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Abstract

We present a simple discretization scheme for the hypersingular integral representation of
the fractional Laplace operator and solver for the corresponding fractional Laplacian problem.
Through singularity subtraction, we obtain a regularized integrand that is amenable to the
trapezoidal rule with equispaced nodes, assuming a high degree of regularity in the underlying
function (i.e., u P C6pRdq). The resulting quadrature scheme gives a discrete operator on a
regular grid that is translation-invariant and thus can be applied quickly with the fast Fourier
transform. For discretizations of problems related to space-fractional diffusion on bounded do-
mains, we observe that the underlying linear system can be efficiently solved via preconditioned
Krylov methods with a preconditioner based on the finite-difference (non-fractional) Laplacian.
We show numerical results illustrating the error of our simple scheme as well the efficiency of
our preconditioning approach, both for the elliptic (steady-state) fractional diffusion problem
and the time-dependent problem.

1 Introduction

Fractional powers of the Laplacian operator arise naturally in the study of anomalous diffusion,
where the fractional operator plays an analogous role to that of the standard Laplacian for ordinary
diffusion (see, e.g., the review articles by Metzler and Klafter [38, 39] and Vázquez [50]). By
replacing Brownian motion of particles with Lévy flights [32], whose increments are drawn from
the α-stable Lévy distribution for α P p0, 2q, we obtain a fractional diffusion equation (or fractional
kinetic equation) in terms of the fractional Laplacian operator of order α [46], defined for sufficiently
nice functions u : Rd Ñ R via the Cauchy principal value integral

p´∆qα{2upxq ” p.v.

ż

Rd

Cα,d

„

upxq ´ upyq

|x´ y|d`α



dy, x P Rd, (1)

with known normalizing constant Cα,d [29].
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For a bounded domain Ω Ă Rd with complement Ωc ” RdzΩ, we consider fractional diffusion
with homogeneous extended Dirichlet conditions given in terms of (1) by

$

’

&

’

%

Btupx, tq “ ´p´∆qα{2upx, tq ` fpx, tq, x P Ω, t ą 0,

upx, tq “ 0, x P Ωc, t ą 0,

upx, 0q “ u0pxq, x P Ω.

(2)

Also of interest is the related elliptic problem
#

p´∆qα{2upxq “ fpxq, x P Ω,

upxq “ 0, x P Ωc.
(3)

Somewhat unintuitively, the nonlocality of (1) implies that the solutions of (2) and (3) depend
on data prescribed everywhere outside Ω [12, 14, 43], though other definitions of the fractional
Laplacian on a bounded domain are also in common use [50]. Further, a more general formulation of
fractional diffusion involves augmenting (2) by incorporating fractional time derivatives of Caputo
or Riemann-Liouville type. We focus in this work on the case of space-fractional diffusion and
do not discuss the discretization of time-fractional differential operators, though the latter is of
independent interest [30,35,56,57,59].

1.1 Contribution

The contribution of this paper is a simple discretization scheme for (2) and (3) on Cartesian grids,
and an efficient algorithm for solving the resulting linear systems. The discretization generalizes
easily to domains that can be represented as occluded Cartesian grids, i.e., domains given by taking
a regular grid and removing a subset of grid points and corresponding subdomains to obtain, e.g.,
an “L”-shaped domain.

Our approach is based on using a Taylor expansion around each point x to replace the singular
integrand in Eq. (1) with a sufficiently smooth function of y on all of Rd via singularity subtraction.
The resulting integral can be easily discretized using the trapezoidal rule on a regular grid of N
points, leading to a translation-invariant linear operator that can be applied at a cost of OpN logNq
using the fast Fourier transform (FFT). The resulting discrete linear system approximating (3) can
then be efficiently solved using standard Krylov methods. As αÑ 2, the resulting linear systems can
exhibit the ill-conditioning characteristic of discretizations of the Laplacian operator on a regular
grid. To circumvent this, we develop an efficient preconditioning strategy based on the fact that
our discrete fractional Laplacian operator may be written as the sum of a standard finite-difference
Laplacian and another matrix with mostly small entries.

When the solution u to (3) is sufficiently smooth, standard results on convergence of the trape-
zoidal rule and finite-difference operators imply that the error of our approach for computing the
fractional Laplacian at a point goes to zero as Oph2q, where h is the linear spacing between grid
points, which we show in Section 2. In general, however, the solution to the fractional Laplace prob-
lem on bounded domains is only tα{2u times continuously differentiable [44], leading to a natural
deterioration of the rate of convergence of our simple approach.

1.2 Related work

A discretization scheme similar to that presented here appears in Pozrikidis [42], though without
discussion of accuracy or the importance of windowing for singularity subtraction. Huang and
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Oberman [26, 27] derive a scheme for the one-dimensional case based on singularity subtraction
and finite-difference approximation, but do not tackle the multidimensional case (see also Tian
and Du [47], Gao et al. [20], and Duo, Van Wyk, and Zhang [13]). Chen et al. [10] consider
a multidimensional discretization and fast preconditioners based on multigrid, but their scheme
uses the so-called “coordinate fractional Laplacian” that takes a tensor product of one-dimensional
operators and is not equivalent to (1) (see also related finite-difference approaches with different
operators [36,37,51,58]).

Other similar work on efficient solution of fractional Laplacian systems using fast preconditioned
iterative methods includes Pang and Sun [41] and Wang and collaborators [17–19,52]. While limited
to one spatial dimension, this work also exploits the structure of the discrete operator for fast
matrix-vector products and preconditioned solves, and the latter line of work includes treatment
of time-fractional operators.

Another family of approaches on discretizing the fractional Laplacian operator is based on finite
elements [2, 4, 6–8, 48, 49]. Compared to our scheme, such approaches are typically more amenable
to general geometries (as is typical for finite elements) but are also more involved. Other notable
schemes for discretizing the fractional Laplacian based on different ideas include work based on the
Caffarelli-Silvestre extension [9, 24, 40], spectral approaches [3, 33, 53, 55], and hybrid schemes [5].
General references for fractional Laplacians on bounded domains include, e.g., Ros-Oton [43], D’Elia
and Gunzburger [12], Felsinger [14], and Lischke et al. [31].

2 Spatial discretization of the fractional Laplacian

To begin, we outline our scheme for discretization of (1) in the one-dimensional case where the
function u vanishes outside of some interval. Following that, we give more details in our discussion
of the multidimensional case.

2.1 Singularity subtraction in one dimension

Concretely, consider the task of approximating the principal value integral

p´∆qα{2upxq “ p.v.

ż 8

´8

Cα,1

„

upxq ´ upyq

|x´ y|1`α



dy, (4)

where upyq “ 0 for |y| ą 1. For α ą 1, this integral is hypersingular due to the high-order pole
at x “ y, which generally leads to large inaccuracies when simple quadrature schemes are applied
directly to (4). Therefore, we proceed by regularizing the integrand to remove the singularity and
obtain an integral for which simple quadratures are accurate.

Assuming that the function u is sufficiently smooth, we may write a Taylor series expansion
about the point x to obtain

upyq “ upxq `
1

2
u2pxqpy ´ xq2 ` uoddpyq `R4pyq, (5)

where the smooth remainder R4pyq “ Op|y ´ x|4q as y Ñ x. For brevity, we have grouped terms
that are odd about x into uodd, as they will not play an explicit role in what follows.

Our regularization strategy is singularity subtraction based on adding and subtracting a calcu-
lable integral that matches terms in the Taylor series. Suppose w is a sufficiently smooth windowing
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function with compact support such that wp0q “ 1 and wpyq “ wp´yq. Then we may write

p´∆qα{2upxq “Cα,1

ż 8

´8

upxq ´ upyq ` wpx´ yqr12u
2pxqpx´ yq2 ´ uoddpyqs

|x´ y|1`α
dy (6)

´ Cα,1

ż 8

´8

wpx´ yqr12u
2pxqpx´ yq2 ´ uoddpyqs

|x´ y|1`α
dy

” (I)` (II),

where we define (I) to be the first integral and (II) to be the second. By construction, (I) is no
longer hypersingular, as we see from (5) that the integrand can be equivalently written

rwpx´ yq ´ 1sr12u
2pxqpx´ yq2 ´ uoddpyqs `R4pyq

|x´ y|1`α
.

By our smoothness assumptions on u and w, as y Ñ x this integrand decays and is continuously
differentiable with a second derivative that is integrable. This implies that the standard trapezoidal
rule would exhibit second-order convergence when applied to (I); see Cruz-Uribe and Neugebauer
[11]. Of course, this requires knowledge of u2pxq and uodd in general, which we do not assume. In
the context of discretization of the integral using a uniform grid, however, the situation simplifies.

2.2 The first integral in one dimension

Consider discretizing (I) using the trapezoidal rule on a one-dimensional lattice tyjujPZ “ tjhujPZ
and take x “ yi to be one of the lattice points. Without loss of generality, we may shift the domain
such that x “ y0 “ 0. This discretization yields the second-order accurate approximation

(I) « Cα,1h
ÿ

j‰0

«

up0q ´ upyjq ` wpyjqr
1
2u
2p0qpyjq

2 ´ uoddpyjqs

|yj |1`α

ff

“ Cα,1h

«

ÿ

j‰0

up0q

|yj |1`α
´

ÿ

j‰0

upyjq

|yj |1`α
`
u2p0q

2

ÿ

j‰0

wpyjq

|yj |α´1
´

ÿ

j‰0

wpyjquoddpyjq

|yj |1`α

ff

“ Cα,1h

«

A1up0q ´
ÿ

j‰0

upyjq

|yj |1`α
`A2u

2p0q

ff

,

where A1 “
ř

j‰0 |yj |
´p1`αq and A2 “

1
2

ř

j‰0wpyjq|yj |
1´α are constants independent of x and j

and the last sum in the second line is identically zero due to oddness considerations. We note that
the sum remaining on the final line is over a finite range, as u is compactly supported. Since u is
assumed to be smooth enough, we replace u2p0q with the finite-difference approximation

u2p0q « LFDup0q ”
uphq ´ 2up0q ` up´hq

h2
,

which gives our final approximation for (I),

(I) « Cα,1h

«

A1up0q ´
ÿ

j‰0

upyjq

|yj |1`α
`A2LFDup0q

ff

. (7)
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2.3 The second integral in one dimension and final quadrature

Having established a method for approximating the integral (I) in (6), we turn to (II). Again using
oddness considerations, we see that the contribution from uodd vanishes such that

(II) “ ´
Cα,1u

2p0q

2

ż 8

´8

wpyq

|y|α´1
dy “ Cα,1hA3u

2p0q,

where the constant A3 given by

A3 “ ´
1

2h

ż 8

´8

wpyq

|y|α´1
dy

is well-defined (since w is compactly supported) and we again take x “ 0 for convenience. We
once again replace the second derivative u2p0q with its finite-difference approximation to obtain
(II) « Cα,1hA3LFDup0q. Combining this with our quadrature for (I) gives our approximation for
p´∆qα{2up0q,

p´∆qα{2up0q « Cα,1h

«

A1up0q ´
ÿ

j‰0

upyjq

|yj |1`α
` pA2 `A3qLFDup0q

ff

,

which applies equally well not only to x “ 0 but in general to x “ yi for any grid point yi, i.e.,

p´∆qα{2upyiq « Cα,1h

«

A1upyiq ´
ÿ

j‰i

upyjq

|yi ´ yj |1`α
` pA2 `A3qLFDupyiq

ff

. (8)

This is our final quadrature for the fractional Laplacian in one dimension.

2.4 Singularity subtraction in higher dimensions

We turn now to the multidimensional integral, i.e., (1) with d “ 2 or d “ 3. Once again we will
assume that the function u is compactly supported and sufficiently smooth, as we will make explicit.
Our basic strategy is the same as in one dimension.

Lemma 1. Suppose that u P CkpRdq and let w P CppRq be a windowing function symmetric about
z “ 0 such that 1´ wpzq “ Op|z|rq as z Ñ 0. Let the third-order Taylor approximation of u about
the point x P Rd be given in multi-index notation by

upyq “
ÿ

|β|ď3

Dβupxq

β!
py ´ xqβ `

ÿ

|β̃|“4

Rβ̃pyqpy ´ xqβ̃, (9)

where the remainder is given in explicit form as

Rβ̃pyq ”
|β̃|

β̃!

ż 1

0
p1´ tq|β̃|´1Dβ̃upx` tpy ´ xqq dt.

Then, defining the function

ũpyq ” upyq ´ upxq ´ wp|x´ y|q
ÿ

1ď|β|ď3

Dβupxq

β!
py ´ xqβ, (10)

we have that ũ P CspRdq and Dβũpyq “ Op|y ´ x|t´|β|q as y Ñ x for s “ minpk ´ 4, pq, t “
minp1` r, 4q, and 0 ď |β| ď minps, tq.
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Proof. It is clear that

ũpyq “ p1´ wp|x´ y|qq
ÿ

1ď|β|ď3

Dβupxq

β!
py ´ xqβ `

ÿ

|β̃|“4

Rβ̃pyqpy ´ xqβ̃.

By inspection, the order of differentiability of ũpyq is limited by that of wp|x ´ y|q and of Rβ̃pyq.

Given the explicit form of Rβ̃pyq, it is at least in Ck´4pRdq as a function of y, whereas w P CppRq

by assumption. Further, ũpyq “ Op|y ´ x|tq for t “ minp1 ` r, 4q, since the first summand is
Op|y´x|1`rq and the second summand is at least Op|y´x|4q. Explicit term-by-term differentiation
of ũpyq with the product rule concludes the proof.

By subtracting off the windowed multivariate Taylor series we obtain an integral that is no
longer hypersingular. In particular, we write

p´∆qα{2upxq “Cα,d

ż

Rd

upxq ´ upyq ` wp|x´ y|q
ř

1ď|β|ď3
Dβupxq
β! py ´ xqβ

|x´ y|d`α
dy (11)

´ Cα,d

ż

Rd

wp|x´ y|q
ř

1ď|β|ď3
Dβupxq
β! py ´ xqβ

|x´ y|d`α
dy

” (Id)` (IId),

where we define (Id) to be the first integral and (IId) to be the second.

2.5 The first integral in higher dimensions

To numerically approximate (Id) we use a quadrature rule on a uniform lattice tyjujPZd “ tjhujPZd .
We assume the lattice is constructed such that the point x coincides with with some lattice point
yi, which we take to be x “ y0 “ 0 without loss of generality.

Replacing the integral with a weighted sum over the lattice, we obtain

(Id) « Cα,dh
d
ÿ

j‰0

upyiq ´ upyjq ` wp|yi ´ yj|q
ř

1ď|β|ď3
Dβupyiq

β! pyj ´ yiq
β

|yi ´ yj|
d`α

“ Cα,dh
d
ÿ

j‰0

up0q ´ upyjq ` wp|yj|q
ř

1ď|β|ď3
Dβup0q
β! pyjq

β

|yj|
d`α

,

which we note does not include a term for j “ 0. This corresponds to the standard trapezoidal
rule for d “ 2 and the punctured trapezoidal rule for d “ 3, though more involved quadrature
corrections may be used (see, e.g., Marin, Runborg and Tornberg [34]). Assuming w is symmetric
about the origin, we see that for many values of the multi-index β the corresponding summand
vanishes due to oddness considerations. Taking these symmetries into account, we let eT1 yj denote
the first coordinate of yj and observe that

ÿ

j‰0

ÿ

1ď|β|ď3

wp|yj|q
Dβup0q
β! pyjq

β

|yj|
d`α

“
∆up0q

2

ÿ

j‰0

wp|yj|qpe
T
1 yjq

2

|yj|
d`α

,
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which we plug back into our quadrature scheme to obtain

(Id) « Cα,dh
d
ÿ

j‰0

up0q ´ upyjq `
∆up0q

2 wp|yj|qpe
T
1 yjq

2

|yj|
d`α

“ Cα,dh
d

»

–

¨

˝

ÿ

j‰0

1

|yj|
d`α

˛

‚up0q ´
ÿ

j‰0

upyjq

|yj|
d`α

`

¨

˝

1

2

ÿ

j‰0

wp|yj|qpe
T
1 yjq

2

|yj|
d`α

˛

‚∆up0q

fi

fl

” Cα,dh
d

»

–A1,dup0q ´
ÿ

j‰0

upyjq

|yj|
d`α

`A2,d∆up0q

fi

fl ,

with correspondingly defined constants

A1,d ”

¨

˝

ÿ

j‰0

1

|yj|
d`α

˛

‚, A2,d ”

¨

˝

1

2

ÿ

j‰0

wp|yj|qpe
T
1 yjq

2

|yj|
d`α

˛

‚. (12)

Theorem 1. Suppose the same setup as Lemma 1 with k “ 6, p “ 3, and r “ 3 such that t “ 4
and s “ 2. Assume further u and w are compactly supported with 0 ď wpzq ď 1 for all z. Then the
above approximation for (Id) is second-order accurate. That is,

Cα,d

ż

Rd

up0q ´ upyq ` wp|y|q
ř

1ď|β|ď3
Dβup0q
β! pyqβ

|y|d`α
dy

“ Cα,dh
d

»

–A1,dup0q ´
ÿ

j‰0

upyjq

|yj|
d`α

`A2,d∆up0q

fi

fl`Oph2q,

with A1,d and A2,d as in (12).

Proof. The described approximation is numerically equivalent to the (punctured) trapezoidal rule,
so this amouts to bounding the error of the trapezoidal rule applied in d dimensions with integrand
ũpyq{|y|d`α, where ũpyq is as in Lemma 1 with x “ 0. Letting R ą h be such that both upyq “ 0
and wp|y|q “ 0 for |y| ą R, we proceed by breaking the integral into three contributions: one for
the subdomain Bh ” r´h, hs

d “near” the singularity, one for the “mid-range” subdomain BRzBh ”
r´R,Rsdzr´h, hsd, and one for the “far” subdomain RdzBR. We write

ż

Rd

ũpyq

|y|d`α
dy “

ż

Bh

ũpyq

|y|d`α
dy `

ż

BRzBh

ũpyq

|y|d`α
dy `

ż

RdzBR

ũpyq

|y|d`α
dy,

each piece of which we analyze separately.
Near the singularity, we see due to symmetry considerations that

ż

Bh

ũpyq

|y|d`α
dy “

ÿ

1ď|β|ď3

Dβup0q

β!

ż

Bh

p1´ wp|y|qqpyqβ

|y|d`α
dy `

ÿ

|β̃|“4

ż

Bh

Rβ̃pyqpyq
β̃

|y|d`α
dy

“
∆up0q

2

ż

Bh

p1´ wp|y|qqpeT1 yq
2

|y|d`α
dy `

ÿ

|β̃|“4

ż

Bh

Rβ̃pyqpyq
β̃

|y|d`α
dy “ Oph4´αq,
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where under our assumptions the integrands are both Oph4´d´αq and ∆u is bounded. Since ũpyq “

Op|y|tq, we see ũpyq
|y|d`α

“ Op|y|t´d´αq, which implies that the corresponding (punctured) trapezoidal

rule approximation to the integral is Opht´αq, since we gain a factor of hd due to the quadrature
weights. Therefore, the contribution to the error from the integral over the near subdomain is
Oph4´αq “ Oph2q, since α P p0, 2q.

In the mid-range subdomain, we explicitly use the composite nature of the trapezoidal rule to
write

ż

BRzBh

ũpyq

|y|d`α
dy “

ÿ

`

ż

Ω`

ũpyq

|y|d`α
dy,

and then consider the error of the trapezoidal rule in approximating the integral over each Ω`

separately, where the square/cubic subdomains tΩ`u in the trapezoidal rule are pairwise disjoint
and are such that

Ť

` Ω` “ BRzBh. Since we are away from the origin, on each subdomain Ω` the

integrand φpyq ” ũpyq
|y|d`α

is in C2pΩ`q which means the standard error bound for the trapezoidal rule

on Ω` gives an error contribution of no more than Chd`2
ř

|β|“2 }D
βφ}L8pΩ`q for some constant C

independent of h. However, the term }Dβφ}L8pΩ`q does depend on h. Since Dβũpyq “ Op|y|t´|β|q

from Lemma 1, the product rule gives Dβφpyq “ Op1` |y|t´|β|´d´αq. With this we can bound the
total error on RdzBh as

ÿ

`

Chd`2
ÿ

|β|“2

}Dβφ}L8pΩ`q ď C 1hd`2
ÿ

`

}1` |y|t´2´d´α}L8pΩ`q

ď C2h2

ˆ

1`

ż R

0
rt´3´α dr

˙

“ C3h2,

where we have bounded

hd
ÿ

`

}1` |y|t´2´d´α}L8pΩ`q ď c

ż

BR

p1` |y|t´2´d´αq dy ` c1

(up to some geometry-dependent factors that are independent of h) due to concavity of the sum-
mand. Therefore, the error contribution from the mid-range subdomain is Oph2q.

Finally, for the far subdomain, we observe that the integrand is in C2pRdzBRq and its smooth-
ness is independent of h in this region, so the standard composite trapezoidal error bound of Oph2q

applies. Therefore, the overall error is Oph2q.

Remark 1. Being based on singularity subtraction via Taylor series expansion, the theoretical re-
sults in Lemma 1 and Theorem 1 apply directly only for relatively smooth functions u. As discussed,
however, it is known that in the general case solutions to (3) exhibit only mild Hölder regularity
on the whole space but typically better regularity on Ω (i.e., u P C0,α{2pRdq but u is more regular
than f on Ω) [44]. This lack of regularity across the boundary of Ω substantially complicates error
analysis of any translation-invariant numerical approach such as is presented here.

While smoothness is not generally a property of solutions to (3), examples can be concocted.
For example, inside the unit ball B ” tx | |x|2 ď 1u Ă Rd one family of smooth solutions is given
by observing that for q ą 0 and s P p0, 1q we have

p´∆q´s
“

p1´ |x|2qq`
‰

“ K ˆ 2F1

ˆ

d

2
´ s,´q ´ s;

d

2
; |x|2

˙

, |x| ď 1

8



for known constant K [25, eq. 9], where 2F1 is the Gauss hypergeometric function [1]. Applying
the negative Laplacian to either side and letting s “ 1´ α{2 we see

p´∆qα{2
“

p1´ |x|2qq`
‰

“ ´∆

„

K ˆ 2F1

ˆ

d` α

2
´ 1,

α

2
´ q ´ 1;

d

2
; |x|2

˙

, |x| ď 1.

This gives a family of smooth solutions to (3) on B, and related formulas can be used to obtain
p´∆qα{2

“

p1´ |x|2qq`
‰

for |x| ą 1 (and thus to extend the problem domain beyond B). Beyond
such examples, the theoretical accuracy of Theorem 1 is chiefly useful when studying the fractional
Laplacian forward operator applied to smooth functions. That said, in Section 4 we empirically
observe linear convergence of the solution to (3) for α ą 1.

2.6 The second integral in higher dimensions and final quadrature

We now consider the second integral (IId) in (11). Assuming without loss of generality that x “ 0
and using symmetry and oddness considerations as before, we see that

(IId) “ ´Cα,d

ż

Rd

ÿ

1ď|β|ď3

wp|y|qD
βup0q
β! pyqβ

|y|d`α
dy “ ´

Cα,d∆up0q

2

ż

Rd

wp|y|qpeT1 yq
2

|y|d`α
dy.

Defining the constant

A3,d ” ´
h´d

2

ż

Rd

wp|y|qpeT1 yq
2

|y|d`α
dy (13)

and combining this with our quadrature for (Id) gives

p´∆qα{2up0q « Cα,dh
d

»

–A1,dup0q ´
ÿ

j‰0

upyjq

|yj|
d`α

` pA2,d `A3,dq∆up0q

fi

fl

or, more generally,

p´∆qα{2upyiq « Cα,dh
d

»

–A1,dupyiq ´
ÿ

j‰i

upyjq

|yi ´ yj|
d`α

` pA2,d `A3,dq∆upyiq

fi

fl .

Of course, as written this approximation requires second derivative information in the form of
∆upyiq. For smooth u, however, we may replace this with a finite-difference stencil involving the
neighbors of yi in the lattice,

∆upyiq « LFDupyiq ”
1

h2

¨

˝

ÿ

}i´j}1“1

upyjq ´ 2dupyiq

˛

‚,

just as in the one-dimensional case.
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2.7 Summary of quadrature for fractional Laplacian

We briefly summarize our complete approach for discretizing the fractional Laplacian applied to
a function u. First, we regularize the integrand of (1) by adding to the numerator a windowed
Taylor series approximation of u about x with window function w to obtain (Id) in (11). This
gives an integral that is nice enough to admit discretization with the trapezoidal rule or related
schemes. Then, by exploiting symmetries of the problem, we rewrite the discretization in terms of
the constants A1,d and A2,d in (12), which do not depend on u. Finally, we derive an expression
for the correction term (IId) in terms of another constant A3,d given in (13), which when combined
with (Id) and a finite-difference stencil approximation gives a nice expression for p´∆qα{2upyiq as
a linear function of u evaluated on a regular grid.

A few details of the procedure remain to be discussed. First, there are a number of possibilities
for the windowing function w. In this paper, we use the piecewise-polynomial window

wprq “Wδprq ”

$

&

%

1´ 35
`

r
δ

˘4
` 84

`

r
δ

˘5
´ 70

`

r
δ

˘6
` 20

`

r
δ

˘7
, r ă δ,

0, else.
(14)

Of course, this is by no means the only sufficiently smooth choice. Further, we note that the
requirement that w be compactly supported can be relaxed so long as W decays sufficiently quickly
as r Ñ8 such that the necessary integrals and sums may be computed.

On that note, we also must still compute the constants A1,d, A2,d, and A3,d. For our choice
of polynomial window, the integral defining A3,d can be computed explicitly; for other choices the
integral may be numerically computed to high precision offline using, e.g., adaptive quadrature in
MATLAB. For compactly supported w, the sum defining A2,d has a finite number of nonzero terms
and is easily computable. Finally, the infinite lattice sum A1,d is given in terms of the Riemann zeta
function for d “ 1 and may otherwise be well-approximated using far-field compression techniques
related to the fast multipole method (FMM) [22, 54]. We use Chebyshev polynomials for far-field
compression in the vein of Fong and Darve [16], though we do not require the full FMM machinery
as we are interested only in the lattice sum and not a full approximate operator.

We remark that the analysis of this section gives a bound for the “apply error” when the
approximate operator is applied to an appropriately smooth function. While we use standard
regularity assumptions to prove convergence of the finite-difference quadrature approximation, such
regularity does not hold in general for solutions to (3), particularly near the boundary BΩ [45]. Thus,
these results do not apply directly to the “solve error” (error in approximating u), and in practice
we expect lower rates of convergence for the solve error, as we explore numerically in Section 4.

3 Solving the fractional differential equations on a bounded do-
main

Having developed our trapezoidal rule scheme for evaluating (1) given u, we turn now to the
fractional differential equations (2) and (3) concerning fractional diffusion on a bounded domain
Ω with homogeneous extended Dirichlet conditions. We focus on the case Ω “ r0, 1sd for ease of
exposition.
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3.1 The elliptic case: steady-state fractional diffusion

To solve the elliptic problem (3), we discretize Ω using a regular grid of N “ pn´1qd points tyju with
linear spacing h “ 1

n`1 , where j “ pj1, . . . , jdq and yj “ hj. For notational convenience, we define

the index set J ” rnsd Ă Zd. Then, replacing the fractional Laplacian with our quadrature-based
approximation gives

Cα,dh
d

»

—

—

–

A1,dui ´
ÿ

jPJ
j‰tiu

uj
|yi ´ yj|

d`α
` pA2,d `A3,dqLFDui

fi

ffi

ffi

fl

“ fpyiq @i P J , (15)

which is a linear system to be solved for the variables tuju « tupyjqu. We remark that the “boundary
conditions” affect the system in two ways. First, the center sum has been reduced from an infinite
number of terms (in general) to a more manageable finite sum. Second, evaluating the finite-
difference stencil LFD for i near the boundary of the domain will require the prescribed value of
upyq on the boundary, as in the standard (non-fractional) case.

We write (15) in matrix form as

Mu “ f , (16)

where now u P RN and f P RN are vectors with corresponding entries tuju and tfpyjqu and
M P RNˆN contains the coefficients implied by (15).

Forward operator and application with FFT

By construction, the approximate fractional Laplacian operator involved in (15) is translation-
invariant, which means that the matrix M is block Toeplitz with Toeplitz blocks (BTTB) under
any natural ordering of the unknowns. As is well known, this in turn implies that M may be applied
efficiently using the FFT at a cost of OpN logNq FLOPs per application and stored with storage
cost OpNq.

Further, investigation of the constants A1,d, A2,d and A3,d reveal that M is symmetric positive
definite. When coupled with the previous observatiton, this leads naturally to the use of the
conjugate gradient method (CG) [23] or related iterative methods for solving (16). However, while
the FFT ensures low complexity per iteration, the number of iterations required to achieve a
specified iteration can be large unless an effective preconditioner is used. This is of particular
concern as αÑ 2, whereupon we recover the standard (ill-conditioned) Laplacian.

Preconditioning: Laplacian pattern and fast Poisson solver

To construct an efficient preconditioner for (16), we observe that M may be decomposed as the sum
of two matrices M “ Cα,dh

dpK` Lq, where

Kij “

$

&

%

´ 1
|yi´yj|

d`α , i ‰ j,

A1,d, i “ j,
and Lij “

$

’

’

&

’

’

%

pA2,d`A3,dq

h2
, }i´ j}1 “ 1,

´
2dpA2,d`A3,dq

h2
, i “ j,

0, else,
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and we note that A2,d ` A3,d ă 0. The sparse matrix L is (up to a proportionality constant) the
typical finite-difference approximation of the negative Laplacian, whereas the matrix K has entries
that quickly decay away from i “ j, particularly for larger α. This motivates using L itself as a
preconditioner when using CG to solve (16). Because L is effectively a finite-difference discretization
of Poisson’s equation on a regular grid with homogeneous Dirichlet boundary conditions, application
of L´1 may be accomplished with the FFT at a cost of OpN logNq using typical fast Poisson
solver techniques [28, Chapter 12]. For non-rectangular domains, the FFT-based approach is no
longer feasible, but the same preconditioner can be used with, e.g., nested dissection [21] or related
methods.

We remark that other choices of preconditioner are possible. For example, rather than using
L´1 as our preconditioner we could instead use rM´1, where rMij “ Mij if Lij ‰ 0 and zero otherwise.
Preliminary experiments with this approach (not shown) did not seem to show measurable benefit.

3.2 The time-dependent case: time-dependent fractional diffusion

We turn now to the full time-dependent problem (2). For spatial discretization we use the approx-
imate fractional Laplacian just as in Section 3.1, which we combine with a Crank-Nicolson scheme
for the discretization of temporal derivatives. This leads to the implicit time-stepping method

ˆ

I`
∆t

2
M

˙

upk`1q “

ˆ

I´
∆t

2
M

˙

upkq `
∆t

2

´

f pk`1q ` f pkq
¯

(17)

to be solved for upk`1q P RN , where M is as in Section 3.1 and now upkq P RN and f pkq P RN have

entries tu
pkq
j u « tupyj, tkqu and tf

pkq
j u “ tfpyj, tkqu for tk “ k∆t.

Just as in Section 3.1, we exploit BTTB structure to apply M such that (17) may be solved
efficiently with CG at each time step. Compared to the steady-state problem, the system matrix
`

I` ∆t
2 M

˘

here is much better conditioned due to the addition of the identity. However, we still
find that the number of iterations is reduced substantially via preconditioning, where we use the
matrix I` ∆t

2 Cα,dh
dL as preconditioner.

4 Numerical results

To demonstrate and profile our approach to discretizing and solving fractional diffusion problems
on bounded Cartesian domains, we implemented a number of examples. All computations were
performed in MATLAB R2017a on a 64-bit Ubuntu laptop with a dual-core Intel Core i7-7500U
processor at 2.70 GHz and 16GB of RAM. All reported timings are in seconds.

4.1 Elliptic examples in one dimension

A relatively smooth solution

We begin with a one-dimensional elliptic example on the interval Ω “ r´1, 1s, discretizing and
solving (3) with right-hand side

fpxq “ 2F1

ˆ

1` α

2
,´2;

1

2
;x2

˙

. (18)
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In this case, the analytic solution on Ω is known and is given up to a known constant of propor-
tionality Kα by upxq “ K´1

α p1 ´ x2q2`
α
2 [25]. We observe that this solution is relatively smooth

when extended to R due to vanishing second derivatives as xÑ ˘1.
We discretize the interval Ω with regularly-spaced points as in (15) with d “ 1, choosing δ in

(14) as a function of the number of discretization points N , such that w is supported inside a ball
with a radius of 20 discretization points. The time tcon to construct the discrete operator M is less
than 3ms in all cases for the one-dimensional case.

Using the known solution upxq for right-hand side (RHS) (18), we measure the apply error
of our discretization as eapp ” }Mutrue ´ f}{}f}, where utrue is the analytic solution sampled on
the discrete grid points and f is the discretized RHS. To demonstrate the solution error of our
discretization scheme we take the same RHS as before and use CG to solve the resulting linear
system (16). This gives a discrete solution u that we can compare to utrue by computing the
relative solution error esol ” }u´ utrue}{}utrue}. These metrics are all shown in Table 1 for four
different choices of α, with correponding plots in Fig. 1. For convenience, at the bottom of Table 1
we give an estimate of the asymptotic decay rate of the error as N is increased, given by a least-
squares fit of the log-error to log N .

We show in Table 2 the runtime tCG and iterations nCG required by CG to solve the linear
system (16) for two different choices of relative `2-norm residual tolerance εres. We give results
and approximate rates of runtime growth for both the preconditioned system (where the precon-
ditioner L is a finite-difference Laplacian as described in Section 3.1) and the unpreconditioned
system. Because this is a one-dimensional problem, use of a fast Poisson solver to apply L´1 is
not stricly necessary for efficiency. Instead, we use a sparse Cholesky factorization, with negligible
overhead. The corresponding timing results are plotted in Fig. 2 (left), where we see that our
simple preconditioning scheme is effective for reducing the time to solution, especially for larger α.

A less smooth solution

As a second one-dimensional example, we follow Huang and Oberman [27, Section 7] and take a
RHS corresponding to fpxq “ 1. This leads to an analytic solution on Ω given by (up to known
constant K 1

α)

upxq “ K 1
αp1´ x

2qα{2, (19)

which when extended to R is only continuous as xÑ ˘1, in contrast to the previous example.
As in Huang and Oberman, applying the discrete forward operator M to (19) is inaccurate near

the boundary due to the lack of differentiability (not shown). However, taking f “ 1 as the RHS
in the discretization of (3), we still observe steady convergence of the relative solution error esol

as N increases in Table 3, though due to reduced regularity of the solution the observed rate of
convergence deteriorates to OpNγq with γ « minp1, 1{2` α{2q.

4.2 Elliptic example in two dimensions: square domain

For a two-dimensional example, we use a square domain Ω “ r0, 1s2 discretized with a regular
grid of N DOFs, showing the time to construct (tcon) and apply (tapp) the discrete operator M in
Table 4. For these and the remainder of our examples, we focus on the case α ą 1 for brevity, as
for α ă 1 the linear system (15) may be solved efficiently without any preconditioning.
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Table 1: Relative apply and solve errors for α P t0.75, 1.25, 1.50, 1.75u for the one-dimensional
elliptic example with right-hand side (18). The last row gives an estimate of the rate of growth as
N is increased, i.e., γ in OpNγq.

N eapp,0.75 eapp,1.25 eapp,1.5 eapp,1.75 esol,0.75 esol,1.25 esol,1.5 esol,1.75

511 2.1e´07 3.6e´06 9.5e´06 2.0e´05 1.2e´08 1.6e´07 5.5e´07 2.0e´06
1023 4.7e´08 9.6e´07 2.7e´06 5.5e´06 1.7e´09 2.6e´08 1.0e´07 4.3e´07
2047 1.1e´08 2.6e´07 7.7e´07 1.6e´06 2.4e´10 4.0e´09 1.8e´08 9.0e´08
4095 2.4e´09 7.0e´08 2.2e´07 5.0e´07 3.3e´11 6.3e´10 3.2e´09 1.9e´08

Rate: -2.1 -1.9 -1.8 -1.8 -2.8 -2.7 -2.5 -2.2
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Figure 1: For the one-dimensional example, we plot the relative `2 apply error eapp (left) and
solve error esol (right) as tabulated in Table 1. In each case we see steady convergence, though
with differing rates (note the difference in y-axis scale between figures). On the left, the top trend
line is OpN´1.5q and the bottom is OpN´2q. On the right, the top trend line is OpN´2q and the
bottom is OpN´3q.
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Table 2: Runtime tCG and number of iterations nCG required to solve the one-dimensional elliptic
example using CG with/without preconditioning based on the finite-difference Laplacian. The
parenthesized quantities indicate the corresponding test did not converge within 1000 iterations.
We omit results for α “ 0.75, as for α ă 1 our preconditioning scheme is unnecessary.

εres “ 10´6 εres “ 10´9

α N tCG nCG tCG nCG

1.25

511 4.8e´3 { 1.8e´2 22 { 104 7.2e´3 { 2.0e´2 35 { 123
1023 1.4e´2 { 5.7e´2 27 { 162 1.5e´2 { 5.0e´2 44 { 190
2047 2.6e´2 { 1.5e´1 35 { 251 3.9e´2 { 1.8e´1 57 { 295
4095 6.3e´2 { 4.3e´1 43 { 389 9.5e´2 { 5.1e´1 72 { 457

Rate: 1.2 { 1.5 * 1.3 { 1.6 *

1.50

511 3.6e´3 { 2.5e´2 15 { 156 6.4e´3 { 2.9e´2 23 { 174
1023 8.1e´3 { 6.9e´2 20 { 263 1.2e´2 { 8.8e´2 28 { 294
2047 1.8e´2 { 2.7e´1 22 { 445 2.9e´2 { 3.1e´1 34 { 497
4095 3.7e´2 { 8.5e´1 26 { 752 5.7e´2 { 9.7e´1 40 { 839

Rate: 1.1 { 1.7 * 1.1 { 1.7 *

1.75

511 2.7e´3 { 3.3e´2 11 { 216 3.7e´3 { 3.8e´2 15 { 229
1023 4.5e´3 { 9.9e´2 12 { 397 7.9e´3 { 1.1e´1 17 { 422
2047 1.1e´2 { 4.3e´1 13 { 731 1.7e´2 { 4.8e´1 18 { 776
4095 2.7e´2 { p1e`0q 15 { p1000q 4.2e´2 { p1e`0q 21 { p1000q

Rate: 1.1 { 1.8 * 1.2 { 1.8 *

Table 3: Relative solve errors for α P t0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75u for the one-dimensional
elliptic example with right-hand side f “ 1 and discrete solution u approximating (19).

N esol,0.25 esol,0.50 esol,0.75 esol,1.00 esol,1.25 esol,1.50 esol,1.75

511 3.2e´03 3.5e´03 3.0e´03 2.5e´03 2.0e´03 1.4e´03 8.1e´04
1023 2.1e´03 2.1e´03 1.7e´03 1.3e´03 1.0e´03 7.2e´04 4.1e´04
2047 1.4e´03 1.2e´03 9.2e´04 6.8e´04 5.0e´04 3.6e´04 2.0e´04
4095 8.8e´04 7.4e´04 5.0e´04 3.5e´04 2.6e´04 1.8e´04 1.0e´04

Rate: -0.63 -0.75 -0.86 -0.93 -0.98 -0.99 -1.00
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Figure 2: For the two-dimensional (left) and three-dimensional (right) examples, we plot the
runtime tCG required for CG to attain an accuracy of εres “ 10´9 as tabulated in Tables 6 and 10,
both with (square markers) and without (circular markers) preconditioning. Note that some points
in the right plot are absent due to excessive runtime. In both plots the top trend line is OpN1.5q

and the bottom is OpNq.

Unlike the one-dimensional case, in two dimensions there is no RHS f for which (3) has a simple
known solution. Instead, we use standard grid error estimates based on Richardson extrapolation
to estimate the rate of convergence. Concretely, for our application error grid estimate we use the
function

g1pxq “
2
ź

i“1

1

4
p1` cosp2πxi ´ πqq

2, (20)

which is nice when truncated to Ω “ r0, 1s2. Using a coarse grid of size 2552, a medium-scale
grid of size 5112, and a fine-scale grid of size 10232, we obtained three corresponding estimates
of the fractional Laplacian of g1 evaluated on the common coarse grid: tfc, fm, ffu Ă R2552 . The
Richardson error rate estimate is then given by

Rp ”
log }ff ´ fm}p ´ log }fm ´ fc}p

log 1{2
, (21)

where } ¨ }p is the `p norm. For solution error, we obtain analogous error rate estimates for the
solution u to the extended Dirichlet problem using RHS g2pxq “ 1. These rate estimates can be
seen in Table 5, where we observe that the solution error rates are empirically limited to first-order
due again to the general lack of smoothness of u near the boundary BΩ [44].

In Table 6 and Fig. 2 (left) we give CG convergence results for the square example, analogous
to the one-dimensional results in Table 2. Note that unlike the one-dimensional case, here it is
clearly advantageous to use a fast Poisson solver to apply the preconditioner. While the reduced
number of iterations is roughly offset by the cost of applying the preconditioner at each iteration
for smaller α and N , the utility of our preconditioning approach becomes clear for the larger, more
ill-conditioned problems.

As discussed, the Richardson convergence results for non-smooth u in Table 5 are limited to
roughly first-order accuracy. To validate the accuracy of our approach on smooth solutions, we
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Table 4: Runtimes tcon for the con-
struction of the operator M and tapp

for application via FFT for the two-
dimensional elliptic example.

N tcon tapp

1272 8.4e´2 4.5e´3
2552 9.8e´2 3.0e´2
5112 1.9e´1 1.1e´1
10232 6.1e´1 5.0e´1

Rate: 0.5 1.1

Table 5: Grid error estimates R2 and
R8 for both u and f in (16) for the two-
dimensional elliptic example.

Grid rate, u Grid rate, f

α R2 R8 R2 R8

1.25 0.98 0.87 2.65 2.63
1.50 0.99 0.82 2.38 2.35
1.75 0.99 0.87 2.16 2.15

Table 6: Runtime tCG and number of iterations nCG required to solve the two-dimensional elliptic
example using CG with/without preconditioning.

εres “ 10´6 εres “ 10´9

α N tCG nCG tCG nCG

1.25

1272 1.7e´1 { 2.2e´1 21 { 61 2.7e´1 { 3.1e´1 33 { 77
2552 1.1e`0 { 2.3e`0 28 { 95 1.9e`0 { 3.4e`0 43 { 121
5112 6.5e`0 { 1.6e`1 36 { 148 1.1e`1 { 2.1e`1 57 { 188
10232 3.7e`1 { 1.2e`2 47 { 231 6.1e`1 { 1.5e`2 74 { 292

Rate: 1.3 { 1.5 * 1.3 { 1.5 *

1.50

1272 1.3e´1 { 3.3e´1 15 { 86 1.8e´1 { 3.8e´1 23 { 108
2552 8.6e´1 { 4.0e`0 18 { 147 1.3e`0 { 5.1e`0 28 { 184
5112 4.0e`0 { 2.7e`1 21 { 250 6.1e`0 { 3.4e`1 33 { 312
10232 2.2e`1 { 2.2e`2 26 { 425 3.3e`1 { 2.7e`2 40 { 528

Rate: 1.2 { 1.5 * 1.2 { 1.6 *

1.75

1272 8.6e´2 { 4.1e´1 11 { 120 1.1e´1 { 5.0e´1 15 { 149
2552 5.7e´1 { 6.1e`0 12 { 223 7.6e´1 { 7.5e`0 17 { 278
5112 2.5e`0 { 4.6e`1 13 { 413 3.6e`0 { 5.7e`1 19 { 516
10232 1.2e`1 { 4.0e`2 14 { 766 1.8e`1 { 4.9e`2 21 { 962

Rate: 1.2 { 1.6 * 1.2 { 1.6 *
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Table 7: Relative `2 solve error for α P t0.75, 1.25, 1.50, 1.75u for the two-dimensional elliptic
example with right-hand side generated numerically by sampling as described in text. The last row
gives an estimate of the rate of growth as n “

?
N „ h´1 is increased, i.e., γ in Opnγq.

N e0.75 e1.25 e1.5 e1.75

1272 2.1e´06 9.4e´06 2.7e´05 8.2e´05
2552 1.6e´07 1.8e´06 6.0e´06 2.1e´05
5112 1.5e´08 2.9e´07 1.2e´06 4.8e´06
10232 1.6e´09 4.3e´08 2.1e´07 9.9e´07

Rate: -3.4 -2.6 -2.3 -2.1

generate a smooth synthetic example in 2D as follows. Taking u ” g1 in (20), we sample u

on a regular grid of 40952 DOFs to obtain u
p4095q
true . With Mp4095q as our discrete operator of the

corresponding size, we compute f p4095q “ Mp4095qu
p4095q
true . For a given problem size N “ n2 we obtain

the RHS vector f pnq and “true solution” u
pnq
true by appropriately subsampling f p4095q and u

p4095q
true ,

respectively, which then permits computing the relative `2 error norm e “ }u
pnq
true ´ upnq}{}u

pnq
true},

where the discrete solution satisfies the problem on the smaller grid Mpnqupnq “ f pnq. Results can
be seen in Table 7, where we note that rates given are in terms of n “

?
N as appropriate for

error rates on a regular 2D grid. For this problem with smooth solution, we see better error rates
compared to Table 5, aligned with our theory.

4.3 Elliptic example in three dimensions

In three dimensions for the hypercube case Ω “ r0, 1s3 we repeat experiments analogous to those
in Section 4.2.

To compute our three-dimensional grid error estimates (21), we use the 3D analogue of (20),

g1pxq “
3
ź

i“1

1

4
p1` cosp2πxi ´ πqq

2

for the apply error and again g2pxq ” 1 for the solution error. We use coarse, medium-scale, and
fine grids with sizes 633, 1273, and 2553, respectively, and give the results in Table 9. We remark
that the error rates reported for f appear artifically inflated, likely due to the fact that the grid
error estimate is an asymptotic approximation that holds in the limit of large N , and N “ 633 is
not large.

In Table 10 and Fig. 2 (right) we give CG convergence results for the three-dimensional example,
just like those for the two-dimensional example. Just as in two dimensions, the utility of our simple
preconditioner is clear for larger problems and for larger α, where iterative approaches to solving
the linear system start to become prohibitively expensive without preconditioning.

4.4 Elliptic examples in two dimensions: an “L”-shaped domain and octagonal
domain

Before moving to time-dependent examples, we include a final demonstration showing our method
applied to problems where the domain is an occluded Cartesian grid (i.e., a regular discretization
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Table 8: Runtimes tcon for the con-
struction of the operator M and tapp

for application via FFT for the three-
dimensional elliptic example.

N tcon tapp

313 2.3e´1 3.0e´2
633 3.1e´1 8.7e´2
1273 1.3e`0 1.3e`0
2553 1.8e`1 2.0e`1

Rate: 0.7 1.1

Table 9: Grid error estimates R2 and
R8 for both u and f in (16) for the
three-dimensional elliptic example.

Grid rate, u Grid rate, f

α R2 R8 R2 R8

1.25 1.02 0.90 4.35 4.55
1.50 1.10 0.87 4.22 4.62
1.75 1.30 1.13 3.90 4.99

Table 10: Runtime tCG and number of iterations nCG required to solve the three-dimensional
elliptic example using CG with/without preconditioning. The parenthesized quantities indicate
the corresponding test did not converge within 250 iterations. For the rate computations we omit
N “ 313 due to the clear non-asymptotic behavior in Fig. 2.

εres “ 10´6 εres “ 10´9

α N tCG nCG tCG nCG

1.25

313 6.4e´1 { 7.7e´1 13 { 27 1.0e`0 { 1.1e`0 20 { 37
633 4.3e`0 { 4.6e`0 16 { 47 6.8e`0 { 5.6e`0 24 { 63
1273 6.9e`1 { 1.0e`2 21 { 75 1.0e`2 { 1.4e`2 32 { 100
2553 1.0e`3 { 2.2e`3 27 { 117 1.6e`3 { 2.9e`3 42 { 156

Rate: 1.3 { 1.5 * 1.3 { 1.5 *

1.50

313 5.3e´1 { 1.1e`0 10 { 36 7.6e´1 { 1.5e`0 14 { 50
633 3.5e`0 { 5.9e`0 12 { 66 4.8e`0 { 8.3e`0 17 { 91
1273 4.7e`1 { 1.5e`2 14 { 113 6.9e`1 { 2.1e`2 21 { 154
2553 7.2e`2 { 3.6e`3 18 { 195 1.0e`3 { p4.6e`3q 26 { p250q

Rate: 1.3 { 1.5 * 1.3 { 1.5 *

1.75

313 4.1e´1 { 1.6e`0 7 { 49 5.5e´1 { 2.0e`0 10 { 65
633 2.4e`0 { 8.3e`0 8 { 93 3.5e`0 { 1.1e`1 12 { 123
1273 3.4e`1 { 2.4e`2 10 { 175 4.7e`1 { 3.2e`2 14 { 229
2553 4.6e`2 { p4.6e`3q 11 { p250q 6.1e`2 { p4.6e`3q 15 { p250q

Rate: 1.3 { 1.6 * 1.2 { 1.6 *
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Figure 3: For a qualitative demonstration on an “L”-shaped domain, we plot the right-hand side
(left) and solution with α “ 1.75 (center). As in our other examples, the solution is forced to zero
outside of the domain. For results on an irregular octagonal domain (right), we build an octagon
with horizontal and vertical sides of length 2 and all other sides of length

?
2.

Table 11: Runtime tPC for construction of the preconditioner for the two-dimensional elliptic
example on the “L”-shaped domain, as well as time tCG and number of iterations nCG required
for CG to converge to tolerances 10´6 and 10´9 with/without preconditioning for the case α “
1.75. The parenthesized quantities indicate the corresponding test did not converge within 1000
iterations.

εres “ 10´6 εres “ 10´9

α N tPC tCG nCG tCG nCG

1.75

12033 1.9e´2 6.2e´2 { 4.9e´1 10 { 141 8.0e´2 { 6.4e´1 14 { 191
48641 8.4e´2 4.3e´1 { 7.2e`0 11 { 268 5.8e´1 { 9.2e`0 16 { 354
195585 3.9e´1 2.1e`0 { 5.4e`1 13 { 497 2.7e`0 { 7.0e`1 18 { 655
784385 1.8e`0 1.0e`1 { 4.5e`2 14 { 925 1.4e`1 { p4.9e`2q 20 { p1000q

Rate: 1.1 1.2 { 1.6 * 1.2 { 1.7 *

that is not a hypercube). The first such example is a problem on an “L”-shaped domain obtained
by taking a regular grid of pn ´ 1q2 points as before and then removing pn{2q2 contiguous points
corresponding to a single corner of the domain, see Fig. 3 (left and center).

Because the “L”-shaped domain is discretized as a subset of a regular grid, the operator M
can still be applied quickly via FFT as before. However, use of a fast Poisson solver to apply
the preconditioner is no longer possible. Instead, we use a sparse Cholesky factorization as in our
one-dimensional examples. We use the default MATLAB permutation options for sparse Cholesky
(which corresponds to an approximate minimum degree ordering of the unknowns) though other
methods are possible.

In Table 11 we show results for the “L”-shaped domain for choices of N ranging from N “ 12033
(i.e., 1272 ´ 642) to N “ 784385 (i.e., 10232 ´ 5122). We focus on the time tPC to construct the
factored preconditioner using sparse Cholesky as well as the runtime and number of iterations for
CG both with and without our preconditioning scheme, as before. For brevity we give only results
for α “ 1.75, as results for smaller α follow the same trends as in the case of a square domain. We
remark that, while the time to factor the preconditioner is nonzero, it is still small compared to
the time to solve the systems with CG, and the runtimes tCG in Table 11 are comparable to those
in Table 6 (albeit one must adjust for the slighly different system sizes).
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Table 12: Runtime tPC for construction of the preconditioner for the two-dimensional elliptic
example on the octagonal domain, as well as time tCG and number of iterations nCG required for
CG to converge to tolerances 10´6 and 10´9 with/without preconditioning for the case α “ 1.75.

εres “ 10´6 εres “ 10´9

α N tPC tCG nCG tCG nCG

1.75

14145 5.3e´2 9.3e´2 { 3.8e´1 10 { 119 1.2e´1 { 4.9e´1 14 { 145
56961 1.4e´1 4.5e´1 { 5.4e`0 11 { 220 6.4e´1 { 6.9e`0 16 { 267
228609 5.5e´1 2.0e`0 { 4.0e`1 13 { 407 2.8e`0 { 4.9e`1 18 { 493
915969 2.7e`0 1.1e`1 { 3.7e`2 15 { 752 1.4e`1 { 4.5e`2 20 { 910

Rate: 0.9 1.1 { 1.6 * 1.1 { 1.6 *

For another example discretized on a subset of a regular grid, we construct an irregular octagon
whose vertices coincide with points on a regular grid, see Fig. 3 (right). As with the previous
example, we use a sparse Cholesky factorization to build the preconditioner and give analogous
results for α “ 1.75 and varying N and εres in Table 12.

4.5 Time-dependent example in two and three dimensions

Finally, we turn to the time-dependent case. As described in Section 3.2, our approach to the time-
dependent fractional diffusion problem (2) involves first computing the discrete fractional Laplacian
operator as before and then using a Crank-Nicolson method to time-step the solution. Here we
demonstrate the efficiency of our preconditioning scheme for the time-dependent problem and give
grid error estimates for Ω “ r0, 1sd.

For smooth solutions, the Crank-Nicolson scheme is locally second-order in time and our spatial
discretization is locally second-order in space. Thus, we choose our temporal step size in d dimen-
sions as ∆t “ pN1{d ` 1q´1 such that ∆t « h but the number of time steps required to reach a
final time of T “ 0.25 is integral. However, we remark that, just as in the elliptic case, we cannot
expect better than first-order convergence in general [15].

For our grid error estimates we take f ” 0 in (2) and initial condition

u0pxq “
d
ź

i“1

1

4
p1` cosp2πνixi ´ πqq

2,

with ν1 “ 3, ν2 “ 11, and ν3 “ 2. Using (17) to time-step the solution to final time T “ 0.25,
we then compute grid error estimates for simultaneous refinement in space and time, which are
given in Table 13. For the two-dimensional case we use spatial grids with 2552, 5112, and 10232

points for the coarse, medium-scale, and fine grids, respectively. For the three-dimensional case we
analogously use 313, 633, and 1273 points in space, as we are limited by the runtime requirements
of solving the largest problems. As in the elliptic setting, we observe an artificial inflation of the
Richardson rate in three dimensions.

In Table 14 we give the CG results for a single time-step with random RHS, i.e., the results for
a single linear system. In both two dimensions and three dimensions, we use the preconditioner
described in Section 2 applied with a modified fast Poisson solver. Compared to the elliptic setting,
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Table 13: Grid error estimates R2 and R8 for the solution at time T “ 0.25 to the parabolic
problem (2) in both two and three dimensions as described in Section 4.5.

2D 3D

α R2 R8 R2 R8

1.25 0.97 0.87 2.22 3.11
1.50 0.97 0.82 2.30 3.24
1.75 0.97 0.85 3.02 3.39

Table 14: Runtime tCG and number of iterations nCG required to perform a single time step for the
time-dependent example using CG with/without preconditioning in both two and three dimensions.
In all cases we use εres “ 10´9.

2D 3D

α N tCG nCG N tCG nCG

1.25

2552 5.4e´1 { 6.3e´1 12 { 25 633 2.9e`0 { 2.1e`0 11 { 25
5112 2.1e`0 { 2.7e`0 12 { 27 1273 3.5e`1 { 4.5e`1 12 { 28
10232 9.4e`0 { 1.5e`1 12 { 29 2553 4.7e`2 { 5.8e`2 12 { 30

Rate: 1.0 { 1.1 * Rate: 1.2 { 1.3 *

1.50

2552 5.4e´1 { 1.4e`0 12 { 56 633 2.7e`0 { 3.9e`0 10 { 47
5112 2.3e`0 { 6.5e`0 13 { 67 1273 3.8e`1 { 7.7e`1 12 { 60
10232 1.1e`1 { 4.3e`1 14 { 79 2553 5.0e`2 { 1.4e`3 13 { 73

Rate: 1.1 { 1.2 * Rate: 1.2 { 1.4 *

1.75

2552 4.4e´1 { 2.8e`0 10 { 121 633 2.2e`0 { 6.5e`0 8 { 81
5112 1.9e`0 { 1.5e`1 11 { 162 1273 2.9e`1 { 1.6e`2 9 { 122
10232 9.3e`0 { 1.2e`2 12 { 212 2553 4.1e`2 { 3.2e`3 10 { 170

Rate: 1.1 { 1.4 * Rate: 1.2 { 1.5 *

we see that the time-dependent system matrix is better conditioned and thus preconditioning for
α “ 1.25 is not necessary in two dimensions and not helpful in three dimensions. However, for
larger α there is a clear benefit.

We remark that in practical settings with multiple time steps the number of iterations is reduced
slightly from the current setting because the old solution upkq can be used as an initial guess for
the solution upk`1q, but the difference is not substantial in general.

5 Conclusions

We introduced a simple discretization scheme for the fractional Laplacian operator in one, two, and
three dimensions based on singularity subtraction combined with the regularly-spaced trapezoidal
rule. When applied to sufficiently smooth functions u, the resulting discretization is provably
second-order accurate in the grid spacing h, whereas for rougher u we observe first-order accuracy
in the `2 solution error.

When the order α of the fractional Laplacian is close to two, the discrete operator is ill con-
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ditioned, reflecting the underlying ill-conditioning of the continuous (integer-order) Laplacian. To
efficiently solve linear systems with the discrete fractional Laplacian, we demonstrated the utility
of a simple preconditioning scheme based on fast Poisson solvers.

For higher-order schemes, it is necessary to forsake the simplicity of our approach to more
precisely handle solutions u that exhibit only fractional-order smoothness near the boundary of Ω
for both (2) and (3). While we intend to pursue this in future work, we have shown that the scheme
presented here provides a fast, simple alternative for situations amenable to lower-order accuracy.
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