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Abstract

We propose a moment relaxation for two problems, the separation and covering problems with

semi-algebraic sets generated by a polynomial of degree d. We show that (a) the optimal value of the

relaxation finitely converges to the optimal value of the original problem, when the moment order r

increases and (b) after performing some small perturbation of the original problem, convergence can

be achieved with r = d. We further provide a practical iterative algorithm that is computationally

tractable for large datasets and present encouraging computational results.

1 Introduction

Data fitting problems have long been very useful in many different application areas. A well-known

problem is the problem of finding the minimum-volume ellipsoid in n-dimensional space Rn containing

all points that belong to a given finite set S ⊂ Rn. This minimum-volume covering ellipsoid problem is

important in the area of robust statistics, data mining, and cluster analysis (see e.g. Sun and Freund

[17] and the recent book by M. Todd [19]). Pattern separation as described in Calafiore [4] is another

related problem, in which an ellipsoid that separates a set of points S1 from another set of points S2

needs to be found under some appropriate optimality criteria such as minimum volume or minimum

distance error.
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These problems have been studied for a long time. The minimum-volume covering ellipsoid (MVCE)

problem was discussed by John [9] in 1948. This problem has been modeled as a convex optimization

problem with linear matrix inequalities (LMI) and solved by interior-point methods (IPM) in Vanden-

berghe et al. [21], Sun and Freund [17] and Magnani et al. [14]. In particular, the ”dual-reduced-

Newton” algorithm presented in [17] combines interior-point and active-set methods allowing one to

efficiently compute the MVCE of moderately large datasets (in dimension n = 30 and dataset with

30000 points, it takes a few seconds on a personal laptop). The recent survey by Todd [19] provides

more details on algorithms depending on the size of the datasets and the dimension. In particular, for

huge-scale problems (n = 500 and and datasets with 500000 points), the Wolfe-Atwood algorithm [18]

is the only one able to compute the MVCE.

The problem of pattern separation via ellipsoids was studied by Rosen [15] and Barnes [2]. Glineur

[6] has proposed some methods to solve this problem with different optimality criteria via conic pro-

gramming. Although efficient algorithms are already available, they could become computationally

intractable if the cardinality of datasets is large. In addition, different semi-algebraic sets other than

ellipsoidal sets could be considered for these data fitting problems. Note that for complicated clusters

as in Figure 1, it will be impossible in general to separate two datasets with ellipsoids.

Figure 1: Two datasets S1 (blue) and S2 (red) non separable with ellipsoids.

This was our motivation to approximate such datasets with the level set of a polynomial θ of a priori

fixed degree d, possibly greater than 2. Given two datasets S1 and S2, the superlevel (resp. sublevel)

set of θ should contain S1 (resp. S2). Interestingly, this approach can also be used for minimum-volume

covering problems when S2 = ∅. However for very large datasets, this may not be competitive with

dedicated algorithms, such as the ones presented in [19].
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With γ = (γ1, . . . , γn) ∈ Nn, let us note xγ
4
= xγ11 · · · x

γn
n and |γ| 4= γ1 + · · · + γn. One possible

approach to find the coefficients of the above-mentioned polynomial θ =
∑
γ θγx

γ is to solve the

following linear problem (LP):


inf

∑
|γ|≤d |θγ |

s.t. θ(x) ≥ 0, ∀x ∈ S1,

−θ(x) ≥ 0, ∀x ∈ S2,

θ ∈ R[x], deg θ = d.

 (1)

When θ has degree d, this LP has
(
n+d
n

)
variables and |S1|+ |S2| constraints on the vector of coefficients

of the polynomial θ. The variables of LP (1) are the coefficients (θγ)|γ|≤d of the polynomial θ.

Given a feasible solution θ of LP (1), the superlevel (resp. sublevel) set of θ contains S1 (resp. S2).

Therefore, we choose the `1-norm of the coefficient vector of θ for the objective function, in order to

minimize the volume of the level-sets of θ.

This LP may become ill-conditioned whenever several points from the clusters are close to each other.

The reason is that in this case the LP has almost redundant inequality constraints. We performed

practical experiments with several LP solvers (Gurobi [7], SDPT3 [20], Mosek [1], SeDuMi [16]), which

all include a pre-processing step to remove nearly dependent constraints (see [20, § 1.3.5]).

By solving LP (1), we were able to separate datasets of small size (less than 102 points). For various

randomly generated datasets of larger size, such as the datasets S1 and S2 (with 105 points) depicted

in Figure 1, we experienced numerical issues either with the algorithm implemented in the LP solvers.1

Another drawback of this LP formulation is that it cannot tackle all data fitting applications considered

in the present study, including minimum-volume covering ellipsoids.

Contributions and Paper Outline

In this paper we propose a common methodology for these data fitting problems and in particular

its extension to general basic semi-algebraic sets (more general than ellipsoids) based on a moment

approach. This methodology is based on the moment-SOS approach and has the distinguishing feature

to not individualize each point of the two clouds of data points, that is, we do not incorporate positivity

constraints of the type ±θ(xi) ≥ 0 for each point of the cloud. More precisely:

1For instance, the Gurobi solver cannot avoid numerical issues due to the large magnitude of matrix coefficients. The

SDPT3 solver (version 3.4.0) is not able to compute the solution of LP (1) and often aborts with various error mes-

sages, including the following one: “Stop: steps are too short”.
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(1) In Section 2, we propose a moment relaxation for these data fitting problems with basic semi-

algebraic sets Ω = {x ∈ Rn : θ(x) ≥ 0}, where θ ∈ R[x] is a polynomial with a priori fixed degree

d. One main advantage is to avoid considering |S1|+ |S2| constraints (i.e. avoids individualizing

each point). The information of each dataset |Si| is collected in a localizing matrix Mr(θy
i)

associated to an empirical measure µi supported on |Si| (and where yi is a finite vector of moments

associated with µi). In our case, we perform a smoothing thanks to the two LMIs: Mr(θy
1) � 0

(associated to S1) and Mr(θy
2) � 0 (associated to S2), with r ∈ N. When the first (resp. second)

condition is satisfied for all r, this is actually equivalent to the nonnegativity of θ (resp. −θ) on

the support of µ1 (resp. µ2) (see [11]). We show in Proposition 1 that the optimal value of the

relaxation converges in finitely many steps to the optimal value of the original problem, when the

moment order r increases. The key idea of our approach is that, instead of imposing a constraint

for each point in the dataset, we require that the support of any probability measure µ that is

generated on the dataset is contained in Ω. Using powerful results from the theory of moments,

we may replace all membership constraints by two Linear Matrix Inequality (LMI) constraints of

size
(
n+r
r

)
. Hence for 3D-datasets the size of each of the two LMIs is O(r3/6) (and so for a quartic

polynomial (r = 4), the size of each LMI is only
(
3+4
3

)
= 35).

(2) In Section 3, we show the following result: If max[|S1|, |S2|] = s and the degree d of the poly-

nomial θ is such that
(
n+d
n

)
≥ s, then finite convergence occurs at step r = d, generically. This

genericity condition can be ensured after performing some arbitrary small perturbation of the

original problem. The possible drawbacks of this method is that for large size clusters, the size of

the localizing matrices grows rapidly, leading to LMIs which are expensive to solve. Therefore to

handle large datasets in practice we combine the above approach with a heuristic inspired from

results on semi-infinite optimization by Ben-Tal et al. [3].

(3) In Section 4, we provide a practical iterative algorithm based on the results of Section 3 for these

data fitting problems that is computationally tractable for datasets with a very large number of

points. The corresponding method is an iterative procedure where the degree of the polynomial is

fixed in advance (typically r = 2 or r = 4) and where we solve a moment relaxation with measures

supported on subsets of the initial cluster. Even though this algorithm does not always converge,

it happens to be very efficient in practice. We present encouraging computational results of cluster

separation with up to 105 points, either with ellipsoid or quartic level sets.
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2 Moment Relaxations

2.1 Problem Formulation

With x = (x1, . . . , xn), consider a polynomial θ ∈ R[x] of degree at most d: θ(x) =
∑
γ∈Nn:|γ|≤d θγx

γ .

Letting θ = {θγ : γ ∈ Nn, |γ| ≤ d} be the coefficient vector of θ, θ ∈ Rt, where t =
(
n+d
d

)
and Θ ⊂ Rt, we

obtain a family of semi-algebraic sets Ωθ = {x ∈ Rn : θ(x) ≥ 0} for θ ∈ Θ. The problem of separating

a finite dataset S1 ⊂ Rn from another finite dataset S2 ⊂ Rn with one of these semi-algebraic sets can

be written as follows:

Ps


τ s = inf f(θ)

s.t. θ(x) ≥ 0, ∀x ∈ S1,

−θ(x) ≥ 0, ∀x ∈ S2,

θ ∈ Θ,

 (2)

where f is an optimality criterion and τ s is the optimal value of Ps.

If we only consider one dataset S, then we can formulate the problem of covering S with the best

semi-algebraic set Ωθ with respect to optimality criterion f as follows:

Pc


τ c = inf f(θ)

s.t. θ(x) ≥ 0, ∀x ∈ S,

θ ∈ Θ.

 (3)

If f is the volume function of ellipsoids and θ is a quadratic function that generates ellipsoidal sets,

then the pattern separation via ellipsoids and minimum-volume covering ellipsoid problems are obtained

respectively from these two general problems. Thus, for r = 1, we consider f = log detQ−1 with Q

being a positive definite matrix of size n and a separating polynomial θ(x) = −x′Qx+ b′x+ c. When

using level sets of polynomials with higher degree 2r, we consider the same cost function f = log detQ−1

with a positive definite matrix Q of size
(
n+r−1
n

)
and a separating polynomial θ(x) := −vr(x)′Qvr(x) +

b′vr(x) + c, where vr(x) is the vector of degree-r monomials, i.e. (xr1, x
r−1
1 x2, . . . , x

r
n). Note that we

can also consider the more general separating polynomial θ(x) := 1−wr(x)′Qwr(x), with wr(x) being

the vector of all monomials with degree at most r (See Section 4.2 and Section 4.3 for more practical

details).

Since the covering problem is a special case of the separation problem (S2 = ∅), we focus on the

latter problem in the following sections.
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2.2 Moment Formulation

We now investigate the application of the moment-SOS approach (see Henrion [8], Lasserre [10], and

the references therein) to Problem (2). Let µi be a probability measure generated on Si, i = 1, 2,

µi :=
∑
x∈Si

µixδx, (4)

where δx denotes the Dirac measure at x,
∑
x∈Si µ

i
x = 1, and µix ≥ 0 for all x ∈ Si, i = 1, 2. For

example, the uniform probability measure µi generated on Si has µix = 1/|Si| for all x ∈ Si.

All the moments yi =
{
yiα
}

of µi are calculated as follows:

yiα =

∫
xαdµi =

∑
x∈Si

µixx
α, α ∈ Nn. (5)

For any nonnegative integer r, the r-moment matrix associated with µi (or equivalently, with yi)

Mr(µ
i) ≡ Mr(y

i) is a matrix of size
(
n+r
r

)
. Its rows and columns are indexed in the canonical basis

{xα} of R[x], and its elements are defined as follows:

Mr(y
i)(α,β) = yiα+β, α,β ∈ Nn, |α|, |β| ≤ r. (6)

Similarly, given θ ∈ R[x], the localizing matrix Mr(θy
i) associated with yi and θ is defined by

Mr(θy
i)(α,β) :=

∑
γ∈Nn

θγy
i
α+β+γ , α,β ∈ Nn, |α|, |β| ≤ r, (7)

where θ = {θγ} is the vector of coefficients of θ in the canonical basis {xα}.

If we define the matrix Mγ
r (yi) with elements

Mγ
r (yi)(α,β) = yiα+β+γ , α,β,γ ∈ Nn, |α|, |β| ≤ r,

then the localizing matrix can be expressed as Mr(θy
i) =

∑
γ∈Nn θγM

γ
r (yi).

Note that for every polynomial f ∈ R[x] of degree at most r with its vector of coefficients denoted

by f = {fγ}, we have:

〈f ,Mr(θy
i)f〉 =

∫
θf2dµi. (8)

This property shows that necessarily, Mr(θy
i) � 0, whenever µi has its support contained in the level

set {x ∈ Rn : θ(x) ≥ 0}. Therefore, if we replace all membership constraints in Problem Ps by two LMI

constraints Mr(θy
1) � 0 and Mr(−θy2) � 0, we obtain a relaxation of Problem Ps:

Psr (y1,y2)


τ sr (y1,y2) = inf f(θ)

s.t. Mr(θy
1) � 0

Mr(−θy2) � 0

θ ∈ Θ,

 (9)
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with optimal value denoted by τ sr (y1,y2). We emphasize that Psr (y1,y2) depends on y1 and y2, the

respective moment sequences of the two measures µ1 and µ2, that are both fixed beforehand. Next, we

prove that the convergence of τ sr (y1,y2) to τ s occurs under mild properties of µ1 and µ2.

2.3 Convergence as the number of moments increases

Compared to Ps, the data of S1 and S2 are aggregated into the vector y1 and y2 used in Psr (y1,y2).

Both problems have exactly the same variables, but

- Problem Ps has |S1|+ |S2| linear constraints, whereas

- Problem Psr (y) has two LMI constraints Mr(θy
1) � 0 and Mr(−θy2) � 0 with matrix size

(
n+r
r

)
.

If r is not too large, solving Psr (y) is preferable to solving Ps, especially if |S1| + |S2| is large. It is

natural to ask how good this moment relaxation could be as compared to the original problem and

which value of r we have to use to obtain a strong lower bound. In this section, let us assume that fixed

probability measures µi generated on Si, i = 1, 2, are selected; for example, the uniform probability

measures as mentioned in the previous section.

Proposition 1 Let θ ∈ R[x], and let Ps, Psr (y1,y2), r ∈ N be as in (2) and (9) respectively. Then:

τ sr (y1,y2) ≤ τ sr+1(y
1,y2), and τ sr (y1,y2) ≤ τ s, ∀r ∈ N,

where τ s and τ sr (y1,y2) are optimal values of Ps and Psr (y1,y2) respectively.

Proof. For every γ ∈ Nn, Mγ
r (yi) is the north-west corner square sub-matrix with size

(
n+r
r

)
of

Mγ
r+1(y

i), i = 1, 2. This follows directly from the definition of the matrix Mγ
r (yi).

Since Mr(θy
1) =

∑
γ∈Nn θγM

γ
r (y1) for all r, Mr(θy

1) is also a north-west corner square submatrix

of Mr+1(θy
1). This implies that if Mr+1(θy

1) � 0, then Mr(θy
1) � 0. Similar arguments can be

applied for Mr(−θy2) and Mr+1(−θy2). Thus, any feasible solution of Psr+1(y
1,y2) is feasible for

Psr (y1,y2). So we have:

τ sr (y1,y2) ≤ τ sr+1(y
1,y2), ∀r ∈ N.

Similarly, any feasible solution of Ps is feasible for Psr (y1,y2). Indeed, if θ is feasible for Ps then we

have θ(x) ≥ 0 for all x ∈ S1 and θ(x) ≤ 0 for all x ∈ S2. Therefore, the probability measures µ1 and µ2

defined in (4) have their supports contained in the level set {x ∈ Rn : θ(x) ≥ 0} and {x ∈ Rn : θ(x) ≤ 0}

respectively. In view of (8), we have Mr(θy
1) � 0 and Mr(−θy2) � 0. This proves that θ is feasible

for Psr (y1,y2) with any r ∈ N. Thus, τ sr (y1,y2) ≤ τ s, ∀r ∈ N. �

7



We next show that if µi is supported on the whole set Si, i = 1, 2, then the optimal values{
τ sr (y1,y2)

}
converges to τ s, when r increases and the convergence is finite. The statement is for-

mally stated and proved as follows:

Theorem 1 Let Ps, µi and Psr (y1,y2), r ∈ N be as in (2), (4) and (9), respectively. If µix > 0 for all

x ∈ Si, i = 1, 2, then

τ sr (y1,y2) ↑ τ s as r increases,

and the convergence is finite.

Proof. From Proposition 1, we have τ sr (y1,y2) ≤ τ s, ∀r ∈ N. In addition, as µi in (4) is finitely

supported, its moment matrix Mr(y
i) defined in (6) with yi as in (5) has finite rank. That is, there

exists ri0 ∈ N such that

rank(Mr(y
i)) = rank(Mri0

(y)), ∀r ≥ ri0.

In other words, Mr(y
i) is a flat extension of Mr0(yi) for all r ≥ ri0 (see Curto and Fialkow [5] for more

details).

Now, let r0 := max{r10, r20} and let θ be an arbitrary ε-optimal solution of Psr0(y1,y2), ε > 0, i.e.,

f(θ) ≤ τ sr0(y1,y2) + ε. As Mr0(θ yi) � 0 and since M
r0+

deg θ
2

(yi) � 0, we may invoke Theorem 1.6 in

[5] and deduce that µ1 has its support contained in the level set {x ∈ Rn : θ(x) ≥ 0}. Similarly, µ2 has

its support contained in the level set {x ∈ Rn : θ(x) ≤ 0}. This implies that θ(x) ≥ 0 for all x ∈ S1

and θ(x) ≤ 0 for all x ∈ S2 because µi is supported on the whole set Si (µix > 0 for all x ∈ Si). Thus,

θ is feasible for Ps and τ s ≤ f(θ) ≤ τ sr0(y1,y2) + ε. We then have

τ sr0(y1,y2) ≤ τ s ≤ τ sr0(y1,y2) + ε.

As ε > 0 was arbitrary, τ sr0(y1,y2) = τ s. Since from Proposition 1 τ sr (y1,y2) is monotone and bounded,

we obtain that τ sr (y1,y2) ↑ τ s and the convergence is finite. �

Theorem 1 provides the rationale for solving Psr (y1,y2) instead of Ps. However, despite the finite

convergence we do not know how large the value of r0 could be. In the next section, we will discuss

how to select appropriate values r for Problem Psr (y1,y2).

3 Convergence of Measures

In this section, we analyze how the genericity of the datasets S1 ⊂ Rn and S2 ⊂ Rn affects the

convergence of Psr (y1,y2).
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Definition 1 (r-genericity) We say that S is said “r-generic” when S does not belong to the level

set of any polynomial of degree at most r.

We next investigate how different (and much “smaller”) atomic probability measures can be selected to

yield optimality.

3.1 Convergence in Measure

As mentioned in the previous section, τ sr (y1,y2) converges to τ s as r increases, and there exists an index

r0 such that τ sr0(y1,y2) = τ s. As for several other problems reformulated with moment relaxations, no

explicit value for the relaxation order r0 is available in general. We investigate next the dependence of

r0 on |S1| and |S2| and show that under certain rank conditions, we will have τ sr (y1,y2) = τ s for any

probability measures µi supported on the whole set Si, i = 1, 2.

Proposition 2 Let Ps, µi, and Psr (y1,y2) be as in (2), (4), and (9), respectively. Assume that |Si| =(
n+r
r

)
, Si is r-generic (in the sense of Definition 1), and µix > 0 for all x ∈ Si for i = 1, 2. Then the

following holds:

|Si| = rank (Mr(y
i)) and τ sr (y1,y2) = τ s .

Proof. Note that Mr(y
i) is an

(
n+r
r

)
×
(
n+r
r

)
matrix and the probability measure µi is supported

on the whole set Si, with |Si| =
(
n+r
r

)
, i.e. µi is an |Si|-atomic measure. For i = 1, 2, we first show

that the rank of the matrix Mr(y
i) is maximal, i.e. rank (Mr(y

i)) =
(
n+r
r

)
= |Si|. For each x ∈ Si,

we denote by ζx := (xα)|α|≤r the moment sequence associated to the Dirac measure at x. Note that

Mr(y
i) =

∑
x∈Si µx ζxζ

T
x = GGT , where G is the

(
n+r
r

)
×
(
n+r
r

)
matrix whose columns are the vectors

√
µxζx. We show that G is invertible. Indeed, if Gz = 0 for some vector (zα)|α|≤r, then one has
√
µx
∑
|α|≤r zαx

α = 0, for all x ∈ Si. Thus, Si belongs to the level set {x : gi(x) = 0} of the polynomial

gi (of degree at most r) with vector of coefficients z. This contradicts our assumption and therefore

necessarily z = 0, which implies that G is non singular and which in turn implies that Mr(y
i) is also

invertible. Hence, one has |Si| = rank (Mr(y
i)).

Then according to Laurent [12, Lemma 2.7], there exist |Si| interpolation polynomials fj ∈ R[x] of

degree at most r, j = 1, . . . , |Si|, such that

fj(x(k)) =

 0, j 6= k,

1, j = k,
∀j, k = 1, . . . , |Si|.
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Now, let θ be an arbitrary ε-optimal solution of Psr (y1,y2), ε > 0. As θ is feasible for Psr (y1,y2),

Mr(θy
1) � 0, Mr(−θy2) � 0 and f(θ) ≤ τ sr (y1,y2) + ε. For every j = 1, . . . , |S1|, we have:

〈f j ,Mr(θy
1)f j〉 ≥ 0,

where f j is the vector of coefficients of the polynomial fj . Then Eq. (8) implies that∫
θf2j dµ1 ≥ 0⇔ µ1x(j)θ(xj) ≥ 0.

Since µ1x > 0 for all x ∈ S1, we obtain θ(x(j)) ≥ 0 for all j = 1, . . . , |S1|. Similarly, we also obtain

θ(x(j)) ≤ 0 for all j = 1, . . . , |S2|. Thus, θ is feasible for Ps and τ s ≤ f(θ) ≤ τ sr (y1,y2) + ε. Combining

with results from Proposition 1, we have

τ sr (y1,y2) ≤ τ s ≤ τ sr (y1,y2) + ε.

As ε > 0 was arbitrarily chosen, we obtain τ sr (y1,y2) = τ s. �

Remark 1 In the case when |Si| =
(
n+r
r

)
, the assumption that Si is r-generic (in the sense of Defini-

tion 1) holds. Indeed, the points of Si in general position impose
(
n+r
r

)
independent linear conditions,

which is the maximal number of coefficients of a polynomial of degree r.

If we select r0 = min
{
r ∈ N :

(
n+r
r

)
≥ max{|S1|, |S2|}

}
, the condition |Si| =

(
n+r0
r0

)
, i = 1, 2, does not

hold in general, thus Proposition 2 cannot be directly applied. However, we can apply the following

perturbation algorithm to the initial datasets S1 and S2 to ensure that the rank condition generically

holds:

Perturbation Algorithm

1. For i = 1, 2, replicate (r0 − |Si|) times an arbitrary point of Si to obtain a new dataset S′i with

|S′i| =
(
n+r
r

)
.

2. Choose an arbitrary small ε > 0, fixed. For i = 1, 2 and each x ∈ S′i, generate a random unit

vector ũ ∈ Sn−1 from the rotation-invariant probability distribution on Sn−1 and replace x with

x + εũ ∈ B(x, ε) (where B(x; ε) is the ball centered at x and with radius ε). The perturbed

dataset S̃i is the set of all randomly generated vectors x̃.

3. Output S̃1 and S̃2.

10



After applying this algorithm, the rank condition generically holds and one can apply Proposition 2 to

the perturbed datasets S̃1 and S̃2.

Although the result of Proposition 2 is interesting, it is not very useful for practical algorithms.

Problem Psr0(y1,y2) has only two LMI constraints but its matrix size is at least max{|S1|, |S2|}, which

could be very large. It means that Problem Psr (y1,y2) is still computationally difficult to solve, when

|S1| or |S2| is large. However in the next section, we use Proposition 2 and show that we can generically

find appropriate probability measures µi such that τ sr (y1,y2) = τ s for r as small as d, which is the

degree of the polynomial θ.

3.2 Optimal Measure

The probability measure µi is defined in (4) as µi =
∑
x∈Si µ

i
xδx with

∑
x∈Si µ

i
x = 1 and µix ≥ 0 for

all x ∈ Si. Let µi =
(
µix1

, . . . , µix|S|i

)
, we have, µi ∈ M|Si|, where M|Si| =

{
x ∈ R|Si|+ :

∑|Si|
i=1 xi = 1

}
.2

Each probability measure µi can then be represented equivalently by a vector µi ∈ M|Si|. Thus, the

optimal value of Problem Psr (y1,y2) can also be expressed as τ sr (µ1,µ2) ≡ τ sr (y1,y2).

Clearly, we can form infinitely many moment relaxations from different probability measures gen-

erated on Si as above. But the question is then: which pair of probability measures yields the best

relaxation? With r fixed, consider the following problem:

Psr

[
ρsr = sup

µi∈M|Si|
τ sr (µ1,µ2)

]
, (10)

where ρsr is the optimal value of Psr . We then immediately have the following result

Proposition 3 Let Ps and Psr be as in (2) and (10) respectively. Then ρsr ≤ τ s.

Proof. From Proposition 1, we have τ sr (µ1,µ2) ≡ τ sr (y1,y2) ≤ τ s for all µi ∈M|Si|, i = 1, 2. Therefore

supµi∈M|Si|
τ sr (µ1,µ2) ≤ τ s.

�

We are interested in finding the minimum value of the moment order r that turns the above inequality

into an equality. We observe that in view of the convexity of f and Θ, the optimal solution of Ps depends

only on some (possibly small) subsets of S1 ⊂ Rn and S2 ⊂ Rn. Indeed, the following result was proved

by Ben-Tal et al. [3]:

2We use bold notation µi for the weight vector of the measure µi, in adequation with the bold notation θ for the

coefficient vector of the polynomial θ.
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Theorem 2 [Ben-Tal et al. [3, Theorem 3.1]] Consider the problem

P


inf f(θ)

s.t. gk(θ,x) ≤ 0, x ∈ Sk, k = 1, . . . ,m,

θ ∈ Θ,


and assume that

(A1) the set Θ ⊂ Rt is convex with non empty interior,

(A2) the function f is continuous and convex on Θ,

(A3) the function gk is continuous in x,

(A4) for all k ∈ N, the function gk is continuous and convex in θ on Θ and the set {θ : gk(θ,x) < 0}

is open, for each x ∈ Sk,

(A5) (Slater condition) the set {θ ∈ Rt : gk(θ,x) < 0,x ∈ Sk, k = 1, . . . ,m} is nonempty.

Let θ∗ be a feasible solution of P, Sk(θ
∗) = {x ∈ Sk : gk(θ

∗,x) = 0}, and K∗ = {k : Sk(θ
∗) 6= ∅}. Then

θ∗ is an optimal solution of P if and only if there is a set S∗ ⊂ ∪k∈K∗Sk(θ∗) with at most t elements

such that θ∗ is the optimal solution of the problem:

P∗


inf f(θ)

s.t. gk(θ,x) ≤ 0, x ∈ S∗ ∩ Sk, k ∈ K∗,

θ ∈ Θ.


Using Theorem 2 with g1(θ,x) := −θ(x) and g2(θ,x) := θ(x), we see that our initial problem of

separating the two datasets S1 and S2 boils down to separating the two datasets S∗ ∩ S1 and S∗ ∩ S2,

of smaller size, bounded by
(
n+d
n

)
. Our aim is then to apply Proposition 2 in order to solve exactly this

equivalent problem. To do so, we need the two initial datasets S1 and S2 to fulfill genericity conditions,

which are slightly stronger than the one stated in Definition 1.

Theorem 3 Let Ps, Psr be defined as in (2), (10) respectively, whose variables are the coefficients of

a degree d polynomial θ ∈ Θ. Assume that Θ is convex, f is convex on Θ, Slater condition is satisfied

and that each subset of Si of size less than
(
n+d
n

)
for i = 1, 2 is d-generic (in the sense of Definition 1).

If Ps is solvable, then the following generically holds for all r ≥ d:

ρsr = τ s.

12



Proof. Let us consider the separation problem Ps. In our context gk(θ,x) =
∑

α θαx
α and therefore

gk satisfies (A3) and (A4). As Ps is solvable with optimal solution θ∗, we can apply the results of

Theorem 2 with t =
(
n+d
n

)
. Thus, there exists a set S∗ such that θ∗ is the optimal solution of the

reduced problem P∗ associated to Ps:

P∗


inf f(θ)

s.t. θ(x) ≥ 0, x ∈ S∗ ∩ S1,

θ(x) ≤ 0, x ∈ S∗ ∩ S2,

θ ∈ Θ.


In general, the cardinal ci of S∗∩Si will be strictly less than t =

(
n+d
n

)
and we cannot apply Proposition 2

to the reduced problem P∗. However, we can modify P∗ by considering two sets S∗i of cardinal t, obtained

after adding t− ci points of Si to S∗ ∩ Si, for i = 1, 2. Since S∗ ∩ Si ⊆ S∗i for i = 1, 2, if θ (resp. −θ) is

nonnegative on S∗1 (resp. S∗2) then it is also nonnegative on S∗ ∩ S1 (resp. S∗ ∩ S2). In other words, it

is sufficient to separate S∗1 and S∗2 with the level set of θ since the same level set separates S∗ ∩ S1 and

S∗ ∩ S2 (and thus S1 et S2).

This leads to the following problem:

Ps(S∗1 , S∗2)


τ s(S∗1 , S

∗
2) = inf f(θ)

s.t. θ(x) ≥ 0, x ∈ S∗1 ,

θ(x) ≤ 0, x ∈ S∗2 ,

θ ∈ Θ.


where τ s(S∗1 , S

∗
2) denotes the optimal value of Ps(S∗1 , S∗2). In other words, the problem of separating S1

and S2 is equivalent to the problem of separating two datasets S∗1 and S∗2 of smaller size (but of course,

S∗1 and S∗2 are not known in advance).

Note that τ s(S∗1 , S
∗
2) is equal to the optimal value of P∗, which is also equal to the optimal value of

Ps. Both optimal values are reached at the same θ∗ and τ s = τ s(S∗1 , S
∗
2).

Then we choose probability measures µi0 (with the moment vector yi0) supported exactly on the

whole set S∗i , that is, for all x ∈ Si, µix > 0 if and only if x ∈ S∗i , for i = 1, 2. Clearly, µi0 ∈ M|Si|, for

i = 1, 2, thus τ sd (µ1
0,µ

2
0) ≤ ρsd.

The probability measure µi0 is supported on the whole set S∗i , for i = 1, 2, thus Psd(y10,y
2
0) is also a

moment relaxation of Problem Ps(S∗1 , S∗2). Thanks to the d-genericity assumptions on all subsets of S1

and S2, the two datasets S∗1 and S∗2 do not belong to the level set of any polynomial of degree at most
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d. Therefore, we can apply the result from Proposition 2, yielding τ sd (y10,y
2
0) ≡ τ sd (µ1

0,µ
2
0) = τ s(S∗1 , S

∗
2)

since the points of S∗i are in generic position and |S∗i | = t =
(
n+d
n

)
, for i = 1, 2.

From Proposition 3, we have ρsd ≤ ρsr ≤ τ s for all r ≥ d. From these inequalities and equalities, we

have: τ s = τ s(S∗1 , S
∗
2) = τ sd (µ1

0,µ
2
0) ≤ ρsd ≤ ρsr ≤ τ s, for all r ≥ d.

�

Note that after running the perturbation algorithm from § 3.1, the d-genericity assumption of The-

orem 3 is fulfilled for all subsets of S1 and S2. The result is that, with r as small as d, some moment

relaxation Psr (y1,y2) is equivalent to Problem Ps, given that the appropriate probability measures µ1

and µ2 are used. These appropriate measures are uniformly supported on two datasets S∗1 and S∗2 of

smaller size. If we would know these smaller datasets, we could easily separate S1 and S2 by solving the

equivalent reduced problem. Notice that for instance with d = 4 and n = 3 (2 clouds of 3D-points), one

is left with 35× 35 psd matrices only (with 2D-points then the size of each matrix drops to 15× 15).

The goal of the next section is to propose a practical iterative algorithm to compute separating

candidate polynomials.

4 Practical Algorithm

4.1 Algorithm

The key question is how to select the optimal probability measures for Problem Psr . The proof of

Theorem 3 suggests that in order to find the optimal probability measures, we need to find the set of

points S∗i , for i = 1, 2, that defines the optimal solution of Problem Ps. We propose a practical iterative

algorithm to select the optimal probability measures. At step k, one provides subsets Sk1 ⊆ S1 and

Sk2 ⊆ S2 of size potentially larger than
(
n+d
n

)
, and defines two probability measures µ1 and µ2, supported

on Sk1 and Sk2 respectively. Then one solves Problem Psr (y1,y2) to obtain a candidate polynomial θk to

separate S1 and S2. By Theorem 3, theoretically it would be enough to consider subsets Sk1 and Sk2 of

size exactly equal to
(
n+d
n

)
= |S∗1 | = |S∗2 |. But for practical efficiency, we may and will tolerate subsets

Sk1 and Sk2 of size potentially larger than
(
n+d
n

)
. If the algorithm terminates at iteration k = K, then

SK1 ⊇ S∗1 and SK2 ⊇ S∗2 , for S∗1 and S∗2 as in Theorem 3, and the resulting θK separates S1 and S2.

In each iteration, we solve Problem Psr (y1,y2) with different µ1 and µ2 until we (possibly) find the

optimal probability measures.

The main algorithm is described as follows:

Main Algorithm
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1. Initialization: set k ← 0, Sk ← S1 ∪ S2, r ← d.

2. Create µik uniformly over Sk ∩ Si. Solve Psr (y1,y2). Obtain optimal solution θk.

3. Form the set of outside points Ok := {x ∈ S1 : θk(x) < 0} ∪ {x ∈ S2 : θk(x) > 0}. If Ok = ∅,

STOP. Return θ = θk.

4. Update: k ← k + 1, Sk ← {x ∈ S1 : θk(x) ≤ 0} ∪ {x ∈ S2 : θk(x) ≥ 0}. Go to step 2.

The update rule for supporting sets is based on the fact that the set of points outside the current optimal

set, obtained from the moment relaxation, is likely to contain points that define the optimal separation

(or covering) set. This is also the reason why S0 is selected as S1 ∪ S2, which helps to separate critical

and non-critical points right after the first iteration. After a supporting set is created, all points in the

set are to be equally considered; therefore, uniform probability measures are used to form the moment

relaxation in each iteration.

Proposition 4 Let us assume that the main algorithm terminates. Then, we obtain an optimal solution

of Problem Ps.

Proof. Suppose that the algorithm terminates at iteration K. Then, the set of outside points,

OK = {x ∈ S1 : θK(x) < 0} ∪ {x ∈ S2 : θK(x) > 0}, is empty. Let us define SKi := SK ∩ Si, for

i = 1, 2. Since θK is an optimal solution of Problem Psr (y1,y2) with the uniform distribution µiK over

SKi ⊂ Si, for i = 1, 2, then θK is a feasible solution of Problem Ps. Hence, we have τ s ≤ τ sr (µ1
K ,µ

2
K),

the optimal value of Problem Psr (y1,y2). On the other hand, Problem Psr (y1,y2) is a relaxation of

Problem Ps(SK1 , SK2 ), the separation problem constructed over SKi instead of Si, i = 1, 2. Therefore,

τ sr (y1K ,y
2
K) ≤ τ s(SK1 , S

K
2 ), as τ s(SK1 , S

K
2 ) is the optimal value of Problem Ps(SK1 , SK2 ). In addition,

SKi ⊂ Si, for i = 1, 2, thus τ s(SK1 , S
K
2 ) ≤ τ s. Combining these inequalities, we obtain:

τ s ≤ τ sr (µ1
K ,µ

2
K) ≤ τ s(SK1 , SK2 ) ≤ τ s ,

which proves that the optimal solution of Problem Psr (y1,y2) is also optimal for Problem Ps. �

Despite the fact that our algorithm is a heuristic and has no guarantee to terminate, the results

established in the following sections show that this algorithm often terminates in practice after a few

iterations.

In the sequel, we consider the minimum-volume covering ellipsoids problem (Section 4.2) and the

separation problem (Section 4.3) via ellipsoids. Some computational results with this iterative algorithm

for these two problems are reported.
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4.2 Minimum-Volume Covering Ellipsoid Problem

4.2.1 Problem Formulations

The minimum-volume covering ellipsoid problem involves only one dataset. Let S ⊂ Rn be a finite set

of points, S = {x1, . . . ,xt}, where t = |S|. We assume that the affine hull of x1, . . . ,xt spans Rn, which

will guarantee any ellipsoids that cover all the points in S have positive volume.

The ellipsoid Ω ∈ Rn to be determined can be written

Ω :=
{
x ∈ Rn : (x− d)′Q(x− d) ≤ 1

}
,

where Q � 0, Q = Q′. The volume of Ω is proportional to detQ−1/2; therefore, the minimum-volume

covering ellipsoid problem can be formulated as a maximum determinant problem (see Vandenberghe

et al. [21] and recent survey by Todd [19] for more details) as follows:

P 4=


infQ,d detQ−1/2

s.t. (x− d)′Q(x− d) ≤ 1, ∀x ∈ S,

Q = Q′ � 0.

 (11)

Let A = Q1/2 and a = Q1/2d. Then P is equivalent to a convex optimization problem with |S| + 1

LMI constraints in the unknown variables A and a. Indeed, each constraint (x− d)′Q(x− d) ≤ 1 for

x ∈ S can be rewritten as follows: I Ax− a

(Ax− a)′ 1

 � 0, x ∈ S,

where I is the n× n identity matrix.

Instead of using A and a, let consider b = 2Qd and c = 1− 1
4b
′Q−1b, then the ellipsoid Ω can be

written:

Ω :=
{
x ∈ Rn : −x′Qx+ b′x+ c ≥ 0

}
.

The minimum-volume covering ellipsoid problem is formulated as follows:

infQ,b,c detQ−1/2

s.t. −x′Qx+ b′x+ c ≥ 0, ∀x ∈ S,

c = 1− 1
4b
′Q−1b,

Q = Q′ � 0.

(12)
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Consider the relaxation

infQ,b,c detQ−1/2

s.t. −x′Qx+ b′x+ c ≥ 0, ∀x ∈ S,

c ≤ 1− 1
4b
′Q−1b,

Q = Q′ � 0.

(13)

Lemma 1 Any optimal solution (Q∗, b∗, c∗) of Problem (13) is an optimal solution of Problem (12).

Proof. Since Problem (13) is an relaxation of Problem (12), we just need to prove that (Q∗, b∗, c∗) is

a feasible solution of Problem (12).

Suppose there exists an optimal solution (Q, b, c) of Problem (13) that satisfies the inequality γ =

c+ 1
4b
′Q−1b < 1. We have:

−x′Qx+ b′x+ c ≥ 0⇔ c+
1

4
b′Q−1b ≥ (Q1/2x− 1

2
Q−1/2b)′(Q1/2x− 1

2
Q−1/2b) ≥ 0.

If we assume that |S| > 1 then we have γ = c+ 1
4b
′Q−1b > 0. Thus 0 < γ < 1.

Let us consider the solution (Q̃, b̃, c̃) that satisfies Q = γQ̃, b = γb̃, and c̃ = 1− 1
4 b̃
′
Q̃
−1
b̃, we have:

(Q1/2x− 1

2
Q−1/2b)′(Q1/2x− 1

2
Q−1/2b) = γ(Q̃

1/2
x− 1

2
Q̃
−1/2

b̃)′(Q̃
1/2
x− 1

2
Q̃
−1/2

b̃)

Thus

−x′Qx+ b′x+ c ≥ 0⇔ (Q̃
1/2
x− 1

2
Q̃
−1/2

b̃)′(Q̃
1/2
x− 1

2
Q̃
−1/2

b̃) ≤ 1,

or we have −x′Q̃x+ b̃
′
x+ c̃ ≥ 0 for all x ∈ S. Therefore, the solution (Q̃, b̃, c̃) is a feasible for Problem

(13). However, we have:

Q = γQ̃⇒ det Q̃
−1/2

= γn/2 detQ−1/2 < detQ−1/2.

This contradicts the fact that (Q, b, c) is an optimal solution of Problem (13). Thus we must have

c = 1− 1
4b
′Q−1b or (Q, b, c) is a feasible (optimal) solution of Problem (12). �

Using Lemma 1 and the following fact: 1
4b
′Q−1b ≤ 1− c

Q = Q � 0
⇔

 Q 1
2b

1
2b
′ 1− c

 � 0,
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we can then formulate the minimum-volume covering problem as the following maximum determinant

problem with |S| linear constraints:

P 4=


infQ,b,c log detQ−1

s.t. −x′Qx+ b′x+ c ≥ 0, ∀x ∈ S, Q 1
2b

1
2b
′ 1− c

 � 0.

 (14)

Clearly, with this formulation, the minimum-volume covering ellipsoid problem is one of the covering

problems Pc as shown in (3).

4.2.2 Computational Results

We have implemented the algorithm presented in Section 4.1 with r = 2 for the minimum-volume cov-

ering ellipsoid problem (we just need to set S2 = ∅). Datasets are generated using several independent

normal distributions to represent data from one or more clusters. The data are then affinely trans-

formed so that the geometric mean is the origin and all data points are in the unit ball. This affine

transformation is done to make sure that data samples have the same magnitude. Computation is done

in Matlab 8.5.0.197613 (R15a, SP3) with general-purpose YALMIP 3 interface [13] and SDPT3 3.4.0

solver [20] on on an Intel Core i7-5600U CPU (2.60 GHz). Clearly, this algorithm can be implemented

with SeDuMi [16] or maxdet solver [21] in particular for this determinant maximization problem. We

have also implemented a variant of the minimum-volume covering ellipsoid to obtain level sets of quar-

tic polynomials. This variant is obtained by replacing x = (x1, . . . , xn) with the vector of degree-two

monomials v1(x) := (x21, x1x2, x
2
2, . . . , x

2
n) in Problem (14). That is, the function f(θ) to minimize reads

log detQ−1 with Q � 0 and with:

x 7→ θ(x) := − v1(x)TQv1(x) + bT v1(x) + c.

for some matrices Q, vector b, and scalar c. We obtain very similar results after choosing θ(x) =

1− w1(x)′Qw1(x), with w1(x) being the vector of all monomials with degree at most 2.

The test cases show that the algorithm works well with data in two or three dimensions. Figure

2 shows the minimum-volume covering ellipsoids and quartic for a 10000-point dataset on the plane.

This figure also indicates that when the degree d of the polynomial θ increases, the corresponding level

set provides tighter approximation of the dataset. When n = 3, we have run the algorithm for datasets

with up to 100, 000 points. The number of iterations we need is about 6 and it decreases when we
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(a) d = 2 (b) d = 4

Figure 2: Minimum-volume covering ellipsoid (d = 2) and quartic (d = 4) for a 10000-point dataset.

decrease the number of points to be covered. We also have results for datasets with 10, 000 points

when n = 10. However, the time to prepare moment matrices increases significantly in terms of the

dimension. We need to prepare O(n2) square matrices of size O(n2) as data input for the relaxation if

r = 2. If the probability measure is supported on m points, then the total computational time to prepare

all necessary moment matrices is proportional to O(n7m). Clearly, this algorithm is more suitable for

datasets in low dimensions with a large number of points. The computational time could be reduced

significantly if we implement additional heuristic to find a good initial subset instead of the whole set. A

problem-specific SDP code that exploits the data structure of the relaxation could be useful for datasets

in higher dimensions.

4.3 Separation Problem via Ellipsoids

4.3.1 Problem Formulation

The separation problem via ellipsoids with two datasets S1 ⊂ Rn and S2 ⊂ Rn is to find an ellipsoid

that contains one set, for example, S1, but not the other, which is S2 in this case. If we represent

the ellipsoid as the set Ω :=
{
x ∈ Rn : −x′Qx+ b′x+ c ≥ 0

}
with Q = Q′ � 0, then similar to the
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minimum-volume covering ellipsoid problem, we can formulate the separation problem as follows:

P 4=



infQ,b,c log detQ−1

s.t. −x′Qx+ b′x+ c ≥ 0, ∀x ∈ S1,

−x′Qx+ b′x+ c ≤ 0, ∀x ∈ S2, Q 1
2b

1
2b
′ 1− c

 � 0.


(15)

4.3.2 Computational Results

Similar to the minimum-volume ellipsoid problem, the algorithm for this separation problem can be

implemented with r = 2. With YALMIP interface and SDPT3 solver, the logdet objective function is

converted to geometric mean function, which is −(detQ)1/n. If the problem is feasible, the optimal

solution will have Q � 0, which means that the objective value is strictly negative. This can be

considered as a sufficient condition to determine that the problem is feasible. In each iteration of the

algorithm, if the optimal value is zero (Q = 0, b = 0, and c = 0 is a feasible solution for the subproblem

solved in each iteration), then we can stop and conclude that the problem is infeasible. Existence of the

critical subset that determines the problem infeasibility can be proved using the same arguments as in

the proof of Theorem 3 for the feasibility problem:

P 4=



infQ,b,c,d d

s.t. −x′Qx+ b′x+ c ≥ 0, ∀x ∈ S1,

−x′Qx+ b′x+ c ≤ d, ∀x ∈ S2, Q 1
2b

1
2b
′ 1− c

 � 0.


(16)

As for the minimum-volume covering ellipsoid problem, we have implemented a variant of the

minimum-volume separation ellipsoid to separate datasets by using quartic polynomials. In order to test

the algorithm, we generate datasets S1 and S2 as for the minimum-volume covering ellipsoids problem.

In most cases, if we run the algorithm for S1 and S2, we get infeasibility results. In order to generate

separable datasets, we run the minimum-volume covering ellipsoid algorithm for S1 and generate the

separable set S′2 from S2 by selecting all points that are outside the ellipsoid. We also try to include

some points that are inside the ellipsoid to test the cases when S1 and S′2 are separable by a different

ellipsoid rather than the minimum-volume ellipsoid that covers S1.

The test cases show that the algorithm can detect problem infeasibility and in the separable case,

finds an ellipsoid that separates two datasets. Figure 3 shows the separation of two datasets on the
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(a) Minimum-volume covering ellipsoid (b) Separating ellipsoid

Figure 3: Separating ellipsoid is the same as the minimum-volume covering ellipsoid.

Figure 4: Separating ellipsoid is different from the minimum-volume covering ellipsoid.

plane with 10000 points by the minimum-volume ellipsoid, while Figure 4 represents the case when a

different ellipsoid is needed to separate two particular sets. We also ran the algorithm for datasets with

n = 3 and n = 10. Similar remarks can be made with respect to data preparation and other algorithmic

issues as in Section 4.2.2. In general, the algorithm is suitable for datasets in low dimensions with a

large number of points.

Figure 5 shows an example where there is no ellipsoid that can separate two given datasets S1 and

S2. We indicate the border of the minimum-volume covering ellipsoid for the dataset S1 as well as

the level set of the separating quartic for S1 and S2. In such cases, one has to rely on higher degree

polynomials to be able to separate the two datasets.
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(a) Separable datasets S1 and S2

(b) Minimum-volume ellipsoid for S1 (c) Separating quartic for S1 and S2

Figure 5: Separating quartic for two 10000-point datasets.
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[13] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[14] A. Magnani, S. Lall, and S. Boyd. Tractable fitting with convex polynomials via sum-of-squares. In Proceed-
ings of the 44th IEEE Conference on Decision and Control, Seville, Spain, December 2005.

[15] J. B. Rosen. Pattern separation by convex programming. Journal of Mathematical Analysis and Applications,
10:123–134, 1965.

[16] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, 1998.

[17] P. Sun and R. M. Freund. Computation of Minimum-Volume Covering Ellipsoids. Operations Research,
52(5):690–706, 2004.

[18] Michael J. Todd and E. Alper Yildirim. On Khachiyan’s algorithm for the computation of minimum-volume
enclosing ellipsoids. Discrete Applied Mathematics, 155(13):1731 – 1744, 2007.

[19] M.J. Todd. Minimum-Volume Ellipsoids: Theory and Algorithms. MOS-SIAM Series on Optimization.
SIAM, 2016.
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