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BENCHMARK PROBLEMS FOR PHASE RETRIEVAL

VEIT ELSER∗∗, TI-YEN LAN∗, AND TAMIR BENDORY††

Abstract. In recent years, the mathematical and algorithmic aspects of the phase retrieval
problem have received considerable attention. Many papers in this area mention crystallography as
a principal application. In crystallography, the signal to be recovered is periodic and comprised of
atomic distributions arranged homogeneously in the unit cell of the crystal. The crystallographic
problem is both the leading application and one of the hardest forms of phase retrieval. We have
constructed a graded set of benchmark problems for evaluating algorithms that perform this type of
phase retrieval. The data, publicly available online1, is provided in an easily interpretable format.
We also propose a simple and unambiguous success/failure criterion based on the actual needs in
crystallography. Baseline runtimes were obtained with an iterative algorithm that is similar but
more transparent than those used in crystallography. Empirically,the runtimes grow exponentially
with respect to a new hardness parameter: the sparsity of the signal autocorrelation. We also review
the algorithms used by the leading software packages. This set of benchmark problems, we hope,
will encourage the development of new algorithms for the phase retrieval problem in general, and
crystallography in particular.

Key words. phase retrieval, crystallography, periodic signals, reconstruction algorithms, bench-
mark problems, sparsity

AMS subject classifications.

1. Introduction. The publication of “Phase retrieval via matrix completion”
by Candès et al. [10] launched a revival of interest in the phase retrieval problem.
Phase retrieval originated in X-ray crystallography, which is still by far the largest
application. In 2016, about 50,000 crystal structures were deposited in the Cambridge
Structural Database [31], each made possible by a phase retrieval algorithm. In brief,
phase retrieval seeks to reconstruct a signal from measurements of its Fourier mag-
nitudes. This is well-posed, of course, only if additional information is brought to
bear on the reconstruction. In the case of X-ray crystallography, where the signal has
support only at the positions of atoms, the additional information takes the form of
a sparsity constraint.

All algorithms currently in use for crystallographic phase retrieval are close de-
scendants of algorithms developed in the 1970s, and are viewed as heuristic methods
by today’s standards. By contrast — see [3, 46] for recent surveys — the current wave
of phase retrieval research has produced algorithms that can guarantee solutions. Is
a migration to such algorithms imminent in crystallography, or does crystallinity —
signal periodicity — pose new, fundamental challenges? In this paper, we make a
case for the second scenario, and make contributions designed to help resolve what
we see as an under-appreciated theoretical problem.

In Section 2, we describe the crystallographic phase retrieval problem, highlighting
those features that bring it outside the scope of current theoretical research and
significantly increase its hardness. Our main contribution is presented in Section 3,
where we describe a set of benchmark problems. These are synthetic instances of
phase retrieval, designed with sufficient realism that success at solving them would
translate to success with real data sets. Section 4 gives details on the benchmark
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constructions and, in particular, defines a new index, peculiar to crystallography, for
ranking hardness. A representative heuristic method, described in Section 5, exhibits
exponential time behavior with respect to this index. An easy way for a new brand
of algorithm to distinguish itself is to demonstrate, at least empirically, behavior with
smaller exponential growth or even sub-exponential behavior.

Heuristic methods in phase retrieval are often disparaged for lacking polynomial-
time guarantees. This characterization, in the case of crystallographic phase retrieval,
should be revisited if the new theoretical ideas fail to produce polynomial-time algo-
rithms. As explained in Section 5, the (empirical) exponential behavior of the heuristic
methods is still far superior to näıve exhaustive search. In addition, these methods
appear to produce solutions reliably and their performance on the benchmarks in
Section 5 is strong motivation for their continued study.

Much of the current theoretical work on phase retrieval, for instance [13, 20, 54],
was inspired by the proposal of Candès et al. [10] of collecting a greater volume of
magnitude-only data through the use of sensing vectors (designed or random) imple-
mented as phase masks in the X-ray experiment. This proposal overlooks a physical
limit posed by the extreme smallness of the electron/X-ray interaction. For example,
in a synchrotron X-ray diffraction experiment to determine the structure of a 30-nm
virus particle, X-rays are elastically scattered into the detector (the source of all infor-
mation) only at a rate of 10−1 X-rays per particle over the duration of the experiment.
Unless data is collected simultaneously from a very large number of identical particles,
the number of bits of data arriving at the detector falls far short of what is required to
define the particle’s structure (typically, the positions of many thousands of atoms).
Therefore, data is always collected from crystals because it is the only feasible method
of aligning the required large number of particles to enable the simultaneous record-
ing from all of them. While periodicity of the particles within the crystal is clearly
necessary for an adequate signal-to-noise ratio, the exact same periodicity is required
of the proposed phase mask for obtaining additional magnitude-only data. In this
setting, a “phase mask” would be a designed particle that co-crystallizes with the
unknown target particle. This is a much used strategy for structure determination
called “molecular replacement,” where the designed particle is a previously solved
structure known to be a constituent part of the unknown particle. However, in molec-
ular replacement the known information combines additively with the signal vector,
not multiplicatively.

Because of physical limits that apply when resolving sub-nanometer detail, there
is much less opportunity for designed measurement than at larger scales, such as is
possible in medical imaging. Signal periodicity is therefore a non-negotiable feature
of phase retrieval in structural biology. Section 6 reviews four leading phase retrieval
algorithms for biomolecular crystals. We do not present benchmark results on these
algorithms but use this section to give an historical account of the evolution of phase
retrieval algorithms, as exemplified by the method in Section 5 for which we do provide
detailed results. Section 7 summarizes the paper.

There are many non-crystallographic variants of the phase retrieval problem, aris-
ing in ptychography [51, 42], laser pulse-shape characterization [52], etc., and we
cannot hope to review them here. However, to satisfy the curiosity of the many re-
searchers working on the simplified form of phase retrieval [10], we document in the
appendix the behavior of our baseline algorithm (RRR) adapted for this aperiodic,
no-prior-information case.
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2. Crystallography. A crystal is characterized by the periodic arrangement of
a repeating structural unit, also known as the unit cell. In X-ray crystallography, the
“signal” is the electron density function of the crystal,

(1) ρc(x) =
∑

y∈S

ρ̃(x− y),

where ρ̃ is a compactly supported motif and S is a finite set of translation vectors.
The crystal parameters are defined by a lattice Λ ⊂ RD and the set S ⊂ Λ corresponds
in practice to a very large and compact subset. If we fix a translation z ∈ Λ while
increasing the size of S, the relation ρc(x+z) ≈ ρc(x) becomes a better approximation,
failing only for x near the surface of the crystal.

X-ray experiments measure the Fourier intensities |ρ̂c(q)|2 of the crystal, where

ρ̂c(q) =

∫

RD

dx ρc(x)e
−i2πq·x(2)

=





∑

y∈S

e−i2πq·y





(∫

RD

dx′ ρ̃(x′)e−i2πq·x′

)

(3)

= ŝ(q) ρ̂(q).(4)

As the set S grows (includes more of Λ), the support of the function ŝ(q) is increasingly
concentrated on the dual lattice Λ∗.

The q-behavior of the measured Fourier intensities

(5) |ρ̂c(q)|2 = |ŝ(q)|2 |ρ̂(q)|2

is dominated by the function |ŝ(q)|2: the phenomenon of Bragg peaks. In this model
of a perfect crystal, the Bragg peak width is determined by the size of S. In practice,
other factors (e.g., small misalignments of domains within the crystal) dominate the
Bragg peak width. Nevertheless, the counterpart of |ŝ(q)|2 for imperfect crystals will
still have the periodicity of Λ∗ and comprise isolated peaks having widths on a scale
so small that the function |ρ̂(q)|2 can be approximated as a constant over each peak.
These features combine to give the integral of |ρ̂c(q)|2, over just one Bragg peak, a very
simple interpretation. First, since |ŝ(q)|2 is periodic, its integral over a Bragg peak is
independent of the specific peak and just contributes an overall scale factor. Second,
the small width of the peaks ensures that the integrals are just sampling the function
|ρ̂(q)|2 on the discrete set Λ∗. The X-ray measurements thus give the magnitudes of
the Fourier series coefficients ρ̂(q), q ∈ Λ∗, that define a strictly periodic function on
RD/Λ:

(6) ρ(x) =
1

vol(Λ)

∑

q∈Λ∗

ρ̂(q) ei2πq·x,

where vol(Λ) denotes the volume of the crystal unit cell, and the phases of ρ̂(q) still
have to be retrieved to reconstruct the density ρ(x).

The phase retrieval problem can also be understood through autocorrelation anal-
ysis. In particular, by the convolution theorem, the signal autocorrelation

(7) a(y) = a(−y) =
∫

dx ρ(x)ρ(x + y),
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is given directly by the inverse Fourier transform of the signal’s Fourier intensities
|ρ̂(q)|2. It is instructive to compare the autocorrelation for an aperiodic signal, where
ρ and a are defined on RD, to the periodic case where these are functions on RD/Λ.
Figure 1(a) shows a signal comprising N = 25 “atoms” that may be interpreted either
as the repeating motif of a crystal or the aperiodic signal of a single “molecule.” The
autocorrelations a(y) in both cases comprise N(N−1) peaks associated with all pairs
of atom-atom separations (and a strong peak at the origin for the N self-correlations).
In the periodic case, Figure 1(b), the same number of autocorrelation peaks is crowded
into a smaller region than the aperiodic case, Figure 1(c). The resolution of the
signal (atom size) and number of atoms in the illustration was set such that it is just
becoming difficult to resolve individual autocorrelation peaks in the periodic case. By
contrast, the aperiodic autocorrelation still has well resolved peaks, particularly at
the periphery of the pattern, corresponding to the farthest separated atom pairs.

The structure of the autocorrelation a(y), for a signal ρ(x) comprising atoms,
is helpful for understanding how periodicity increases phase retrieval hardness, that
is, recovering ρ(x) from a(y). First, suppose that all the peaks in a(y) are so well
resolved that we know with high precision all the separation vectors, assumed to be
unique. The atom positions in ρ(x) can then be inferred by hand, starting with a pair
of atoms having one of the unique separations, then placing atoms one at a time, each
one constrained by having all separations to the placed atoms included among the
unique separations in a(y). This is a polynomial-time algorithm and applies equally
in the periodic and aperiodic cases. But now consider the effects of finite resolution,
that is, when the O(N2) number of separations outpaces the number of resolution
elements, which normally scales as the number of atoms, O(N). Errors arising from
misidentified separations will occur with greater frequency in the periodic case because
the autocorrelation peaks occupy a smaller region and have a higher density. Also,
the density of peaks in the aperiodic case is not as uniform as it is in the periodic
case, to the degree that sets of widely separated atoms can be reconstructed quite
easily from the periphery of a(y), where the peaks are sparse.

The structure of the autocorrelation function, now for the periodic case, also in-
forms us on how phase retrieval hardness depends on parameters. Suppose we match
the size of resolution elements to the size of atoms — a reasonable approximation of
what is done in crystallography. If our unit cell has M resolution elements and N
atoms, we would characterize the signal sparsity as N/M . However, as a comparison
of Figs. 1(a) and 1(b) makes clear, a signal sparsity of N/M translates to an auto-
correlation sparsity of order N2/M . Therefore, we should expect the hardness of the
instances to scale like N2/M rather than the standard measure of signal sparsity.

An interesting consequence of the scaling difference between signal and autocor-
relation sparsity is the possibility of instances that are both hard and have unique
solutions. Many of the standard hard feasibility problems exhibit the phenomenon
that the onset of solution non-uniqueness, as a function of a parameter in randomly
generated instances, coincides with instances tuned to the maximum hardness. In
some cases, e.g., logical satisfiability, the only hard instances that can be generated
randomly are right at the transition point. In crystallographic phase retrieval the
situation is very different. We first note that the information deficit for a generic sig-
nal, defined as the ratio of the number of independent measurements to the number
of independent signal values, is 1/2. This follows from the fact that for a general
real-valued signal ρ(x) sampled on M resolution elements there are M/2 independent
Fourier magnitude samples |ρ̂(q)|. By näıve constraint counting, a unique solution
therefore requires at least M/2 real-valued constraints. But in the signals encountered
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in crystallography, Fig. 1(a), normally far more than half the samples are known, a
priori, to be zero. And, as we argued above, the retrieval of even such sparse signals
pose a challenge when their autocorrelations are not sparse.

Phase retrieval has three fundamental, though benign, forms of solution non-
uniqueness, frequently referred to as trivial ambiguities. The (real-valued) signal
can be translated, inverted through the origin, or changed in sign, without changing
the Fourier magnitudes. These ambiguities are associated with physical symmetries
(arbitrariness of the sign of the electron charge, etc.) and do not compromise in-
terpretability. A less trivial form of non-uniqueness, in the case of signals with well
resolved atoms, arises when the geometry of the atom positions has the homometric
property. Suppose ρ and ρ′ are two solutions not related by one of the trivial ambigu-
ities. Since they have equal Fourier magnitudes, they have matching autocorrelation
functions and therefore share the same set of atom-atom separation vectors. In the
aperiodic case, Rosenblatt and Seymour [43] have shown that this only happens when
ρ is the convolution of (atomic) signals ρ1(x) and ρ2(x). When this is the case, a
symmetry-unrelated signal ρ′ can be constructed from the convolution of ρ1(x) and
ρ2(−x) that has the same autocorrelation. However, signals that “factorize” in this
sense are highly non-generic because there will be multiple symmetry-unrelated pairs
of atoms that have exactly the same separation. In the generic case, when the peaks
in the autocorrelation function all correspond to unique atom-atom separations, there
will not be any homometric non-uniqueness. This conclusion also applies to the pe-
riodic case. A similar result was recently derived for the one-dimensional discrete
case [2, Theorem 2.3].

The relevance of periodicity for hardness can be argued on a more abstract level
with the help of a discrete model, called bit retrieval [23]. In bit retrieval, a signal is
represented by the integer coefficients of polynomials. The case where the non-zero
coefficients are all equal to 1 comes closest to crystallography (in one dimension),
where the polynomial xk corresponds to an atom located at position k. In the ape-
riodic case, the signal polynomials b(x) are Laurent polynomials, Z[x, 1/x], while in
the periodic case (crystals) the polynomials belong to the ring Z[x]/(xP − 1) for some
integer P that defines the period. In bit retrieval we are given the autocorrelation
polynomial a(x) = b(x)b(1/x) and asked to find a factorization a(x) = b′(x)b′(1/x),
ideally such that b′(x) also has all nonzero coefficients equal to 1. In the aperiodic
case, the factors can be found in polynomial time by the LLL algorithm [34], whereas
no efficient factorization algorithms are known for the ring Z[x]/(xP − 1), the case of
periodic signals. In fact, the hardness of factoring in the ring of cyclic polynomials is
the basis of some cryptographic schemes [32].

Crystals often have symmetries in addition to those conferred by the lattice of
translations, Λ. Most generally, an (idealized) infinite crystal is unchanged by the
action of the elements of a finite group G. An element g ∈ G acts on the density func-
tion ρ by the composition of a rotation Rg (an orthogonal matrix) and a translation
Tg:

g (ρ(x)) = ρ(Rg · x+ Tg).

Thus in addition to

ρ(x) = ρ(x+ y), y ∈ Λ,

the density of a crystal also satisfies

ρ(x) = g (ρ(x)) , g ∈ G.
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Fig. 1: (a) A signal ρ comprising N = 25 “atoms.” (b) The autocorrelation function
of ρ in the periodic case (the enclosing square is the unit cell). (c) The autocorrelation
in the aperiodic case.

The set of rotation matrices Rg identify G with a point group (transformations that
fix the origin), while the set of pairs (Rg, Tg), together with the group of lattice
translations Λ, specify the crystal’s space group. The order |G| of the point group is
usually denoted Z.

Space groups are usually identified prior to phase retrieval, often by the systematic
vanishing of Fourier magnitudes |ρ̂(q)| for special q. If G is non-trivial, it has the
effect of reducing the number of independent density samples in the crystal unit cell
by the factor Z. Our benchmarks all have the trivial space group and avoid this
complication.

3. Description of the datasets. In this section we describe our synthetic
datasets and what it means to solve an instance. Details on the construction of
the benchmark problems are given in the next section and can be skipped by readers
just wishing to solve the benchmarks.

Data sets are identified by an integer N , the number of atoms in the signal,
and a suffix characterizing the difficulty of the problem: E (easy), M (medium), H
(hard). All data have the same format: an M ×M table of integers (photon counts)
representing the measurements of Fourier intensities |ρ̂|2 of a signal ρ sampled on a
periodic M×M grid. All instances have M = 128. This size was chosen to discourage
methods [10, 33] that represent the signal in terms of a dense, M2 ×M2 matrix on
which a rank-1 (or low rank) constraint is imposed. In 3-D protein crystallography
the corresponding dense matrix could not be processed or even stored. Regarding the
dimensionality of the signal, we believe this has no effect on phase retrieval complexity
in the periodic case; two dimensions was chosen only for ease of rendering the signal.

Figure 2 shows a rendering and excerpt of the data file for the easiest instance,
data100E. Though the data look random, there is a systematic decrease in the pho-
ton counts with increasing spatial frequency. The table of photon counts contains
several zero entries because, in experiments, intensities are normally measured out to
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Fig. 2: Rendering (left) and excerpt (right) of benchmark instance data100E. The
(0, 0) photon count at the upper left corner is not measured and set to zero.

frequencies where the Fourier transform is so small in magnitude that few photons
are detected. The (0, 0) intensity (photons scattered with zero momentum change
are indistinguishable from photons that did not scatter at all) is never measured
and appears as a 0 in the data file. All other intensities have been symmetrized,
|ρ̂(p, q)|2 = |ρ̂(−p,−q)|2, because the electron density signal of X-ray crystallography
is real-valued. The data files comprise just the 128 × 64 half-table of symmetrized
photon counts. All entries in the 65th row and 65th column (not shown in Figure 2)
are zero.

Solving an instance entails the following. Square roots of the data are taken and
define the Fourier magnitudes |ρ̂(p, q)|. The phasing algorithm being demonstrated
reconstructs ρ̂(0, 0) > 0 and the phases φ(p, q) of the periodic signal

(8) ρ(x, y) =
1√
M2

M−1
∑

p=0

M−1
∑

q=0

ei
2π

M
(px+qy) |ρ̂(p, q)|eiφ(p,q).

The solution phases must satisfy φ(p, q) = −φ(−p,−q) in order that ρ(x, y) is real.
Solutions are required to be consistent with a prior constraint on the support S of

the signal. The cardinality of S is exactly 8N , that is, on average each of the N atoms
is supported on 8 pixels. In practice, we can take S to be the set of pixels on which
ρ(x, y) has its 8N largest values because the signal is not only real but non-negative.
Consistency with the support constraint is established by checking a power inequality.
From the data, as well as the reconstructed (0, 0) intensity, the total Fourier power is
given by

(9) IF =

M−1
∑

p=0

M−1
∑

q=0

|ρ̂(p, q)|2 =

M−1
∑

x=0

M−1
∑

y=0

ρ2(x, y).

In a successful reconstruction, the power in the support

(10) IS =
∑

(x,y)∈S

ρ2(x, y),

matches the Fourier power. Because of Poisson noise (details in Section 4), the power
in the support falls short of the power in the data. However, all the benchmark
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Fig. 3: A phase retrieval solution (left) and the as-constructed ground truth (right) for
benchmark data300E. These images are rendered on a grid of the same size, 128×128,
as the grid that holds the data.

instances have solutions that satisfy:

(11)
IS
IF

> 0.95.

An instance is declared to be solved when this criterion is met. Understanding
this criterion, and what makes it difficult to achieve, is the crux of the phase retrieval
problem. Note that the denominator of (11) is mostly known. All that is unknown
about IF is the contribution of the constant term in the Fourier series, |ρ̂(0, 0)|2.
However, there is very little freedom in the value of this term when ρ is required to be
sparse. By contrast, the power in the support, IS, depends on all the unknown phases,
via equations (10) and (8). Only very special combinations of phases, in combination
with a special ρ̂(0, 0), can produce a ρ that is highly sparse and for which the power
in the small support (nearly) matches IF. Criterion (11) makes no reference to a
ground-truth solution, nor does it make any assumptions about solution uniqueness.

Finally, we note that algorithms for solving the benchmarks are not required to
work with signals sampled on M×M grids. Computations may be performed on finer
or coarser grids, or without a grid sampling of the signal at all. However, at the end
of the computation the algorithm is required to output the phase angles and ρ̂(0, 0)
needed to check criterion (11).

4. Construction details. Figure 3 shows a successfully reconstructed signal for
benchmark instance data300E next to the signal that was constructed, by the method
described in this section, to produce the data (a translation and reflection through
the origin was applied to the latter to aid comparison). Of the 1282 pixels, only
8× 300 have significant signal (appear gray). These are bandlimited signals and less
noisy than they appear. Smooth contour plots, formed by zero-padding the Fourier
transforms on a 512× 512 grid and back transforming, are shown in Figure 4. We see
“atoms” of two types with centers having sub-grid precision.

To construct data for an instance with N atoms, first a set ofN atom-center pixels
on a 512× 512 grid was sequentially sampled, uniformly but with the constraint that
the distance between pixels is at least 12. After downsampling the signal by a factor of
4 to avoid atoms artificially centered on grid points, this gives a minimum separation
of 3 pixels between atom centers, corresponding to 3 Å in physical units (a typical
atomic diameter) when the pixel resolution of the data is 1 Å (typical of high quality
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Fig. 4: Contour renderings of the upper left corners of the signals in Figure 3.

data). The signal value was set to 1 on N/2 randomly selected pixels and 2 on the
other half. This mimics two species with atomic number ratio 2 and is designed to
defeat algorithms that unrealistically impose an equal-atom prior. Minor variants of
this part of the construction, described below, give the E, M and H grades of instances.

After downsampling the signals from 512×512 to 128×128, the Fourier intensities
(squared magnitudes) were multiplied by a Gaussian filter that had the effect of
diminishing the lowest-frequency unmeasured intensities by a factor of 25 relative to
intensities at the center of the transform. These filtered intensities were then rescaled
(details below) and the result established the mean of the simulated photon counts,
where the latter were sampled from the Poisson distribution. A single photon count
was generated at each frequency, as in an actual experiment. The final step was to
symmetrize the data by summing the counts at (p, q) and (−p,−q).

The same intensity rescaling factor was used in all the benchmarks. This has
the effect that individual atoms have the same characteristics (amplitude, width)
across all the benchmarks. It also implies the total photon count in the data sets
is proportional to N , the number of atoms. This normalization convention can be
defended on information theoretic grounds: to reconstruct the types and positions
(in a fixed field) of N atoms, the quantity of information should be proportional
to N . Since each detected photon delivers the same quantity of information, this
proportionality is maintained when the total photon count is also proportional to N .

Recall from section 2 that in crystallography the hardness of phase retrieval is
expected to depend on the autocorrelation sparsity rather than the signal sparsity.
Since the signal is comprised of N atoms, the autocorrelation (away from the origin)
is also “atomic” in character, but with N(N −1) peaks corresponding to all the inter-
atomic vectors. These peaks are distributed homogeneously in the unit cell because
the atoms themselves are distributed homogeneously. A small departure from the
uniform distribution, see Figure 1(b), is explained by the constraint on the minimum
atom-atom distance. For large N , a suitable definition of the autocorrelation sparsity,
or the density of autocorrelation peaks, is therefore

(12) µ =
N2

V
,

where V is a measure of the number of pixels that can be resolved by the data.
The measure V should correspond to the number of Fourier samples in the data,

taking into account the decay in signal with increasing frequency. Because real data
and our synthetic data is well characterized by Gaussian decay of intensity with
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frequency, we chose to define an “effective” number of Fourier samples by the formula

(13) V =
∑

q∈Λ∗

e−b|q|2 ,

where the sum is over the lattice dual to the crystal lattice Λ and b is a parameter.
This definition applies in any number of dimensions. In real 3-D crystals, the intensity
decay is reported as the value of the Wilson B-factor [28], and b = B/6. For large
V , the sum in (13) can be approximated by an integral and we obtain, in three
dimensions,

(14) V ≈
(

6π

B

)3/2

vol(Λ),

where the last factor is the volume of the crystal unit cell.
Numerically performing the sum (13) for the Gaussian filter of the benchmarks,

we obtain the formula

(15) µ =

(

N

64.17

)2

,

for the benchmark instances. The numbers of atoms N of the instances was chosen
to sample µ by roughly equal intervals, from µ = 2.4 to µ = 39.

The benchmark signals all have trivial space group (P1), limiting comparisons
with real-data phase retrieval. To expand the comparison group, we propose that in
a space group with point group order Z, both N and V in (12) should be divided by
Z. This has the effect of replacing µ by µ/Z. To the best of our knowledge and with
this generalized definition, µ ≈ 13 is the hardest reported case of phase retrieval with
real data for comparable structures (lacking heavy atoms; see Section 6, Table 2).

When the atom positions are uniformly and independently sampled, the Fourier
coefficients (before filtering) have (asymptotically) a complex-normal distribution by
the central limit theorem. The corresponding intensities are then exponentially dis-
tributed, a phenomenon known as Wilson statistics [28]. This is a reasonable statis-
tical model for the benchmarks, since the minimum distance constraints are rather
weak for the densities of atoms considered. In real data it may happen that several
intensities are unusually large by this model, and their existence can be exploited by
clever algorithms. Conversely, phase retrieval appears to be more challenging when
the data lacks such outliers. The extreme case was recently studied for two-valued one-
dimensional signals [23], where it is possible to construct signals whose intensities are
exactly equal. Since the intensity-distribution characteristics are clearly important,
we implemented the following modification in the construction of the atom positions.

To quantify the outlier content of the intensity distribution, we used the normal-
ized second-moment of the intensities

(16) i2 =
〈|ρ̂|4〉
〈|ρ̂|2〉2 ,

where 〈·〉 denotes a uniform average over the measured, non-zero frequencies. This
statistical measure is increased when the high intensity tail of the distribution is en-
hanced, and decreases when the distribution is made more uniform. Without any
intervention, when atom positions are uniformly sampled (rejecting positions that vi-
olate the minimum distance constraint), we obtain i2 ≈ 4. To make such instances
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Algorithm 1 Relaxed-Reflect-Reflect (RRR) algorithm

input |ρ̂|, |S|, β Fourier magnitudes, support size, RRR parameter
ρ← rand() random initial signal
i← 0 zero the iteration counter
repeat

(ρ1, S)← P1(ρ ; |S|) support-size projection
ρ2 ← P2(2ρ1 − ρ ; |ρ̂|) Fourier magnitude projection
ρ← ρ+ β(ρ2 − ρ1) increment by the projection discrepancy
i← i+ 1 increment counter

until pow(ρ2, S) > 0.95 termination criterion (11)
output ρ2, i phased input magnitudes (solution), iteration count

easier, we select an atom at random and propose a new random position (still sat-
isfying the distance constraint), accepting the proposal whenever the value of i2 is
increased. These increases are small, and many such moves had to be made to arrive
at the value i2 = 4.5 that define the E instances. The harder (H) instances were
produced by the same procedure but where proposals are accepted whenever i2 is
decreased, continuing until i2 = 3.5. Relatively few atom-position re-samplings were
needed to arrive at the value i2 = 4.0 that defines our medium difficulty (M) instances.

5. Baseline results. To the best of our knowledge, the only known algorithms
that reliably solve the benchmark problems are heuristic in nature. A common feature
of these algorithms is that they act iteratively on the signal. To set a baseline for
the benchmarks, we have selected a simple exemplar called Relaxed-Reflect-Reflect
(RRR) [23]. This section describes the algorithm, addresses some common misconcep-
tions about this type of algorithm, and suggests some standards for reporting results.

Almost all crystallographic phase retrieval algorithms repeatedly use a “Fourier
synthesis” step, where a signal is constructed from the measured Fourier magnitudes
and some estimate of the phases. The simplest such operation is the Fourier magnitude
projection, ρ → ρ2 = P2(ρ), where ρ2 inherits its Fourier phases from an arbitrary
signal ρ and combines these with the Fourier magnitudes of the data, when available.
When magnitude data is not available, say at frequency q, the Fourier transform at
q is simply copied.

Most algorithms also repeatedly do “direct space refinement”, where prior infor-
mation is imposed on the signal. One of the simplest operations of this kind, when
the signal is known to be sparse, is the support-size projection ρ→ ρ1 = P1(ρ), where
ρ1 is unchanged on the |S| highest valued pixels and set to zero on the rest — in
the process establishing the support S of the signal. In RRR, the pixels belonging to
the support S are updated in each iteration. We note that support-size projection is
significantly weaker in constraining the signal than the analogous operation applied
to a known support region. Going further, the case of a known support region S that
is sufficiently compact so it avoids aliasing (in the crystal unit cell) reverts to the
easier, aperiodic phase retrieval problem.

Pseudocode for RRR is shown in Algorithm 1. In addition to the operations P2

and P1 already described, the algorithm calls on a function to initialize the signal
and another function that computes the power ratio (11) for terminating iterations.
Empirically, although the evolution of the signal is acutely sensitive to initial condi-
tions (see below), the number of iterations required to find solutions, when averaged
over different initial conditions, is not. Our implementation used a pseudo-random
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number generator for initialization. RRR has one parameter, β, that lies between 0
and 2. Our baseline results are for β = 0.5.

From the formula for RRR iterations,

(17) ρ 7→ ρ+ β (P2(2P1(ρ)− ρ)− P1(ρ)) ,

we see that the parameter β is like a time-step. However, the “flow” in RRR does
not correspond to a gradient, when P1 and P2 are interpreted as projectors to a
general pair of constraint sets. With β = 1, the RRR algorithm [23] generalizes, for
arbitrary pairs of constraints, Fienup’s “hybrid input-output” (HIO) algorithm [26] for
phase retrieval with a known support region, and coincides with the Douglas-Rachford
splitting scheme when applied to partial differential equations [18, 1].

Many authors refer indiscriminately to HIO — iteration (17) with β = 1 — and
the algorithm that simply alternates the projections:

(18) ρ 7→ P2(P1(ρ)).

In the general convex setting this is “von Neumann’s alternating projections”, while
in microscopy and optics it is referred to as, respectively, “Gerchberg-Saxton” [27]
and “Fienup’s error reduction” [26]. Aside from acting on the same space and being
built from the same pair of projections, schemes (17) and (18) have almost nothing
in common. Alternating projections is never used for hard (crystallographic) phase
retrieval. In just a few iterations, it converges to one of a multitude of uninteresting
fixed points: signals with correct Fourier magnitudes that are proximal to, but not
coincident with, a signal of the correct support size. By contrast, when the RRR

algorithm has a fixed point, it is because the correctly supported signal ρ1 = P1(ρ) is
in the range of P2 — it also has the correct Fourier magnitudes.

HIO, as originally formulated [26], also has a parameter β, but it does not cor-
respond to a time-step and for β 6= 1, and non-linear P1, loses the property that
fixed points are automatically associated with solutions. We note that the support-
size choice for P1 in crystallography, unlike the known-support-region choice for HIO,
is highly non-linear. Marchesini [37] has proposed an optimization interpretation of
HIO that applies for general β. A predecessor of RRR was the “difference map”, a
differently parameterized composition of the two projections with the property that
reversing the sign of β interchanges them [21]. Constraint infeasibility, caused by noise
in phase retrieval applications, was addressed by the “relaxed averaged alternating
reflection” (RAAR) [36] modification of HIO.

It is also not accurate to characterize HIO/RRR as “alternating” or “cyclic” in the
usual sense, as portrayed in popular accounts [46]. To see this, note that a fixed point
ρ of (17) is in general not a solution. Instead it is the signals ρ1 and ρ2 generated by
the projections and equal at a fixed point that are solutions (see RRR pseudocode)2.
The truer sense in which this algorithm alternates is brought out by its equivalence, for
β = 1, to the “alternating direction method of multipliers” (ADMM) algorithm [22].

Contemporary accounts often are dismissive of projection-based algorithms be-
cause convergence is not guaranteed, citing reports of “stagnation” in the behavior
of the iterates. While this criticism certainly applies to alternating projections, the
direct opposite is empirically the case for RRR. The dynamics of RRR has the char-
acteristics of a strongly mixing system in mechanics, where ergodic behavior is the
rule rather than the exception. It is for this reason that initialization is unimportant.

2If ρ∗ = ρ1 = ρ2 is a solution, then ρ may be any point in the set P
−1

1
(ρ∗) ∩

(

2ρ∗ − P
−1

2
(ρ∗)

)

.
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Fig. 5: Time series of the power ratio (11) over the course of solving data100H with
RRR. Not only is the final capture by the solution fixed point very brief, so is the
transient from the random initial signal to the family of signals explored in the search.
Incorrectly phased signals in the long epoch of search have about 55% power in a
dynamic support constrained only by size.

As in mechanics, the evidence of ergodicity is very strong even while prospects of a
proof are dim. Ergodicity of the RRR dynamics would apply in a strict sense only
for infeasible instances, when there are no fixed points. Because of noise, real-world
instances are infeasible and the algorithm is remarkable in its ability to escape even
near-solutions. Near-solution infeasibility is not an issue for finding phase retrieval
solutions because we terminate the iterations as soon as the power ratio criterion (11)
is satisfied. Every one of our runs of RRR to solve a benchmark problem produced a
solution: the success rate was 100%.

There is no better illustration of the statistical behavior of the algorithm’s search
than the time series of the power ratio (11). A typical time series for instance data100H
is shown in Figure 5. The solution— marked by the sudden jump— is not constructed
incrementally but appears as an isolated event, when the chaotic dynamics arrives by
chance at a fixed point’s basin of attraction. RRR is also used in convex optimization,
where the behavior is very different and in fact convergent. However, when these
algorithms are applied to hard phase retrieval only the final capture-phase of the
solution process — local convergence to the intersection of two affine sets — falls
under the purview of convex analysis.

The power ratio time series also illustrates the limits of using just the support
size to constrain the signal. Figure 6 shows how the plot in Figure 5 changes as the
support size increases. The hardest benchmark instances, with N = 400 atoms, are
just short of the point where criterion (11) fails as a valid certificate. It is only for this
reason that the benchmarks do not go beyond N = 400 (µ = 39). Algorithms that
seek signals with additional prior characteristics — e.g., peaks — could in principle
succeed beyond this limit on the number of atoms. Indeed, algorithm developers
are encouraged to exploit any of the prior signal information given in Section 4.
Criterion (11) should only be seen as a convenient solution certificate that holds for
N ≤ 400.

Benchmark results are most useful when behavior can be assessed with respect
to hardness parameters. Though actual runtimes are important, trends in behavior
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Fig. 6: Power ratio time series generated by RRR for instances with progressively
more atoms showing just the steady state behavior prior to the solution-discovery
jump seen in Figure 5. Beyond 400 atoms the power-in-support fraction is too close
to the value 0.95 (set by noise) to serve as a solution certificate.

are best reported in terms that do not depend on implementation details. In the
case of RRR, the average number of iterations in repeated trials serves this purpose3.
Success rates, when greater than zero, are more useful when converted to an expected
runtime per solution. Had RRR been run with a bound on the number of iterations,
an expected runtime could have been computed from the total number of solutions
found and the total number of iterations performed.

Iteration counts per solution for RRR, averaged over 20 trials per instance, are
given in Table 1. Figure 7 shows the behavior with respect to the autocorrelation
sparsity parameter µ defined by (15). At each N , almost without exception, the E
instance is easier than the M instance, which in turn is significantly easier than the
H instance. The behavior with µ is consistent with a simple exponential. Linear fits
to the logarithms of the iteration counts give the following factors by which the mean
count grows when µ is increased by 1: 1.56 (E), 1.72 (M), 1.93 (H).

We expect our baseline results to be an easy target. The best outcome of phase
retrieval algorithm development would of course be a fundamentally different algo-
rithm, promising subexponential cost in the parameter µ. On the other hand, even
incremental improvements in the case of exponential algorithms will bring substantial
dividends. Although we have not performed the experiment, the extrapolation of our
results indicate that RRR would require roughly three cpu-years to solve data330H,
compared with the single hour needed for data330E.

6. State of the art. Probably the last time a phase retrieval milestone — on
real data — was hailed was the Shake-and-Bake (SnB) solution of triclinic lysozyme
in 1998 [17]. The SnB algorithm was the product of a long history of developments
that drew inspiration from various disciplines, including signal processing, probability
theory and iterative methods for solving non-linear equations. In this section, we
briefly review the principles behind SnB [38] as well as those used by three other
leading crystallographic packages: SHELXD [48], SIR2004 [8] and SUPERFLIP [40].

Because the earliest phase retrieval algorithms were developed in the pre-FFT era,

3The runtime per iteration in our implementation, about 1 msec, is essentially constant across
all instances.
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Table 1: RRR mean iteration counts (log10)

N E M H

100 1.87 2.15 3.01

140 2.37 3.00 3.93

175 3.23 3.55 5.20

200 3.42 4.57 5.48

225 3.47 5.12 6.92

245 4.33 5.77 7.03

265 5.81 6.02 7.60

285 6.06 5.98 7.62

300 5.55 6.97 9.15

315 6.46 7.29 –

330 6.58 8.41 –

345 7.83 – –

360 6.86 – –

375 8.00 – –

Fig. 7: Exponential growth of the mean iteration count for RRR as a function of µ for
the three difficulty grades of instances. Linear fits to the logarithms of the iteration
counts give the following factors by which the mean count grows when µ is increased
by 1: 1.56 (E), 1.72 (M), 1.93 (H).

they imposed prior information on the signal not directly in real-space, but indirectly
during Fourier synthesis. The simplest such strategy, known as David Sayre’s “tangent
formula” [44], is based on the observation that in a signal ρ comprised of equal atom-
like distributions (e.g., Gaussians), the Fourier phases of ρ2 and ρ are the same. This
opens up the possibility that iterating ρ 7→ P2(ρ

2) might by itself produce as fixed
points a signal that (i) has been synthesized from the known Fourier magnitudes
and (ii) corresponds to an atomic distribution — at least for crystals of sufficiently
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identical atoms. It was possible to efficiently implement this map working just with
the Fourier coefficients by expressing the transform of the square as the convolution
of the transforms and then approximating the convolution by only the terms where
both Fourier factors have a large magnitude. SHELXD and SIR2004 have the option
to apply the tangent formula operation in alternation with direct space refinement
operations.

The tangent formula modification of the Fourier synthesis operation (P2) is just
one way the alternating scheme (18) is made viable again, by eliminating a host
of uninteresting fixed points. The identical-atom model of the signal on which the
method is based is also the premise behind another modification of P2. This is the SnB
objective function on the phases that is first minimized before phases are combined
with magnitudes [38]. The simplest form of the objective function is based on the
observation that the distribution of the product ρ̂(q1)ρ̂(q2)ρ̂(q3) is invariant, for
q1 + q2 + q3 = 0, under translation of all the atoms4. Therefore, it exhibits a
non-trivial dependence on the sum of the corresponding phases, φ1 + φ2 + φ3. The
distribution of this “triplet” phase depends on the data via the known magnitude of
the cubic product. The resulting conditional distribution for the triplet phase can be
calculated explicitly for the case of equal atoms uniformly distributed in the crystal
unit cell and serves as a model for triplet distributions in a typical crystal [28]. SnB

tries to bring the cosines of the triplet phases in line with their expectation in the
random model by minimizing a sum-of-squares objective function.

It is important that modified Fourier synthesis, by either the tangent formula or
the SnB objective function, is combined with a robust direct space refinement opera-
tion, such as the support-size projection P1. This is because the phase interventions,
or modifications of P2, are based on approximate models and should only serve to
bias the search for phases. When the bias built into P2 has sufficient strength, one
improves the probability that the signal P2(P1(ρ)) is also fixed by P1 and is there-
fore a solution. After all, the bias in both methods (tangent formula, SnB objective
function) is derived from a direct space model. Phase retrieval often succeeds simply
by alternating a modified P2 and a direct space refinement P1 of some type. In SnB,
SHELXD and SIR2004 the P1 operation can impose prior information on the signal
beyond just the size of its support. This may include knowledge of the minimum
atom-atom distance, the presence of a known number of heavy atoms, or even the
expected histogram of the signal values.

The phase retrieval algorithm in SUPERFLIP also alternates between Fourier syn-
thesis and direct space refinement, but unlike the other packages, it avoids false fixed
points through a modification of the direct space operation [39]. When written in
terms of the RRR projections, SUPERFLIP iterates a close approximation of the map

(19) ρ 7→ P2(2P1(ρ)− ρ).

The algorithm’s name is derived from the argument of P2, wherein the sign of the
signal is reversed wherever it is judged not to be in the support and unchanged
otherwise. In a solution, the “charge flipping” step has no effect and the signal is
a fixed point of the map. On the other hand, one cannot theoretically rule out the
possibility of exotic non-solution fixed points, where charge flipping only changes the
Fourier magnitudes — that are then restored and the charge re-flipped by P2. The P1

used by SUPERFLIP [39] differs from the one in RRR by being parameterized through
a small positive lower bound on the signal value in the support rather than a bound

4This is also the underlying idea of analysis using the bispectrum [53, 4].
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on the support size. Although RRR is not based on an alternation of two operations,
it is intriguing and perhaps not a complete coincidence that Fourier synthesis in this
algorithm is also preceded by charge flipping.

Direct comparison of the accomplishments of the crystallographic packages with
the benchmark problems is complicated by a number of factors. First and foremost is
the fact that data sets of sufficient quality, on which sparsity can be imposed, become
increasingly rare as the number of atoms in the unit cell grows. In crystals of large
protein molecules there is too much variability in the electron density from one unit
cell to another (solvent disorder) that individual protein atoms cannot be resolved.
The signal encoded by the Fourier magnitudes in this case is that of the average of
the atomic distributions, and the corresponding broadening of the support has made
it too weak to be used as a constraint. Almost all large protein structures are solved
with the help of additional data, derived from atom-specific inelastic scattering. A
large share of the credit for structures with N above 1000 that did not rely on such
additional data and yielded to “direct methods” goes to the crystal growers who
managed to significantly reduce disorder in their crystals.

Another factor that complicates comparisons is the presence of heavy atoms.
Large proteins often contain a minority admixture of heavy atoms, and it is well known
that this makes phase retrieval easier, even when this information is not used. This
point is best explained by the structure of the autocorrelation. The presence of heavy
atoms in a crystal produces strong autocorrelation peaks at the separations between
the heavy atoms, from which the heavy atoms can first be located. Subsequently, the
positions of the light atoms can be determined one at a time by the O(N) number of
autocorrelation peaks with intermediate signals, which correspond to the separations
between a heavy atom and a light atom. The benchmark problems have equal numbers
of atoms of two types and therefore correspond to harder instances in this respect.

Table 2 lists what we judge to be the hardest instances of successful real-data
phase retrieval for crystals with (i) resolved atoms and (ii) the fewest number of
heavy atoms. The highest value of µ in this list is near the middle of the benchmark
problems.

7. Summary. Phase retrieval can be decisive in the success of crystal structure
discovery. Available algorithms for periodic signals are heuristic and their success and
runtime behavior is poorly documented. It is not normal practice for crystallographers
to test algorithms with synthetic data and a known ground truth; failures with real
data are attributed to insufficient resolution or corrupted measurements, and usually
go unreported. And when data quality is good, Nature does not always cooperate to
create instances with graded hardness for the study of algorithm behavior.

Phase retrieval theory moved into a new era of systematic study when it was
taken up by applied mathematicians about seven years ago. However, the algorithms
generated by this development have had no impact on phase retrieval for crystals.
Periodicity of the signal in crystallography is not a minor property that can be recov-
ered as a special case of the phase retrieval models that have been studied. In fact,
the hardness conferred to the phase retrieval problem by periodicity seems to have
completely escaped the notice of mathematicians.

Our benchmark problems were designed to address the circumstances just de-
scribed. Crystallographers should evaluate their algorithms on standard benchmarks
and applied mathematicians should turn their attention to phase retrieval problems
that appear in real-world applications. The benchmark problems will serve both of
these needs and, we hope, open a dialog between the two communities.
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hen egg white lysozyme – P1, 1 0.85 1001, 10S – 3,400 SnB [17]
alpha-1 peptide 1BYZ P1, 1 0.90 408, 1Cl 1.73 4,500 SnB [41]
acutohaemolysin 1MC2 C2, 4 0.85 975, 18S 4.45 – SnB [35]
scorpion toxin II 1AHO P212121, 4 0.96 500, 10S 4.46 413,000 SnB [49]
actinomycin D 1A7Y P1, 1 0.94 270 1.40 – SHELXD [45]
feglymycin 1W7Q P65, 6 1.10 828 6.39 – SHELXD [7]
hen egg white lysozyme 4LZT P1, 1 0.95 1001, 10S 11.06 – SHELXD [47]
human cyclophilin G 2WFI P212121, 4 0.75 1486, 2Mg 15S 11.17 60 min SHELXD [50]
hirustasin 1BX7 P43212, 8 1.20 366, 12S 4.29 546 min SIR2004 [9]
pheromone ER-1 2ERL C2, 4 1.00 303, 8S 4.72 19 min SIR2004 [9]
Kunitz domain C5 2KNT P21, 2 1.20 460, 1P 6S 6.85 22 min SIR2004 [9]
bovine ribonuclease 1DY5 P21, 2 0.87 1894, 31S 12.53 131 min SIR2004 [9]
2C72N4O6 PAWVEO P1, 1 0.80 164 0.58 100 SUPERFLIP [39]
2C77.5N4O12.5 GOFMOD P1, 1 0.80 188 0.66 250 SUPERFLIP [39]
apamin – P21, 2 0.95 385 4.36 20,000 SUPERFLIP [19]

Table 2: Large, nearly equal-atom structures, solved by direct methods. PDB: Protein Data Bank. CSD: Cambridge Structural Database.
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The recent creation of a software interface for phase retrieval, PhasePack [14],
illustrates the kind of problems that can arise when a healthy dialog is absent. One of
the algorithms available in PhasePack is called “Fienup”, and a scientist working in the
field would assume this is Fienup’s HIO algorithm, the most widely adopted method
and blueprint for the RRR generalization to general, non-convex, two-constraint prob-
lems. However, the “Fienup” algorithm of PhasePack is just a minor variant of
the alternating-projection (Gerchberg-Saxton) algorithm and only suitable for convex
problems. It acquired this name, by accident it seems, because Fienup’s article intro-
ducing HIO also featured the alternating-projection (“error-reduction”) algorithm as
a poor alternative.

Benchmarks are most useful when they uncover trends in behavior. We believe
the autocorrelation sparsity parameter µ, introduced here, will serve this purpose.
The benchmarks instances sample this hardness parameter over a range that includes
the frontier of real-world phase retrieval and the sampling is fine enough to be useful
even when runtimes grow exponentially.
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Appendix A. phase retrieval without prior information. Beginning with
the publication of [10], “phase retrieval” has become identified in the applied mathe-
matics community with the following mathematical problem:

Given a sensing matrix A ∈ C
m×n and magnitudes |y| ∈ R

m
≥0 ,

obtain a signal ρ ∈ C
n such that |y| = |Aρ|.(20)

Under what conditions on A can a signal that is unique, up to a global phase, be
recovered, and how can this be done efficiently? This is conceptually simpler than
the original, crystallographic, phase retrieval problem in that there are no prior con-
straints on ρ, such as non-negativity or sparsity. The loss of information on measuring
magnitudes is entirely offset by having m sufficiently large relative to n for suitable A.

Most of the current work on phase retrieval is directed at developing algorithms for
solving (20). In this appendix we compare the performance of three leading algorithms
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with RRR, which is easily adapted to solve (20)5.
The most direct real-world application of (20) we are aware of is reconstruct-

ing the 2-D projected contrast of an isolated object from its diffraction intensity and
knowledge of its 2-D support S. Suppose the measurements extend to spatial frequen-
cies that resolve the contrast to pixels of area r. The signal vector ρ will then have
n = |S|/r components. Consider the most common case, where these are real-valued.
The diffracted intensity will then have centro-symmetry and, when sampled at res-
olution r, will be completely described by m = 1

2
|S − S|/r measurements [24]. It is

often possible to define S by an enclosing mask of known size and shape. The success
of algorithms depends critically on the ratio m/n = 1

2
|S − S|/|S|. For example, a

triangular S corresponds to m/n = 3.
The sensing matrix A for the application just described would be an m×n subma-

trix of a 2-D Fourier matrix. The n columns would correspond to the pixel positions
in S, and the m columns to detector measurement pixels, preferably optimized to
improve the condition number of A. We are not aware of any demonstrations of (20)
along these lines, for real or simulated data, by the algorithms recently proposed
by the applied math community. This may simply be a reluctance to try the new
methods on sensing matrices with “structure.” The comparisons in this appendix will
therefore be with popular random models for A.

In our first comparison, both the entries of A and the ground truth ρ0, in each
instance, were drawn from the normal distribution with zero mean and variance 1/2 for
both the real and imaginary parts. All algorithms had access to A and the magnitudes
|y0| = |Aρ0|. Since the signal ρ can only be estimated up to a global phase, we define
the normalized estimation error between ρ and the ground truth ρ0 by

(21) error = min
φ∈[0,2π)

‖ρ− eiφρ0‖2/‖ρ0‖2.

In the two-constraint formulation on which the RRR algorithm is based, we seek
vectors y ∈ Cm which (i) are in the range of A, and (ii) have the known magnitudes
|y0|. The corresponding constraint projections are

P1(y) = AA† y,(22)

P2(y) = |y0|ei arg y,(23)

where A† = (A∗A)−1A∗ is the pseudo-inverse of A. The RRR parameter β was set
at 0.5 and ρ was initialized naively, each element drawn from the complex normal
distribution. Iterations were terminated when the normalized norm of the difference
of successive iterates, ‖y′ − y‖2/‖y‖2, dropped below 10−8. The resulting y is ap-
proximately fixed by both projections and gives the solution estimate ρ = A† y. Our
solver was written in Matlab and did not require any special packages.

We compared RRR with three recently proposed algorithms designed to solve
instances of (20). The first method, called PhaseLift, is based on the insight that (20)
can be formulated as a set of linear equations with respect to the rank-1 Hermitian
matrix ρρ∗. Applying a standard convex relaxation to the rank-1 constraint leads to
a semidefinite program (SDP) that can be solved in polynomial time. The signal is
estimated as the leading eigenvector of the SDP’s solution. This technique has been
thoroughly analyzed in a series of papers; see for instance [10, 13, 11, 12, 54]. We
used CVX toolbox [30] to solve the SDP.

5A software interface for a wide range of phase retrieval algorithms is provided in [14].
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❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

algorithm
m/n

3 4 5

RRR 0.155 0.169 0.230
NCPC 0.405 0.252 0.269
TWF 0.780 0.352 0.357
PhaseLift — 186.4 19.4

Table 3: Average CPU time in seconds per successful reconstruction for different m/n
values.

The second algorithm, TruncatedWirtinger Flow (TWF), was proposed in [16] and
minimizes a non-convex least-squares objective by a gradient algorithm. The initial
signal estimate is generated by a spectral algorithm. We used the implementation
provided by the authors6 with 100 iterations for the initialization and 2000 gradient
iterations, with step size 0.2, for minimization. Several papers have proposed similar
techniques based on different objective functions; see for instance [55, 56]. However,
we found these modifications had little effect on performance.

The last algorithm, proposed in [5], is called Non-Convex PhaseCut (NCPC) and is
based on the PhaseCut algorithm [54]. Whereas the original PhaseCut algorithm used
the classical Max-Cut SDP relaxation [29], the NCPC algorithm minimizes instead
a non-convex objective on the manifold of phases. In particular, NCPC employs
a Riemannian trust-regions algorithm using the Manopt toolbox [6]. The signal is
initialized by the spectral algorithm of [16] with 100 iterations. We interrupted the
trust-regions iterations when the norm of the gradient dropped below 10−6.

Figure 8 plots the success rates of the four algorithms when recovering complex
signals of length n = 50 as a function of the ratio m/n. For each m/n, 100 trials were
performed and a trial was declared successful if the error (21) was below 10−7. The
same ρ0 and A were given to all the algorithms in each trial. Recall that there are 2n
parameters in a successful reconstruction, the real and imaginary parts of the signal.
As can be seen, RRR is the only algorithm that achieves a perfect success rate close
to this information limit.

Table 3 gives the total time used by each algorithm over all 100 trials, divided
by the number of successful reconstructions. These values should be interpreted as
the average time needed to achieve a successful reconstruction. We see that RRR

outperforms the other algorithms over all the m/n values considered. These results
should be taken with caution since the algorithms used different stopping criteria.
For instance, the TWF code we adopted from the authors’ website halts after a given
number of iterations (in our case, 2000). By contrast, the stopping criteria of the
other algorithms are based on the progress of the algorithm (e.g., when the norm of
the gradient is smaller than some predefined value.) The parameters for the stopping
criteria (reported above) were not optimized to minimize the time per successful
recovery.

Candès et al. [10] also studied instances of problem (20) where the sensing matrix
A corresponds to the following case of the coded diffraction pattern (CDP) model.
Given L random phase masks whose entries dℓ(s, t) are drawn independently and

6http://statweb.stanford.edu/∼candes/TWF/code.html

http://statweb.stanford.edu/~candes/TWF/code.html
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Fig. 8: The success rates of the RRR,NCPC [5], TWF [16], and PhaseLift [10] algorithms
as a function of m/n for problem (20) with n = 50. A trial was declared successful if
the error (21) was below 10−7.

uniformly from {−1, 1, i,−i}, the resulting measurements are

(24) |yℓ(p, q)| =
∣

∣

∣

∣

M−1
∑

s=0

N−1
∑

t=0

d̄ℓ(s, t)ρ(s, t)e
−2πips/M e−2πiqt/N

∣

∣

∣

∣

, ℓ = 1, . . . , L,

where ρ is the M × N signal to be reconstructed. The integer L determines the
redundancy of the measurements, corresponding to the ratio m/n in the paragraphs
above. By combining indices, {ℓ, p, q} → µ and {s, t} → ν, the entries of the sensing
matrix A are given by

(25) Aµν = d̄ℓ(s, t)e
−2πips/M e−2πiqt/N .

In order to test the RRR algorithm on CDP problems, we have to efficiently
implement the projection P1(y) = AA† y. This is done by exploiting the fast Fourier
transform (FFT). From equation (25), we can readily obtain the relations

(Aρ)µ = F
{

d̄ℓ(s, t)ρ(s, t)
}

(p, q)(26)

(A∗y)ν =
L
∑

l=1

M−1
∑

p=0

N−1
∑

q=0

dℓ(s, t)e
2πips/M e2πiqt/Nyℓ(p, q)

= MN

L
∑

l=1

dℓ(s, t) F−1
{

yℓ(p, q)
}

(s, t),(27)

where F and F−1 denote the 2-D FFT and its inverse7. Moreover, the product A∗A

7Here we use the asymmetric normalization convention for the discrete Fourier transform to be
consistent with the FFT codes in Matlab. The unitary convention was adopted in the main text.
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is a diagonal matrix with diagonal terms

(28) (A∗A)νν = MN
L
∑

l=1

|dℓ(s, t)|2.

The projection P1(y) = AA† y = A(A∗A)−1A∗ y can therefore be implemented via
pairs of FFTs, without explicit construction of the matrices.

Following tradition, we demonstrate CDP phase retrieval on photographic im-
ages8. Our test of RRR used only L = 3 masks, where previous work [16] used
L = 12. For the ground truth signal we used three 320 × 1280 images of Cornell
University, one for each color band (red, green and blue). To confuse the algorithm
we used an image of Stanford University as the initial signal. Figure 9 (b) - (e) show
the RRR image A† P1(y) after 1, 3, 5 and 250 iterations. The error (21) after 250 RRR

iterations is 5.48×10−5. As can be seen, RRR needs only a few iterations to get a fine
estimation of the signal. Figure 10 gives the reconstruction error (21) as a function
of the iterations. CDP reconstructions with as few as a single random phase mask,
using HIO or the Douglas-Rachford algorithm, have been demonstrated when prior
constraints on the signal are also used [25, 15].

8This is not the best practice, because the Fourier power in photographs is artificially concen-
trated along the lines p = 0 and q = 0 due to image termination (aperiodicity).
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(a)

(b)

(c)

(d)

(e)

Fig. 9: Reconstruction of the Cornell University image using the RRR algorithm on
the CDP model (24) with L = 3. The top panel (a) is the initial guess (Stanford
University) and the following panels (top to bottom) show the convergence of the
reconstruction after (b) 1 (c) 3 (d) 5 (e) 250 RRR iterations.
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Fig. 10: Reconstruction error (21) vs. iterations for the phase retrieval experiment
shown in Figure 9.
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