On the size-Ramsey number of tight paths

Linyuan Lu * Zhiyu Wang ${ }^{\dagger}$

December 12, 2017

Abstract

For any $r \geq 2$ and $k \geq 3$, the r-color size-Ramsey number $\hat{R}(\mathcal{G}, r)$ of a k-uniform hypergraph \mathcal{G} is the smallest integer m such that there exists a k-uniform hypergraph \mathcal{H} on m edges such that any coloring of the edges of \mathcal{H} with r colors yields a monochromatic copy of \mathcal{G}. Let $\mathcal{P}_{n, k-1}^{(k)}$ denote the k-uniform tight path on n vertices. Dudek, Fleur, Mubayi and Rődl showed that the size-Ramsey number of tight paths $\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}, 2\right)=O\left(n^{k-1-\alpha}(\log n)^{1+\alpha}\right)$ where $\alpha=\frac{k-2}{\binom{k-1}{2}+1}$. In this paper, we improve their bound by showing that $\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}, r\right)=O\left(r^{k}(n \log n)^{k / 2}\right)$ for all $k \geq 3$ and $r \geq 2$.

1 Introduction

Given two simple graphs G and H and a positive integer r, say that $H \rightarrow(G)_{r}$ if every r-edge-coloring of H results in a monochromatic copy of G in H. In this notation, the Ramsey number $R(G)$ of G is the minimum n such that $K_{n} \rightarrow(G)_{2}$. The size-Ramsey number $\hat{R}(G, r)$ of G is defined as the minimum number of edges in a graph H such that $H \rightarrow(G)_{r}$, i.e.

$$
\hat{R}(G, r)=\min \left\{|E(H)|: H \rightarrow(G)_{r}\right\}
$$

When $r=2$, we ignore r and simply use $\hat{R}(G)$.
Size-Ramsey number was first studied by Erdős, Faudree, Rousseau and Schelp [8] in 1978. By the definition of $R(G)$, we have

$$
\hat{R}(G) \leq\binom{ R(G)}{2}
$$

Chvátal (see, e.g. []) showed that this bound is tight for complete graphs, i.e. $\hat{R}\left(K_{n}\right)=\binom{R\left(K_{n}\right)}{2}$. Answering a question of Erdős [9], Beck [3] showed by a probabilistic construction that

$$
\hat{R}\left(P_{n}\right)=O(n)
$$

[^0]Alon and Chung [1] gave an explicit construction of a graph G with $O(n)$ edges such that $G \rightarrow P_{n}$. Recently, Dudek and Prałat [6] provided a simple alternative proof for this result (See also [10]). The best upper bound $\hat{R}\left(P_{n}\right) \leq 74 n$ is due to Dudek and Prałat [7] by considering a random 27 -regular graph of a proper order.

Dudek, Fleur, Mubayi, and Rődl 11 first initiated the study of size-Ramsey number in hypergraphs. A k-uniform hypergraph \mathcal{G} on a vertex set $V(\mathcal{G})$ is a family of k-element subsets (called edges) of $V(\mathcal{G})$. We use $E(\mathcal{G})$ to denote the edge set. Given k-uniform hypergraphs \mathcal{G} and \mathcal{H}, we say that $\mathcal{H} \rightarrow(\mathcal{G})_{r}$ if every r-edge-coloring of \mathcal{H} results in a monochromatic copy of \mathcal{G} in \mathcal{H}. Define the size-Ramsey number $\hat{R}(\mathcal{G}, r)$ of a k-uniform hypergraph \mathcal{G} as

$$
\hat{R}(\mathcal{G}, r)=\min \left\{|E(\mathcal{H})|: \mathcal{H} \rightarrow(\mathcal{G})_{r}\right\}
$$

When $r=2$, we simply use $\hat{R}(\mathcal{G})$ for the ease of reference.
Given integers $1 \leq l<k$ and $n \equiv l(\bmod k-l)$, an l-path $\mathcal{P}_{n, l}^{(k)}$ is a k-uniform hypergraph with vertex set $[n]$ and edge set $\left\{e_{1}, \cdots, e_{m}\right\}$, where $e_{i}=\{(i-1)(k-l)+1,(i-1)(k-l)+2, \cdots,(i-1)(k-l)+k\}$ and $m=\frac{n-l}{k-l}$, i.e. the edges are intervals of length k in $[n]$ and consecutive edges intersect in exactly l vertices. A $\mathcal{P}_{n, 1}^{(k)}$ is commonly referred as a loose path and a $\mathcal{P}_{n, k-1}^{(k)}$ is called a tight path.

Dudek, Fleur, Mubayi and Rődl [11] showed that when $l \leq \frac{k}{2}$, the sizeRamsey number of a path $\mathcal{P}_{n, l}^{(k)}$ can be easily reduced to the graph case. In particular, they showed that if $1 \leq l \leq \frac{k}{2}$, then

$$
\hat{R}\left(\mathcal{P}_{n, l}^{(k)}\right) \leq \hat{R}\left(P_{n}\right)=O(n)
$$

For tight paths, they showed in the same paper that for fixed $k \geq 3$,

$$
\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)=O\left(n^{k-1-\alpha}(\log n)^{1+\alpha}\right)
$$

where $\alpha=(k-2) /\left(\binom{k-2}{2}+1\right)$. Observe that $\hat{R}\left(\mathcal{P}_{n, l}^{(k)}\right) \leq \hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)$. Thus any upper bound on the size-Ramsey number of tight paths is also an upper bound for other l-path $\mathcal{P}_{n, l}^{(k)}$.

Motivated by their approach, we use a different probabilistic construction and improve the upper bound to $O\left((n \log n)^{k / 2}\right)$. In particular, we show the following result on the multi-color size-Ramsey number of tight paths in hypergraphs:

Theorem 1. For any fixed $k \geq 3$, any $r \geq 2$, and sufficiently large n, we have

$$
\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}, r\right)=O\left(r^{k}(n \log n)^{\frac{k}{2}}\right) .
$$

2 Proof of Theorem 1

The approach of our proof is inspired by Dudek, Fleur, Mubayi and Rődl's approach in their proof of Theorem 2.8 in [11]. In their proof, they constructed their hypergraph by setting edges to be the k-cliques of an Erdős-Rényi random graph. Then they use a greedy algorithm to show that the number of edges of each color is smaller than $\frac{1}{r}$ fraction of the total number of edges, which gives a contradiction. Motivated by their approach, we use the same greedy algorithm but a different probabilistic construction of the hypergraph. Instead of using k-cliques of an Erdős-Rényi random graph as edges, we use k-cycles of a random C_{k}-colorable graph (which will be defined later) as edges.

Throughout the paper, we will use the following version of Chernoff inequalities for the binomial random variables $X \sim \operatorname{Bin}(n, p)$ (for details, see, e.g. (4)):

$$
\begin{gather*}
\operatorname{Pr}(X \leq E(X)-\lambda) \leq \exp \left(-\frac{\lambda^{2}}{2 E(X)}\right) \tag{1}\\
\operatorname{Pr}(X \geq E(X)+\lambda) \leq \exp \left(-\frac{\lambda^{2}}{2(E(X)+\lambda / 3)}\right) \tag{2}
\end{gather*}
$$

We follow a similar notation as 11]. A graph G is C_{k}-colorable if there is a graph homomorphism π mapping G to the cycle C_{k}. That is, $V(G)$ can be partitioned into k-parts $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ so that $E(G) \subseteq \bigcup_{i=1}^{k} E\left(V_{i}, V_{i+1}\right)$ with $V_{k+1}=V_{1}$ and $E\left(V_{i}, V_{i+1}\right)$ denoting the set of edges between a vertex in V_{i} and a vertex in V_{i+1}. For such a graph G, we say a k-cycle C in G is proper if it intersects each V_{i} by exactly one vertex. For $1 \leq l \leq k-1$, we say a path P_{l} of l vertices in G is proper if it intersects each V_{i} by at most one vertex. Let $\mathcal{T}_{k-1}(G)$ denote the set of all proper $(k-1)$-paths in G. Let $\mathcal{B} \subseteq \mathcal{T}_{k-1}$ be a family of pairwise vertex-disjoint proper $(k-1)$-paths. Let $t_{\mathcal{B}}$ be the total number of proper k-cycles in G that extend some $B \in \mathcal{B}$. For $A \subseteq V$, define $y_{A, \mathcal{B}}$ as the number of proper k-cycles in G that extend a proper $(k-1)$-path $B \in \mathcal{B}$ with a vertex $v \in A \cup \bigcup_{B \in \mathcal{B}} V(B)$. Given $C \subseteq V(G)$, we use z_{C} to denote the number of proper k-cycles in G that intersect C. We use t_{k} to denote the total number of proper k-cycles in G.

We say an event in a probability space holds a.a.s. (aka, asymptotically almost surely) if the probability that it holds tends to 1 as n goes to infinity. Finally, we use $\log n$ to denote natural logarithms.

Proposition 1. For every $r \geq 2, k \geq 3$, and sufficiently large n, there exists a C_{k}-colorable graph $G=(V, E)$ satisfying the following:
(i) For every \mathcal{B} consisting of n pairwise vertex-disjoint proper $(k-1)$-paths, and every $A \subseteq V \backslash \bigcup_{B \in \mathcal{B}} V(B)$ with $|A| \leq n$, we have

$$
y_{A, \mathcal{B}}<\frac{1}{2 k r} t_{\mathcal{B}} .
$$

(ii) For every $C \subseteq V$ with $|C| \leq(k-1) n$, we have

$$
z_{C}<\frac{t_{k}}{2 r}
$$

(iii) The total number of proper k-cycles satisfies

$$
t_{k}=O\left(r^{k}(n \log n)^{k / 2}\right)
$$

Proof. Set $c=16 k^{2} r$ and $p=\frac{\sqrt{\log n}}{\sqrt{n}}$. Consider the following random $C_{k^{-}}$ colorable graph G. Let $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ be the disjoint union of k sets. Each V_{i} (for $1 \leq i \leq k$) has the same size $c n$. For any pair of vertices $\{u, v\}$ in two consecutive parts, i.e., there is an $i \in[k]$, such that $u \in V_{i}$ and $v \in V_{i+1}$ (with the convention $V_{k+1}=V_{1}$), add $u v$ as an edge of G with probability p independently. There is no edge inside each V_{i} or between two non-consecutive parts.

We will show that this random C_{k}-colorable graph G satisfies a.a.s. (i)-(iii).
First we show that G a.a.s. satisfies (i). For a fixed family \mathcal{B} of n pairwise vertex-disjoint proper $(k-1)$-paths, we would like to give a lower bound of $t_{\mathcal{B}}$. For each proper $(k-1)$-path $B \in \mathcal{B}$, there are $c n$ vertices that can extend B into a proper k-cycle, each with probability p^{2} independently. Thus, we have $t_{\mathcal{B}} \sim \operatorname{Bin}\left(c n^{2}, p^{2}\right)$ with

$$
E\left[t_{\mathcal{B}}\right]=c n^{2} p^{2}=c n \log n=16 k^{2} r n \log n
$$

Applying Chernoff inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(t_{\mathcal{B}} \leq \frac{\left.E\left[t_{\mathcal{B}}\right]\right)}{2}\right) & \leq \exp \left(-\frac{1}{8} E\left[t_{\mathcal{B}}\right]\right) \\
& =\exp \left(-2 k^{2} r n \log n\right)
\end{aligned}
$$

Now for fixed $A \subseteq V \backslash \bigcup_{B \in \mathcal{B}} V(B)$, we estimate the upper bound of $y_{A, \mathcal{B}}$. Without loss of generality, we can assume that $|A|=n$. We have $y_{A, \mathcal{B}} \leq Y \sim$ $\operatorname{Bin}\left(2 n^{2}, p^{2}\right)$, thus

$$
E[Y]=2 n^{2} p^{2}=2 n \log n
$$

Thus if we apply the Chernoff bound (2) with $\lambda=(2 k-1) E[Y]$, then

$$
\begin{aligned}
\operatorname{Pr}\left(Y \geq \frac{1}{4 k r} E\left[t_{\mathcal{B}}\right]\right) & =\operatorname{Pr}(Y \geq 2 k E[Y]) \\
& =\operatorname{Pr}(Y \geq E[Y]+\lambda) \\
& \leq \exp \left(-\frac{\lambda^{2}}{2(\mathrm{E}[Y]+\lambda / 3)}\right) \\
& \leq \exp \left(-\frac{3(2 k-1)^{2}}{2 k+2} n \log n\right)
\end{aligned}
$$

The number of possible choices of \mathcal{B} is upper bounded by $\left(\binom{c n}{n} \cdot n!\right)^{k}$. The number of possible choices of A and \mathcal{B} is upper bounded by $\left(\binom{c n}{n,\lceil n / k\rceil} \cdot n!\right)^{k} \leq$ $\left(\binom{c n}{n, n} \cdot n!\right)^{k}$. Stirling approximation of binomial coefficient gives us that

$$
\begin{aligned}
\log \left(\binom{c n}{n} \cdot n!\right)^{k} & =(1+o(1))(k n \log n), \\
\log \left(\binom{c n}{n, n} \cdot n!\right)^{k} & =(1+o(1))(k n \log n) .
\end{aligned}
$$

Therefore by the union bound, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\bigcup_{\mathcal{B}}\left\{t_{\mathcal{B}} \leq \frac{E\left[t_{\mathcal{B}}\right]}{2}\right\}\right) & \leq\left(\binom{c n}{n} \cdot n!\right)^{k} \operatorname{Pr}\left(t_{\mathcal{B}} \leq \frac{E\left[t_{\mathcal{B}}\right]}{2}\right) \\
& \leq \exp \left((1+o(1)) k n \log n-2 k^{2} r n \log n\right) \\
& =o(1)
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\bigcup_{A, \mathcal{B}}\left\{y_{A, \mathcal{B}} \geq \frac{1}{4 k r} E\left[t_{\mathcal{B}}\right]\right\}\right) & \leq\left(\binom{c n}{n, n} \cdot n!\right)^{k} \operatorname{Pr}\left(Y \geq \frac{1}{4 k r} E\left[t_{\mathcal{B}}\right]\right) \\
& \leq \exp \left((1+o(1)) k n \log n-\frac{3(2 k-1)^{2}}{2 k+2} n \log n\right) \\
& =o(1) .
\end{aligned}
$$

In the last step, we observe $\frac{3(2 k-1)^{2}}{2 k+2}>k$ for all $k \geq 3$.
Therefore, combining previous inequalities, it follows that for all A, \mathcal{B} satisfying the condition in (i), we have, a.a.s.,

$$
y_{A, \mathcal{B}}<\frac{1}{4 k r} E\left[t_{\mathcal{B}}\right] \leq \frac{1}{2 k r} t_{\mathcal{B}} .
$$

This finishes the proof of (i).
Now we will prove that G satisfies (ii) and (iii) a.a.s.
We will use the Kim-Vu inequality [12] stated as below:
Let H be a (weighted) hypergraph with $V(H)=[n]$. Edge edge e has some weight $w(e)$. Suppose $\left\{t_{i}: i \in[n]\right\}$ is a set of Bernoulli independent random variables with probability p of being 1. Consider the polynomial

$$
Y_{H}=\sum_{e \in E(H)} w(e) \prod_{s \in e} t_{s}
$$

Furthermore, for a subset A of $V(H)$, define

$$
Y_{H_{A}}=\sum_{e, A \subset e} w(e) \prod_{i \in e \backslash A} t_{i} .
$$

$$
\begin{align*}
& \text { If we define } E_{i}(H)=\max _{A \subset V(H),|A|=i} E\left(Y_{H_{A}}\right), E(H)=\max _{i \geq 0} E_{i}(H) \text { and } \\
& E^{\prime}(H)=\max _{i \geq 1} E_{i}(H) \text {, then } \\
& \operatorname{Pr}\left(\left|Y_{H}-E_{0}(H)\right|>a_{k}\left(E(H) E^{\prime}(H)\right)^{1 / 2} \lambda^{k}\right)=O(\exp (-\lambda+(k-1) \log n)) \tag{3}
\end{align*}
$$

for any positive number $\lambda>1$ and $a_{k}=8^{k}(k!)^{1 / 2}$.
In our context, for a fixed $v \in V(G)$, let H be the k-uniform hypergraph constructed by the proper k-cycles of G containing v. The edge set of H is the collection of all k-tuples $\left\{v v_{1}, v_{1} v_{2}, \cdots, v_{k-2} v_{k-1}, v_{k-1} v\right\}$ such that $v v_{1} v_{2} \cdots v_{k-1} v$ is a proper k-cycle in G and all edges have weight 1 .

Fix $v \in V(G)$. we let X_{v} denote the number of proper k-cycles in G that contain v. Then it's not hard to see that

$$
\begin{gathered}
E_{0}\left(X_{v}\right)=E\left(X_{v}\right)=(c n)^{k-1} p^{k}=c^{k-1} n^{\frac{k-2}{2}}(\log n)^{\frac{k}{2}} . \\
E^{\prime}\left(X_{v}\right)=(c n)^{k-2} p^{k-1}=c^{k-2} n^{\frac{k-3}{2}}(\log n)^{\frac{k-1}{2}} .
\end{gathered}
$$

Applying Kim- Vu inequality with $\lambda=2(k-1) \log n$, we get that for each $v \in V(G)$,

$$
\operatorname{Pr}\left(\left|X_{v}-E_{0}\left(X_{v}\right)\right|>a_{k}\left(E\left(X_{v}\right) E^{\prime}\left(X_{v}\right)\right)^{1 / 2} \lambda^{k}\right)=O(\exp (-(k-1) \log n))
$$

Observe that $a_{k}\left(E\left(X_{v}\right) E^{\prime}\left(X_{v}\right)\right)^{1 / 2} \lambda^{k}=o\left(E_{0}\left(X_{v}\right)\right)$. Applying union bound for all $v \in V(G)$, we obtain that a.a.s that

$$
X_{v}=(1 \pm o(1))(c n)^{k-1} p^{k}=(1 \pm o(1)) c^{k-1} n^{\frac{k}{2}-1}(\log n)^{\frac{k}{2}}
$$

Recall that t_{k} denotes the total number of proper k-cycles in G and z_{C} denotes the number of proper k-cycles in G that intersect C. Suppose $|C| \leq(k-1) n$. Then

$$
z_{C} \leq(1+o(1))(k-1) n c^{k-1} n^{\frac{k}{2}-1}(\log n)^{\frac{k}{2}}=(1+o(1))(k-1) c^{k-1}(n \log n)^{\frac{k}{2}} .
$$

Note that $t_{k}=\frac{1}{k} \sum_{v \in V(G)} X_{v}$. Thus

$$
\begin{aligned}
t_{k} & \geq \frac{1}{k}(1-o(1)) k c n \cdot c^{k-1} n^{\frac{k}{2}-1}(\log n)^{\frac{k}{2}} \\
& \geq(1-o(1)) c^{k}(n \log n)^{\frac{k}{2}} .
\end{aligned}
$$

Since $c=16 k^{2} r$, we have that for n sufficiently large,

$$
z_{C}<\frac{t_{k}}{2 r}
$$

Moreover, similar to the above calculation, we have that a.a.s.,

$$
t_{k} \leq(1+o(1)) c^{k}(n \log n)^{\frac{k}{2}}=O\left(r^{k}(n \log n)^{\frac{k}{2}}\right)
$$

Now we will prove the main result. We use the same greedy algorithm approach by Dudek, Fleur, Mubayi and Rődl in 11 .

Proof of Theorem 1: We show that there exists a k-uniform hypergraph \mathcal{H} with $|E(\mathcal{H})|=O\left(r^{k} n^{\frac{k}{2}}(\log n)^{\frac{k}{2}}\right)$ such that any r-coloring of the edges of \mathcal{H} yields a monochromatic copy of $\mathcal{P}_{n, k-1}^{(k)}$.

Let G be the graph constructed from Proposition 1 for n sufficiently large. Let \mathcal{H} be a k-uniform hypergraph such that $V(\mathcal{H})=V(G)$ and $E(\mathcal{H})$ be the collection of all proper k-cycles in G.

Take an arbitrary r-coloring of the edges $\mathcal{H}_{0}=\mathcal{H}$ and assume that there is no monochromatic $\mathcal{P}_{n, k-1}^{(k)}$. Without loss of generality, suppose the color class with the most number of edges is blue. We will consider the following greedy algorithm:
(1) Let $\mathcal{B}=\emptyset$ be a trash set of proper $(k-1)$-paths in G. Let A be a blue tight path in \mathcal{H} that we will iteratively modify. Throughout the process, let $U=V(\mathcal{H}) \backslash\left(V(A) \cup \bigcup_{B \in \mathcal{B}} V(B)\right)$ be the set of unused vertices. If at any point $|\mathcal{B}|=n$, terminate.
(2) If possible, choose a blue edge $v_{1} v_{2} \cdots v_{k-1} v_{k}$ from U and put these vertices into A and set the pointer to v_{k}. Otherwise, if not possible, terminate.
(3) Suppose the pointer is at v_{i} and $v_{i-k+2}, \cdots, v_{i-1}, v_{i}$ are the last $k-1$ vertices of the constructed blue path A. There are two cases:

Case 1: If there exists a vertex $u \in U$ such that $v_{i-k+2}, \cdots, v_{i-1}, v_{i}, u$ form a blue edge in \mathcal{H}, then we extend P, i.e. add $v_{i+1}=u$ into A. Set the pointer to v_{i+1} and restart Step (3).
Case 2: Otherwise, remove the last $k-1$ vertices from A and set $\mathcal{B}=\mathcal{B} \cup$ $\left\{\left\{v_{i-k+2}, \cdots, v_{i-1}, v_{i}\right\}\right\}$. Set the pointer to v_{i-k+1}. Now if $|A|<k$, then set $A=\emptyset$ and go to Step (2). Otherwise, restart Step (3).

Note that this procedure will terminate under two circumstances: either $|\mathcal{B}|=n$ or there is no blue edge in U.

Let us first consider the case when $|\mathcal{B}|=n$, i.e. there are n pairwise vertexdisjoint proper $(k-1)$-paths in \mathcal{B}. Moreover, $|A| \leq n$ since there is no blue path of n vertices. Applying Proposition 1 with sets A and \mathcal{B}, we obtain that

$$
y_{A, \mathcal{B}}<\frac{1}{2 k r} t_{\mathcal{B}} .
$$

Observe that every edge of \mathcal{H} that extends some $B \in \mathcal{B}$ with a vertex from $V\left(\mathcal{H}_{0}\right) \backslash\left(V(A) \cup \bigcup_{B \in \mathcal{B}_{m}} B\right)$ must be non-blue. Therefore, the number of blue edges of \mathcal{H} that contain some $B \in \mathcal{B}$ as subgraph is at most $y_{A, \mathcal{B}}$.

Consider A, \mathcal{B} as A_{0}, \mathcal{B}_{0} respectively. Now remove all the blue edges from \mathcal{H}_{0} that contain some $B \in \mathcal{B}_{0}$ as subgraph and denote the resulting hypergraph
as \mathcal{H}_{1}. Perform the greedy procedure again on \mathcal{H}_{1}. This will generate a new A_{1} and \mathcal{B}_{1}. Applying Proposition 1 again, we have $y_{A_{1}, \mathcal{B}_{1}} \leq \frac{1}{2 k r} t_{\mathcal{B}_{1}}$. Keep repeating the procedure until it is no longer possible. Observe that $\mathcal{B}_{i} \cap \mathcal{B}_{j}=\emptyset$ for $i \neq j$.

When the above procedure can not be repeated anymore, we are in the case that $\left|\mathcal{B}_{m}\right|<n$ for some positive integer m and there are no more blue edges in $V(\mathcal{H}) \backslash \bigcup_{B \in \mathcal{B}_{m}} B$. In this case, $A_{m}=\emptyset$ and all the blue edges remaining in \mathcal{H}_{m} have to intersect the set $C=\bigcup_{B \in \mathcal{B}_{m}} B$. By Proposition it follows that

$$
z_{C}<\frac{1}{2 r} t_{k} .
$$

Let $e_{b}(\mathcal{H})$ denote the total number of blue edges in \mathcal{H}. We have

$$
\begin{aligned}
e_{b}(\mathcal{H}) & \leq \sum_{i=0}^{m-1} y_{A_{i}, \mathcal{B}_{i}}+z_{C} \\
& <\sum_{i=0}^{m-1} \frac{1}{2 k r} t_{\mathcal{B}_{i}}+\frac{1}{2 r} t_{k}
\end{aligned}
$$

Note that every proper k-cycle can extend exactly k proper $(k-1)$-paths. We have $\sum_{i=0}^{m-1} t_{\mathcal{B}_{i}} \leq k t_{k}$. Thus,

$$
\begin{aligned}
e_{b}(\mathcal{H}) & <\frac{1}{2 k r} \sum_{i=0}^{m-1} t_{\mathcal{B}_{i}}+\frac{1}{2 r} t_{k} \\
& \leq \frac{1}{2 r} t_{k}+\frac{1}{2 r} t_{k} \\
& =\frac{1}{r}|E(\mathcal{H})| .
\end{aligned}
$$

The conclusion is that the number of blue edges in \mathcal{H} is strictly smaller than $\frac{1}{r}$ of the total number of edges in \mathcal{H}, which contradicts that blue is the color class with the most number of edges of \mathcal{H}.

References

[1] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988), no. 1-3, 15-19.
[2] Noga Alon and Joel H. Spencer, The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2016.
[3] J. Beck, On size Ramsey number of paths, trees, and circuits. I, Journal of Graph Theory 7 (1983), no. 1, 115-129.
[4] Herman Chernoff, A note on an inequality involving the normal distribution, Ann. Probab., 9 (1981), no. 3, 533-535.
[5] D. Clemens, M. Jenssen, Y. Kohayakawa, N. Morrison, G.O. Mota, D. Reding, B. Roberts, The size-Ramsey number of power of paths, arXiv:1707.04297.
[6] A. Dudek and P. Prałat, An alternative proof of the linearity of the sizeRamsey number of paths, Combin. Probab. Comput. 24 (2015), no. 3, 551555.
[7] A. Dudek and P. Prałat, On some multicolour Ramsey properties of random graphs, SIAM J. Discrete Math., 31 (2017), no. 3, 2079-2092.
[8] P. Erdős, R. Faudree, C. Rousseau, and R. Schelp, The size Ramsey number, Periodica Mathematica Hungarica 9 (1978), no. 1-2, 145-161.
[9] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25-42.
[10] S. Letzter, Path Ramsey number for random graphs, Combin. Probab. Comput. 25 (2016), no. 4, 612-622.
[11] A. Dudek, S. L. Fleur, D. Mubayi, and V. Rődl, On the size-Ramsey number of hypergraphs, J. Graph Theory 86 (2017), no. 1, 104-121.
[12] J. H. Kim and V.H. Vu, Concentration of multivariate polynomials and its applications (2000), Combinatorica 20, pp. 417-434.
[13] M. Krivelevich, Long cycles in locally expanding graphs, with applications, arXiv: 1609.06851.

[^0]: *University of South Carolina, Columbia, SC 29208, (lu@math.sc.edu). This author was supported in part by NSF grant DMS-1600811.
 \dagger University of South Carolina, Columbia, SC 29208, (zhiyuw@math.sc.edu).

