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Abstract

In recent years, improvements in various image acquisition techniques gave rise to the need for

adaptive processing methods, aimed particularly for large datasets corrupted by noise and deformations.

In this work, we consider datasets of images sampled from a low-dimensional manifold (i.e. an image-

valued manifold), where the images can assume arbitrary planar rotations. To derive an adaptive and

rotation-invariant framework for processing such datasets, we introduce a graph Laplacian (GL)-like

operator over the dataset, termed steerable graph Laplacian. Essentially, the steerable GL extends the

standard GL by accounting for all (infinitely-many) planar rotations of all images. As it turns out,

similarly to the standard GL, a properly normalized steerable GL converges to the Laplace-Beltrami

operator on the low-dimensional manifold. However, the steerable GL admits an improved convergence

rate compared to the GL, where the improved convergence behaves as if the intrinsic dimension of the

underlying manifold is lower by one. Moreover, it is shown that the steerable GL admits eigenfunctions

of the form of Fourier modes (along the orbits of the images’ rotations) multiplied by eigenvectors of

certain matrices, which can be computed efficiently by the FFT. For image datasets corrupted by noise,

we employ a subset of these eigenfunctions to “filter” the dataset via a Fourier-like filtering scheme,

essentially using all images and their rotations simultaneously. We demonstrate our filtering framework

by de-noising simulated single-particle cryo-EM image datasets.

1 Introduction

Developing efficient and accurate processing methods for scientific image datasets is a central research

task, which poses many theoretical and computational challenges. In this work, motivated by certain

experimental imaging and tomography problems [11, 38], we put our focus on the task of reducing the

noise in a large dataset of images, where the in-plane rotation of each image is arbitrary.

To accomplish such a task, it is generally required to have prior knowledge, or a model assumption,

on the dataset at hand. One popular approach is to assume that the data lies on a low-dimensional linear

subspace, whose parameters can then be estimated by the ubiquitous Principal Components Analysis

(PCA). In our setting, where images admit arbitrary planar rotations, it is reasonable to incorporate

all rotations of all images into the PCA procedure, resulting in what is known as “steerable PCA”

(sPCA) [21, 41, 42].

In practice, however, experimental datasets typically admit more complicated non-linear structures.

Therefore, we adopt the more flexible notion that the images were sampled from a low-dimensional

manifold M embedded in a high-dimensional Euclidean space, an assumption that lies at the heart

of many effective machine learning, dimensionality reduction, and signal processing techniques (see for

example [29, 37, 4, 8, 27]).

When processing and analyzing manifold data, a fundamental object of interest is the Laplace-Beltrami

operator ∆M [28], which encodes the geometry and topology of M. Essentially, the Laplace-Beltrami

operator is a second-order differential operator generalizing the classical Laplacian, and can be therefore

considered as accounting for the smoothness of functions onM. In this context, it is a common approach to

leverage the Laplace-Beltrami operator and its discrete counterpart, the graph Laplacian [4], to process

surfaces, images, and general manifold data [24, 36, 39, 23, 10, 18, 25]. Incorporating the Laplacian

in data processing algorithms typically follows one of two approaches. The first is based on solving

an inverse problem which includes a regularization term involving the Laplacian of the estimated data
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coordinates, and the second is based on directly using the Laplacian or its eigenfunctions for filtering

the dataset. We mention that the eigenfunctions of the Laplace-Beltrami operator, which we refer to as

“manifold harmonics”, are analogous to classical Fourier modes as they constitute a basis onM favorable

for expanding smooth functions. Here, we focus on the the second approach, namely on filtering the

dataset by the manifold harmonics. In particular, we assume (as mentioned above) that each point in the

dataset is a high-dimensional point that lies on some manifold M with low intrinsic dimension. Thus,

the coordinate functions of M (which are functions defined on the manifold) can be expanded by the

manifold harmonics of M and filtered by truncating the expansion (see for example [24, 39] for similar

approaches in the contexts of image processing and surface fairing).

As the manifold M is unknown a priori, we do not have access to its Laplace-Beltrami operator

directly. Consequently, it must approximated from the data, which can be achieved through the graph

Laplacian [4, 8]. Specifically, given points {x1, . . . , xN} ⊂ R
D, we consider the fully connected graph

Laplacian, denoted as L ∈ R
N×N and given by

L = D −W, Wi,j = exp
{
−‖xi − xj‖2 /ε

}
, Di,i =

N∑

j=1

Wi,j, (1)

where W is known as the affinity matrix (using the Gaussian kernel parametrized by ε), and D is a

diagonal matrix with {Di,i} on its diagonal. Then, as was shown in [8, 31, 4, 5], the normalized graph

Laplacian L̃ = D−1L converges to the negative-defined Laplace-Beltrami operator ∆M when ε → 0 and

N →∞. In particular, it was shown in [31] that for a smooth function f :M→ R

4

ε

N∑

j=1

L̃i,jf(xj) = ∆Mf(xi) +O(
1

N1/2ε1/2+d/4
) +O(ε), (2)

where d is the intrinsic dimension ofM. Therefore, it is evident that for a fixed parameter ε, the error in

the approximation of ∆M depends directly on the intrinsic dimension d and inversely on the number of

data points N . In this context, it is important to stress that the error does not depend on the dimension

of the embedding space D, but rather only on the intrisic dimension d which is typically much smaller. If

d is large, then we need a large number of samples to achieve high accuracy. In our scenario, as images

admit arbitrary planar rotations, the number of images required to use the approximation (2) may be

prohibitively large as images which differ only by an in-plane rotation may not be encoded as similar

by the affinity matrix W (since the Euclidean distance between them may be large). To overcome this

obstacle, we construct the steerable graph Laplacian, which is conceptually similar to the standard graph

Laplacian, except that it also accounts for all rotations of the images in the dataset. We then propose to

employ the eigenfunctions of this operator to filter our image dataset in a Fourier-like filtering scheme,

allowing for an efficient procedure for mitigating noise.

Numerous works have proposed incorporating group-action invariance (and rotation invariance in par-

ticular) in image processing algorithms (see for example [14, 44, 19, 32, 34, 43] and references therin). The

common approach towards rotation invariance is defining a rotationally-invariant distance for measureing

pairwise affinities and constructiong graph Laplacians. Here, our approach is fundamentally different, as

we consider not only the distance between best matching rotations of image pairs (nor any other type of
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a rotationally-invariant distance), but rather the standard (Euclidean) distance between all rotations of

all pairs of images. This enables us to preserve the geometry of the underlying manifold (in contrast to

various rotation-invariant distances) while making the resulting operator (the steerable graph Laplacian)

invariant to rotations of the images in the dataset. Furthermore, in the particular context of rotationally-

invariant filtering and noise reduction, it is important to mention that classical algorithms such as [40]

are only applicable to one image at a time, whereas our approach builds upon large datasets of images

and exploits all images simultaneously for noise reduction (see Sections 4 and 5).

The contributions of this paper are as follows. First, we introduce and analyze the steerable graph

Laplacian operator, characterize its eigen-decomposition (together with a general family of operators),

and show that it can be diagonalized by Fourier modes multiplied by eigenvectors of certain matrices.

Second, we introduce the normalized steerable graph Laplacian, and demonstrate that it is more accurate

than the standard graph Laplacian in approximating the Laplace-Beltrami operator, in the sense that it

admits a smaller variance error term. Essentially, the improved variance error term can be obtained by

replacing d in equation (2) with d−1. Third, we propose to employ the eigenfunctions of the (normalized)

steerable graph Laplacian for filtering image datasets, where the explicit appearance of Fourier modes

in the form of the eigenfunctions allows for a particularly efficient filtering procedure. To motivate and

justify our approach, we provide a bound on the error incurred by approximating an embedded manifold

by a truncated expansion of its manifold harmonics. We also analyze our approach in the presence of

white Gaussian noise, and argue that in a certain sense our method is robust to the noise, and moreover,

allows us to reduce the amount of noise inversely to the number of images in the dataset.

The paper is organized as follows. Section 2.1 lays down the setting and provides the basic notation and

assumptions. Then, Section 2.2 defines the steerable graph Laplacian and derives some of its properties,

including its eigen-decomposition. Section 2.3 presents the normalized steerable graph Laplacian and

derives its convergence rate to the Laplace-Beltrami operator, while providing its eigen-decomposition

similarly to the preceding section. Section 2.4 numerically corroborates the convergence rate of the

normalized steerable graph Laplacian by a simple toy example, and Section 2.5 proposes and analyzes

a filtering scheme for image datasets based on the eigenfunctions of the (normalized) steerable graph

Laplacian. Section 3 summarizes all relevant algorithms and presents the computational complexities

involved. Section 4 provides an analysis of our approach in the presence of white Gaussian noise, followed

by Section 5 which demonstrates our method for de-noising a simulated cryo-EM image dataset. Lastly,

Section 6 provides some concluding remarks and possible future research directions.

2 Setting and main results

2.1 The setting

Suppose that we have N points {x1, . . . , xN} ⊂ CD sampled from a probability distribution p(x), which

is restricted to a smooth and compact d-dimensional submanifold M without boundary. Furthermore,

each point x ∈ M is associated with an image through a correspondence between points in the ambient

space C
D and images. Specifically, each point x ∈ C

D corresponds to an image I(r, θ) ∈ L2(D), where D
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is the unit disk, by

I(r, θ) =

M∑

m=−M

ℓm∑

ℓ=1

xm,ℓψm,ℓ(r, θ), ψm,ℓ(r, θ) = Rm,ℓ(r)e
ımθ , (3)

where xm,ℓ is the (m, ℓ)’th coordinate of x, and {ψm,ℓ} is an orthogonal basis of L2(D) whose radial part

is {Rm,ℓ}ℓ (orthogonal on [0, 1) w.r.t the measure rdr). In other words, the points xi sampled from the

manifold M are the expansion coefficients of some underlying images in the basis {ψm,ℓ}. We mention

that the points xi do not correspond to the pixels of the images directly since such a representation does

not allow for a natural incorporation of planar rotations. We shall refer to m ∈ Z as the angular index,

and to ℓ ∈ N+ as the radial index, where {ℓm} of (3) are the numbers of radial indices taking part in the

expansion for each angular index m, satisfying
∑M

m=−M ℓm = D. Therefore, the dataset can be organized

as the N ×D matrix

X =




m=−M︷ ︸︸ ︷


x1,(−M,1) . . . x1,(−M,ℓ−M )

x2,(−M,1) . . . x2,(−M,ℓ−M )
...

...

xN,(−M,1) . . . xN,(−M,ℓ−M )




. . .

m=M︷ ︸︸ ︷


x1,(M,1) . . . x1,(M,ℓM )

x2,(M,1) . . . x2,(M,ℓM )
...

...

xN,(M,1) . . . xN,(M,ℓM )







, (4)

where xi,(m,ℓ) denotes the (m, ℓ)’th coordinate (with angular frequency m and radial frequency ℓ) of the

i’th data-point xi.

Representing image datasets via their expansion coefficients obviously does not impose any restrictions,

as any image dataset can be first expanded in basis functions of the form of ψm,ℓ (see Remark 1 below), and

all subsequent analysis can be carried out in the domain of the resulting expansion coefficients
{
xi,(m,ℓ)

}
.

Additionally, our framework can also accommodate for images sampled from (or mapped to) a polar grid

(see Remark 2 below).

Basis functions of the form of ψm,ℓ, which are separable in polar coordinates into radial functions

Rm,ℓ(r) multiplied by Fourier modes eımθ, are called “steerable” [16, 26], as they allow for simple and

efficient rotations. In particular, every ψm,ℓ can be rotated by multiplying it with a complex constant

ψm,ℓ(r, θ + ϕ) = eımϕψm,ℓ(r, θ) (5)

and thus, we can describe image rotation by modulation of the expansion coefficients, with each coeffi-

cient xm,ℓ transformed into xm,ℓe
ımϕ. Consequently, we endow the ambient space C

D with the rotation

operation R : CD × [0, 2π)→ C
D, defined as

R(x, ϕ) , xϕ, xϕm,ℓ = xm,ℓe
ımϕ. (6)

Therefore, if x is the coefficients vector of the image I, then xϕ is the coefficients vector of the image I

rotated by ϕ, obtained by modulating each coefficient appropriately.

Lastly, we assume that the manifold M is rotationally-invariant, that is, it is closed under R, such
that for every x ∈ M and ϕ ∈ [0, 2π) we have that R(x, ϕ) ∈ M. A key observation here, is that this
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property enables us to generate new data-points onM by rotating existing images.

Our goal is to derive adaptive processing methods for our image dataset, allowing for filtering and

de-noising, while making use of the rotation-invariance ofM to provide accurate and efficient algorithms.

Remark 1. Examples for bases of the form of ψm,ℓ include the 2D Prolate Spheroidal Wave Functions

(PSWFs) [35, 20, 30, 22], the Fourier-Bessel functions [42], and data-adaptive steerable principal compo-

nents [21, 41], all of which allow approximating image datasets provided by their samples. We note that

the choice of the particular basis may depend on the application and specific model assumptions.

Remark 2. It is important to mention that our framework can also support functions/images sampled

on a polar grid (for example, see [6] for a Cartesian–polar mapping), and as a special case – 1D periodic

signals. That is, in place of eq. (3), every point x ∈ C
D can be defined via the correspondence

I(rℓ, θ) =

M∑

m=−M

xm,ℓe
ımθ, (7)

where ℓ = 1, . . . , ℓ̂ enumerates over the different radii of I. In the case that ℓ̂ = 1, each point x corresponds

exactly to a 1D periodic signal. Then, if images/functions sampled on a polar grid are provided, xm,ℓ can

be computed efficiently by the FFT of the (equally-spaced) angular samples of I for each radius.

2.2 The steerable graph Laplacian for image-manifolds

To derive a natural basis on the manifold M, we employ graph Laplacian operators which encode the

geometry and topology ofM. To this end, since the manifoldM is rotationally-invariant, we propose to

form a graph Laplacian over the points {x1, . . . , xN} and all of their (infinitely many) rotations.

We start by defining an appropriate function space for constructing our operators. Consider the

domain Γ = {1, ..., N} × S
1, where S

1 is unit circle (parametrized by an angle ϑ ∈ [0, 2π)), and functions

f : Γ → C of the form f(i, ϑ) = fi(ϑ), with {fi}Ni=1 ∈ L2(S1). The space of the functions f is defined as

H = L2(Γ), which is a Hilbert space endowed with the inner product

〈g, f〉H =

N∑

i=1

∫ 2π

0
g∗i (ϑ)fi(ϑ)dϑ (8)

for any f, g ∈ H, where (·)∗ denotes complex-conjugation. Loosely speaking, every f ∈ H can be

considered as a column vector of periodic functions, namely f = [f1(ϑ), . . . , fN (ϑ)]T , assigning a value to

every index i ∈ {1, ..., N} and an angle ϑ.

In order to capture pairwise similarities between different points and rotations in our dataset, we

define the steerable affinity operator W : H → H as

{Wf} (i, ϑ) =
N∑

j=1

∫ 2π

0
Wi,j(ϑ,ϕ)fj(ϕ)dϕ, Wi,j(ϑ,ϕ) = exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
, (9)

where f ∈ H, 1 ≤ i, j ≤ N , {ϑ,ϕ} ∈ [0, 2π), ε is a tunable parameter, and xϑi stands for the rotation of

xi by an angle ϑ (via (6)). Therefore, W can be considered as describing the affinity between any two
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rotations of any two points in our dataset. Note that since {ψm,ℓ} (of (3)) are orthonormal, the distance∥∥∥xϑi − xϕj
∥∥∥
2
agrees with the natural distance (in L2(D)) between the images corresponding to xi and xj,

after rotating them by ϑ and ϕ, respectively.

Before we proceed to define the steerable graph Laplacian over H, we mention that we lift any complex-

valued matrix A ∈ C
N×N to act over H by

{Af} (i, ϑ) =
N∑

j=1

Ai,jfj(ϑ), (10)

for any f ∈ H. Then, we define the (un-normalized) steerable graph Laplacian L : H → H by

Lf = Df −Wf, Di,i =

N∑

j=1

∫ 2π

0
Wi,j(0, α)dα, (11)

whereD is a diagonal matrix with {Di,i}Ni=1 on its diagonal. If we implicitly augment our dataset to include

all planar rotations of all images, then the steerable graph Laplacian can be viewed as the standard graph

Laplacian (equation (1)) constructed from the (infinitely-many) data points of the augmented dataset.

Similarly to the standard graph Laplacian, we show in Appendix B that L admits the quadratic form

〈f, Lf〉H =
1

2

N∑

i,j=1

∫ 2π

0

∫ 2π

0
Wi,j(ϑ,ϕ) |fi(ϑ)− fj(ϕ)|2 dϑdϕ, (12)

which is analogous to the quadratic form of the standard graph Laplacian (see [4]) in the sense that it

accounts for the regularity of the function f over the domain Γ w.r.t the pairwise similarities Wi,j(ϑ,ϕ)

(measured between different data-points and rotations). In other words, the quantity 〈f, Lf〉H penalizes

large differences |fi(ϑ)− fj(ϕ)| particularly when Wi,j(ϑ,ϕ) is large, i.e. when the images corresponding

to xi and xj, rotated by ϑ and ϕ, respectively, are similar. Therefore, 〈f, Lf〉H is expected to be small

for functions f which are smooth (in a certain sense) over Γ with the geometry induced by W .

As we expect the operator L to encode certain geometrical aspects of our dataset, as in the case of

the standard graph Laplacian (see [4, 8]), it is beneficial to investigate its eigen-decomposition. In this

context, it is important to mention that a naive evaluation of W (and consequently L) by discretizing

all rotation angles is generally computationally prohibitive, and moreover, is less accurate then consid-

ering the continuum of all rotation angles. To obtain the eigen-decomposition of L, we demonstrate in

Appendix C that the steerable graph Laplacian L is related to a family of operators, which we term

Linear and Rotationally-Invariant (LRI), that admit eigenfunctions with a convenient analytic form. In

particular, we show that LRI operators (and an extened family of operators which includes L) can be

diagonalized by tensor products between Fourier modes and vectors in C
N , where the vectors can be

computed efficiently by diagonalizing a certain sequence of matrices. In the case of the steerable graph

Laplacian L, this inherently stems from the fact that Wi,j(ϑ,ϕ) is only a function of ϕ − ϑ (following
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immediately from (6) and (9)), and therefore can be expanded in a Fourier series as

Wi,j(ϑ,ϕ) =Wi,j(0, ϕ − ϑ) =
1

2π

∞∑

m=−∞

Ŵ
(m)
i,j e−ım(ϕ−ϑ), Ŵ

(m)
i,j =

∫ 2π

0
Wi,j(0, α)e

ımαdα, (13)

where 1 ≤ i, j ≤ N . We define the matrix Ŵ (m) whose (i, j)’th entry is Ŵ
(m)
i,j , and observe from (13)

that the sequence of matrices
{
Ŵ (m)

}∞

m=−∞
provides a complete characterization of the steerable affinity

operator W (and consequently L). Therefore, the sequence of matrices
{
Ŵ (m)

}∞

m=−∞
also plays a key

role in the evaluation of the eigen-decomposition of L, as detailed by the following theorem.

Theorem 1. The steerable graph Laplacian L admits a sequence of non-negative eigenvalues {λm,1, . . . , λm,N}∞m=−∞,

and a sequence of eigenfunctions {Φm,1, . . . ,Φm,N}∞m=−∞ which are orthogonal and complete in H and

are given by

Φm,k = vm,k · eımϑ, (14)

where vm,k and λm,k are the k’th eigenvector and eigenvalue, respectively, of the matrix

Sm = D − Ŵ (m), (15)

and D and Ŵ (m) are given by (11) and (13), respectively.

The the proof is provided in Appendix D.

We point out that Di,i =
∑N

j=1 Ŵ
(0)
i,j , hence all quantities involving Sm can be computed directly from

the matrices Ŵ (m), which in turn can be approximated (to arbitrary precision) by

Ŵ
(m)
i,j ≈

2π

K

K−1∑

k=0

Wi,j(0, 2πk/K)eı2πmk/K (16)

for a sufficiently large integer K, and evaluated rapidly using the FFT.

Analogously to the separation of variables of the basis functions ψm,ℓ of (3), the basis functions Φm,k

of (14) adopt a separation into products of vectors vm,k ∈ C
N and Fourier modes eımϑ. As such, we

consider Φm,k as “steerable” over H, and hence the term steerable in “steerable graph Laplacian”. Note

that the angular parts of the functions Φm,k (given by Fourier modes) correspond to different rotations

of the images in the dataset, where these rotations are orbits on the manifold M passing through the

original points (images) of the dataset.

2.3 Normalized steerable graph Laplacian and the Laplace-Beltrami operator

In the previous section, we constructed and analyzed the steerable graph Laplacian L, which can be

considered as a generalization of the standard graph Laplacian. In particular, the steerable graph Lapla-

cian inherits many of the favorable properties of the graph Laplacian. Based upon the construction in

Section 2.2, in what follows we consider a certain normalized variant of L which not only provides us with

steerable basis functions adapted to our dataset, but moreover, is shown to approximate the continuous

(negative-defined) Laplace Beltrami operator ∆M.

8



We start by defining the normalized steerable graph Laplacian L̃ : H → H, similarly to the normalized

variant of the standard graph Laplacian (see [8]), as

L̃ = D−1L, (17)

where D−1 is the inverse of the matrix D from (11). Explicitly, we have that L̃f = f −D−1Wf for every

f ∈ H. It then turns out that the normalized steerable graph Laplacian L̃ converges to the negative-

defined Laplace-Beltrami operator ∆M [28] when ε→ 0 and N →∞, while improving on the convergence

rate of the standard (normalized) graph Laplacian (equation (2)), as reported by the next theorem.

Theorem 2. Suppose that
∑

m6=0

∑ℓm
ℓ=1 |xm,ℓ|2 > 0 for all x ∈ M (up to a set of measure zero), and

let {x1, . . . , xN} ∈ M be i.i.d with probability distribution p(x) = 1/Vol {M}, i.e. uniform sampling

distribution. If f :M→ R is a smooth function, and we define g ∈ H s.t. g(i, ϑ) = f(xϑi ) (where xϑi is

given by (6)), then with high probability we have that

4

ε

{
L̃g
}
(i, ϑ) = ∆Mf(xϑi ) +O(

1

N1/2ε1/2+(d−1)/4
) +O(ε). (18)

The proof is provided in Appendix E. Comparing (18) with (2), it is evident that both graph Laplacians

converge to ∆M with the same bias error term of O(ε). However, the steerable graph Laplacian admits

a smaller variance error term (second term from the right in (18)), which depends on d− 1 instead of d.

Note that the improvement in the convergence rate (from d in (2) to d − 1 in (18)) is significant and in

no way depends on the dimension of the ambient space D. The intuition behind this improvement is that

the steerable graph Laplacian takes all rotations of all images into consideration, and so it analytically

accounts for one of the intrinsic dimensions of M, that is, the dimension corresponding to the rotation

R (see (6)). A numerical example demonstrating the improved convergence rate due to Theorem 2 can

be found in Section 2.4.

Remark 3. The condition
∑

m6=0

∑ℓm
ℓ=1 |xm,ℓ|2 > 0 in Theorem 2 essentially requires that the images

associated with the points ofM are not radially-symmetric (i.e. have a non-constant angular part). This

is because the coordinates xm,ℓ of x corresponding to the angular index m = 0 contribute only to the

radial part of the image (see equation (3)). Of course, if the images are all radially-symmetric, then the

steerable graph Laplacian would not provide any improvement over the convergence rate of the standard

graph Laplacian.

In the case that the sampling density p(x) in Theorem 2 is not uniform, we argue in Appendix F that

instead of the Laplace-Beltrmi operator ∆M, the steerable graph Laplacian L̃ approximates the weighted

Laplacian (Fokker-Planck operator) ∆̃M given by

∆̃Mf(x) = ∆Mf(x)− 2
〈∇Mf(x),∇Mp̃(x)〉

p̃(x)
, (19)

where f :M→ R is a smooth function, and p̃ is the rotationally-invariant density

p̃(x) =
1

2π

∫ 2π

0
p(xϕ)dϕ. (20)

9



Additionally, we explain in Appendix F how to normalize the sampling density such that the resulting

operator still converges to the Laplace-Beltrami operator ∆M (analogously to the density-invariant nor-

malization in [8]). We include this procedure as an optional step in the algorithms‘ summery in Section 3.

Next, we evaluate the eigenfunctions and eigenvalues of the normalized steerable graph Laplacian L̃

of (17), where analogously to Theorem 1, the next theorem relates the eigenfunctions and eigenvalues of

L̃ to the matrices Ŵ (m) of (13).

Theorem 3. The normalized steerable graph Laplacian L̃ admits a sequence of non-negative eigenvalues{
λ̃m,1, . . . , λ̃m,N

}∞

m=−∞
, and a sequence of eigenfunctions

{
Φ̃m,1, . . . , Φ̃m,N

}∞

m=−∞
which are complete

in H and are given by

Φ̃m,k = ṽm,k · eımϑ, (21)

where ṽm,k and λ̃m,k are the k’th eigenvector and eigenvalue, respectively, of the matrix

S̃m = I −D−1Ŵ (m), (22)

I is the N ×N identity matrix, and D and Ŵ (m) are given by (11) and (13), respectively.

The proof is provided in Appendix G.

Let us denote the basis
{
Φ̃m,k

}
of (21) by Φ̃. Due to the convergence of L̃ to the Laplace-Beltrami

operator ∆M, we consider Φ̃ as a basis adapted to our dataset through the geometry and topology ofM,

and hence a favorable basis for expanding and filtering our dataset. Since
{
Φ̃m,k

}
are also steerable, we

shall refer to them (with a slight abuse of notation) as steerable manifold harmonics. We illustrate one

of these eigenfunctions in the numerical example of Section 2.4 (where the manifold is the unit sphere).

2.4 Toy example

At this point, we wish to demonstrate our setting as well as the improved convergence rate of the steerable

graph Laplacian by the following example. Consider images of the form

I(r, θ) = x0,1R0,1(r) + x1,1R1,1(r)e
ıθ, (23)

which is a special case of (3), where R0,1, R1,1 are arbitrary radial functions, and M = 1, ℓ−1 = 0, ℓ0 =

1, ℓ1 = 1. Additionally, we take the unit sphere S
2 (d = 2) in R

3, and embed it in C
2 by mapping every

point p = [px, py, pz] ∈ S
2 (px, py, pz are the x, y, z coordinates) to the point x = [x0,1, x1,1] ∈ M via

x0,1 = pz, x1,1 = px + ıpy. (24)

Note that the rotation operation R of (6) in this case is

R(x, ϕ) =
[
1 0

0 eıϕ

][
x0,1

x1,1

]
, (25)
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which is equivalent to rotating the point p ∈ R
3 (corresponding to x) in the xy-plane as




cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1






px

py

pz


 . (26)

Hence, all rotations of all images sampled from the sphere remain on the sphere, and therefore M is

rotationally-invariant (as defined in Section 2.1).

In order to demonstrate numerically the convergence rate of the (normalized) steerable graph Laplacian

to the Laplace-Beltrami operator (as asserted by Theorem 2), we chose a test function f :M→ R

f(x) = Re {x1,1}+ x0,1, (27)

and a testing point x0 = [0, 1] (corresponding to p = [1, 0, 0] on S
2), for which ∆Mf(x0) = −2 (see

example in [31]). We then uniformly sampled N = 2, 000 points {x1, . . . , xN} fromM and approximated

∆Mf by applying the steerable graph Laplacian L̃. Specifically, ∆Mf(x0) was approximated from (18)

and (17) by defining g(i, ϑ) = f(xϑi ) for i = 0, 1, . . . , N and computing

4

ε

{
L̃g
}
(0, 0) =

4

ε


f(x0)−

N∑

j=0

∫ 2π

0
D−1

0,jW0,j(0, ϕ)f(x
ϕ
j )dϕ


 =

4

ε

[
f(x0)−

∑N
j=0

∫ 2π
0 W0,j(0, ϕ)f(x

ϕ
j )dϕ∑N

j=0

∫ 2π
0 W0,j(0, ϕ)dϕ

]

≈ 4

ε

[
f(x0)−

∑N
j=0

∑K−1
k=0 W0,j(0, 2πk/K)f(x

2πk/K
j )

∑N
j=0

∑K−1
k=0 W0,j(0, 2πk/K)

]
, (28)

whereW is given by (9), D is given in (11), and we replaced integration with summation using a sufficiently

large integer K. Note that f(x0) = 1, and by (6) we have that

f(x
2πk/K
j ) = Re

{
xj,(1,1)e

ı2πk/K
}
+ xj,(0,1), (29)

where xj,(m,ℓ) is the (m, ℓ)’th coordinate of the j’th point. Figure 1 depicts the errors of estimating

∆Mf(x0) using the steerable graph Laplacian (equation (28)) versus the standard graph Laplacian (equa-

tions (1) and (2)), for K = 256 and different values of ε. The slope of the log-error in the variance-

dominated region (obtained by a linear curve fit and averaged over 1, 000 experiments) is −0.97 for the

standard graph Laplacian, and −0.74 for the steerable graph Laplacian, agreeing with equation (2) and

Theorem 2, which predict slopes of −1 and −0.75, respectively, when substituting d = 2. Moreover, the

errors due to the steerable and standard graph Laplacians coincide in the region where the errors are

dominated by the bias error term, also in agreement with Theorem 2.

Additionally, we computed the eigenvalues of L̃ as described in Section 2.3, and compared them with

the eigenvalues of the standard (normalized) graph Laplacian. The results can be seen in Figure 2. It

is evident that the eigenvalues in both cases agree with the well-known multiplicities of the spherical

harmonics (the eigenfunctions of the Laplacian on the unit sphere). However, is clear that the eigenvalues

of L̃ admit smaller fluctuations compared to the eigenvalues of the standard (normalized) graph Laplacian,

owing to the improved convergence rate of L̃ to the Laplace-Beltrami operator.
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Figure 1: Errors in approximating ∆Mf(x0) by the standard graph Laplacian (equations (1) and (2))
and by the steerable graph Laplacian (equation (28)) as a function of ε (in log scale). The region to the
left of the dashed vertical line is dominated by the variance error term, whereas the region to the right of
the dashed vertical line is dominated by the bias error term.

Lastly, in Figure 3 we illustrate a single eigenfunction of the steerable graph Laplacian (computed via

Theorem 3), corresponding to the indices m = 3, k = 4, where we used N = 512 points and ε = 1. The

figure highlights the difference between the vector ṽm,k in (21) and the eigenfunction Φ̃m,k itself. While

the former is analogous to an eigenvector of the standard graph Laplacian (in the sense that it is defined

only over the original data points), the latter extends its domain of definition by additionally assigning

values to all rotations of the original data points (images). Note that the behavior of the eigenfunctions

Φ̃m,k over the orbits of the images’ rotations is given by Fourier modes, which is in agreement with the

explicit formula for the spherical harmonics (given by Fourier modes in the azimuthal direction).

2.5 Filtering image datasets by the steerable manifold harmonics

Next, we propose to expand our dataset of images and all of their rotations by a carefully-chosen subset of

the steerable manifold harmonics (the eigenfunctions of the steerable graph Laplacian L̃, see Theorem 3).

Consider the function Fm,ℓ ∈ H given by

Fm,ℓ(i, ϕ) = xϕi,(m,ℓ), (30)

where xϕi,(m,ℓ) stands for the (m, ℓ)’th coordinate of the i’th data-point rotated by ϕ (via (6)). In essence,

the function Fm,ℓ describes the (m, ℓ)’th coordinate of all points in the dataset and all of their rotations.

As Fm,ℓ ∈ H, it can be expanded in the basis Φ̃, and we can write

Fm,ℓ =
∞∑

m
′
=−∞

N∑

k=1

A(m′ ,k),(m,ℓ)Φ̃m′ ,k (31)

for all (m, ℓ) pairs, where A(m′ ,k),(m,ℓ) are some associated expansion coefficients. We propose to “filter”

the functions Fm,ℓ for each pair (m, ℓ) by considering a truncated expansion of the form of (31), with

12
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Figure 2: Eigenvalues of the steerable (left) and standard (right) normalized graph Laplacians, for ε =
1/4 and 2, 000 data points sampled uniformly from the sphere. For the steerable graph Laplacian, the
eigenvalues were sorted in ascending order and enumerated over (m,k) using a single joint index.
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(a) ṽm,k (b) Φ̃m,k = ṽm,k · e
ımϑ

Figure 3: An eigenfunction (real part only) of the steerable graph Laplacian L̃, corresponding to m = 3
and k = 4 (see Theorem 3), using N = 512 points sampled uniformly from the sphere, and ε = 1. On the
left we show the values of the eigenfunction only for the original 512 data points (given by the vector ṽm,k

of (21)), and on the right we show all values of the eigenfunction Φ̃m,k, including the angular part (given
explicitly by Fourier modes eımϑ) assigning values to all rotations of the original data points (visible as
orbits in the shape of horizontal rings covering the sphere).
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expansion coefficients obtained by solving

min
A

∥∥∥∥∥∥
Fm,ℓ −

M
′

∑

m′=−M ′

k
m

′∑

k=1

A(m′ ,k),(m,ℓ)Φ̃m′ ,k

∥∥∥∥∥∥

2

H

, (32)

where A is a matrix of expansion coefficients with rows indexed by (m
′

, k) and columns indexed by (m, ℓ).

As for the numbers of chosen basis functions
{
km′

}
and M

′

, we propose the following natural trun-

cation rule based on a cut-off frequency λc ∈ R+:

km′ = max
{
k : λ̃m′ ,k < λc

}
, (33)

where
{
λ̃m,k

}
are the eigenvalues (sorted in non-decreasing order w.r.t k) of the normalized steerable

graph Laplacian L̃. Then, M
′

is simply the largest
∣∣∣m′

∣∣∣ s.t. km′ > 0. Fundamentally, this truncation

rule can be viewed as the analogue of the classical truncation of Fourier expansions. Figure 4 illustrates

a typical configuration of index-pairs (m
′

, k) resulting from the truncation rule of (33).

We motivate the above-mentioned approach (series expansion and truncation rule) as follows. It is

well known that for smooth and compact manifolds the Laplace-Beltrami operator ∆M admits a sequence

of eigenvalues {µk}∞k=0 and eigenfunctions {φk}∞k=0, which are orthogonal and complete in the class of

square-integrable functions on M, denoted by L2(M). Therefore, every function f ∈ L2(M) can be

expanded as

f(x) =
∞∑

k=1

akφk(x), ak =

∫

M
f(x)φ∗k(x)dx. (34)

In this context, it is possible to consider the coordinates of M in the ambient space, i.e. xm,ℓ for every

x ∈ M, as smooth functions over M, which can be approximated by truncating the above-mentioned

expansion. In particular, we provide the following proposition, which bounds the error in approximating

the coordinates ofM using a truncated series of manifold harmonics.

Proposition 4. Let {φk}∞k=1 and {µk}∞k=1 be the eigenfunctions and eigenvalues (sorted in non-decreasing

order), respectively, of the negative-defined Laplace-Beltrami operator ∆M. Then, we have that

1

Vol {M}

∫

M

∥∥∥∥∥

n∑

k=1

ckφk(x)− x
∥∥∥∥∥

2

2

dx ≤ d

µn+1
, ck =

∫

M
xφ∗k(x)dx, (35)

where Vol {M} is the volume of M, d is the intrinsic dimension of M, and ck ∈ C
D are the expansion

coefficients of x ∈ C
D (i.e. of every coordinate function of the embedded manifold) w.r.t φk.

Proof. The proof follows immediately from combining equation (3.1) in [1] and Proposition 3.1 in [25].

It is important to note that by the properties of ∆M we have that µn→∞ when n → ∞ [28], and

therefore we can get an arbitrarily small approximation error for the coordinates ofM using a sufficiently

large number of manifold harmonics. As we have shown in Section (2.3) that L̃ approximates the Laplace-

Beltrami operator ∆M, we follow the common practice and use the eigenfunctions and eigenvalues of L̃,

i.e.
{
Φ̃m,k

}
and

{
λ̃m,k

}
, as discrete proxies for {φk} and {µk} in (35).
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Next, we proceed to derive a simple and efficient solution to problem (32). By our construction of the

Hilbert space H, one can write (32) explicitly as

min
A





N∑

i=1

∫ 2π

0

∣∣∣∣∣∣
xϕi,(m,ℓ) −

M
′

∑

m′=−M ′

k
m

′∑

k=1

A(m′ ,k),(m,ℓ)Φ̃m′ ,k(i, ϕ)

∣∣∣∣∣∣

2

dϕ




, (36)

which is interpreted as performing regression over the entire dataset of images and all of their planar

rotations using the functions Φ̃m,k restricted to k ∈
{
1, . . . , km′

}
,m ∈

{
−M ′

, . . . ,M
′

}
. Recall that

by (6), we have that

xϕi,(m,ℓ) = xi,(m,ℓ)e
ımϕ, (37)

where xi,(m,ℓ) stands for the (m, ℓ)’th coordinate of the i’th data-point. It turns out that (36) can be

significantly simplified by substituting (37) into (36) together with the steerable form of Φ̃m,ℓ (i.e. (21)),

while making use of the orthogonality of the Fourier modes {eımϕ}∞m=−∞ over [0, 2π). It then immediately

follows that the matrix of coefficients A in the solution of (36) is block-diagonal, where the blocks can be

obtained by solving ordinary least-squares problems. In particular, we have that

A(m′ ,k),(m,ℓ) =




B

(m)
k,ℓ , m = m

′

,

0, m 6= m
′

,
(38)

where B(m) is the m’th block on the diagonal of A, obtained by solving the least-squares system

min
B(m)

∥∥∥X(m) − Ṽ (m)B(m)
∥∥∥
2

F
, (39)

where ‖·‖F stands for the Frobenius norm, and X(m) and Ṽ (m) are given by

X(m) =




x1,(m,1) . . . x1,(m,ℓm)
...

. . .
...

xN,(m,1) . . . xN,(m,ℓm)


 , Ṽ (m) =



| |

ṽm,1 · · · ṽm,km

| |


 , (40)

with ṽm,k given by (21) and (22). We mention that km′ changes with the angular index m
′

, and in

particular, is typically smaller for higher angular frequencies (larger |m|). Therefore, the size of the

blocks B(m) reduces with |m|, as illustrated by Figure 5. Once the coefficients matrices
{
B(m)

}
were

obtained by solving (39), we define

X̂(m) , Ṽ (m)B(m) (41)

as the filtered dataset corresponding to the angular index m.

Lastly, a favorable interpretation of this procedure can be derived as follows. If we denote by Q(m)

a matrix whose columns are orthonormal and span the columns of Ṽ (m), then X̂(m) can be written

equivalently as

X̂(m) = Q(m)
[
Q(m)

]∗
X(m) = C(m)X(m), (42)
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where (·)∗ denotes complex-conjugate and transpose, and we defined the N ×N “filtering” matrices

C(m) , Q(m)
[
Q(m)

]∗
, (43)

which are applied to our dataset for every angular index separately. Essentially, C(m) acts as a “low-

pass filter”, in the sense that it retains only the contribution of steerable manifold harmonics with low

frequencies (i.e. eigenvalues below the threshold λc). In this context, the cut-off frequency λc controls

the rank of C(m), which is equal to km, and the degree to which C(m) suppresses oscillations in the data.

3 Algorithms summary and computational cost

We outline the algorithms for evaluating the steerable manifold harmonics and employing them for filtering

image datasets in Algorithms 1 and 2, respectively. We note that two optional modifications to the

procedure of evaluating the steerable manifold harmonics are proposed in Section 4 and Appendix F,

respectively. The first modification is for improving the robustness of the procedure to noise, and was

added to Algorithm 1 in step 3 under the label “Implicit debiasing (optional)”. The second modification,

which is used for normalizing non-uniform sampling densities, was added to Algorithm 1 in step 5 under

the label “Density normalization (optional)”.

We now turn our attention to the computational complexity of Algorithms 1 and 2. We begin with
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Algorithm 1 Evaluating the steerable manifold harmonics

Required: A dataset of N points {x1, . . . , xN} ⊂ C
D, where xi,(m,ℓ) is the (m, ℓ)’th coordinate of xi

(see Section 2.1).
1: Choose a numerical-integration parameter K (see (16)), and a Gaussian kernel parameter ε.
2: For every 1 ≤ i, j ≤ N , k ∈ {0, . . . ,K − 1}, compute the affinities

W
(k)
i,j = exp

{
−
∥∥∥xi − x(k)j

∥∥∥
2
/ε

}
, x

(k)
j,(m,ℓ) = xj,(m,ℓ)e

ı2πmk/K . (44)

3: Implicit debiasing (optional): Set W
(k)
i,i = 0 for 1 ≤ i ≤ N and k = 0, . . . ,K − 1.

4: For every angular index m = −M, . . . ,M and 1 ≤ i, j ≤ N , evaluate

Ŵ
(m)
i,j =

2π

K

K−1∑

k=0

W
(k)
i,j e

ı2πmk/K , Di =
N∑

j=1

Ŵ
(0)
i,j . (45)

5: Density normalization (optional):

(a) For every angular index m = −M, . . . ,M update:

Ŵ (m) ← D−1Ŵ (m)D−1, (46)

where D is a diagonal matrix with {Di}Ni=1 on its diagonal.

(b) For every i = 1, . . . , N update:

Di ←
N∑

j=1

Ŵ
(0)
i,j . (47)

6: For every angular index m = −M, . . . ,M form the matrix

S̃m = I −D−1Ŵ (m), (48)

and return its eigenvectors {ṽm,k}Nk=1 and eigenvalues
{
λ̃m,k

}N

k=1
.

Algorithm 2 Rotationally-invariant dataset filtering

Required:

(a) A dataset of N points {x1, . . . , xN} ⊂ C
D, where xi,(m,ℓ) is the (m, ℓ)’th coordinate of xi (see

Section 2.1).

(b) Eigenvectors {ṽm,1, . . . , ṽm,N}Mm=−M and eigenvalues
{
λ̃m,1, . . . , λ̃m,N

}M

m=−M
of
{
S̃m

}M

m=−M
from Algorithm 1.

1: Choose a cut-off frequency λc.
2: For m = −M, . . . ,M do

(a) Compute km = max
{
k : λ̃m,k < λc

}
, and form the matrices X(m) and Ṽ (m) of (40).

(b) Estimate the coefficients matrix B(m) by solving the least squares system of (39).

(c) Compute X̂(m) = Ṽ (m)B(m).

3: The filtered dataset is given by X̂ = [X̂(−M) · · · X̂(M)].
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Algorithm 1. The first step is to compute all affinity measures W k
i,j, which can be evaluated efficiently by

the FFT if we notice that

∥∥∥xi − x(k)j

∥∥∥
2
= ‖xi‖22 + ‖xj‖22 − 2Re

{
M∑

m=−M

c
(m)
i,j e

−ı2πmk/K

}
, (49)

where we defined

c
(m)
i,j =

ℓm∑

ℓ=1

xi,(m,ℓ)x
∗
j,(m,ℓ). (50)

Note that computing c
(m)
i,j for all i, j,m takes O(N2D) operations. Therefore, if we denote

M̄ = max {M,K}, (51)

the computational complexity of this step is O(N2D+N2M̄ log M̄) when using the FFT to compute (49).

In a similar fashion, computing Ŵm
i,j (of step 4) by the FFT takes O(N2M̄ log M̄) operations. Lastly,

forming the matrices
{
S̃m

}M

m=−M
requires O(MN2) operations, and evaluating its eigenvectors and eigen-

values takes O(MN3) operations. Overall, the computational complexity of Algorithm 1 is therefore

O
(
MN3 +N2(D + M̄ log M̄)

)
. (52)

In practice, it is often the case that only a small fraction of pairs of indices (i, j) contributes significantly to

W k
i,j, since only images which are similar up to a planar rotation admit a non-negligible affinity (assuming

that ε is sufficiently small). Hence, it is often possible to zero-out the small values of W k
i,j, allowing for

cheaper sparse-matrix computations. Additionally, computing the eigen-decomposition in step 6 for large

datasets (large N) may be accomplished more efficiently using randomized methods [17, 2].

As of Algorithm 2, in part (b) of step 2 we need to minimize
∥∥∥X(m) − Ṽ (m)B(m)

∥∥∥
2

F
over B(m), where

X(m) is of dimension N × ℓm, Ṽ (m) is N × km, and B(m) is km × ℓm. For each angular index m,

this amounts to solving ℓm least-squares problems (one for each column of B(m)), each of size of size

N × km. Assuming that N ≥ km and using the QR factorization to solve least-squares, this part requires

O(k2mN + Nkmℓm + k2mℓm) operations for every angular index m, as we need O(k2mN) operations to

compute the QR decomposition of V (m) (which needs to be computed only once), O(kmℓmN) operations

to apply Q of the QR to X(m), and O(k2mℓm) operations to solve the resulting ℓm triangular systems.

Then, since part (c) of step 2 takes O(Nkmℓm) operations for each m, it follows that Algorithm 2 requires

O

(
M∑

m=−M

k2mN +Nkmℓm + k2mℓm

)
= O

(
MNk̄2 +Dk̄(N + k̄)

)
(53)

operations, where k̄ = maxm {km}. As typically k̄ << N , the computational cost of Algorithm 2 is

negligible compared to that of Algorithm 1.
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4 Analysis under Gaussian noise

Next, we analyze our method under white Gaussian noise, and argue that in a certain sense the steerable

graph Laplacian is robust to noise (after zeroing-out the diagonal of the steerable affinity operator W ).

Moreover, we argue that the filtering procedure (described in Section 2.5) allows us to reduce the amount

of noise in the filtered dataset proportionally to the number of images N .

In this section, we consider the noisy data points

yi,(m,ℓ) = xi,(m,ℓ) + ηi,(m,ℓ), (54)

where xi,(m,ℓ) is the (m, ℓ)’th coordinate of the i’th clean data point, and
{
ηi,(m,ℓ)

}
are independent and

normally distributed complex-valued noise variables with mean zero and variance σ2 .

4.1 Noise robustness of the steerable graph Laplacian

We start by considering the effect of noise on the construction of L̃ (of (17)). Clearly, the noise changes

the pairwise distances computed inWi,j(ϑ,ϕ), where we note that from Theorem 3 and (13) it is sufficient

to consider the effect of noise only on D−1
i,i Wi,j(0, α), for all α ∈ [0, 2π) and i, j = 1, . . . , N . To this end,

consider the set of points Yα
i =

{
yα1 , · · · , yαi−1, yi, y

α
i+1, · · · , yαN

}
⊂ C

D, where all points except the i’th

were replaced with their rotations by an angle α (via (6)). We have that

yαj = xαj + ηαj , yαj,(m,ℓ) = xj,(m,ℓ)e
ımα + ηj,(m,ℓ)e

ımα, (55)

for j 6= i, j = 1, . . . , N , and it is evident that the set of noise points
{
ηα1 , · · · , ηαi−1, ηi, η

α
i+1, · · · , ηαN

}
are

still i.i.d Gaussian. Then, Theorem 2.1 (and specifically equation (1)) in [12], when applied to the set Yα
i ,

asserts that if we denote γ = Dσ2 and vary D and σ2 such that γ remains constant, then

Wi,j(0, α) = exp
{
−
∥∥yi − yαj

∥∥2 /ε
}
−→
D→∞

exp
{
−
(∥∥xi − xαj

∥∥2 + 2γ
)
/ε
}

(56)

in probability, for all j 6= i. Essentially, this result is due to the concentration of measure of high-

dimensional Gaussian random vectors, and in particular the fact that {ηαi } are uncorrelated and are

concentrated around the surface of a sphere in C
D. Therefore, in the regime of high dimensionality and

small noise-variance, the effect of the noise on the pairwise distances (between different data-points and

rotations) is only an additive constant bias term. Note that even though the noise variance tends to

zero, the overall noise magnitude γ = Dσ2 is kept constant and may be large, corresponding to a low

signal-to-noise ratio (SNR). We further mention that this constant-bias effect is not restricted to Gaussian

white noise, as it occurs also when the noise admits a general covariance matrix Σ, and even when the

noise takes other certain non-Gaussian distributions (see [12] for specific details and conditions).

Next, in order to correct for the bias in the distances, we follow [13] and zero-out the diagonal of W ,

that is, we update

Wi,j(0, α)←
{
Wi,j(0, α), i 6= j,

0, i = j.
(57)
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Then, we expect D−1 to correct (implicitly) for the bias in W , since

Di,i =

N∑

j 6=i,j=1

∫ 2π

0
Wi,j(0, α)dα =

N∑

j 6=i,j=1

∫ 2π

0
exp

{
−
∥∥yi − yαj

∥∥2 /ε
}
dα

−→
D→∞

e−2γ/ε
N∑

j 6=i,j=1

∫ 2π

0
exp

{
−
∥∥xi − xαj

∥∥2 /ε
}
dα, (58)

in probability, and thus

D−1
i,i Wi,j(0, α) −→

D→∞

exp

{
−
∥∥∥xi − xαj

∥∥∥
2
/ε

}

∑N
j 6=i,j=1

∫ 2π
0 exp

{
−
∥∥∥xi − xα

′

j

∥∥∥
2
/ε

}
dα′

(59)

in probability, which is equivalent to its clean counterpart for i 6= j (after zeroing-out the diagonal).

Lastly, we argue that zeroing-out the diagonal of W does not change the point-wise convergence rate of

the clean steerable graph Laplacian (as reported by Theorem 2), as it results in an error which is negligible

compared to the leading error terms (see the end of Section E.2 in the proof of Theorem 2, and [31] for

an analogous argument in the case of the standard graph Laplacian).

In Figure 6, we show the error in estimating ∆Mf(x0) in a noisy high-dimensional counterpart of the

numerical example of Section 2.4 (using the same setting of N = 2, 000 and the optimal choice ε = 2−0.75).

To generate Figure 6, we embedded the unit sphere in increasing dimensions D (using a random orthogonal

transformation) and added white Gaussian noise with variance σ2 to each dimension, such that Dσ2 = γ

is kept fixed. We then compared the error in estimating ∆Mf(x0) to the error obtained in the clean

setting. Note that for the unit sphere the signal-to-noise ratio (SNR) is equal to 1/γ = 1/(Dσ2). It is

evident that as predicted by our analysis, the debiased steerable graph Laplacian converges to the clean

steerable graph Laplacian in the regime of high dimensionality and small noise variance. Particularly, in

the case of SNR = 10 (γ = 0.1), already for D = 100 the error resulting only from the noise becomes

comparable to the approximation error in the clean setting. In the case of SNR = 1 (γ = 1), this happens

roughly at D = 1, 000.

In summary, the analysis and numerical example in this section suggest that when the dimension D is

large, the noise variance σ2 is small, and the overall noise magnitude γ = Dσ2 is fixed (and may be large

compared to the magnitude of the signal), the steerable graph Laplacian constructed from the noisy data

after implicit debiasing (by zeroing-out the diagonal ofW ) is expected to be close to its clean counterpart.

4.2 Performence of the filtering procedure

Next, we consider the eigenvectors and eigenvalues computed from the clean (normalized) steerable graph

Laplacian, and analyze the effect of the filtering procedure (described in Section 2.5) on the noise in the

dataset. From (42), the de-noised data for angular frequency m is given by

X̃(m) = C(m)Y (m) = Q(m)
[
Q(m)

]∗
Y (m), (60)
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Figure 6: Errors in approximating the Laplace-Beltrami operator on the unit sphere (following the nu-
merical example in Section 2.4) using the debiased steerable graph Laplacian constructed from noisy data
points, as function of the ambient dimension D. The debiased steerable graph Laplacian is computed
using ε = 2−0.75 (which was optimal for the clean case) and N = 2, 000 noisy measurements, where the
noise is additive white Gaussian with variance σ2, while SNR = 1/(Dσ2) is kept fixed. The red dashed
horizontal line corresponds to the error obtained from the clean steerable graph Laplacian in this setting
(see Figure 1).

where Y (m) is the matrix of noisy data points corresponding to angular indexm, i.e. Y
(m)
i,ℓ = yi,(m,ℓ). Since

Q(m) consists of km orthonormal column vectors independent of the noise, and recalling that γ = Dσ2,
D =

∑M
m=−M ℓm, we have that

1

N
E

∥∥∥X̂ − X̃
∥∥∥
2

F
=

1

N

M∑

m=−M

E

∥∥∥X̂(m) − X̃(m)
∥∥∥
2

F
=
σ2
∑M

m=−M kmℓm

N
≤ max

m
{km}

γ

N
, (61)

where X̂ = [X̂(−M) · · · X̂(M)] (X̂(m) is defined in (42)) represents the clean filtered dataset, and X̃ =

[X̃(−M) · · · X̃(M)] represents the noisy filtered dataset. Hence, larger datasets are expected to provide

improved de-noising results, as the noise in the filtered dataset X̃ reduces proportionally to 1/N .

At this point, it is worthwhile to point out that the error bound of (61) is significantly better than what

we would expect from using the standard graph Laplacian and its eigenvectors (to filter the coordinates

of the dataset). Fundamentally, this is due to the block diagonal structure of the coefficients matrix A

(see Section 2.5), and more specifically, the fact that we only need to use eigenfunctions with angular

index m to expand data coordinates with the same angular index, in contrast to using all eigenfunctions.

In particular, since the limiting operators of the steerable and standard graph Laplacians are the same

(the Laplace-Beltrami operator), we expect the truncation rule of (33) to provide a similar number of

eigenfunctions/eigenvectors from both methods. Then, if we were to use the eigenvectors of the standard

graph Laplacian to filter our dataset, we would be required to use all ∼ ∑M
m=−M km eigenvectors, and

by a computation equivalent to (61) we would expect an error of ∼∑M
m=−M km

γ
N , which is considerably
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larger than maxm {km} γ
N . In conclusion, as the steerable graph Laplacian is more informative than the

standard graph Laplacian, in the sense that it provides us with the angular part of each eigenfunction,

it allows us to be more precise when filtering our dataset by matching the angular frequencies of the

eigenfunctions to those of the data, thereby reducing the computational complexity and improving the

de-noising performance considerably. This feature of the steerable graph Laplacian stands on its own,

and is separate from the improved convergence rate to the Laplace-Beltrami operator (Theorem 2), which

improves the accuracy of the eigenfunctions and eigenvalues compared to those of the standard graph

Laplacian.

Lastly, we mention that the error term (61) can be viewed as a variance error term in a classical

bias-variance trade-off, as we can write, conditioned on the clean dataset X, that

1

N
E

∥∥∥X − X̃
∥∥∥
2

F
=

1

N
E

∥∥∥∥X −

=X̂︷ ︸︸ ︷
E

[
X̃
]
+

=X̂︷ ︸︸ ︷
E

[
X̃
]
−X̃

∥∥∥∥
2

F

=
1

N
E

∥∥∥X − X̂
∥∥∥
2

F︸ ︷︷ ︸
Bias

+
1

N
E

∥∥∥X̂ − X̃
∥∥∥
2

F︸ ︷︷ ︸
Variance

. (62)

Consequently, the overall error cannot get arbitrarily small, as there exists a bias term when approximating

the clean data points by finitely many eigenfunctions (see Proposition 4). Therefore, in practice, the

optimal de-noising results for a given dataset and noise variance would be attained as an optimum in a

bias-variance trade-off, where a large cut-off frequency λc would result in larger {km} values and a larger

variance error (as noise is mapped to more expansion coefficients), and a smaller cut-off frequency λc

would result in smaller {km} values and a larger bias error.

Remark 4. While the discussion in this section suggests that our method is robust to noise in the high-

dimensional regime, it is not to say that reducing the dimensionality of a given dataset (with a given and

fixed noise variance σ2) would degrade the accuracy of the quantities computed by our method. On the

contrary, a close examination of the results in [12] reveals that the errors in pairwise distances computed

from noisy data points are dominated by
√
Dσ2, meaning that projecting the data onto a lower-dimensional

subspace (while retaining a sufficient approximation accuracy w.r.t the clean data) is encouraged – as it

improves the accuracy of the pairwise affinities on one hand, and reduces the overall noise magnitude

γ = Dσ2 on the other.

5 Example: De-noising cryo-EM projection images

In this section, we demonstrate how we can use our framework to de-noise single-particle cryo-electron

microscopy (cryo-EM) image datasets.

5.1 Cryo-EM

In single-particle cryo-EM [15, 7], one is interested in reconstructing a three-dimensional model of a

macromolecule (such as a protein) from a set of two-dimensional images taken by an electron microscope.

The procedure begins by embedding many copies of the macromolecule in a thin layer of ice, where due to
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the experimental set-up, the different copies are frozen at random unknown orientations. Then, an electron

microscope acquires two-dimensional images of the these macromolecules (more precisely, it samples the

Radon transform of the density function of the macromolecule). Consequently, it can be shown that the

set of all projection images lies on a three-dimensional manifold diffeomorphic to the group SO(3). Thus,

the manifold model assumption discussed in this work is natural for describing cryo-EM datasets. Note

that due to the experimental set-up in cryo-EM, the in-plane rotation of each copy of the macromolecule

is arbitrary, and therefore, so are the planar rotations of the two-dimensional images. Additionally, the

images acquired in cryo-EM experiments are very noisy, with a typical SNR (Signal-to-Noise Ratio) of

1/10 and lower. Simulated clean and noisy cryo-EM images of the 70S ribosome subunit can be seen in

Figure 8 (top two rows).

5.2 De-noising recipe

Given a collection of cryo-EM projection images {I1, . . . , IN} sampled on a Cartesian grid, we start by

performing steerable principal components analysis (sPCA), as described in [21]. This procedure provides

us with steerable basis functions (the steerable principal components) {ψm,ℓ} of the form of (3), which are

optimal for expanding the images in the dataset and all of their rotations. For each basis function ψm,ℓ,

the steerable PCA also returns its associated eigenvalue νm,k, which encodes the contribution of ψm,ℓ to

the expansion (analogously to the eigenvalues of the covariance matrix in standard PCA). Therefore, we

have that

Ii ≈
M∑

m=−M

ℓm∑

ℓ=1

yi,(m,ℓ)ψm,ℓ, (63)

where yi,(m,ℓ) is the (m, ℓ)’th expansion coefficient of the i’th image (provided by sPCA, see [21] for

appropriate error bounds associated with (63)). Expanding the image dataset using such basis functions

allows us to apply our filtering scheme in the domain of the expansion coefficients, as required by our

algorithms. We note that for images corrupted by additive white Gaussian noise, the noise variance σ2 is

estimated from the corners of the images (where no molecule is expected to be present), and the number

of basis functions used in the expansion, governed by M and {ℓm}, is determined by estimating which

eigenvalues νm,k are above the noise level (i.e. exceed the Baik-Ben Arous-Péché transition point [3], see

also [42, 41]) via

ℓm = max

{
ℓ : νm,ℓ > σ2

(
1 +

√
nm
N

)2
}
, (64)

where {nm} can be found in [21] (nm is the size of the m’th block in the block-diagonal covariance matrix

associated with steerable PCA), and assuming that {νm,k}k are sorted in a non-increasing order for every

m. Correspondingly, M in (63) is simply the largest |m| s.t. ℓm > 0.

Using the above setting, the task of de-noising the images {Ii} is reduced to the task of de-noising the

sPCA coefficients
{
yi,(m,ℓ)

}
. We then estimate the steerable manifold harmonics {ṽm,k} (as described by

Algorithm 1) from the dataset {yi}Ni=1, and follow by employing {ṽm,k} for filtering the dataset according

to Algorithm 2. After obtaining the de-noised expansion coefficients
{
x̂i,(m,ℓ)

}
, we can plug them back

in the expansion (3) to get de-noised images. The procedure is summarized in Figure 7. Note that since
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Expansion in basis
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Data-set Y
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Eigenvalues

{
λ̃m,k

}

Filtered data-set X̂

Basis {ψm,ℓ}

Figure 7: Schematic view of the de-noising procedure. We start by applying the steerable PCA [21]
to the input images, obtaining basis functions {ψm,ℓ} and associated expansion coefficients

{
yi,(m,ℓ)

}

(organized into the matrix Y following the layout of (4)), where the truncation of the expansion is due
to (64). Then, the dataset Y is used to construct the steerable graph Laplacian, whose eigenfunctions
(the steerable manifold harmonics) are obtained via Algorithm 1 with implicit debiasing (step 3) and
without denisty normalization (step 5). Using the steerable manifold hamronics, we filter the dataset via
Algorithm 2, and use the filtered coefficients

{
x̂i,(m,ℓ)

}
in conjunction with the basis functions {ψm,ℓ} to

get back the filtered images.

{Ii} are real-valued images, their expansion coefficients satisfy the symmetry

yi,(−m,ℓ) = y∗i,(m,ℓ). (65)

Therefore, it is sufficient to de-noise only the coefficients with non-negative angular frequencies.

5.3 Experimental results

We demonstrate the de-noising performance of our approach using simulated images of the 70S ribosome,

of size 128× 128 pixels, after applying a filter to all images corresponding to a typical Contrast Transfer

Function (CTF) [15] of the electron microscope. As described previously, we first map all images to their

sPCA coefficients via [21] (with T = 10 and half-Nyquist bandlimit), and then proceed according to our

filtering scheme (Algorithms 1 and 2). We mention that throughout our experiments the choice K = 256

was found satisfactory, and that ε and λc were chosen automatically for every experimental set-up (deter-

mined by the number of images N and noise variance σ2) as described in Appendix A. In every experiment,

we compare the de-noised images resulting from our method to the images obtained directly from the

sPCA coefficients (i.e. images computed from the coefficients
{
yi,(m,ℓ)

}
), and to images obtained after

applying a shrinkage to the sPCA coefficients via yi,(m,ℓ)wm,ℓ, where the weights {wm,1, . . . , wm,ℓm}Mm=−M ,

which were computed as described in [42], correspond to the asymptotically-optimal Wiener filter [33].

Essentially, this is the optimal filter for the expansion coefficients in the sense of minimizing the mean

squared error.

24



Figure 8: Images after de-noising, for N = 10, 000 and SNR = 1/20. Different colummns correspond to
different images from the dataset (different in-plane rotations and viewing directions of the molecule),
while different rows correspond to (from top to bottom): clean images, noisy images, sPCA (pSNR =
17.64dB), sPCA Wiener filter (pSNR = 21.17dB), and sMH filtering (this paper, pSNR = 25.37dB).

First, we demonstrate our method on 10, 000 projection images at signal-to-noise ratio of 1/20. The

de-noised images can be seen in Figure 8, where it is visually evident that the final de-noised images using

our method contain many more details compared to sPCA Wiener filtering, which results in somewhat

blurred images due to the aggressive shrinkage of sPCA coefficients. In terms of performance measures,

our method (which we term “sMH filtering”, where sMH stands for “steerable manifold harmonics”)

results in an average peak-SNR (pSNR) of 25.37dB, where the sPCA Wiener filter provided 21.17dB

pSNR, and sPCA alone resulted in 17.64dB pSNR.

It is therefore evident that Wiener filtering of sPCA coefficients is far from optimal in terms of de-

noising and image recovery, as it essentially applies a single linear operator on the individual images,

which is only optimal when the data resides on a linear subspace. However, in the case of cryo-EM, as the

data resides on a manifold, it is reasonable to apply non-linear methods which account for the geometry

and topology of the manifold. In this respect, our method is able to make use of all images and their

rotations simultaneously to accurately estimate the structure of the manifold, and thereby provides an

improved de-noising of the image dataset.

Next, Figure 9 demonstrates the performance of our method for SNR = 1/10 and different values of

N (dataset size). As anticipated, our method is able to exploit larger datasets for improved de-noising,

whereas the sPCA Wiener filtering offers only a mild gain beyond 2, 000 images. The reason for that is

that the Wiener filtering is applied to each image separately, and therefore reaches saturation once the
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Figure 9: pSNR of de-noised images for SNR = 1/10 and different dataset sizes N .

estimation of the sPCA from the noisy data is sufficiently accurate (approaches the sPCA of the clean

data). Note that the pSNR from the projection onto the sPCA components (without shrinkage) reduces

with N , because more basis functions ψm,ℓ are chosen (according to (64)) as N increases, even if their

contribution to expanding the dataset is negligible. Therefore, the dimension D increases, and with it

also the overall noise magnitude Dσ2. It is important to mention that even though the variance error

term in (61) behaves like 1/N , the improvement in the pSNR of our method is not expected to follow

this trend, since the overall error also includes a bias error term (see (62)), such that the minimal error

for every value of N is attained as a different optimum in the bias-variance trade-off.

Lastly, we evaluated the de-noising quality for N = 10, 000 images and varying amounts of noise. The

results are displayed in Figure 10, where we can see that our method outperforms the sPCA Wiener filter

considerably in a wide range of SNRs. We remark that as the SNR decreases the asymptotics considered

in Section 4 become less valid, thus at some point the steerable graph Laplacian becomes too noisy, and

the performance gain of our method drops. This phenomenon is mostly evident for SNRs below −14dB,
and our method eventually under-performs the sPCA Wiener filter at −20dB SNR.

6 Conclusions and discussion

In this work, we introduced the steerable graph Laplacian, which generalizes the standard graph Laplacian

by incorporating all planar rotations of all images in the dataset. We demonstrated that the (normalized)

steerable graph Laplacian is both more accurate and more informative than the standard graph Laplacian,

in the sense that it allows for an improved approximation of the Laplace-Beltrami operator on one hand,

and admits eigenfunctions with a closed-form analytic expression of their angular part (i.e. the angular

Fourier modes) on the other. This closed-form expression is essentially what allows for the efficient

filtering procedure of the data coordinates (see Section 2.5), as we only need to estimate a block-diagonal
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Figure 10: pSNR of de-noised images for N = 10, 000 and various SNR levels.

coefficients matrix. Then, we have shown that under a suitable modification, the (normalized) steerable

graph Laplacian is robust to noise in the regime of high dimensionality due to the concentration of

measure of Gaussian noise. Moreover, we have seen that the proposed filtering procedure reduces the

noise proportionally to the number of images in the dataset, which was corroborated by the experiments

of de-noising cryo-EM projection images, where we demonstrated that our method can provide excellent

de-noising results on highly noisy image datasets.

It is interesting to point-out that the steerable graph Laplacian, while utilized for filtering image

datasets, can be employed for many other purposes. One application immediately coming to mind is the

filtering of datasets consisting of periodic signals (see last remark in Section 2.1). However, and more

importantly, the steerable graph Laplacian can replace the standard graph Laplacian in all applications

where the domain is known to be rotationally-invariant (by our definition in Section 2.1). For instance,

it can be used for regularization over general signal/data recovery inverse problems, or for dimensionality

reduction in the framework of Diffusion Maps [8] and Laplacian Eigenmaps [4]. In this context, we

mention the method of Vector Diffusion Maps (VDM) [32], which allows for diffusion-based dimensionality

reduction for manifold data in the presence of nuisance parameters (such as planar rotations). However,

as VDM computes the group ratios only between pairs of data points (e.g. optimal rotational alignments),

it may be of interest to compare it to the steerable graph Laplacian, which essentially considers all planar

rotations of all images. Lastly, we note that a possible future research direction is the extension of our

techniques to other group actions (such as SO(3)).
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Appendix A Choosing ε and λc

In this section, we provide some guidelines on how to choose the parameters ε and λc, and propose a

method for determining them automatically.

In the clean setting, it is reasonable to choose the optimal value of ε by minimizing the bias-variance

error related to the convergence of the steerable graph Laplacian (i.e. equation (18)). However, in general

this cannot be achieved without prior knowledge on geometrical quantities of M, such as its curvature

(see [31] and the related discussion therein). Nonetheless, methods for automatic picking of ε for the

standard graph Laplacian were proposed (see for example [9]). Unfortunately, such methods cannot be

applied to noisy data in a straightforward manner, due to the effects of noise on the pairwise distances,

and we are not aware of any work detailing the automatic choice of ε for this case. We note however, that

when the distances are computed from the noisy data-points {y1, . . . , yN}, and if N is sufficiently large

such that the noise is the dominant factor in determining ε, then it is reasonable to choose

ε ∝
√
Dσ2, (66)

as this expression dominates the standard deviation of the errors in the pairwise (squared) distances

(see [12] and analysis therein), and so can be used to set a region in which it is likely to find the optimal

ε.

In order to find the optimal ε and cut-off frequency λc for a given dataset, we propose to use a

cross-validation procedure. In particular, we choose ε and λc such that the log-likelihood of a noisy set

of points, given a de-noised set (where the sets are disjoint), is maximized. In more detail, suppose that

{y1, . . . , yN} is a collection of noisy data-points as in (54), i.e.

yi = xi + ηi, (67)

where ηi ∈ C
D are i.i.d Gaussian vectors with mean zero and covariance σ2I, and xi are sampled from the

manifoldM with uniform distribution. Then, the log-likelihood of obtaining the subset
{
yN ′+1, . . . , yN

}
,

where N
′

< N , is given (up to additive constants) by

N∑

i=N ′+1

log

[
1

Vol {M}

∫

M
exp

{
−‖yi − x‖2 /2σ2

}
dx

]
. (68)

We then propose to approximate this log-likelihood by Monte-Carlo integration via the points

{
x̂1(ε, λc), . . . , x̂N ′ (ε, λc)

}
, (69)

obtained from the de-noising of
{
y1, . . . , yN ′

}
using the parameters (ε, λc). That is, we define the empirical
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log-likelihood of
{
yN ′+1, . . . , yN

}
(as a function of the parameters ε and λc) by

J(ε, λc) =

N∑

i=N ′+1

log




N
′

∑

j=1

2π

K

K−1∑

k=0

exp

{
−
∥∥∥yi − x̂2πk/Kj (ε, λc)

∥∥∥
2
/2σ2

}
, (70)

where x̂
2πk/K
j (ε, λc) stands for the rotation of x̂j(ε, λc) by an angle of 2πk/K according to (6). We mention

that summing over the rotations improves the accuracy of the Monte-Carlo integration, as we account for

one of the dimensions of the manifoldM in the integration. Finally, we choose the parameters ε and λc

by maximizing J , i.e. {
εopt, λoptc

}
= argmax

(ε,λc)
{J(ε, λc)}. (71)

Essentially, we expect the realizations of the noisy data-points
{
yN ′

+1, . . . , yN
}
to be best explained

when the de-noised points
{
x̂1(ε, λc), . . . , x̂N ′ (ε, λc)

}
(and their rotations) lay as close as possible toM,

and we seek the best parameters for achieving that. For example, if we take λc to be too small, then the

de-noising error will be dominated by a bias term as we did not take a sufficient number of components

to represent the features of the clean images accurately. Therefore we would expect the empirical log-

likelihood to be small as the de-noised images will not be close toM. On the other hand, if we take λc

to be too large, then over-fitting will occur, in the sense that some features of the noise will be preserved

in the de-noised images. In that case, as the empirical likelihood is computed on a set independent from

the set of de-noised points, we would again expect the empirical log-likelihood to be small.

Appendix B Quadratic form of L

In what follows, we derive the quadratic form of L appearing in equation (12). First, for f = [f1(ϑ), . . . , fN (ϑ)]T

we have that

(Lf)(i, ϑ) = Di,ifi(ϑ)−
N∑

j=1

∫ 2π

0
Wi,j(ϑ,ϕ)fj(ϕ)dϕ, (72)

and therefore

〈f, Lf〉H =

N∑

i=1

Di,i

∫ 2π

0
|fi(ϑ)|2 dϑ−

N∑

i,j=1

∫ 2π

0

∫ 2π

0
f∗i (ϑ)Wi,j(ϑ,ϕ)fj(ϕ)dϑdϕ. (73)

Then, if we notice that

Di,i =

N∑

j=1

∫ 2π

0
Wi,j(0, α)dα =

N∑

j=1

∫ 2π

0
Wi,j(ϑ,ϕ)dϕ (74)

for every ϑ ∈ [0, 2π) (by changing the integration parameters), we have that

N∑

i=1

Di,i

∫ 2π

0
|fi(ϑ)|2 dϑ =

N∑

i,j=1

∫ 2π

0

∫ 2π

0
Wi,j(ϑ,ϕ) |fi(ϑ)|2 dϑdϕ =

N∑

i,j=1

∫ 2π

0

∫ 2π

0
Wi,j(ϑ,ϕ) |fj(ϕ)|2 dϑdϕ,

(75)
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due to the symmetry Wi,j(ϑ,ϕ) = Wj,i(ϕ, ϑ) (see the definition of W in (9)). Finally, using (75) we can

write

〈f, Lf〉H =
1

2

N∑

i,j=1

∫ 2π

0

∫ 2π

0
Wi,j(ϑ,ϕ)

[
|fi(ϑ)|2 + |fj(ϕ)|2 − fi(ϑ)f∗j (ϕ)− f∗i (ϑ)fj(ϕ)

]
dϑdϕ

=
1

2

N∑

i,j=1

∫ 2π

0

∫ 2π

0
Wi,j(ϑ,ϕ) |fi(ϑ)− fj(ϕ)|2 dϑdϕ. (76)

Appendix C Linear rotationally-invariant operators

We start with the following definition of linear rotationally-invariant operators over H.

Definition 5 (LRI operators). An operator G : H → H is linear rotationally-invariant (LRI) over H,
if

1. For any fixed (i, ϑ) ∈ Γ (where Γ defined in Section 2.2), the functional {Gf} (i, ϑ) is linear and

continuous in f .

2. G satisfies

{Gf} (i, ϑ − α) = {Gfα} (i, ϑ), fα(i, ϑ) , fi(ϑ− α), (77)

for all f ∈ H, α ∈ [0, 2π), and (i, ϑ) ∈ Γ.

In the first requirement of Definition 5, the continuity property essentially means that if f1 and f2 are

close (in H), then Gf1(i, ϑ) and Gf2(i, ϑ) are also close (in absolute value). As for the second requirement

(rotational-invariance), loosely speaking, it means that shifting the output of the operator cyclically by

an angle α is equivalent to shifting the input by α, hence the action of the operator itself does not depend

on the angle ϑ (of (i, ϑ) ∈ Γ). We mention that this property of linearity and rotational-invariance can be

viewed as analogous to that of Linear-Time Invariant (LTI) operators, native to classical signal processing.

Remark 5. Our definition of LRI operators is somewhat more restrictive than the name suggests (com-

pared also to classical LTI operators) because of our requirement for continuity of every functional {G·} (i, ϑ).
We note that while this requirement can be removed, allowing for a broader class of operators, it is simpler

to handle and sufficient for our purposes.

The next lemma characterizes the form of LRI operators explicitly.

Lemma 6 (Explicit form of LRI operators). Let G be an LRI operator over H. Then, there exist

unique {Gi,j}Ni,j=1 ∈ L2(S1), s.t. for any f ∈ H and (i, ϑ) ∈ Γ

{Gf} (i, ϑ) =
N∑

j=1

∫ 2π

0
Gi,j(ϕ− ϑ)fj(ϕ)dϕ. (78)

Proof. By the Riesz representation theorem, if {G·} (i, ϑ) is a linear and continuous functional over H,
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then there exists a unique g(i,ϑ) ∈ H such that

{Gf} (i, ϑ) =
〈
g(i,ϑ), f

〉
H
=

N∑

j=1

∫ 2π

0
g∗i,j(ϑ,ϕ)fj(ϕ)dϕ, (79)

where g(i,ϑ) , [gi,1(ϑ, ·), . . . , gi,N (ϑ, ·)]T . Additionally, from (77), we have that

{Gf} (i, ϑ) = {Gf} (i, ϑ + α− α) = {Gfα} (i, ϑ + α) =

N∑

j=1

∫ 2π

0
g∗i,j(ϑ + α,ϕ

′

+ α)fj(ϕ
′

)ϕ
′

, (80)

when changing the integration parameter via ϕ
′

= ϕ−α. Lastly, taking α = −ϑ and defining Gi,j(ϕ−ϑ) =
g∗i,j(0, ϕ − ϑ) concludes the proof.

The main contribution of Lemma 6 is to point out that every LRI operator can be characterized by

a finite number of functions {Gi,j}Ni,j=1 which can be expanded in a Fourier series. Therefore, G can be

mapped to (and described by) a sequence of matrices
{
Ĝ(m)

}∞

m=−∞
defined by

Ĝ
(m)
i,j =

∫ 2π

0
Gi,j(α)e

ımαdα. (81)

It is important to notice that from (6) and (9), it immediately follows that the steerable affinity

operator W of (9) is LRI with Gi,j =Wi,j(0, ϑ − ϕ). However, we note that for any fixed (i, ϑ) ∈ Γ, it is

evident that Df(i, ϑ) (where D is the diagonal matrix defined in (11)) is not a continuous functional of

f (in H), as small perturbations in f may lead to arbitrarily large changes in Df(i, ϑ) as it depends on

point-wise values of f . Therefore, the steerable graph Laplacian L (from (11)) is not LRI. Nonetheless,

as we shall see next, we can still employ the properties of LRI operators to characterize a broader family

of operators, which includes the steerable affinity operator W and the steerable graph Laplacian L as

special cases, with eigenfunctions admitting a particularly convenient form. This is the subject of the

next proposition.

Proposition 7. Consider an operator H : H → H of the form

H = A+G, (82)

where G is LRI and A ∈ C
N×N is a complex-valued matrix. If (λ, v) is an eigenvalue-eigenvector pair of

the matrix

Ĥ(m) = A+ Ĝ(m), (83)

where Ĝ(m) is from (81), then Φ = v · eımϑ is an eigenfunction of H with eigenvalue λ.

Proof. The proof follows directly from Lemma 6 and the Fourier expansion of Gi,j . Let us write

{HΦ} (i, ϑ) =
N∑

j=1

Ai,jΦ(j, ϑ) +
N∑

j=1

∫ 2π

0
Gi,j(ϕ− ϑ)Φ(j, ϕ)dϕ, (84)
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where we have used the explicit form of the LRI operator G given by (78). Then, if we expand Gi,j(·) in
a Fourier series as

Gi,j(ϕ− ϑ) =
1

2π

∞∑

m=−∞

Ĝ
(m)
i,j e

−ım(ϕ−ϑ), Ĝ
(m)
i,j =

∫ 2π

0
Gi,j(α)e

ımαdα, (85)

we have that

{HΦ} (i, ϑ) =
N∑

j=1

Ai,jΦ(j, ϑ) +

N∑

j=1

1

2π

∞∑

m′=−∞

Ĝm
′

i,j e
ım

′

ϑ

∫ 2π

0
Φ(j, ϕ)e−ım

′

ϕdϕ. (86)

Therefore, by substituting Φ(i, ϑ) = vie
ımϑ, where vi stands for i’th element of v, we get

{HΦ} (i, ϑ) = eımϑ
N∑

j=1

Ai,jvj + eımϑ
N∑

j=1

Ĝm
i,jvj , (87)

where we have used the orthogonality of
{
eımϑ

}∞
m=−∞

over [0, 2π). Finally, it follows that

HΦ =
[
(A+ Ĝ(m))v

]
eımϑ = λveımϑ = λΦ, (88)

since v is an eigenvector of A+ Ĝ(m) with eigenvalue λ.

Therefore, even though the steerable graph Laplacian L is not strictly LRI according to Definition 5,

it still takes the form of the operators considered in Proposition 7, and consequently, we can derive its

eigen-decomposition by making use of the sequence of matrices
{
Ŵ (m)

}∞

m=−∞
of (13).

Appendix D Proof of Theorem 1

Proof. First, we note that by (15) and (9), it follows directly that Ŵ (m) is Hermitian, which implies that

Sm is also Hermitian, and therefore can be diagonalized by a set of orthogonal eigenvectors. Next, as L is

of the form A+G as required by Proposition 7 (where A is a matrix and G is an LRI operator), we can

obtain a sequence of eigenfunctions and eigenvalues of L by diagonalizing the matrices Sm = D−Ŵ (m) for

every m ∈ Z. Then, the eigenvalues {λm,k}Nk=1 must be real-valued (since Sm is Hermitian), and moreover,

by the quadratic form of L (12) it follows that 〈f, Lf〉H ≥ 0, which implies that L is semi-positive definite

and thus the eigenvalues {λm,k}Nk=1 are non-negative.

Lastly, the fact that {Φm,k}m,k are orthogonal and complete follows from the orthogonality and com-

pleteness of
{
eımϑ

}∞
m=−∞

over L2(S1), and the orthogonality and completeness of {vm,k}Nk=1 over C
N

(since D − Ŵm is Hermitian) for every m ∈ Z. In particular, it easily follows that we can expand every

f ∈ H as

f(i, ϑ) =

∞∑

m=∞

αi
me

ımϑ =

∞∑

m=∞

N∑

j=1

βm,jvi,(m,j)e
ımϑ, (89)

where vi,(m,j) stands for the i’th element of the vector vm,j (which is the j’th eigenvector of Sm =

D − Ŵ (m)), which concludes the proof.
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Appendix E Proof of Theorem 2

E.1 The limit and bias terms

By (17) and (11), we can write

4

ε

{
L̃g
}
(i, ϑ) =

4

ε


f(xϑi )−

N∑

j=1

∫ 2π

0
D−1

i,i Wi,j(ϑ,ϕ)f(x
ϕ
j )dϕ




=
4

ε


f(x

ϑ
i )−

1
N

∑N
j=1

∫ 2π
0 exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
f(xϕj )dϕ

1
N

∑N
j=1

∫ 2π
0 exp

{
−
∥∥∥xϑi − x

ϕ
j

∥∥∥
2
/ε

}
dϕ


 . (90)

We begin by deriving the limit of (90) for N → ∞ and a fixed ε > 0, showing that it is essentially

the Laplace-Beltrami operator ∆M with an additional bias error term of O(ε). First, let us focus our

attention on the expression

C1
i,N (ϑ) ,

1

N

N∑

j=1

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
f(xϕj )dϕ, (91)

which is the numerator of the second term of (90) (inside the brackets). Before we proceed with the

evaluation of the expression in (91), we construct a convenient parametrization of the manifold M. To

this end, since our manifold M is rotationally-invariant, it would be beneficial to parametrize it by

a rotationally-invariant coordinate z coupled with a rotation angle β ∈ [0, 2π) (analogously to polar

coordinates in R
2). In particular, in Section E.3 we construct a parametrization x 7→ (z, β) for every

x ∈ M′

, where M′ ⊂ M is a certain smooth neighbourhood of xϑi (defined explicitly in Section E.3),

such that

x = R(z, β) = zβ , z ∈ N , β ∈ [0, 2π), (92)

and N ⊂M′

is a smooth (d− 1)-dimensional submanifold.

Next, let us continue with the evaluation of (91), and define

Hϑ
i (x) ,

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕ

∥∥∥
2
/ε

}
f(xϕ)dϕ. (93)

Now, using the rotationally-invariant parametrization x 7→ (z, β) for every x ∈ M′

, we can write

xϕ = R(x, ϕ) = R(zβ , ϕ) = zϕ+β , (94)

and thus

Hϑ
i (x) =

∫ 2π

0
exp

{
−
∥∥∥xϑi − zϕ+β

∥∥∥
2
/ε

}
f(zϕ+β)dϕ =

∫ 2π

0
exp

{
−
∥∥∥xϑi − zϕ

∥∥∥
2
/ε

}
f(zϕ)dϕ = Hϑ

i (z),

(95)

establishing that Hϑ
i is only a function of z ∈ N for all points x ∈ M′

. Now, since {xi} are i.i.d samples
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fromM, then by the law of large numbers

lim
N→∞

C1
i,N (ϑ) = lim

N→∞

1

N

N∑

j=1

Hϑ
i (xj) = lim

N→∞

1

N

N∑

j 6=i,j=1

Hϑ
i (xj) = E

[
Hϑ

i (x)
]
=

∫

M
Hϑ

i (x)p(x)dx. (96)

By our construction of the rotationally-invariant parametrization, and in particular the set M′

(see

Section (E.3)), we have that
∥∥xϑi − x

∥∥2 > (δ
′

)2 for all x /∈ M′

and some positive constant δ
′

> 0. Hence

∫

M
Hϑ

i (x)p(x)dx =

∫

M′

Hϑ
i (x)p(x)dx +O

(
e−(δ

′

)2/ε
)
, (97)

and we mention that the exponential term O
(
e−(δ

′

)2/ε
)
is negligible w.r.t to any polynomial asymptotic

expansion in ε, and is therefore omitted in subsequent analysis.

Continuing, we are interested in changing the integration variable from x to (z, β), as considered by

the following lemma.

Lemma 8 (Integration and volume form onM′

). For any smooth h :M′ → R, we have that

∫

M′

h(x)dx =

∫

z∈N

∫ 2π

β=0
h(zβ)V (zβ)dzdβ, (98)

where V (x) is associated with the volume form ofM′

at x when integrating by (z, β), and is invariant to

β, i.e.

V (zβ) = V (z) (99)

for all β ∈ [0, 2π).

The proof of Lemma 8 is provided in Section E.4. Hence, By Lemma 8, equations (95) – (97), and

the fact that p(x) = 1/Vol {M}, we have

lim
N→∞

C1
i,N (ϑ) =

∫

N

∫ 2π

0
Hϑ

i (z)V (z)p(zβ)dzdβ =
2π

Vol {M}

∫

N
Hϑ

i (z)V (z)dz. (100)

Then, by substituting (93) into (100) we obtain

lim
N→∞

C1
i,N(ϑ) =

2π

Vol {M}

∫

N

∫ 2π

0
exp

{
−
∥∥∥xϑi − zϕ

∥∥∥
2
/ε

}
f(zϕ)V (z)dzdϕ. (101)

Eventually, if we change parametrization from (z, ϕ) back to x, via x = zϕ, then by Lemma 8 we arrive

at

lim
N→∞

C1
i,N (ϑ) =

2π

Vol {M}

∫

M′

exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
f(x)dx

=
2π

Vol {M}

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
f(x)dx+O

(
e−(δ

′

)2/ε
)

=
2π

Vol {M}

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
f(x)dx, (102)
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where we again used the fact that
∥∥xϑi − x

∥∥2 > (δ
′

)2 for all x /∈ M′

(see Section (E.3)), and omitted the

resulting O
(
e−(δ

′

)2/ε
)
term.

In a similar fashion, if we consider the denominator of the second term in (90)

C2
i,N (ϑ) ,

1

N

N∑

j=1

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
dϕ, (103)

and by repeating the calculations for C1
i,N (ϑ) with f ≡ 1, we get that

lim
N→∞

C2
i,N (ϑ) =

2π

Vol {M}

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
dx. (104)

Lastly, if we substitute (102) and (104) into (90), we have that

lim
N→∞

4

ε

{
L̃g
}
(i, ϑ) =

4

ε


f(xϑi )−

1
Vol{M}

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
f(x)dx

1
Vol{M}

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
dx


 (105)

= ∆Mf(xϑi ) +O(ε), (106)

where the last simplification (eq. (106)) is justified in [31].

E.2 The variance term

The variance error term in the convergence of the steerable graph Laplacian to the Laplace Beltrami

operator arises from the discrepancy between the values of C1
i,N(ϑ), C2

i,N (ϑ) for finite N , and their

limits (102), (104), respectively, when N → ∞. To prove the improved convergence rate of steerable

graph Laplacian, we follow the technique used in [31] which makes use of the Chernoff tail inequality.

Such an inequality provides a bound for the probability that a sum of random variables deviates from its

mean by a certain quantity.

Let us begin by defining

Gϑ
i (x) ,

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕ

∥∥∥
2
/ε

}
dϕ. (107)

Then, we are interested in evaluating the probabilities

p+(N,α) = Pr

{∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

− E
[
Hϑ

i

]

E
[
Gϑ

i

] > α

}
, (108)

p−(N,α) = Pr

{∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

− E
[
Hϑ

i

]

E
[
Gϑ

i

] < −α
}
, (109)

where we mention that the use of
∑N

j 6=iH
ϑ
i (xj)/

∑N
j 6=iG

ϑ
i (xj) instead of

∑N
j=1H

ϑ
i (xj)/

∑N
j=1G

ϑ
i (xj) (i.e.

without the diagonal) is justified at the end of the proof. We proceed by evaluating p+(N,α), as p−(N,α)
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can be obtained in a similar fashion. As was shown in [31], p+(N,α) can be rewritten as

p+(N,α) = Pr





N∑

j 6=i

Jϑ
i (xj) > α(N − 1)

(
E

[
Gϑ

i

])2


 , (110)

where Jϑ
i (xj) are zero-mean i.i.d random variables (indexed by j), given by

Jϑ
i (xj) , E

[
Gϑ

i

]
Hϑ

i (xj)− E

[
Hϑ

i

]
Gϑ

i (xj) + αE
[
Gϑ

i

] (
E

[
Gϑ

i

]
−Gϑ

i (xj)
)
. (111)

At this point, making use of Chernoff’s inequality gives

p+(N,α) ≤ exp



−

α2(N − 1)2
(
E
[
Gϑ

i

])4

2(N − 1)E
[(
Jϑ
i

)2]
+O(α)



, (112)

and it remains to evaluate the variance term E

[(
Jϑ
i

)2]
, which can be expressed as

E

[(
Jϑ
i

)2]
=
(
E

[
Gϑ

i

])2
E

[(
Hϑ

i

)2]
−2E

[
Gϑ

i

]
E

[
Hϑ

i

]
E

[
Hϑ

i G
ϑ
i

]
+
(
E

[
Hϑ

i

])2
E

[(
Gϑ

i

)2]
+O(α). (113)

Now, the integral expressions of E
[
Hϑ

i

]
and E

[
Gϑ

i

]
(obtained in the previous section in equations (102)

and (104), respectively), admit asymptotic expansions via the following proposition.

Proposition 9. [31] Let M̃ be a smooth and compact d̃-dimensional submanifold, and let f̃ : M̃ → R be

a smooth function. Then, for any y ∈ M̃

(πε)−d̃/2
∫

M̃
exp

{
−‖y − x‖2/ε

}
f̃(x)dx = f̃(y) +

ε

4

[
E(y)f̃ (y) + ∆

M̃
f̃(y)

]
+O(ε2), (114)

where E(y) is a scalar function of the curvature of M̃ at y.

Then, it follows from Proposition 9 (see also [8, 5]) that

E

[
Hϑ

i

]
=

2π

Vol {M}

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
f(x)dx =

2π

Vol(M)
(πε)d/2

[
f(xϑi ) +O(ε)

]
, (115)

E

[
Gϑ

i

]
=

2π

Vol {M}

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
dx =

2π

Vol(M)
(πε)d/2 [1 +O(ε)] . (116)

Thus, it remains to evaluate the second order moments E

[(
Hϑ

i

)2]
,E
[(
Gϑ

i

)2]
, and E

[
Hϑ

i G
ϑ
i

]
, which is

the subject of the next lemma, whose proof is given in Section E.5.
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Lemma 10. Let µ(x) ,

√
∑M

m=−M

∑ℓm
ℓ=1m

2
∣∣∣x2m,ℓ

∣∣∣
2
> 0 for every x ∈ N . Then

E

[(
Hϑ

i

)2]
=

(πε)(d+1)/2

2(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
, (117)

E

[(
Gϑ

i

)2]
=

(πε)(d+1)/2

2(d−1)/2

[
pN (xϑi )

µ2(xϑi )
+O(ε)

]
, (118)

E

[
Hϑ

i G
ϑ
i

]
=

(πε)(d+1)/2

2(d−1)/2

[
f(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
, (119)

where pN (x) = 2πV (x)/Vol {M} (and V (x) is from Lemma 8).

We mention that since we required (in Theorem 2) that
∑

m6=0

∑ℓm
ℓ=1 |xm,ℓ|2 > 0 for all x ∈ M (up to

a set of measure zero onM), then it is also the case that µ(x) > 0 for all x ∈ N with probability one.

Now, using Lemma 10, (115), (116), and substituting all quantities into (113), we get that

E

[(
Jϑ
i

)2]
=

(
2π

Vol(M)

)2

(πε)d
(πε)(d+1)/2

2(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]

− 2

(
2π

Vol(M)

)2

(πε)d
(πε)(d+1)/2

2(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]

+

(
2π

Vol(M)

)2

(πε)d
(πε)(d+1)/2

2(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
+O(α)

=

(
2π

Vol(M)

)2

(πε)d
(πε)(d+1)/2

2(d−1)/2
· O(ε) +O(α) = O(ε3d/2+3/2) +O(α). (120)

Additionally, from (116) we have

E

([
Gϑ

i

])4
= O(ε2d), (121)

and thus

p+(N,α) ≤ exp

{
− α2

O(ε−d/2+3/2/N) +O(α)

}
. (122)

Henceforth, by taking α = O(ε−d/4+3/4/
√
N) we can make p+(N,α) arbitrarily small with exponential

decay. Additionally, we mention that p−(N,α) leads to the same asymptotic expression. Therefore, it

follows that with high probability

∣∣∣∣∣

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

− E
[
Hϑ

i

]

E
[
Gϑ

i

]
∣∣∣∣∣ = |α| = O(

ε−d/4+3/4

N1/2
) = O(

1

N1/2ε(d−1)/4−1/2
). (123)

Continuing, we can write (using (106))

4

ε

∣∣∣∣∣

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

− E
[
Hϑ

i

]

E
[
Gϑ

i

]
∣∣∣∣∣ =

∣∣∣∣∣
4

ε

(
f(xϑi )−

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

)
− 4

ε

(
f(xϑi )−

E
[
Hϑ

i

]

E
[
Gϑ

i

]
)∣∣∣∣∣

=

∣∣∣∣∣
4

ε

(
f(xϑi )−

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

)
−
(
∆Mf(xϑi ) +O(ε)

)∣∣∣∣∣ = O(
1

N1/2ε(d−1)/4+1/2
), (124)
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which gives us that

4

ε

(
f(xϑi )−

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

)
= ∆Mf(xϑi ) +O(

1

N1/2ε(d−1)/4−1/2
) +O(ε). (125)

The last step of the proof is to justify that removing the diagonal of the steerable affinity operator W

(i.e. computing all sums with j 6= i) does not change the convergence rate. Indeed, this is the case since

∑N
j=1H

ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

−
∑N

j 6=iH
ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

=

∑N
j=1H

ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

−
∑N

j 6=iH
ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

∑N
j=1G

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

=

∑N
j=1H

ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

−
∑N

j 6=iH
ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

(
1 +

Gϑ
i (xi)∑N

j 6=iG
ϑ
i (xj)

)
=

Hϑ
i (xi)∑N

j=1G
ϑ
i (xj)

− Gϑ
i (xi)∑N

j=1G
ϑ
i (xj)

∑N
j 6=iH

ϑ
i (xj)∑N

j 6=iG
ϑ
i (xj)

= O

(
Gϑ

i (xi)∑N
j=1G

ϑ
i (xj)

)
, (126)

where we used the fact that since f is smooth then it is also bounded on M, satisfying |f(x)| ≤ c, and

hence
∣∣Hϑ

i (xi)
∣∣ ≤ c

∣∣Gϑ
i (xi)

∣∣. Therefore, by using Proposition 9 (specifically, retaining the zero-order

element in the asymptotic expansion in (114)) it follows that

Gϑ
i (xi)∑N

j=1G
ϑ
i (xj)

=
1
NG

ϑ
i (xi)

1
N

∑N
j=1G

ϑ
i (xj)

= O(
ε1/2/N

εd/2
) = O(

1

Nε(d−1)/2
), (127)

which is negligible compared to variance error term of (125). Overall, we get that

4

ε

{
L̃g
}
(i, ϑ) =

4

ε

(
f(xϑi )−

∑N
j=1H

ϑ
i (xj)∑N

j=1G
ϑ
i (xj)

)
= ∆Mf(xϑi ) +O(

1

N1/2ε(d−1)/4−1/2
) +O(ε), (128)

which concludes the proof.

E.3 Construction of a rotationally-invariant parametrization

We construct a parametrization (z, β) of all points x in a certain neighbourhood of xϑi . This parametriza-

tion has favorable properties for our purposes, and is specific for every index i and rotation angle ϑ. The

parametrization is defined by the mapping x 7→ (z, β), given by

z(x) = R(x, α̂(x)), β(x) = −α̂(x), α̂(x) = argmin
α∈[0,2π)

∥∥∥xα − xϑi
∥∥∥
2

2
. (129)

That is, z is the rotation of x (by (6)) which is closest to xϑi , and therefore this parametrization satisfies

x = R(z, β) = zβ . (130)

Note that this mapping is invariant to the intrinsic rotation, that is, different values of x which differ only

by a rotation will be mapped to the same z. Therefore, the parametrization (z, β) can be perceived as

a form of a polar parametrization, where coordinates are parametrized by a radius (the equivalent of z)

38



and a rotation angle (the equivalent of β).

Now, a solution to

argmin
α∈[0,2π)

∥∥∥xα − xϑi
∥∥∥
2

2
(131)

must exist (since the set of minimizers is compact), but may not be unique for all x ∈ M. We

start by showing that it is guaranteed to be unique for x in a sufficiently small neighbourhood of xϑi .

To this end, note that due to our requirements in Theorem (2), we have with probability one that
∑

|m|>0

∑
ℓ

∣∣xi,(m,ℓ)

∣∣2 > 0 (i.e. the image corresponding to xϑi is not radially symmetric), and since M
is smooth, there exists a neighbourhood of xϑi for which

∑
|m|>0

∑
ℓ

∣∣x(m,ℓ)

∣∣2 > 0. Let us consider a

ball of radius δ > 0 around xϑi , denoted by Bδ(x
ϑ
i ), such that

∑
|m|>0

∑
ℓ

∣∣x(m,ℓ)

∣∣2 > 0 for all points

x ∈ Bδ(x
ϑ
i )∩M. Clearly, fixing some x ∈ Bδ(x

ϑ
i )∩M, we have that minα∈[0,2π)

{∥∥xα − xϑi
∥∥2
2

}
≤ δ2, and

moreover, the curve {xα}2πα=0 has bounded curvature and does not self intersect, which means that there

exists a sufficiently small δ
′ ≤ δ such that any α minimzing

∥∥xα − xϑi
∥∥2
2
must satisfy xα ∈ Bδ′ (x

ϑ
i ) ∩M.

Moreover, we choose δ
′

such that the solution is unique, which is justified by the fact that the problem

minα∈[0,2π)
∥∥xα − xϑi

∥∥2
2
s.t. xα ∈ Bδ′ (x

ϑ
i ) ∩ M, must be convex for a sufficiently small δ

′

(due to the

smoothness of the curve {xα}2πα=0). To conclude, for points x in a sufficiently small neighbourhood of xϑi ,

the mapping x 7→ (z, β) given by (129) is unique.

Next, it is of interest to characterize the resulting set of feasible points of z, and we proceed by showing

that

N ,

{
z(x) : x ∈ Bδ′ (x

ϑ
i ) ∩M

}
(132)

is a smooth and compact (d − 1)-dimensional submanifold. Now, from (131) it follows that α = α̂(x)

must be a solution of

Re

{〈
∂xα

∂α
, xα − xϑi

〉}
= 0, (133)

which can be written explicitly via (6) as

Re

{〈
∂xα

∂α
, xα − xϑi

〉}
=

M∑

m=−M

ℓm∑

ℓ=1

Re
{
ım · x∗(m,ℓ)e

−ımα ·
(
x(m,ℓ)e

ımα − xϑi,(m,ℓ)

)}

=

M∑

m=−M

ℓm∑

ℓ=1

Re
{
ım ·

∣∣x(m,ℓ)

∣∣2 − ım · x∗(m,ℓ)e
−ımα · xϑi,(m,ℓ)

}

= −
M∑

m=−M

ℓm∑

ℓ=1

Re
{
ımx∗(m,ℓ)x

ϑ
i,(m,ℓ) · e−ımα

}
. (134)

Next, since at α = α̂(x) we have that z = xα, then by (129) each z satisfies

Re

{〈
∂zβ

∂β

∣∣∣∣
β=0

, z − xϑi

〉}
= 0, (135)
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which can be written explicitly via (134) as

M∑

m=−M

ℓm∑

ℓ=1

Re
{
ım · z∗(m,ℓ) · xϑi,(m,ℓ)

}
= 0, (136)

where z(m,ℓ) denotes the (m, ℓ)‘th coordinate of z. Essentially, equation (136) defines a linear subspace

of the ambient space, such that all feasible points for z (z = xα for α satisfying (131)) must lie in the

intersection between Bδ′ (x
ϑ
i ) ∩M and this subspace. In particular, the submanifold N can be explicitly

defined through

N =

{
x :

M∑

m=−M

ℓm∑

ℓ=1

Re
{
ım · x∗(m,ℓ) · xϑi,(m,ℓ)

}
= 0, x ∈ Bδ′ (x

ϑ
i ) ∩M

}
, (137)

which is a smooth and compact submanifold due to the smoothness and compactness of M, and is

of intrinsic dimension (d − 1) due to the additional linear constraint (note that this constraint is not

degenerate since
∑

|m|>0

∑
ℓ

∣∣x(m,ℓ)

∣∣2 > 0 for x ∈ Bδ(x
ϑ
i ) ∩M).

Lastly, we make the observation that all rotations of any point in the neighbourhood Bδ′ (x
ϑ
i )∩M, i.e.

xϕ for all ϕ ∈ [0, 2π) and any x ∈ Bδ′ (x
ϑ
i )∩M, share the same solution (the same xα for α from (131)) as

the point x. This allows us to extend the neighbourhood in which our parametrization is valid by taking

all rotations of all points in this neighbourhood, and in particular, we conclude that for all x ∈ M′

, where

M′

,

{
xϕ : x ∈ Bδ′ (x

ϑ
i ) ∩M, ϕ ∈ [0, 2π)

}
, (138)

the parametrization x 7→ (z, β), where x = zβ, is unique. Additionally, it is evident thatM′ ⊂M is also

a smooth and compact d-dimensional submanifold.

E.4 Proof of Lemma 8

Proof. Let N be parametrized locally by u =
[
u1, . . . , u(d−1)

]
∈ R

d−1 around a point z0. That is, every

coordinate zm,ℓ of the manifold N is expressed as a function of u in the vicinity of the point z0. Then,

M′

can be parametrized locally around x0 = zβ0
0 by [u, β] ∈ R

d, where β ∈ [0, 2π) is the rotation angle

from our rotationally-invariant parametrization (see section E.3), in the sense that every coordinate xm,ℓ

ofM′

can be expressed as a function of [u, β] in the neighbourhood of the point x0. Hence, the integral

of a function h(x) overM′

can be expressed through the parametrization x 7→ (z, β) by

∫

M′

h(x)dx =

∫

z∈N

∫ 2π

β=0
h(zβ)dV (zβ), (139)

where

dV (x) =
√∣∣det

{
gM′ (x)

}∣∣du1 . . . dud−1dβ (140)

is the volume form at the point x, gM′ (x) is the metric tensor onM′

, given by pull-back as

gM′ (x) = Re
{
J∗
M′ (x)JM′ (x)

}
, (141)
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and JM′ (x) is the Jacobian matrix

JM′ (x) =
[
Ju Jβ

]
, Ju =




∂x(−M,1)

∂u1
. . .

∂x(−M,1)

∂u(d−1)

... . . .
...

∂x(−M,ℓm)

∂u1
. . .

∂x(−M,ℓm)

∂u(d−1)

...
...

∂x(M,1)

∂u1
. . .

∂x(M,1)

∂u(d−1)

... . . .
...

∂x(M,ℓm)

∂u1
. . .

∂x(M,ℓm)

∂u(d−1)




, Jβ =




∂x(−M,1)

∂β
...

∂x(−M,ℓm)

∂β
...

∂x(M,1)

∂β
...

∂x(M,ℓm)

∂β




. (142)

Note that since x = zβ we have xm,ℓ = zm,ℓe
ımβ (from (6)), and thus

∂x(m,ℓ)

∂ui
=
∂z(m,ℓ)

∂ui
· eımβ , i = 1, . . . , d− 1;

∂x(m,ℓ)

∂β
= ım · zm,ℓ · eımβ . (143)

Therefore, it is evident that the metric tensor

gM′ (x) = Re
{
J∗
M′ (x)JM′ (x)

}
=

[
Re {J∗

u(x)Ju(x)} Re {J∗
u(x)Jβ(x)}

Re
{
J∗
β(x)Ju(x)

}
Re
{
J∗
β(x)Jβ(x)

}
]

(144)

does not depend on β, i.e. gM′ (x) = gM′ (z), since the term eımβ cancels-out in all entries of gM′ (x).

Consequently, we have that

dV (x) =
√∣∣det

{
gM′ (z)

}∣∣du1 . . . dud−1dβ = V (z)dzdβ, (145)

where we denoted

V (z) =
√∣∣det

{
gM′ (z)

}∣∣, dz = du1 . . . dud−1, (146)

and it follows that ∫

M′

h(x)dx =

∫

z∈N

∫ 2π

β=0
h(zβ)V (z)dzdβ. (147)

E.5 Proof of Lemma 10

We put our focus on evaluating the term E

[(
Hϑ

i

)2]
, as the other second-order terms E

[(
Gϑ

i

)2]
and

E
[
Hϑ

i G
ϑ
i

]
can be obtained in a similar fashion. Thus, we are interested in evaluating the term

E

[(
Hϑ

i

)2]
=

∫

M

(
Hϑ

i (x)
)2
p(x)dx, (148)

recalling that

Hϑ
i (x) =

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕ

∥∥∥
2
/ε

}
f(xϕ)dϕ. (149)
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Using the construction of our rotationally-invariant parametrization (see Section E.3), and in particular

the submanifoldM′

, we can write

E

[(
Hϑ

i

)2]
=

∫

M′

(
Hϑ

i (x)
)2
p(x)dx+O

(
e−(δ

′

)2/ε
)
, (150)

for some constant δ
′

> 0. Next, as the O
(
e−(δ

′

)2/ε
)
term is negligible w.r.t to any polynomial asymptotic

expansion in ε, we omit it. Then, by Lemma 8 (i.e. change of integration variables x 7→ (z, β)) and (95),

we have

E

[(
Hϑ

i

)2]
=

∫

N

∫ 2π

0

(
Hϑ

i (z
β)
)2
p(zβ)V (z)dzdβ =

2π

Vol {M}

∫

N

(
Hϑ

i (z)
)2
V (z)dz

=

∫

N

(
Hϑ

i (z)
)2
pN (z)dz, (151)

where we defined

pN (z) =
2π

Vol {M}V (z). (152)

We start by deriving an asymptotic expression for Hϑ
i (z). Let us write

∥∥∥xϑi − zϕ
∥∥∥
2
=
∥∥∥
(
xϑi − z

)
+ (z − zϕ)

∥∥∥
2

=
∥∥∥xϑi − z

∥∥∥
2
+ 2Re

{〈
xϑi − z, z − zϕ

〉}
+ ‖z − zϕ‖2 , (153)

and denote

δϑi (z, x) , 2Re
{〈
xϑi − z, z − x

〉}
. (154)

Therefore, we have that

Hϑ
i (z) = exp

{
−
∥∥∥xϑi − z

∥∥∥
2
/ε

}∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
exp

{
−δϑi (z, zϕ)/ε

}
f(zϕ)dϕ. (155)

Next, we use Taylor expansion to write

exp
{
−δϑi (z, zϕ)/ε

}
= 1− δϑi (z, z

ϕ)

ε
+O

([
δϑi (z, z

ϕ)
]2

ε2

)
, (156)

which gives us that

Hϑ
i (z) = exp

{
−
∥∥∥xϑi − z

∥∥∥
2
/ε

}[∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
f(zϕ)dϕ

−1

ε

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
δϑi (z, z

ϕ)f(zϕ)dϕ

+O

(
1

ε2

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}[
δϑi (z, z

ϕ)
]2
|f(zϕ)| dϕ

)]
. (157)

In what follows, we evaluate the terms in the square brackets of (157) one by one, where we mention

that Proposition 9 is the main workhorse for obtaining the asymptotic expansions of the integrals taking
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part in our analysis. To this end, let us first define the set of points Cz = {zϕ}2πϕ=0, which is a smooth

curve in C
D. We then change the integration parameter in (157) from the angle ϕ to the variable x = zϕ

(which is equivalent to parametrizing by arc-length), and if we recall that f(x) is a smooth function, then

by Proposition 9 we get that

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
f(zϕ)dϕ =

1

µ(z)

∫

x∈Cz

exp
{
−‖z − x‖2/ε

}
f(x)dx

=

√
πε

µ(z)
[f(z) +O(ε)] , (158)

where µ(z) =

√∣∣∣det
[
Re
{
J∗
β(z)Jβ(z)

}]∣∣∣ (Jβ is defined in (142)) is associated with the change of the

integration variable, and is given explicitly by

µ(z) =

√√√√
M∑

m=−M

ℓm∑

ℓ=1

m2 |zm,ℓ|2. (159)

Next, we evaluate the second term in the square brackets of (157). Since δϑi (z, z
ϕ) is a smooth function

in ϕ, and using the previous change of variable x = zϕ together with Proposition 9, we have

1

ε

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
δϑi (z, z

ϕ)f(zϕ)dϕ =
1

εµ(z)

∫

x∈Cz

exp
{
−‖z − x‖2/ε

}
δϑi (z, x)f(x)dx

=

√
πε

εµ(z)

[
δϑi (z, z)f(z) +

ε

4

[
E(y)δϑi (z, z)f(z) + ∆Cz

{
δϑi (z, x)f(x)

} ∣∣∣∣
x=z

]
+O(ε2)

]

=

√
πε

εµ(z)

[
ε

4
∆Cz

{
δϑi (z, x)f(x)

} ∣∣∣∣
x=z

+O(ε2)

]
(160)

since it is clear from (154) that δϑi (z, z) = 0. Moreover, we have (see Lemma 3.3 in [28]) that

∆Cz

{
δϑi (z, x)f(x)

}
|x=z = ∆Czf(x)|x=z · δϑi (z, z) − 2

〈
∇Czδ

ϑ
i (z, x)|x=z ,∇Czf(z)

〉
+ f(z) ·∆Czδ

ϑ
i (z, x)|x=z

= f(z) ·∆Czδ
ϑ
i (z, x)|x=z, (161)

where we have used the fact that δϑi (z, z) = 0, and moreover, that (using (154))

∇Czδ
ϑ
i (z, x)|x=z = −2Re

{〈
xϑi − z,∇Czx|x=z

〉}
= −2Re

{〈
xϑi − z,

1

µ(z)

∂zβ

∂β

∣∣∣∣
β=0

〉}
= 0 (162)

as xϑi − z is perpendicular to ∂zβ

∂β

∣∣∣∣
β=0

by our rotationally-invariant parametrization (equation (135) in

Section E.3). Therefore, we are left with

1

ε

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}
δϑi (z, z

ϕ)f(zϕ)dϕ =

√
πε

εµ(z)

[
εq(z) +O(ε2)

]
=

√
πε

µ(z)
[q(z) +O(ε)] , (163)
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where we defined the function q(z) as

q(z) =
f(z)

4
∆Czδ

ϑ
i (z, x)|x=z = −f(z)

2
Re
{〈
xϑi − z,∆Czx|x=z

〉}
, (164)

with the second equality following from (154). The notation ∆Czx|x=z denotes the Laplacian of each

coordinate of x, taken w.r.t to the curve Cz, and sampled at the point z. Consequently, q(z) is a smooth

function satisfying

q(xϑi ) = 0, q(z) = O(
∥∥∥xϑi − z

∥∥∥), (165)

where we applied the Cauchy-Schwarz inequality to (164), together with the fact that ‖∆Czx|x=z‖ is

bounded (since Cz is smooth).

Now, as for the last term in the square brackets of (157), we first mention that since f(x) is smooth,

it is bounded (on a compact domain) and therefore

O

(
1

ε2

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}[
δϑi (z, z

ϕ)
]2
|f(zϕ)| dϕ

)
=

O

(
1

ε2

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}[
δϑi (z, z

ϕ)
]2
dϕ

)
. (166)

Moreover, if we expand

zϕm,ℓ = zm,ℓe
ımϕ = zm,ℓ +

∂zϕm,ℓ

∂ϕ

∣∣∣∣
ϕ=0

· ϕ+O(ϕ2), (167)

then we have that

zϕ − z =
∂zϕ

∂ϕ

∣∣∣∣
ϕ=0

· ϕ+O(ϕ2), (168)

and it is evident that

δϑi (z, z
ϕ) = −2Re

{〈
xϑi − z, z − zϕ

〉}
= 2Re

{〈
xϑi − z,

∂zϕ

∂ϕ

∣∣∣∣
ϕ=0

〉}
· ϕ+O(ϕ2

∥∥∥xϑi − z
∥∥∥)

= O(ϕ2
∥∥∥xϑi − z

∥∥∥), (169)

where we used Cauchy-Schwarz inequality and again the fact that xϑi − z is perpendicular to ∂zϕ

∂ϕ

∣∣∣∣
ϕ=0

due

to our rotationally-invariant parametrization (eq. (135)). Eventually, we obtain that

[
δϑi (z, z

ϕ)
]2

= O(ϕ4
∥∥∥xϑi − z

∥∥∥
2
). (170)

Continuing, from (168) it is clear that

ϕ = O(‖z − zϕ‖), (171)

and therefore [
δϑi (z, z

ϕ)
]2

= O(‖z − zϕ‖4
∥∥∥xϑi − z

∥∥∥
2
). (172)

When plugging (172) back into (166) and changing the integration parameter from ϕ to x = zϕ, we arrive
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at

O

(
1

ε2

∫ 2π

0
exp

{
−‖z − zϕ‖2/ε

}[
δϑi (z, z

ϕ)
]2
dϕ

)
= O

(
1

ε2µ(z)

∫

x∈Cz

exp
{
−‖z − x‖2/ε

}[
δϑi (z, x)

]2
dx

)

= O

(∥∥xϑi − z
∥∥2

ε2µ(z)

∫

x∈Cz

exp
{
−‖z − x‖2/ε

}
‖z − x‖4 dx

)
= O

(∥∥xϑi − z
∥∥2

ε2µ(z)
· ε2√πε

)
= O

(∥∥xϑi − z
∥∥2

µ(z)

√
πε

)
,

(173)

where we used the asymptotic expansion in Proposition 9 together with the fact that the function ‖z − x‖4

(in z) and its Laplacian vanish at z = x (leaving only the O(ε2) term in the asymptotic expansion of

Proposition 9).

Altogether, when plugging (158), (163), and (173) into (157), we get

Hϑ
i (z) =

exp
{
−
∥∥xϑi − z

∥∥2/ε
}

µ(z)

√
πε

[
f(z) + q(z) +O(

∥∥∥xϑi − z
∥∥∥
2
) +O(ε)

]
, (174)

where q(z) was defined in (164). Therefore, we have

(
Hϑ

i (z)
)2

=
exp

{
−2
∥∥xϑi − z

∥∥2/ε
}

µ2(z)
πε

[
f(z) + q(z) +O(

∥∥∥xϑi − z
∥∥∥
2
) +O(ε)

]2

=
exp

{
−2
∥∥xϑi − z

∥∥2/ε
}

µ2(z)
πε

[
f2(z) + 2f(z)q(z) +O(

∥∥∥xϑi − z
∥∥∥
2
) +O(ε)

]
, (175)

where we used the fact (from (165)) that q(z) = O(
∥∥xϑi − z

∥∥), and retained only the asymptotically

dominant factors inside the square brackets.

We are now ready to evaluate E

[(
Hϑ

i

)2]
by plugging (175) into (148). We have

E

[(
Hϑ

i

)2]
=

∫

N

(
Hϑ

i (z)
)2
pN (z)dz

= πε

∫

N

exp
{
−2
∥∥xϑi − z

∥∥2/ε
}

µ2(z)

[
f2(z) + 2f(z)q(z) +O(

∥∥∥xϑi − z
∥∥∥
2
) +O(ε)

]
pN (z)dz. (176)

Before we proceed with the asymptotic analysis, we mention that if µ(z) > 0 for all z ∈ N , then 1/µ2(z)

is a smooth function. Additionally, the smoothness of pN (z) = 2πV (z)/Vol {M} is guaranteed by the

smoothness ofM and N (see the definition of V (x) in Section E.4). Then, we expand the square brackets

in (176) and evaluate (asymptotically) all resulting integrals by applying Proposition 9. We get

∫

N
exp

{
−2
∥∥∥xϑi − z

∥∥∥
2
/ε

}
f2(z)pN (z)

µ2(z)
dz = (πε/2)(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
, (177)
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∫

N
exp

{
−2
∥∥∥xϑi − z

∥∥∥
2
/ε

}
f(z)q(z)pN (z)

µ2(z)
dz = (πε/2)(d−1)/2

[
f(xϑi )q(x

ϑ
i )pN (xϑi )

µ2(xϑi )
+O(ε)

]

= (πε/2)(d−1)/2 ·O(ε), (178)

since q(xϑi ) = 0 (see (165)), and

∫

N

exp
{
−2
∥∥xϑi − z

∥∥2/ε
}

µ2(z)
O(
∥∥∥xϑi − z

∥∥∥
2
)pN (z)dz = (πε/2)(d−1)/2 ·O(ε), (179)

where we used the fact that
∥∥xϑi − z

∥∥2 is smooth and vanishes at z = xϑi (using Proposition 9, we are left

only with the O(ε) term in the expansion).

Finally, by substituting all of the above asymptotic integral expansions into (176), it follows that

E

[(
Hϑ

i

)2]
= πε(πε/2)(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
=

(πε)(d+1)/2

2(d−1)/2

[
f2(xϑi )pN (xϑi )

µ2(xϑi )
+O(ε)

]
. (180)

Then, E
[(
Gϑ

i

)2]
and E

[
Hϑ

i G
ϑ
i

]
can be obtained in exactly the same manner, and we omit the derivation

for the sake of brevity (note that to compute E

[(
Gϑ

i

)2]
it is sufficient to take f ≡ 1 throughout the

derivation).

Appendix F Non-uniform sampling distribution

Let us consider the case where the sampling distribution p(x) is not uniform, and analyze the resulting

limiting operator by following the analysis of the bias error term in Section E.1. From (100), we have

that

lim
N→∞

C1
i,N (ϑ) = lim

N→∞

1

N

N∑

j=1

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
f(xϕj )dϕ

=

∫

N

∫ 2π

0
Hϑ

i (z)V (z)p(zβ)dzdβ = 2π

∫

N
Hϑ

i (z)V (z)p̃(z)dz, (181)

where the submanifold N is from the rotationally-invariant parametrization x 7→ (z, β) of Section E.3,

and we defined

p̃(x) =
1

2π

∫ 2π

0
p(xϕ)dϕ. (182)

Then, by following the derivation in Section E.1 we get that

lim
N→∞

C1
i,N (ϑ) = 2π

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
f(x)p̃(x)dx, (183)
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which is the same expression as in the case of uniform distribution except for the added density p̃. In a

similar way, we also get that the analogue of (104) in the case of non-uniform density is

lim
N→∞

C2
i,N (ϑ) = lim

N→∞

1

N

N∑

j=1

∫ 2π

0
exp

{
−
∥∥∥xϑi − xϕj

∥∥∥
2
/ε

}
dϕ = 2π

∫

M
exp

{
−
∥∥∥xϑi − x

∥∥∥
2
/ε

}
p̃(x)dx. (184)

If we use these results, then the equivalent of (105) for non-uniform density is

lim
N→∞

4

ε

{
L̃g
}
(i, ϑ) =

4

ε


f(xϑi )−

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
f(x)p̃(x)dx

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
p̃(x)dx


 , (185)

and from the results of [8] it directly follows that

lim
ε→0

lim
N→∞

4

ε

{
L̃g
}
(i, ϑ) =

∆M (f · p̃) (xϑi )
p̃(xϑi )

− ∆Mp̃(xϑi )

p̃(xϑi )
· f(xϑi )

= ∆Mf(xϑi )− 2

〈
∇Mf(xϑi ),∇Mp̃(xϑi )

〉

p̃(xϑi )
. (186)

Therefore, it is evident that the steerable graph Laplacian L̃ does not converge to the Laplace-Beltrami

operator ∆M, but rather to a Fokker-Planck operator which depends on the rotationally-invariant distri-

bution p̃. Note that if p was uniform, i.e. p(x) = 1/Vol {M}, then the two operators would coincide.

Next, following [8], we propose to normalize the sampling density by considering a re-weighted version

of the steerable affinity operator Wi,j(ϑ,ϕ). Specifically, we define

W̄i,j(ϑ,ϕ) =
Wi,j(ϑ,ϕ)

Di,iDj,j
, (187)

D̄i,i =

N∑

j=1

∫ 2π

0
W̄i,j(0, α)dα, (188)

and then the density-normalized steerable graph Laplacian L̄ is defined via

L̄f = f − D̄−1W̄f. (189)

Note that we can write

{
D̄−1W̄

}
i,j

(ϑ,ϕ) =
Wi,j(ϑ,ϕ)/Dj,j∑N

j=1

∫ 2π
0 [Wi,j(ϑ,ϕ)/Dj,j ] dα

=
N−1Wi,j(ϑ,ϕ)/(Dj,j/N)

N−1
∑N

j=1

∫ 2π
0 [Wi,j(ϑ,ϕ)/(Dj,j/N)] dα

, (190)

where we have that

lim
N→∞

1

N
Dj,j = lim

N→∞

1

N

N∑

k=1

∫ 2π

0
Wj,k(0, α)dα = lim

N→∞
C2
j,N(0) = 2π

∫

M
exp

{
−‖xj − x‖2/ε

}
p̃(x)dx,

(191)
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and therefore

lim
N→∞

4

ε

{
L̄g
}
(i, ϑ) =

4

ε


f(xϑi )−

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
f(x)p̂(x)dx

∫
M exp

{
−
∥∥xϑi − x

∥∥2/ε
}
p̂(x)dx


 , (192)

where p̂(x) is a “corrected” density given by

p̂(x) =
p̃(x)

∫
M exp

{
−‖x− y‖2/ε

}
p̃(y)dy

. (193)

Lastly, the derivation in [8] establishes that

lim
ε→0

lim
N→∞

4

ε

{
L̄g
}
(i, ϑ) = ∆Mf(xϑi ). (194)

Appendix G Proof of Theorem 3

We mention that this proof follows very closely the proof of Theorem 1.

Proof. First, as

{
D−1Wf

}
(i, ϑ) =

N∑

j=1

∫ 2π

0
(Wi,j(ϑ,ϕ)/Di,i) fj(ϕ)dϕ, (195)

it is evident that D−1W is also LRI (since D−1W merely alters Wi,j by constant factors independent of

ϑ), and hence L = I−D−1W is of the form A+G as required by Proposition 7. Therefore, we can obtain

a sequence of eigenfunctions and eigenvalues of L by diagonalizing the matrices S̃m = I −D−1Ŵ (m) for

every m ∈ Z. However, it is important to mention that in contrast to Sm = D − Ŵ (m), the matrix

S̃m = I −D−1Ŵ (m) is not Hermitian. Nonetheless, if we make the observation that S̃m is similar to the

Hermitian matrix S
′

m = I −D−1/2Ŵ (m)D−1/2 by

D1/2S̃mD
−1/2 = S

′

m, (196)

then it follows that S̃m can be diagonalized with a set of eigenvectors complete in C
N and the eigenvalues

of S
′

m, which are real-valued. Then, as it follows from Theorem 1 that the eigenvalues of Sm are non-

negative, we have that the eigenvalues of S
′

m = D−1/2SmD
−1/2 must be also non-negative (since surely

v∗D−1/2SmD
−1/2v ≥ 0 for any v ∈ C

N ), which lastly implies that the eigenvalues of S̃m are non-negative.

As to the fact that {Φm,k}m,k are complete in H, the same arguments as in the proof of Theorem 1

hold.
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