r dr

}
exp

{
Γ(t,γ)
s ψ(u− s) + φ(u− s)

}
, for t ≤ s ≤ u ≤ T + t.

By Itô’s formula,

dMs

Ms−
= ψ(u− s)dΓcs +

∫ ∞
0

(
ezψ(u−s) − 1

)
J̃Γ(ds× dz),

where Γc denotes the continuous martingale part of Γ, and J̃Γ its compensated jump measure. This
means that M is a local martingale. The process

Zs :=

∫ s

t

ψ(u− r)dΓcr +

∫ s

t

∫ ∞
0

(
ezψ(u−r) − 1

)
J̃Γ(dr × dz),

together with Γ, is a two-dimensional time-inhomogeneous affine process, which satisfies the con-
ditions of [35, Theorem 3.1], so that its stochastic exponential, and therefore the process M , is a
true martingale on [t, u]. Taking expectations conditional on {Γt = γ}, we obtain

exp
{
γψ(u− t) + φ(u− t)

}
= E

[
exp

{
2

∫ u

t

‖g(u− s)‖2Γ(t,γ)
s ds

}]
.

As in Section 2, it is more straightforward to deal with the forward variance ξt(u) := E[σ2
u|Ft]

than with the instantaneous volatility. The following result follows by conditioning (for the first
part) and by an application of Itô’s formula:

Proposition 4. Under Assumption 1, the forward variance process is given by

ξt(u) = ξ0(u) exp

(
2

∫ t

0

√
Γsg(u− s)>dWs + ψ(u− t)Γt + φ(u− t)− ψ(u)Γ0 − φ(u)

)
,

for 0 ≤ t ≤ u ≤ T , and its dynamics reads

dξt(u) = 2ξt(u)
√

Γtg(u− t)>dWt + ξt(u)ψ(u− t)dΓct + ξt−(u)

∫
R

(
eψ(u−t)z − 1

)
J̃Γ(dt× dz).
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Similarly to the Gaussian Volterra case, the process X is non-Markovian, but the forward
variance curve (ξt(u))u≥t together with Γt is Markovian and the current state of the forward variance
curve, which is observable from option prices, and of Γt determines the future dynamics. Mimicking
Section 3, the value at time t of a Call option on the VIX is given by

Pt = E

[
f

(
1

Θ

∫ T+Θ

T

ξT (u)du

)∣∣∣Ft] = FΓ(t,Γt, ξt(u)T≤u≤T+Θ),

with f(x) = (
√
x−K)+, where FΓ is the deterministic map from [0, T ]× R+ ×H to R defined by

FΓ(t, γ, x) := E

[
f

(
1

Θ

∫ T+Θ

T

x(u)Et,T (γ, u)du

)]
, (14)

with

Et,T (γ, u) := exp

(
2

∫ T

t

√
Γ

(t,γ)
s g(u− s)>dWs + ψ(u− T )Γ

(t,γ)
T + φ(u− T )− ψ(u− t)γ − φ(u− t)

)
.

Example 1. Let Γ be a Lévy-driven positive Ornstein-Uhlenbeck process satisfying

dΓt = −λΓtdt+ dLt, with E[euLt ] = exp
(

Ψ(u)t
)
,

so that R(u) = −λu and F(u) = Ψ(u). The assumptions of Proposition 3 are satisfied for any T
such that Ψ(2G(T )) is finite, and in this case,

φ(t) :=

∫ t

0

Ψ (ψ(s)) ds and ψ(t) = 2

∫ t

0

e−λ(t−s)‖g(s)‖2ds.

From Proposition 4, the dynamics of the forward variance process is therefore given by

dξt(u)

ξt(u)
= 2
√

Γtg(u− t)>dWt +

∫
R+

{
exp

(
2z

∫ u

t

e−λ(s−t)‖g(u− s)‖2ds
)
− 1

}
J̃L(dt× dz),

where J̃L is the compensated jump measure of L. Assume for example that L has jump intensity
Λ > 0 and exponential jump size distribution with parameter a > 0, then

Ψ(u) = aΛ

∫ ∞
0

(eux − 1)e−axdx = Λ

(
a

a− u
− 1

)
=

Λu

a− u
, for all u < a.

Example 2. Let Γ be the CIR process with dynamics

dΓt = k(θ − Γt)dt+ δ
√

ΓtdBt,

where B is a standard Brownian motion independent of W . Then, F(u) = kθu and R(u) =

−ku+ δ2

2 u
2. Assumption 1 can be shown to be satisfied for any T such that 4G(T )Tδ2 ≤ 1. Under

this assumption, the dynamics of the forward variance process is given by

dξt(u) = 2ξt(u)
√

Γtg(u− t)>dWt + ξt(u)ψ(u− t)δ
√

ΓtdBt,

where ψ is a deterministic function defined in Proposition 3. In this case, ξ(u) is a Heston process
with uncorrelated stochastic volatility, so that, contrary to the jump case where the skew arises
from downward jumps, we have here a symmetric implied volatility smile.
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Martingale representation and hedging of VIX options The martingale representation
result in the presence of the extra risk source is more involved and we provide it without proof,
assuming sufficient regularity to apply the Itô formula. Since the jump part of Γ has finite variation,
we may apply the simplified version of Itô formula which gives

dPt =

∫ T+Θ

T

DxFΓ(t,Γt, ξt)(u)ξt(u)
{

2
√

Γtg(u− t)>dWt + ψ(u− t)dΓct

}
du+DΓFΓ(t,Γt, ξt)dΓct∫

R

[
FΓ

(
t,Γt− + z, (ξt−e

ψ(u−t)z)T≤u≤T+Θ

)
− FΓ(t,Γt−, ξt−)

]
J̃Γ(dt× dz).

For the hedging portfolio with value Vt = P0 +
∫ T

0

∫ T+Θ

T
ηs(u)dξs(u), we have EQ[(PT − VT )2] =

E
[∫ T

0
d〈P − V 〉t

]
, where

d〈P − V 〉t =

〈
Pt −

∫ T+Θ

T

ηt(u)dξt(u)

〉
t

= 4Γt

{∫ T+Θ

T

[DxFΓ(t,Γt, ξt)(u)− ηt(u)] ξt(u)g(u− t)>du

}2

dt

+
δ2Γt

2

{∫ T+Θ

T

(
DxFΓ(t,Γt, ξt)(u)ξt(u)ψ(u− t) +DΓFΓ(t,Γt, ξt)− ηt(u)ξt(u)ψ(u− t)

)
du

}2

dt

+

∫
R

(m(dz) + Γtµ(dz))
{
FΓ(t,Γt + z, (ξte

ψ(u−t)z)T≤u≤T+Θ)− FΓ(t,Γt, ξt)

−
∫ T+Θ

T

ηt(u)ξt(u)(eψ(u−t)z − 1)du
}2

dt.

For perfect hedging, the following system must therefore hold:

∫ T+Θ

T

(DxFΓ(t,Γt, ξt)(u)− ηt(u))ξt(u)g(u− t)>du = 0,∫ T+Θ

T

(DxFΓ(t,Γt, ξt)(u)ξt(u)ψ(u− t) +DΓFΓ(t,Γt, ξt)− ηt(u)ξt(u)ψ(u− t))du = 0,

FΓ(t,Γt + z, (ξte
ψ(u−t)z)T≤u≤T+Θ)− FΓ(t,Γt, ξt)−

∫ T+Θ

T

ηt(u)ξt(u)(eψ(u−t)z − 1)du = 0,

where the last one is to hold for all z on the support of m + µ. Assume first that the process Γ has
no jump part. Then, only the first two equations must be solved: this is possible whenever one can
find numbers u1, . . . , ud+1 ∈ [T, T + Θ] such that the vectors (g(uj − t)1, . . . , g(uj − t)d, ψ(uj − t))
for j = 1, . . . , d + 1 are linearly independent for all t ∈ [0, T ]. In this case, despite the presence of
stochastic volatility, a VIX option may be perfectly hedged using only forward variance curve: in
the interest rate language, there is no unspanned stochastic volatility.

In the presence of jumps, the hedging problem is more complex. When the support of m + µ
contains only a finite number of points, z1, . . . , zk, perfect hedging is possible whenever one can
find numbers u1, . . . , ud+k+1 ∈ [T, T + Θ] such that the vectors (g(uj − t)1, . . . , g(uj − t)d, ψ(uj −
t), eψ(uj−t)z1 , . . . , eψ(uj−t)zk) are linearly independent for all t ∈ [0, T ]. However, the hedge ratios
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will be unstable when the corresponding matrix is close to being singular. The method may therefore
work when the number of points in the support of m +µ is small, but will be difficult to implement
for a large number of points, and a fortiori when trying to approximate a continuous jump size
distribution with a discrete one.

Example 3. In the CIR case (Example 2), the VIX option price has the martingale representation

dPt =

{
2

∫ T+Θ

T

DxFΓ(t,Γt, ξt)(u)ξt(u)g(u− t)>du

}√
ΓtdWt

+

{
DΓFΓ(t,Γt, ξt) +

∫ T+Θ

T

DxFΓ(t,Γt, ξt)(u)ξt(u)ψ(u− t)du

}
δ
√

ΓtdBt.

On the other hand, considering the continuous version of the variance swap, the dynamics of the
forward variance swap between T and T + Θ is given by

dST,Θt =

{
2

Θ

∫ T+Θ

T

ξt(u)g(u− t)>du

}√
ΓtdWt +

{
δ

Θ

∫ T+Θ

T

ξt(u)ψ(u− t)du

}√
ΓtdBt.

It is thus clear that we can construct a portfolio of two variance swaps with different maturities
which will perfectly offset the risk of a VIX option.

4.1 Pricing VIX options by Monte Carlo

We extend here the numerical analysis from Section 3.2 to the modulated Volterra case, essentially
based on deriving an approximation for (14). The two discretisation schemes are adapted as follows:

• the rectangle scheme (with ζni and ηn(u) defined as before):

Fn(t, γ, x) := E

[
f

(
1

Θ

n−1∑
i=0

ζni Et,T (γ, tni )

)]
= E

[
f

(
1

Θ

∫ T+Θ

T

x(u)Et,T (γ, ηn(u))du

)]
;

• the trapezoidal scheme:

F̂n(t, γ, x) := E

[
f

(
1

Θ

n−1∑
i=0

∫ tni+1

tni

x(u)(θn(u)Et,T (γ, tni ) + (1− θn(u))Et,T (γ, tni+1))du

)]

= E

[
f

(
1

Θ

∫ T+Θ

T

x(u)(θn(u)Et,T (γ, ηn(u)) + (1− θn(u))Et,T (γ, ηn(u)))du

)]
.

Similarly to the previous case, the sequence of random variables (Zi)
n−1
i=0 with

Zi := log Et,T (γ, ti) = 2

∫ T

t

√
Γ

(t,γ)
s g(ti − s)>dWs +mi,

forms a conditionally Gaussian random vector (when conditioning on the trajectory (Γs)t≤s≤T ,
given Γt = γ) with mean mi and covariance Ci,j given by

mi = ψ(ti − T )Γ
(t,γ)
T + φ(ti − T )− ψ(ti − t)γ − φ(ti − t),

Cij = 4

∫ T

t

Γsg(tni − s)>g(tnj − s)ds.
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The Monte Carlo computation is then implemented in two successive steps:

• For the covariances Cij : having simulated a trajectory (Γs)t≤s≤T we compute the conditional
covariances Cij given Γ. When Γ is a Lévy-driven OU process with finite jump intensity, this
simulation does not induce a discretisation error, since the integral describing Ci,j is in fact a
finite sum over the jumps of the Lévy process. Otherwise, we need to simulate a discretised
trajectory of Γ, but this simulation is fast, since Γ is Markovian (see below).

• Simulate the random Gaussian vector (Zi)
n−1
i=0 and compute the option pay-off.

The following proposition extends Proposition 2 and characterises the convergence rate of these
two discretisation schemes, assuming that the simulation of Cij is done without error.

Proposition 5. Let Assumption 1 hold. Assume further that f is Lipschitz, x(·) bounded, and that
there exist c <∞ and β > 0 such that for all T ≤ t1 < t2,(∫ T

t

‖g(t2 − s)− g(t1 − s)‖2ds

)1/2

≤ c(t2 − t1)(t2 − T )β−1.

• If

E
[
exp

(
8

∫ u

t

Γ(t,γ)
s ‖g(u− s)‖2ds

)]
(15)

is bounded uniformly for u ∈ [T, T + Θ], and E[(Γ
(t,γ)
s )2] is bounded uniformly for s ∈ [t, T ],

then on T1, |F (t, x)− Fn(t, x)| = O
(

1
n

)
;

• if, in addition to the above assumptions, E[(Γ
(t,γ)
s )4] is bounded uniformly for s ∈ [t, T ], ‖g‖

is positive and decreasing, and there exists c <∞ such that for all T ≤ t1 ≤ t2 < t3,

‖g(t1 − T )‖2 ≤ c(t1 − T )β−1,

‖g(t1 − T )‖2 − ‖g(t2 − T )‖2 ≤ C(t2 − t1)(t1 − T )β−2,(∫ T

t

‖g(t2 − s)−
t3 − t2
t3 − t1

g(t1 − s)−
t2 − t1
t3 − t1

g(t3 − s)‖2ds

)1/2

≤ c(t3 − t1)2(t3 − T )β−2.

Then on Tκ with κ(β + 1) > 2, |F (t, x)− F̂n(t, x)| = O
(

1
n2

)
.

Remark 1. Similarly to Proposition 3, it can be shown that a sufficient condition for (15) to be
bounded uniformly on u ∈ [T, T + Θ] is that

∫∞
1
zezA{µ(dz) + m(dz)} is finite and, for some A > 0,

8G(T + Θ− t) + (T + Θ− t)(0 ∨ R(A)) < A.

Moreover, the exponential integrability of jump sizes ensures that E[(Γ
(t,γ)
s )4] is uniformly bounded.

4.2 Approximate pricing and control variate

As in the Gaussian Volterra case, we can obtain a simple approximate formula for the VIX option
price by replacing the integral over a family of conditionally lognormal random variables by the
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exponential of the integral of their logarithms. In other words, we replace the squared VIX index (6)
by the approximation (11). From the expression of the forward variance in Proposition 4, we have

log VIX
2

T =
1

Θ

∫ T+Θ

T

log ξt(u)du+ 2

∫ T

t

Γ(t,γ)
s dWs

1

Θ

∫ T+Θ

T

g(u− s)>du

+
Γ

(t,γ)
T

Θ

∫ T+Θ

T

ψ(u− T )du+
1

Θ

∫ T+Θ

T

(φ(u− T )− φ(u− t))du− γ

Θ

∫ T+Θ

T

ψ(u− t)du

The characteristic exponent of log VIX
2

T is therefore given by

Ψ(z) := logE
[
eiz log VIX

2
T

∣∣∣Ft]
=
iz

Θ

∫ T+Θ

T

log ξt(u)du+
iz

Θ

∫ T+Θ

T

(φ(u− T )− φ(u− t))du− izγ

Θ

∫ T+Θ

T

ψ(u− t)du

+ logE

[
exp

(
−2z2

∫ T

t

Γ(t,γ)
s G2(s, T,Θ)ds+

izΓ
(t,γ)
T

Θ

∫ T+Θ

T

ψ(u− T )du

)]
,

where G(s, T,Θ) := 1
Θ

∫ T+Θ

T
g(u−s)du. Similarly to Proposition 3, under appropriate integrability

conditions this expectation can be reduced to ordinary differential equations. In the context of the
Lévy-driven OU process of Example 1, the computation can be done explicitly. In this case,

Γ(t,γ)
s = γe−λ(s−t) +

∫ s

t

e−λ(s−r)dLr,

so that

E

[
exp

(
−2z2

∫ T

t

Γ(t,γ)
s G2(s, T,Θ)ds+

izΓ
(t,γ)
T

Θ

∫ T+Θ

T

ψ(u− T )du

)∣∣∣Ft]

= exp

(
−2z2

∫ T

t

γe−λ(s−t)G2(s, T,Θ)ds+
izγe−λ(T−t)

Θ

∫ T+Θ

T

ψ(u− T )du

)

× E

[
exp

(
−2z2

∫ T

t

dLr

∫ T

r

e−λ(s−r)G2(s, T,Θ)ds+
iz
∫ T
t
e−λ(T−r)dLr

Θ

∫ T+Θ

T

ψ(u− T )du

)]

= exp

(
−2z2

∫ T

t

γe−λ(s−t)G2(s, T,Θ)ds+
izγe−λ(T−t)

Θ

∫ T+Θ

T

ψ(u− T )du

)

× exp

(∫ T

t

Ψ

(
−2z2

∫ T

r

e−λ(s−r)G2(s, T,Θ)ds+
ize−λ(T−r)

Θ

∫ T+Θ

T

ψ(u− T )du

)
dr

)

4.3 Numerical illustration

We consider here the volatility-modulated model (12) with power law kernel g(t, s) = (t − s)H− 1
2 ,

and where Γ is the Lévy-driven OU process from Example 1. Using the Monte Carlo method in
Section 4.1, Proposition 5 holds provided Ψ(8G(T+Θ−t)) <∞, so that the convergence rate is n−1

for the rectangle scheme, and n−2 for the trapezoidal scheme with appropriate discretisation grids.
The driving Lévy process L is a compound Poisson process with one-sided exponential jumps2; the

2Empirical tests suggest that double-sided jumps do not significantly improve the calibration.
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model parameters are λ (mean reversion of the OU process), Λ (jump intensity), a (parameter of
the exponential law), γ (initial value of the OU process), ξ0(T ) (initial forward variance curve),
and H (fixed to the value 0.1 in accordance with the findings in [24]). Figure 5 indicates that
the approximation formula in Section 4.2 is very accurate; compared to Monte Carlo schemes
with 90 approximation steps (Ndisc on the plots), our approximation has the benefit of being
much faster to compute. This convergence is illustrated with the following parameters: maturity
is one month, and (λ,Λ, a, γ, ξ0(T )) = (0.08, 0.71, 6.18, 0.05, 0.013) (which corresponds to a set of
calibrated parameters below).

Figure 5: Accuracy of the approximation formula as compared to the Monte Carlo scheme.

We calibrate the model to VIX options on May 14, 2014, for five maturities, using the approxi-
mate pricing formula of Section 4.2, by minimising the sum of squared differences between market
prices and model prices, using the L-BFGS-B algorithm (Python optimize toolbox).

4.3.1 Slice by slice calibration

In this test each maturity has been calibrated separately, and the forward variance value ξ0(T )
for each maturity has also been calibrated to VIX options. The calibration results are shown in
Figure 6, and the calibrated parameters in Table 1. The error is the square root of the mean square
error of option prices (in USD). The calibration time on a standard PC ranges from 20 to 100
seconds, depending on the starting value of parameters. The calibration quality shows an overall
error below 3 cents, and the parameters appear to be reasonably stable over all maturities.

Maturity (in days) λ Λ a γ ξ0(T ) Error
7 0.08 0.71 6.18 0.05 0.013 0.005
35 0.01 5.82 19.81 0.007 0.014 0.03
63 0.01 6.61 25.41 0.01 0.012 0.16
98 0.01 5.63 28.70 0.001 0.012 0.008
126 0.92 4.97 25.19 0.001 0.011 0.023

Table 1: Calibrated parameter values corresponding to Figure 6.
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Figure 6: Option prices and implied volatilities of VIX options observed in the market calibrated
(slice by slice) from the model with one-sided exponential jumps. From top to bottom, the matu-
rities are 7, 35, 63, 98, and 126 days. The forward variance is calibrated to VIX option prices.

22



4.3.2 Slice by slice calibration with pre-specified forward variance curve

We now consider a joint calibration procedure, where each maturity is calibrated separately, but
the forward variance ξ0(·) is computed from SPX option prices using the VIX replication formula.
Figure 7 shows the results of the calibration, with calibrated parameters in Table 2. The pricing
errors are now slightly larger, yet still acceptable.

Maturity (in days) λ Λ a γ ξ0(T ) Error
7 0.086 0.583 5.410 0.272 0.013 0.013
35 0.008 0.597 9.903 0.088 0.018 0.041
63 0.01 0.08 15.24 0.13 0.022 0.066
98 0.009 0.06 0.028 0.11 0.027 0.095
126 0.922 0.094 0.001 0.149 0.030 0.074

Table 2: Calibrated parameter values corresponding to Figure 7.
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Figure 7: Joint calibration on VIX Smile and term structure of the SPX implied volatility.24



4.3.3 Joint calibration to several maturities

We finally test the calibration over several maturities at the same time. Figure 8 shows the result of
the simultaneous calibration to three maturities (35, 63 and 98 days), where the forward variance
is calibrated separately from SPX option prices as in Table 2. The optimal parameters and errors
are (λ,Λ, a, γ) = (0.29771, 0.915, 9.576, 0.028), and

Maturity (in days) 35 63 98
Error 0.084 0.12 0.15

Figure 8: Option prices and implied volatilities of VIX options, calibrated simultaneously to all
three maturities. The graphs represent the maturities 35, 63 and 98 days.
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A Appendix

A.1 Proof of Corollary 1

We consider α = 1 with no loss of generality, and assume that H ≤ 1
2
, the case where H > 1

2
being similar.

The proof relies on checking the assumptions of Proposition 2. Let us start with the rectangle scheme. On
the one hand, when t2 − T ≥ 2(t2 − t1), then also t1 − T ≤ t2−T

2
, and the following estimate holds true:(∫ T

t

‖g(t2, s)− g(t1, s)‖2ds
)1/2

=

[∫ T

t

(
|t2 − s|H−

1
2 − |t1 − s|H−

1
2

)2

ds

]1/2

≤ C
[∫ T

t

(t2 − t1)2(t1 − s)2H−3ds

]1/2

≤ C(t2 − t1)(t1 − T )H−1 ≤ C21−H(t2 − t1)(t2 − T )H−1.

On the other hand, when t2 − T < 2(t2 − t1), we have the bound(∫ T

t

‖g(t2, s)− g(t1, s)‖2ds
)1/2

≤
(∫ ∞

0

(
(t1 − T + s)H−

1
2 − (t2 − T + s)H−

1
2

)2

ds

)1/2

≤
(∫ ∞

0

(
sH−

1
2 − (t2 − T + s)H−

1
2

)2

ds

)1/2

≤ C(t2 − T )H ≤ 2C(t2 − t1)(t2 − T )H−1.

Consider now the trapezoidal scheme. On the one hand, when t3 − T ≥ 2(t2 − t1), a straightforward
second-order Taylor estimate plus the same argument as above yield the following bound:(∫ T

t

∥∥∥∥g(t2, s)−
t3 − t2
t3 − t1

g(t1, s)−
t2 − t1
t3 − t1

g(t3, s)

∥∥∥∥2

ds

)1/2

=

(∫ T

t

∣∣∣∣(t2 − s)H− 1
2 − t3 − t2

t3 − t1
(t1 − s)H−

1
2 − t2 − t1

t3 − t1
(t3 − s)H−

1
2

∣∣∣∣2 ds
)1/2

≤

(∫ T

t

∣∣∣∣((t1 + t3)/2− s)H−
1
2 − 1

2
(t1 − s)H−

1
2 − 1

2
(t3 − s)H−

1
2

∣∣∣∣2 ds
)1/2

≤ C(t3 − t1)2(t1 − T )H−2 ≤ C22−H(t3 − t1)2(t3 − T )H−2.

When t2 − T < 2(t2 − t1), this expression may be bounded as follows, completing the proof:∫ T

t

∣∣∣∣∣
(
t1 + t3

2
− s
)H− 1

2

− (t1 − s)H−
1
2

2
− (t3 − s)H−

1
2

2

∣∣∣∣∣
2

ds

 1
2

≤ C(t3−T )H ≤ 4C(t3− t1)2(t3−T )H−2.
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A.2 A key lemma

Lemma 1. Let (Zt)0≤t≤1 be an a.s. continuous Gaussian process with mean function m(·) and continuous
covariance function C(·, ·), satisfying

min
u∈[0,1]

∫ 1

0

C(u, v)dv > 0.

Let x ∈ L2([0, 1]) with x ≥ 0. Then the random variable
∫ 1

0
x(u)eZ(u)du has a density p(·) on (0,∞), such

that p(x) ≤ c/x for some finite constant c.

Proof. Let φ be a smooth bounded function with bounded derivative, denote tni := i
n

and ζni :=
∫ tni+1

tni
x(u)du,

and for i = 0, . . . , n− 1, let Zεi = Ztni + εζi, where (ζ0, . . . , ζn−1) is a standard normal random vector inde-
pendent from Z. Then,

E

[
φ

(
n−1∑
i=0

ζni e
Zε

i

)]
=

∫
Rn

φ

(
n−1∑
i=0

ζni e
zi

)
exp

(
− 1

2
(z −mn)>(Cεn)−1(z −mn)

)
(2π)n/2

√
|Cεn|

dz,

with z = (z1, . . . , zn), where Cεn and mn are, respectively, the covariance matrix and the mean vector of the
Gaussian vector (Zε0 , . . . , Z

ε
n−1) (Cεn is clearly nondegenerate for any ε > 0). Making the change of variable

zi 7→ zi + αρi in the above integral, differentiating with respect to α and taking α = 0, we obtain∫
Rn

φ′
(
n−1∑
i=0

ζni e
zi

)
n−1∑
i=0

ζni ρie
zi

exp
(
− 1

2
(z −mn)>(Cεn)−1(z −mn)

)
(2π)n/2

√
|Cεn|

dz

=

∫
Rn

φ

(
n−1∑
i=0

ζni e
zi

)
ρ>(Cεn)−1(z −mn)

(2π)n/2
√
|Cεn|

exp

(
−1

2
(z −mn)>(Cεn)−1(z −mn)

)
dz,

or, in other words,

E

[
φ′(Xε

n)

n−1∑
i=0

ζni ρie
Zε

i

]
= E

[
φ (Xε

n) ρ>(Cεn)−1(Zε −mn)
]

where we define Xε
n :=

∑n−1
i=0 ζ

n
i e

Zε
i . Taking ρ = 1>Cεn, we then have

E

[
φ′(Xε

n)

n−1∑
i=0

ζni [1>Cεn]ie
Zε

i

]
= E

[
φ(Xε

n)1>(Zε −mn)
]
,

and applying the dominated convergence theorem, we finally get

E

[
φ′(Xn)

n−1∑
i=0

ζni [1>Cn]ie
Ztn

i

]
= E

[
φ(Xn)1>(Ztn· −mn)

]
,

where Cn is the covariance matrix of Ztn0 , . . . , Ztnn−1
, even if this matrix is degenerate.

Assuming that |φ| ≤ 1, Jensen’s inequality implies

E

[
φ′(Xn)

n−1∑
i=0

ζni [1>Cn]iZtni

]
≤ E

[
(1>(Ztn· −mn))2

] 1
2

= (1>Cn1)
1
2 .

Now, multiplying both sides by 1
n

and passing to the limit as n tends to infinity yield

E
[
φ′(X)

∫ 1

0

x(u)eZu

∫ 1

0

C(u, v)dvdu

]
≤
∫ 1

0

du

∫ 1

0

dvC(u, v),
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so that

E[Xφ′(X)] ≤
∫ 1

0
du
∫ 1

0
dvC(u, v)

minu
∫ 1

0
C(u, v)dv

.

The passage to the limit is justified by the continuity of the covariance function and that of Z, together with
the dominated convergence theorem and standard bounds on Gaussian processes. Now, for 0 < a < b <∞,
choose φ(x) = 0 for x < a, φ(x) = log(x/a)

log(b/a)
for a ≤ x < b and φ(x) = 1 for b ≤ x. The above bound becomes

P[a < X < b]

log(b/a)
≤
∫ 1

0
du
∫ 1

0
dvC(u, v

minu
∫ 1

0
C(u, v)dv

,

from which the statement of the lemma follows directly.

A.3 Proof of Proposition 2

In the proof, C denotes a constant, not depending on n, which may change from line to line. By the
Lipschitz property of f , using the positivity of the path x(·),

|F (t, x)− Fn(t, x)| ≤ C

Θ

∫ T+Θ

T

x(u)E [|Et,T (u)− Et,T (η(u))|] du, (16)

|F (t, x)− F̂n(t, x)| ≤ C

Θ

∫ T+Θ

T

x(u)E [|Et,T (u)− θn(u)Et,T (ηn(u))− (1− θn(u)) Et,T (ηn(u))|] du. (17)

We now estimate the expectation under the integral sign for the two approximations. For the rectangle
approximation, for u ∈ [tni , t

n
i+1), there exists θ ∈ [0, 1] (possibly random) such that

E (|Et,T (u)− Et,T (tni )|) = E
[
|Zu − Ztni |e

Ztn
i

+θ
(
Zu−Ztn

i

)]
= 2E

[∣∣∣∣∫ T

t

(g(u, s)− g(tni , s))
>dWs

∣∣∣∣ eZtn
i

+θ(Zu−Ztn
i

)
]

+ 2

∣∣∣∣∫ T

t

(‖g(u, s)‖2 − ‖g(tni , s)‖2)ds

∣∣∣∣E [eZtn
i

+θ(Zu−Ztn
i

)
]

≤ 2E
[∫ T

t

‖g(u, s)− g(tni , s)‖2ds
]1/2

E
[
e

2Ztn
i

+2θ(Zu−Ztn
i

)
]1/2

+ 2

∣∣∣∣∫ T

t

(‖g(u, s)‖2 − ‖g(tni , s)‖2)ds

∣∣∣∣E [eZtn
i

+θ(Zu−Ztn
i

)
]

≤ 2E
[∫ T

t

‖g(u, s)− g(tni , s)‖2ds
]1/2

E
(
e2M

)1/2

+ 2

∣∣∣∣∫ T

t

(‖g(u, s)‖2 − ‖g(tni , s)‖2)ds

∣∣∣∣E(eM) ,
with Z defined in (10), where M := maxT≤u≤T+Θ Zu. By classical results on the supremum of Gaussian
processes [2, Section 2.1], M admits all exponential moments, and therefore

E[|Et,T (u)− Et,T (tni )|] ≤ CE
[∫ T

t

‖g(u, s)− g(tni , s)‖2ds
]1/2

+ C

∣∣∣∣∫ T

t

(‖g(u, s)‖2 − ‖g(tni , s)‖2)ds

∣∣∣∣ .
The second term above can be further estimated as∣∣∣∣∫ T

t

(‖g(u, s)‖2 − ‖g(tni , s)‖2)ds

∣∣∣∣ ≤ ∫ T

t

‖g(u, s)− g(tni , s)‖2ds+ 2

∫ T

t

‖g(u, s)− g(tni , s)‖‖g(tni , s)‖ds

≤ c2(u− tni )2(u− T )2β−2 + 2C

[∫ T

t

‖g(u, s)− g(tni , s)‖2ds
] 1

2
[∫ T

t

‖g(tni , s)‖2ds
] 1

2

≤ C(tni+1 − tni )(u− T )β−1,

where in the last estimate we have used Assumption (2). Finally,

E[|Et,T (u)− Et,T (ti)|] ≤ C(tni+1 − tni )(u− T )β−1,
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and the proposition follows from the integrability of (u − T )β−1 on [T, T + Θ] and the boundedness of x.
For the trapezoidal approximation, for u ∈ [tni , t

n
i+1),

E[|Et,T (u)− θn(u)Et,T (tni )− (1− θn(u))Et,T (tni+1)|]

≤ E
[∣∣∣eZu − e

θn(u)Ztn
i

+(1−θn(u))Ztn
i+1

∣∣∣]+ E
[∣∣∣eθn(u)Ztn

i
+(1−θn(u))Ztn

i+1 − θn(u)e
Ztn

i − (1− θn(u))e
Ztn

i+1

∣∣∣]
≤ E

[∣∣∣Zu − θn(u)Ztni − (1− θn(u))Ztni+1

∣∣∣ eθ1Zu+θ2Ztn
i

+θ3Ztn
i+1

]
+ CE

[
e
Ztn

i
+|Ztn

i+1
−Ztn

i
|
∣∣∣Ztni+1

− Ztni
∣∣∣2]

for some (possibly random) θ1, θ2, θ3 ≥ 0 with θ1 + θ2 + θ3 = 1. Cauchy-Schwarz inequality and the
exponential integrability of the supremum of Gaussian processes then yield

E[|Et,T (u)− θn(u)Et,T (tni )− (1− θn(u))Et,T (tni+1)|]

≤ CE
[∣∣∣Zu − θn(u)Ztni − (1− θn(u))Ztni+1

∣∣∣2]1/2

+ CE
[∣∣Zti+1 − Zti

∣∣4]1/2
≤ C

(∫ T

t

‖g(u, s)− θn(u)g(tni , s)− (1− θn(u))g(tni+1, s)‖2ds
)1/2

+ C
∣∣∣ ∫ T

t

(‖g(u, s)‖2 − θn(u)‖g(tni , s)‖2 − (1− θn(u))‖g(tni+1, s)‖2)ds
∣∣∣

+ C

∫ T

t

‖g(tni , s)− g(tni+1, s)‖2ds+ C
∣∣∣ ∫ T

t

(‖g(tni , s)‖2 − ‖g(tni+1, s)‖2)ds
∣∣∣2

≤ C(tni+1 − tni )2(tni+1 − T )β−2 + C(tni+1 − tni )2(tni+1 − T )2β−2

+ C
∣∣∣ ∫ T

t

(‖g(u, s)‖2 − θn(u)‖g(tni , s)‖2 − (1− θn(u))‖g(tni+1, s)‖2)ds
∣∣∣

where, for a centered Gaussian random variable X, E[X4] = 3E[X2]2, and we used the estimate of the first
part of the proof. The remaining term is estimated as∣∣∣‖g(u, s)‖2 − θn(u)‖g(tni , s)‖2 − (1− θn(u))‖g(tni+1, s)‖2

∣∣∣
≤ ‖g(u, s)− θn(u)g(tni , s)− (1− θn(u))g(tni+1, s)‖2

+ 2‖g(u, s)− θn(u)g(tni , s)− (1− θn(u))g(tni+1, s)‖‖θn(u)g(tni , s) + (1− θn(u))g(tni+1, s)‖

+
∣∣∣‖θn(u)g(tni , s) + (1− θn(u))g(tni+1, s)‖2 − θn(u)‖g(tni , s)‖2 − (1− θn(u))‖g(tni+1, s)‖2

∣∣∣.
Each of the three terms can now be estimated similarly to the first part of the proof, leading to the conclusion

E [|Et,T (u)− θn(u)Et,T (tni )− (1− θn(u))Et,T (tni+1)|] ≤ C(tni+1 − tni )2(tni+1 − T )β−2.

Using the boundedness of x(u), estimating the discretisation error now boils down to computing

n∑
i=1

(tni+1 − tni )3(tni+1 − T )H−2.

Letting Θ = 1 without loss of generality, and substituting the expression for tni , this becomes

n∑
i=1

[(
i+ 1

n

)κ
−
(
i

n

)κ]3(
i+ 1

n

)κ(H−2)

≤ C

{
n−κ(H+1)

n∑
i=1

(i+ 1)κ(H+1)−3 + n−κ(H+1)

}
.

When κ(H+1) > 2, the sum in the right-hand side explodes at the rate nκ(H+1)−2, and therefore the entire
right-hand side is bounded by C/n2.
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A.4 Proof of Proposition 5

In the proof, C denotes a constant, not depending on n, which may change from line to line. We drop the
superscript (t, γ) whenever this does not cause confusion. Similarly to the proof of Proposition 2, we need
to estimate the expectation under the integral sign for (16) and (17). We denote

Et,T (u) = exp (Zt,T (u)) := exp
(
Z1
t,T (u) + Z2

t,T (u)
)
,

with

Z1
t,T (u) := 2

∫ T

t

√
Γsg(u− s)>dWs

and
Z2
t,T (u) = ψ(u− T )ΓT + φ(u− T )− ψ(u− t)γ − φ(u− t).

Part i. By Taylor formula,

|Et,T (u)− Et,T (tni )| ≤ |Zt,T (u)− Zt,T (tni )|eZt,T (u) + |Zt,T (u)− Zt,T (tni )|eZt,T (tni ).

Let us focus, for example, on the first term; the second one can be dealt with in a similar manner. First,
by taking a conditional expectation and using the positivity of ψ and φ,

E[|Et,T (u)− Et,T (tni )|] ≤ E
[
|Zt,T (u)− Zt,T (tni )| exp

(
Z1
t,T (u) +

∫ u

T

Γs‖g(u− s)‖2ds
)]

Using the triangle inequality, the Cauchy-Schwarz inequality, and the Itô isometry we then get

E [|Et,T (u)− Et,T (tni )|] ≤
(
E
[
|Z1
t,T (u)− Z1

t,T (tni )|2
]1/2

+ E
[
|Z2
t,T (u)− Z2

t,T (tni )|2
]1/2)

× E
[
exp

(
4

∫ T

t

Γs‖g(u− s)‖2ds+ 2

∫ u

T

Γs‖g(u− s)‖2ds
)]1/2

≤ CE[|Z1
t,T (u)− Z1

t,T (tni )|2]1/2 + CE[|Z2
t,T (u)− Z2

t,T (tni )|2]1/2, (18)

because the last factor is bounded uniformly on u by assumptions of this proposition.
The first summand above satisfies

E[|Z1
t,T (u)− Z1

t,T (tni )|2]
1
2 ≤ 2E

[∫ T

t

Γs‖g(u− s)− g(tni − s)‖2ds
] 1

2

≤ 2
√

E[ max
t≤s≤T

Γs]

√∫ T

t

‖g(u− s)− g(tni − s)‖2ds ≤ C

√∫ T

t

‖g(u− s)− g(tni − s)‖2ds.

The contribution of this term to the global error is of order 1
n

as in Proposition 2. To estimate the second
summand, remark that by Proposition 3, it follows that

|ψ(u− t)− ψ(tni − t)| ≤ C|u− tni |+ 2

∫ u−t

tni −t
‖g(s)‖2ds and |φ(u− t)− φ(tni − t)| ≤ C|u− tni |,

for some constant C <∞, and therefore,

E
[∣∣Z2

t,T (u)− Z2
t,T (tni )

∣∣2] 1
2 ≤ C

(
|u− tni |+

∫ u−t

tni −t
‖g(s)‖2ds+

∫ u−T

tni −T
‖g(s)‖2ds

)
Remark also that∫ tni+1

tni

du

∫ u−T

tni −T
‖g(s)‖2ds =

∫ tni+1

tni

ds(tni+1 − u)‖g(s− T )‖2ds ≤ Θ

n

∫ tni+1

tni

ds‖g(s− T )‖2ds.

Therefore, the statement of the proposition for the rectangle scheme follows from the integrability of ‖g(s)‖2.
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Part ii. For the trapezoidal approximation, by Taylor formula, for u ∈ [tni , t
n
i+1),

|Et,T (u)− θn(u)Et,T (tni )− (1− θn(u))Et,T (tni+1)|

≤
∣∣∣eZu − e

θn(u)Ztn
i

+(1−θn(u))Ztn
i+1

∣∣∣+
∣∣∣eθn(u)Ztn

i
+(1−θn(u))Ztn

i+1 − θn(u)e
Ztn

i − (1− θn(u))e
Ztn

i+1

∣∣∣
≤
(∣∣∣Zu − θn(u)Ztni − (1− θn(u))Ztni+1

∣∣∣+
∣∣Zti+1 − Zti

∣∣2)(eZu + e
Ztn

i + e
Ztn

i+1

)
.

Similarly to the first part of the proof, we can then show using the Cauchy-Schwarz inequality that

E [|Et,T (u)− θn(u)Et,T (tni )− (1− θn(u))Et,T (tni+1)|]

≤ CE
[∣∣∣Z1

u − θn(u)Z1
tni
− (1− θn(u))Z1

tni+1

∣∣∣2]1/2

+ CE
(
|Z1
ti+1
− Z1

ti |
4)1/2 (19)

+ CE
[∣∣∣Z2

u − θn(u)Z2
tni
− (1− θn(u))Z2

tni+1

∣∣∣2]1/2

+ CE
(∣∣Z2

ti+1
− Z2

ti

∣∣4)1/2

(20)

The two terms in (19) are estimated using Itô isometry:

E
[∣∣∣Z1

u − θn(u)Z1
tni
− (1− θn(u))Z1

tni+1

∣∣∣2] 1
2

≤ E
[∫ T

t

Γs ‖g(u− s)− θn(u)g(tni − s)− (1− θnu)g(tni+1 − s)‖2 ds
] 1

2

≤
√

max
t≤s≤T

E[Γs](t
n
i+1 − tni )2(tni+1 − T )β−2,

and similarly

E
(
|Z1
ti+1
− Z1

ti |
4)1/2 ≤ 3

√
max
t≤s≤T

E[Γ2
s]E

[(∫ T

t

‖g(tni+1 − s)− g(tni − s)‖2ds
)2
]1/2

≤ C
√

max
t≤s≤T

E[Γ2
s](t

n
i+1 − tni )2(tni+1 − T )2β−2.

The contribution of these terms to the final error estimate is therefore the same as in Proposition 2.
It remains to estimate the contribution of the terms in (20). From Proposition 3, both φ′′ and φ̄′′0

(introduced in the proof of Proposition 3) are bounded on [0, T ]. Therefore∣∣∣Z2
u − θn(u)Z2

tni
− (1− θn(u))Z2

tni+1

∣∣∣ ≤ C(1 + γ + ΓT )(tni+1 − tni )2

+ ΓT |G(u− T )− θn(u)G(tni − T )− (1− θn(u))G(tni+1 − T )|
+ γ|G(u− t)− θn(u)G(tni − t)− (1− θn(u))G(tni+1 − t)|.

Since ‖g‖ is decreasing, G is concave and for i ≥ 1∫ tni+1

tni

|G(u− T )− θn(u)G(tni − T )− (1− θn(u))G(tni+1 − T )|du

=

∫ tni+1

tni

(∫ u

tni

‖g(s− T )‖2ds− (1− θn(u))

∫ tni+1

tni

‖g(s− T )‖2ds

)
du

=

∫ tni+1

tni

‖g(s− T )‖2
(
tni+1 + tni

2
− s
)
ds

≤ ‖g(tni − T )‖2
∫ tni+1+tni

2

tni

(
tni+1 + tni

2
− s
)
ds− ‖g(tni+1 − T )‖2

∫ tni+1

tn
i+1

+tn
i

2

(
s− tni+1 + tni

2

)
ds

=
(tni+1 − tni )2

8

(
‖g(tni − T )‖2 − ‖g(tni+1 − T )‖2

)
≤ C(tni+1 − tni )3(tni − T )β−2 ≤ C′(tni+1 − tni )3(tni+1 − T )β−2,
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where C′ is a different constant. On the other hand, for i = 0, the same inequality is obtained from the
bound on ‖g‖. Finally,

|Z2
ti+1
− Z2

ti | ≤ C(1 + γ + ΓT )(tni+1 − tni ) + ΓT |G(tni − T )−G(tni+1 − T )|+ γ|G(tni − t)−G(tni+1 − t)|

= C(1 + γ + ΓT )(tni+1 − tni ) + ΓT

∫ tni+1

tni

‖g(s− T )‖2ds+ γ

∫ tni+1

tni

‖g(s− t)‖2ds.

Using the bound on g and the integrability of Γ4
T , treating once again separately the case i = 0, we find

E
(
|Z2
ti+1
− Z2

ti |
4) 1

2 ≤ C(tni+1 − tni )2(tni+1 − T )2β−2,

so that the terms in (20) have the same contribution to the error as the terms in (19), and the proof follows.
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