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Abstract

This paper is a gentle but rigorous introduction to quantum computing intended for
discrete mathematicians. Starting from a small set of assumptions on the behavior of quan-
tum computing devices, we analyze their main characteristics, stressing the differences with
classical computers, and finally describe two well-known algorithms (Simon’s algorithm and
Grover’s algorithm) using the formalism developed in previous sections. This paper does
not touch on the physics of the devices, and therefore does not require any notion of quan-
tum mechanics. Numerical examples on an implementation of Grover’s algorithm using
open-source software are provided.

1 Introduction

Quantum computing is a relatively new area of computing that has the potential to greatly speed
up the solution of certain problems. However, quantum computers work in a fundamentally
different way than classical computers. This introduction aims to explain the basic principles
underpinning quantum computing. It assumes the reader is at ease with linear algebra, and
with basic concepts in classical computing such as Turing machines, and algorithm complexity.

The literature contains many textbooks on quantum computing: a comprehensive reference
is [Nielsen and Chuang, 2002], whereas more modern textbooks that aim to be more accessible
to non-physicists are [Mermin, 2007, Rieffel and Polak, 2011]. However, those books are time-
consuming reads. There are not many short introductions that are truly accessible to non-
physicists: [Rieffel and Polak, 2000] is noteworthy, as it actually uses very little physics.

The approach used in this tutorial is, as far as we are aware, different from the literature in
the sense that it abstracts entirely away from quantum physics: we study a quantum computing
device starting from a small set of assumptions and rigorously derive the remaining properties,
focusing on the concepts that are necessary to discuss quantum algorithms. The assumptions
are verified in the real world because of the laws of quantum mechanics, but it is not necessary
to understand why they hold: as long as we are willing to take a small leap of faith and believe
that these assumptions are true, the rest will follow. The exposition in this tutorial is more
formal than in other surveys in the literature, but in some sense more mathematically precise: it
defines the necessary concepts in a rigorous ways, rather than relying on examples or intuition,
and provides formal proofs. For this reason, this material is especially suitable for students and
researchers in various branches of applied mathematics, who will be familiar with the (as much
as possible) deductive structure of this tutorial.

It is important to emphasize that the notation used in this tutorial is often non standard:
our choices are meant to facilitate understanding for people who are just learning the basics
of the field, therefore we are mainly concerned with clarity, rather than eliminating redun-
dancy. However, in a short paragraph at the end of the tutorial we highlight some of the major
differences between our notation and what is typically found in the literature.
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1.1 Overview

The tutorial is structured as follows.

• In the rest of this section we discuss notation and linear algebra preliminaries.

• In Section 2 we define the state of a quantum computer.

• In Section 3 we discuss the operations that can be applied by a quantum computer.

• In Section 4 we analyze Simon’s algorithm, which gives an example of a fundamental
principle in quantum algorithms known as destructive interference.

• In Section 5 we analyze Grover’s algorithm, showcasing amplitude amplification, another
fundamental principle in quantum algorithms.

• Section 6 shows how to implement Grover’s algorithm using Qiskit, an open-source Python
library for quantum computation.

• Finally, Section 7 contains notes for further reading.

The material in this tutorial is developed to support a graduate-level module in quantum com-
puting. In our experience with blackboard-style delivery in the classroom, the material can be
split into four modules of 90-120 minutes each, covering Sections 1-2, Section 3, Section 4, and
Section 5 respectively; plus, if desired, a hands-on class on numerics using Section 6, which
usually requires 90-120 minutes as well. In the classroom, we suggest introducing Definitions
3-5 only when they are used, and of course many of the details can be skipped, adjusting the
flow as necessary: we highlight with light gray background parts of the material that can be
skipped, or briefly summarized, without significantly impairing understanding of subsequent
parts.

1.2 Model of computation

The quantum computing device is, in abstract terms, similar to a classical computing device:
it has a state, and the state of the device evolves by applying certain operations. The model of
computation that we consider is the quantum circuit model, which works as follows:

1. The quantum computer has a state that is contained in a quantum register and is initialized
in a predefined way.

2. The state evolves by applying operations specified in advance in the form of an algorithm.

3. At the end of the computation, some information on the state of the quantum register is
obtained by means of a special operation, called a measurement.

All terms in italics will be the subject of the assumptions mentioned earlier, upon which our
exposition will build. Note that this type of computing device is similar to a Turing machine,
except for the presence of a tape. It is possible to assume the presence of a tape and be more
formal in defining a device that is the quantum equivalent of a Turing machine, but there
is no need to do so for the purposes of this work; fundamental results regarding universal
quantum computers (i.e., the quantum equivalent of a universal Turing machine) are presented
in [Deutsch, 1985, Yao, 1993, Bernstein and Vazirani, 1997].
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We will use the quantum circuit model throughout this tutorial, including in the numerical
example of Section 6. This model of computation closely matches that of certain quantum hard-
ware technologies that are used by some of the major players in the field [Castelvecchi, 2017],
although we should note that the hardware is affected by noise and therefore it does not provide
an exact implementation of the theoretical model. To understand the effect of noise, we can
give the following simple, but overall quite accurate, intuitive explanation. According to the
model of computation, the state evolves by applying operations, and some information on the
state can be extracted via a measurement; due to noise, the state may not evolve in the desired
way (e.g., applying a certain operation on the state s1 should yield the state s2, but we obtain
a different state s3 instead), or the information extracted by a measurement may not be what
it is supposed to be (e.g., a measurement should produce the output 0 with probability p1, but
it produces 0 with a different probability p2 instead).

Since this tutorial aims to be “physics-free”, we will not dicuss the specifics of existing
quantum hardware that follows the circuit model anymore. However, we should note that a
different model for quantum computing exists, and it is the so-called adiabatic model. We
do not discuss the adiabatic model for two reasons: first, the adiabatic and the circuit model
are equivalent [Aharonov et al., 2008], therefore we are free to choose whatever model is more
convenient; second, the circuit model is more natural for computer scientists, and is the one
used in most textbooks on quantum computing.

1.3 Basic definitions and notation

A discussion on quantum computers requires working with the decimal and the binary represen-
tation of integers, some bit operations, and familiarity with the properties of the tensor product.
We describe here the necessary concepts and the notation, so that the reader can come back to
this section at any time to clarify symbols.

Definition 1. Given two vector spaces V and W over a field K with bases e1, . . . , em and
f1, . . . , fn respectively, the tensor product V ⊗W is another vector space over K of dimension
mn. The tensor product space is equipped with a bilinear operation ⊗ : V ×W → V ⊗W . The
vector space V ⊗W has basis ei ⊗ fj ∀i = 1, . . . ,m, j = 1, . . . , n.

If the origin vector spaces are complex Euclidean spaces of the form Cn, and we choose the
standard basis (consisting of the orthonormal vectors that have a 1 in a single position and 0
elsewhere) in the origin vector spaces, then the tensor product is none other than the Kronecker
product, which is itself a generalization of the outer product. This is formalized next.

Definition 2. Given A ∈ Cm×n, B ∈ Cp×q, the Kronecker product A ⊗ B is the matrix D ∈
Cmp×nq defined as:

D := A⊗B =


a11B . . . a1nB
a21B . . . a2nB

...
...

am1B . . . amnB

 .

If we choose the standard basis over the vector spaces Cm×n and Cp×q, then the bilinear operation
⊗ of the tensor product Cm×n ⊗ Cp×q is simply the Kronecker product.

In this tutorial we always work with complex Euclidean spaces of the form Cn, using the
standard basis. With a slight but common abuse of notation, we will therefore use tensor
product to refer to the Kronecker and outer products.
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Example 1. We provide an example of the tensor product for normalized vectors, which will
link this concept to probability distributions and will hopefully provide a better understanding
of some of the future material. Consider two independent discrete random variables X and Y
that describe the probability of extracting numbers from two urns. The first urn contains the
numbers 0 and 1, the second urn contains the numbers 00, 01, 10, 11. Assume that the extraction
mechanism is biased and therefore the outcomes do not have equal probability. The outcome
probabilities are given below, and for convenience we define two vectors containing them:

x =

(
Pr(X = 0)
Pr(X = 1)

)
=

(
0.25
0.75

)
y =


Pr(Y = 00)
Pr(Y = 01)
Pr(Y = 10)
Pr(Y = 11)

 =


0.2
0.2
0.2
0.4

 .

Notice that because each vector contains probabilities for all possibile respective outcomes, the
vectors are normalized so that their entries sum up to 1. Then, the joint probabilities for
simultaneously extracting numbers from the two urns are given by the tensor product x⊗ y:

x⊗ y =

(
0.25
0.75

)
⊗


0.2
0.2
0.2
0.4

 =



0.05
0.05
0.05
0.1
0.15
0.15
0.15
0.3


=



Pr(X = 0) Pr(Y = 00)
Pr(X = 0) Pr(Y = 01)
Pr(X = 0) Pr(Y = 10)
Pr(X = 0) Pr(Y = 11)
Pr(X = 1) Pr(Y = 00)
Pr(X = 1) Pr(Y = 01)
Pr(X = 1) Pr(Y = 10)
Pr(X = 1) Pr(Y = 11)


=



Pr(X = 0, Y = 00)
Pr(X = 0, Y = 01)
Pr(X = 0, Y = 10)
Pr(X = 0, Y = 11)
Pr(X = 1, Y = 00)
Pr(X = 1, Y = 01)
Pr(X = 1, Y = 10)
Pr(X = 1, Y = 11)


,

where the last equality is due to the fact that X and Y are independent. The vector x ⊗ y is
also normalized, which is easy to verify algebraically.

The next proposition states some properties of the tensor product that will be useful in the
rest of this tutorial.

Proposition 1. Let A,B : Cm×m, C,D ∈ Cn×n be linear transformations on V and W respec-
tively, u, v ∈ Cm, w, x ∈ Cn, and a, b ∈ C. The tensor product satisfies the following properties:

(i) (A⊗ C)(B ⊗D) = AB ⊗ CD.

(ii) (A⊗ C)(u⊗ w) = Au⊗ Cw.

(iii) (u+ v)⊗ w = u⊗ w + v ⊗ w.

(iv) u⊗ (w + x) = u⊗ w + u⊗ x.

(v) (au)⊗ (bw) = ab(u⊗ w).

(vi) (A⊗ C)∗ = A∗ ⊗ C∗.

Above and in the following, the notation A∗ denotes the conjugate transpose of A, which
is the matrix defined as follows: A∗ := Ā>. Given a matrix A, the notation A⊗n indicates the
tensor product of A with itself n times, and the same notation will be used for vector spaces S:

A⊗n := A⊗A · · · ⊗A︸ ︷︷ ︸
n times

, S⊗n := S⊗ S · · · ⊗ S︸ ︷︷ ︸
n times

.
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The quantum computing literature refers to a Hilbert space, typically denoted H, rather
than a complex Euclidean space Cn. However, the material discussed in this tutorial does not
require any property of Hilbert spaces that is not already present in complex Euclidean spaces,
hence we stick to the more familiar concept.

We will work extensively with binary strings, using the following definitions.

Definition 3. For any integer q > 0, we denote by ~ ∈ {0, 1}q a binary string on q digits, where
we use the arrow to emphasize that ~ is a string of binary digits rather than an integer. Given
~ ∈ {0, 1}q, we denote its k-th digit by ~k.

We use the notation~0 to denote the all-zero binary string, and~1 to denote the all-one binary
string; the size of these strings will always be clear from the context. We use a little-endian
convention for binary strings, i.e., the first digit is the most significant one. Thus, the binary
string ~ ∈ {0, 1}q corresponds to the decimal number

∑q
k=1~k2

q−k.
In the rest of this tutorial, as is frequent in the quantum computing literature, we use

~ ∈ {0, 1}q to index the elements of 2q-dimensional vectors; such an index is well defined because
{0, 1}q has 2q elements.

Definition 4. For any integer q > 0 and binary strings ~,~k ∈ {0, 1}q, we denote by ~ ⊕~k the
bitwise modulo 2 addition of q-digit strings (bitwise XOR), defined as:

~⊕~k =~h, with ~h ∈ {0, 1}q and ~hp =

{
0 if ~p = ~kp

1 otherwise
for all p = 1, . . . , q.

Definition 5. For any integer q > 0 and binary strings ~,~k ∈ {0, 1}q, we denote by ~ •~k the
bitwise dot product of q-digit strings, defined as:

~ •~k =

q∑
h=1

~h~kh.

The last piece of notation that we need is the bra-ket notation, used in quantum mechanics.
As mentioned earlier, this tutorial will not touch on any quantum-mechanical concepts, however
there is an undeniable advantage in the quantum notation in that it puts the most important
information in the center of the symbols, rather than relegate it to a marginal role in the
subscript or superscript. Furthermore, a goal of this work is to equip the reader with the
necessary tools to understand quantum computing papers, hence it is important to familiarize
with the bra-ket notation.

Definition 6. Given a complex Euclidean space S ≡ Cn, |ψ〉 ∈ S denotes a column vector, and
〈ψ| ∈ S∗ denotes a row vector that is the conjugate transpose of |ψ〉, i.e., 〈ψ| = |ψ〉∗. The vector
|ψ〉 is also called a ket, and the vector 〈ψ| is also called a bra.

Thus, an expression such as 〈ψ|φ〉 is an inner product. The complex Euclidean spaces used
in this work will be of the form (C2)⊗q, where q is a given integer. It is therefore convenient to
specify the basis elements of such spaces.

Definition 7. The standard basis for C2 is denoted by |0〉1 =

(
1
0

)
, |1〉1 =

(
0
1

)
. The standard

basis for (C2)⊗q, which has 2q elements, is denoted by |~〉,~ ∈ {0, 1}q.

5



According to our notation, for any q-digit binary string~ ∈ {0, 1}q, |~〉 is the 2q-dimensional
basis vector in (C2)⊗q corresponding to the binary string ~. Since we always use the standard
basis and the most natural order for its vectors, it is easy to verify that for ~ ∈ {0, 1}q, |~〉 is
the basis vector with a 1 in position

∑q
k=1~k2

q−k + 1, and 0 elsewhere. For example, |101〉 is
the 8-dimensional basis vector (0 0 0 0 0 1 0 0)>, obtained as the tensor product |1〉 ⊗ |0〉 ⊗ |1〉.
Whenever useful for clarity, we use a subscript for bras and kets to denote the dimension of the
space that the vector belongs to, e.g., we write |~〉q to emphasize that we are working in a 2q

dimensional space (or, in other words, that the basis elements of the space are associated with
binary strings with q digits). We typically omit the subscript if the dimension of the space is
evident from the context. We provide a further example of this notation below.

Example 2. Let us write the basis elements of (C2)⊗2 = C2 ⊗ C2:

|00〉2 = |00〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 |01〉2 = |01〉 = |0〉 ⊗ |1〉 =


0
1
0
0



|10〉2 = |10〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 |11〉2 = |11〉 = |1〉 ⊗ |1〉 =


0
0
0
1

 .

In the above example we made an exception to our rule and used a subscript to denote the
dimension of the basis vectors, just to emphasize that |00〉2 and |00〉 are exactly the same. In
the remainder of this paper, we will write |01〉 rather than |01〉2 because it is clear that the
basis element |01〉 has two digits and therefore lives in the space (C2)⊗2.

To improve clarity when dealing with vectors in (C2)⊗q, we always denote basis vectors using
spelled-out binary strings or Roman letters, (e.g., |01〉, |~〉, |~h〉, |~x〉, |~y〉 all denote basis vectors),
whereas we use Greek letters to denote vectors that may not be basis vectors (e.g., |ψ〉, |φ〉 all
denote vectors that may not be basis vectors). In the same spirit, single-digit binary numbers
are always denoted with Roman letters (e.g., x, y, z denote a 0 or a 1).

2 Qubits and quantum states

According to our computational model, a quantum computing device has a state that is stored
in the quantum register. Qubits are the quantum counterpart of the bits found in classical
computers: a classical computer has registers that are made up of bits, whereas a quantum
computer has a single quantum register that is made up of qubits. The assumption that there
is a single quantum register is without loss of generality, as one can think of multiple registers as
being placed “side-by-side” to form a single register (of course, one would then need to specify
what operations are allowed on the resulting register). The state of the quantum register, and
therefore of the quantum computing device, is defined next.

Assumption 1. The state of a q-qubit quantum register is a unit vector in
(
C2
)⊗q

= C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
q times

.

Remark 1. A vector |ψ〉 ∈ Cn is a unit vector if ‖|ψ〉‖ =
√
〈ψ|ψ〉 = 1.

Remark 2. Choosing the standard basis for C2, the state of a 1-qubit register (q = 1) can be

represented as α|0〉+ β|1〉 = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
where α, β ∈ C and |α|2 + |β|2 = 1.
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Remark 3. Given the standard basis for C2, a basis for
(
C2
)⊗q

is given by the following 2q

vectors:

| 00 · · · 00︸ ︷︷ ︸
q digits

〉 = |0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉︸ ︷︷ ︸
q times

| 00 · · · 01︸ ︷︷ ︸
q digits

〉 = |0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉︸ ︷︷ ︸
q times

...

| 11 · · · 11︸ ︷︷ ︸
q digits

〉 = |1〉 ⊗ · · · ⊗ |1〉 ⊗ |1〉︸ ︷︷ ︸
q times

.

In more compact form, the vectors are denoted by |~〉,~ ∈ {0, 1}q. The state of a q-qubit quantum
register can then be represented as: |ψ〉 =

∑
~∈{0,1}q α~|~〉q, with α~ ∈ C and

∑
~∈{0,1}q |α~|2 = 1.

For brevity, we often write “state of q-qubits” or “q-qubit state” to refer to the state of a
q-qubit quantum register. This is common in the literature, where the discussion of qubits is
not necessarily limited to the context of quantum registers. By properties of the tensor product,
we will see that sometimes it is appropriate to refer to the state of just some of the qubits of a
quantum computing device, rather than all of them, and this may still be a well-defined concept.
We will revisit this in Section 2.2.

It is important to remark that
(
C2
)⊗q

is a 2q-dimensional space. This is in sharp contrast
with the state of classical bits: given q classical bits, their state is a binary string in {0, 1}q,
which is a q-dimensional space. In other words, the dimension of the state space of quantum
registers grows exponentially in the number of qubits, whereas the dimension of the state space
of classical registers grows linearly in the number of bits. Furthermore, to represent a quantum
state we need complex coefficients: the state of a q-qubit quantum register is described by 2q

complex coefficients, which is an enormous amount of information compared to what is necessary
to describe a q-bit classical register. However, we will see in Section 3.2 that a quantum state
cannot be accessed directly, therefore even if a description of the quantum state requires infinite
precision in principle, we cannot access such description as easily as with classical registers. In
fact, as it turns out we cannot extract more than q bits of information out of a q-qubit register!
This will be intuitively clear after stating the effect of quantum measurements in Section 3.2;
for a formal proof, see [?].

2.1 Basis states and superposition

We continue our study of the state of quantum registers by discussing the concept of superpo-
sition.

Definition 8. We say that q qubits are in a basis state if the state |ψ〉 =
∑

~∈{0,1}q α~|~〉q of the

corresponding register is such that ∃~k : |α~k| = 1, α~ = 0 ∀~ 6= ~k. Otherwise, we say that they
are in a superposition.

Remark 4. A simpler, more intuitive definition would be to say that a basis state is such that
|ψ〉 = |~k〉 for some ~k ∈ {0, 1}q. It is acceptable to use the simpler definition if desired: as
it turns out, even if the states α~k|~k〉 for some ~k ∈ {0, 1}q and |α~k|

2 = 1 are all different in

principle, they are equivalent to |~k〉 up to the multiplication factor α~k which will be seen to be
unimportant in Example 7.
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Example 3. Consider two 1-qubit registers and their states |ψ〉, |φ〉:

|ψ〉 = α0|0〉+ α1|1〉
|φ〉 = β0|0〉+ β1|1〉.

If we put these 1-qubit registers side-by-side to form a 2-qubit register, then the 2-qubit register
will be in state:

|ψ〉 ⊗ |φ〉 = α0β0|0〉 ⊗ |0〉+ α0β1|0〉 ⊗ |1〉+ α1β0|1〉 ⊗ |0〉+ α1β1|1〉 ⊗ |1〉.

If both |ψ〉 and |φ〉 are in a basis state, we have that either α0 or α1 is zero, and similarly
either β0 or β1 is zero, while the nonzero coefficients have modulus one. Thus, only one of the
coefficients in the expression of the state of |ψ〉⊗ |φ〉 is nonzero, and in fact its modulus is one.
This implies that if both |ψ〉 and |φ〉 are in a basis state, |ψ〉 ⊗ |φ〉 is in a basis state as well.
But now assume that α0 = β0 = α1 = β1 = 1√

2
: the qubits |ψ〉 and |φ〉 are in a superposition.

Then the state of |ψ〉 ⊗ |φ〉 is 1
2 |00〉 + 1

2 |01〉 + 1
2 |10〉 + 1

2 |11〉, which is a superposition as well.
Notice that the normalization of the coefficients works out, as one can easily check with simple
algebra: the tensor product of unit vectors is also a unit vector.

The example clearly generalizes to an arbitary number of qubits. In fact the following
proposition is trivially true:

Proposition 2. For any q, a q-qubit register is in a basis state if and only if its state can be
expressed as the tensor product of q 1-qubit registers, each of which is in a basis state.

Notice that superposition does not have a classical equivalent: q classical bits are always
in a basis state, i.e., a q-bit classical register will always contain exactly one of the 2q binary
strings in {0, 1}q. Indeed, superposition is one of the main features of quantum computers that
differentiates them from classical computers. The second important feature is entanglement,
that will be discussed next.

2.2 Product states and entanglement

We have seen that the state of a q-qubit register is a vector in
(
C2
)⊗q

, which is a 2q dimensional
space. Since this is a tensor product of C2, i.e., the space in which 1-qubit states live, it is
natural to ask whether moving from single qubits to multiple qubits gained us anything at all.
In other words, we want to investigate whether the quantum states that are representable on q
qubits are simply the tensor product of q 1-qubit states. We can answer this question by using
the definitions given above. The state of q qubits is a unit vector in

(
C2
)⊗q

, and it can be
written as:

|ψ〉 =
∑

~∈{0,1}q
α~|~〉q,

∑
~∈{0,1}q

|α~|2 = 1.

Now let us consider the tensor product of q 1-qubit states, the k-th of which is given by
βk,0|0〉+βk,1|1〉, for k = 1, . . . , q (the first qubit corresponds to the most significant bit, according
to the little-endian convention). Taking the tensor product we obtain the vector:

|φ〉 = (β1,0|0〉+ β1,1|1〉)⊗ (β2,0|0〉+ β2,1|1〉)⊗ · · · ⊗ (βq,0|0〉+ βq,1|1〉)

=

1∑
j1=0

1∑
j2=0

· · ·
1∑

jq=0

q∏
k=1

βk,jk | j1j2 . . . jq︸ ︷︷ ︸
taken as a

binary string

〉 =
∑

~∈{0,1}q

q∏
k=1

βk,~k |~〉q,

satisfying |βk,0|2 + |βk,1|2 = 1 ∀k = 1, . . . , q.
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The normalization condition for |φ〉 implies the normalization condition of |ψ〉, but the converse

is not true. That is, |βk,0|2+|βk,1|2 = 1 ∀k = 1, . . . , q implies
∑1

j1=0

∑1
j2=0 · · ·

∑1
jq=0

∣∣∏q
k=1 βk,jk

∣∣2 =

1, but not viceversa. This means that there exist values of α~, with
∑

~∈{0,1}q |α~|2 = 1, that
cannot be expressed as coefficients βk,0, βk,1 (for k = 1, . . . , q) satisfying the conditions for |φ〉.

This is easily clarified with an example.
Example 4. Consider two 1-qubit states:

|ψ〉 = α0|0〉+ α1|1〉
|φ〉 = β0|0〉+ β1|1〉.

Taking the two qubits together in a 2-qubit register, the state of the 2-qubit register is:

|ψ〉 ⊗ |φ〉 = α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉, (1)

with the normalization conditions |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. The general state
of a 2-qubit register |ξ〉 is:

|ξ〉 = γ00|00〉+ γ01|01〉+ γ10|10〉+ γ11|11〉, (2)

with normalization condition |γ00|2+ |γ01|2+ |γ10|2+ |γ11|2 = 1. Comparing equations (1) and
(2), we determine that |ξ〉 is of the form |ψ〉 ⊗ |φ〉 if and only if it satisfies the relationship:

γ00γ11 = γ01γ10. (3)

Clearly |ψ〉 ⊗ |φ〉 yields coefficients that satisfy this condition. To see the converse, let
θ00, θ01, θ10, θ11 be the phases of γ00, γ01, γ10, γ11. Notice that (3) implies:

|γ00|2|γ11|2 = |γ01|2|γ10|2

θ00 + θ11 = θ01 + θ10.

Then we can write:

|γ00| =
√
|γ00|2 =

√
|γ00|2(|γ00|2 + |γ01|2 + |γ10|2 + |γ11|2)

=
√
|γ00|4 + |γ00|2|γ01|2 + |γ00|2|γ10|2 + |γ01|2|γ10|2

=
√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

,

and similarly for the other coefficients:

|γ01| =
√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

|γ10| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

|γ11| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

.

To fully define the coefficients α0, α1, β0, β1 we must determine their phases. We can assign:

α0 = eiθ00 |α0|, α1 = eiθ10 |α1|, β0 = |β0|, β1 = ei(θ01−θ00)|β1|. (4)
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It is now easy to verify that the state |ξ〉 in (2) can be expressed as |ψ〉 ⊗ |φ〉 in (1) with
coefficients α0, α1, β0, β1 as given in (4).

The condition in equation (3), to verify if the coefficients of a 2-qubit state |ξ〉 can be
expressed as a tensor product of two 1-qubit states, can also be written in matrix form, which
makes it easier to remember. If we assign the rows of the matrix to the first qubit, and the
columns to the second qubit, we can arrange the coefficients γ as follows (notice how the first
qubit has value 0 in the first row and 1 in the second row; similarly for the second qubit and
the columns): (

γ00 γ01
γ10 γ11

)
.

Then, |ξ〉 is a tensor product of two 1-qubit states if and only if this matrix has rank 1. This
is equivalent to (3).

We formalize the concept of expressing a quantum state as a tensor product of lower-
dimensional quantum states as follows.

Definition 9. A quantum state |ψ〉 ∈
(
C2
)⊗q

is a product state if it can be expressed as a
tensor product |ψ1〉 ⊗ · · · ⊗ |ψq〉 of q 1-qubit states. Otherwise, it is entangled.

Notice that a general quantum state |ψ〉 could be the product of two or more lower-
dimensional quantum state, e.g., |ψ〉 = |ψ1〉⊗|ψ2〉, with |ψ1〉 and |ψ2〉 being entangled states. In
such a situation, |ψ〉 exhibits some entanglement, but in some sense it can still be “simplified”.
Generally, according to the definition above, we call a quantum state entangled as long as it
cannot be fully decomposed into a tensor product of 1-qubit states. In the case of quantum
systems composed of multiple subsystems (rather than just two subsystems as in the example
|ψ〉 = |ψ1〉⊗ |ψ2〉), the concept of entanglement as discussed in the literature is not as simple as
given in Def. 9 (and the rank-1 test discussed at the end of Example 4 is not well-defined). How-
ever, our simplified definition works in this tutorial and for most of the literature on quantum
algorithms, therefore we can leave other considerations aside; we refer to [Coffman et al., 2000]
as an entry point for a discussion on multipartite entanglement.

Example 5. Consider the following 2-qubit state:

1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

This is a product state because it is equal to
(

1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1√
2
|0〉+ 1√

2
|1〉
)

. By contrast,

the following 2-qubit state:
1√
2
|00〉+

1√
2
|11〉

is an entangled state, because it cannot be expressed as a product of two 1-qubit states.

3 Operations on qubits

Operations on quantum states must satisfy certain conditions, to ensure that applying an oper-
ation does not break the basic properties of the quantum state. The required property is stated
below, and we treat it as an assumption.

Assumption 2. An operation applied by a quantum computer with q qubits, also called a gate,
is a unitary matrix in C2q×2q .

10



Remark 5. A matrix U is unitary if U∗U = UU∗ = I.

A well-known property of unitary matrices is that they are norm-preserving; that is, given
a unitary matrix U and a vector v, ‖Uv‖ = ‖v‖. Thus, for a q-qubit system, the quantum state
is a unit vector |ψ〉 ∈ C2q , a quantum operation is a matrix U ∈ C2q×2q , and the application of
U onto the state |ψ〉 is the unit vector U |ψ〉 ∈ C2q . This leads to the following remarks:

• Quantum operations are linear.

• Quantum operations are reversible.

While these properties may initially seem to be extremely restrictive, [Deutsch, 1985] shows that
a universal quantum computer is Turing-complete, implying that it can simulate any Turing-
computable function with an additional polynomial amount of space, given sufficient time.
Out of the two properties indicated above, the most counterintuitive is perhaps reversibility:
the classical notion of computation does not appear to be reversible, because memory can be
erased and, in the classical Turing machine, symbols can be erased from the tape. However,
[Bennett, 1973] shows that all computations (including classical computations) can be made
reversible by means of extra space. The general idea to make a function invertible is to have
separate input and output registers: any output is stored in a different location than the input,
so that the input does not have to be erased. This is a standard trick in quantum computing
that will be discussed in Section 4, but in order to do that, we first need to introduce some
notation for quantum circuits.

3.1 Notation for quantum circuits

A quantum circuit is represented by indicating which operations are performed on each qubit,
or group of qubits. For a quantum computer with q qubits, we represent q qubit lines, where the
top line indicates qubit 1 and the rest are given in increasing order from the top. Operations
are represented as gates; from now, the two terms are used interchangeably. Gates take qubit
lines as input, have the same number of qubit lines as output, and apply the unitary matrix
indicated on the gate to the quantum state of those qubits. Figure 1 is a simple example.

qubit 1

Uqubit 2

qubit 3

Figure 1: A simple quantum circuit.

Note that circuit diagrams are read from left to right, but because each gate corresponds to
applying a matrix to the quantum state, the matrices corresponding to the gates should be
written from right to left in the mathematical expression describing the circuit. For example,
in the circuit in Figure 2, the outcome of the circuit is the state BA|ψ〉, because we start with

A B|ψ〉 BA|ψ〉

Figure 2: Order of the operations in a quantum circuit.

state |ψ〉, and we first apply the gate with unitary matrix A, and then B.
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Gates can also be applied to individual qubits. Because a single qubit is a vector in C2,
a single-qubit gate is a unitary matrix in C2×2. Consider the same three-qubit device, and
suppose we want to apply the gate only to the third qubit. We would write it as in Figure 3.

qubit 1

qubit 2

qubit 3 U

Figure 3: A circuit with a single-qubit gate.

From an algebraic point of view, the action of our first example in Figure 1 on the quantum
state is clear: the state of the three qubits is mapped onto another three-qubit state, as U acts
on all the qubits. To understand the example in Figure 3, where U is a single-qubit gate that
acts on qubit 3 only, we must imagine that an identity gate is applied to all the empty qubit
lines. Therefore, Figure 3 can be thought of as indicated in Figure 4.

qubit 1 I

qubit 2 I

qubit 3 U

Figure 4: Equivalent representation of a circuit with a single-qubit gate.

This circuit can be interpreted as applying the gate I ⊗ I ⊗U to the 3-qubit state. Notice that
by convention the matrix U , which is applied to qubit 3, appears in the rightmost term of the
tensor product. This is because qubit 3 is associated with the least significant digit according
to our little-endian convention, see Def. 3 and the subsequent discussion. If we have a product
state |ψ〉 ⊗ |φ〉 ⊗ |ξ〉, we can write labels as indicated in Figure 5.

|ψ〉 |ψ〉
|φ〉 |φ〉
|ξ〉 U U |ξ〉

Figure 5: Effect of a single-qubit gate on a product state.

Indeed, (I ⊗ I ⊗ U)(|ψ〉 ⊗ |φ〉 ⊗ |ξ〉) = |ψ〉 ⊗ |φ〉 ⊗ U |ξ〉. If the system is in an entangled state,
however, the action of (I⊗ I⊗U) cannot be determined in such a simple way, because the state
cannot be factored as a product state. Thus, for a general entangled input state, the effect
of the circuit is as indicated in Figure 6. Notice that this fact is essentially the reason why

(I ⊗ I ⊗ U)|ψ〉
U

|ψ〉


Figure 6: Effect of a single-qubit gate on an entangled state.

simulation of quantum computations on classical computers may take exponential resources in
the worst case: to simulate the effect of even a single-qubit gate on the entangled state |ψ〉,
we have to explicitly compute the effect of the 2q × 2q matrix (I ⊗ I ⊗ U) on the state |ψ〉.
This requires exponential space with a naive approach (if the matrices and vectors are stored
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explicitly), and even with more parsimonious approaches it may require exponential time (e.g.,
if we compute elements of the state vector one at a time). As long as the quantum state is
not entangled computations can be carried out on each qubit independently, but entanglement
requires us to keep track of the full quantum state in 2q-dimensional complex space, leading to
large amounts of memory – or time – required.

3.2 Input-output, and measurement gates

We now discuss the input-output model for quantum computations. The input of a quantum
algorithm consists of an initial quantum state and a quantum circuit.

Remark 6. The quantum state and the quantum circuit must be described in a suitable compact
way: for a circuit on q qubits, a unitary matrix can be of size 2q×2q, but for an efficient algorithm
we require that the circuit contains polynomially many gates in q and each gate has a compact
representation. This will be discussed further in Section 3.4.

By convention, the initial quantum state of the quantum computing device is assumed to
be |~0〉q unless otherwise specified. All algorithms described in this tutorial start from this state.
Of course, this does not prevent the algorithm from acting on the state, transforming it into a
more suitable one. Examples of how this can be done will be seen in subsequent sections. The
important remark is that if there is any data that has to be fed to the algorithm, this data is
embedded in the quantum circuit given as part of the input. We should also note that there
are hybrid algorithms involving classical and quantum computations. In such situations, the
quantum computations can generally be thought of as subroutines, but this does not change
the principle that each of these quantum computations will be described by an initial quantum
state (typically, |~0〉q) and a quantum circuit. This summarizes the input model. But what is
the output of the quantum computer?

So far we characterized properties of quantum states and quantum gates. Remarkably, the
state of a q-qubit quantum register is described by a vector of dimension 2q, exponentially larger
than the dimension of the vector required to describe q classical bits. However, there is a catch:
in a classical computer we can simply read the state of the bits, whereas in a quantum computer
we do not have direct, unrestricted access to the quantum state. Information on the quantum
state is only gathered through a measurement gate, indicated in the circuit diagram in Figure
7. We now formally define the effect of a single-bit measurement gate.

|ψ〉

Figure 7: Single-qubit measurement.

Assumption 3. Information on the state of a quantum computing device can only be ob-
tained through a measurement. Given a q-qubit quantum state |ψ〉 =

∑
~∈{0,1}q α~|~〉q, a mea-

surement gate on qubit k outputs 0 with probability
∑

~∈{0,1}q :~k=0 |α~|2, and 1 with probability∑
~∈{0,1}q :~k=1 |α~|2. Let x ∈ {0, 1} be the measured value. After the measurement, the quantum

state becomes: ∑
~∈{0,1}q :
~k=x

α~√∑
~:~k=x

|α~|2
|~〉q.

The original quantum state is no longer recoverable.
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Remark 7. The state of the quantum system after a measurement collapses to a linear combi-
nation of only those basis states that are consistent with the outcome of the measurement, i.e.,
basis states |~〉 with ~k = x. The coefficients α~ for such basis states are normalized to yield a
unit vector.

The rule for single-qubit measurements leads to a very simple and natural expression for
the probability of observing a given binary string when measuring all the qubits.

Proposition 3. Given a q-qubit quantum state |ψ〉 =
∑

~∈{0,1}q α~|~〉q, applying a measurement

gate to the q qubits in any order yields ~ with probability |α~|2, for ~ ∈ {0, 1}q.

Proof. We need to show that the probability of observing~ after q single-qubit measurements
is equal to |α~|2. We can do this by induction on q. The case q = 1 is trivial. We now show

how to go from q − 1 to q. In terms of notation, we will write Pr(Qk
M
= x) to denote the

probability that the measurement of qubit k yields x ∈ {0, 1}. If it is important to indicate

the quantum state on which the measurement is performed, we denote it as Pr|ψ〉(Qk
M
= x).

Suppose the qubits are measured in an abitrary order and the qubit in position h is the
first to be measured. (The order of the remaining measurements does not matter for the
proof, because after the first measurement we will rely on the inductive hypothesis). The
probability of obtaining the outcome ~ is:

Pr
|ψ〉

(
Q1

M
=~1, . . . ,Qq

M
=~q

)
=

Pr
|ψ〉

(
Q1

M
=~1, . . . ,Q(h− 1)

M
=~h−1,Q(h+ 1)

M
=~h+1, . . . ,Qq

M
=~q|Qh

M
=~h

)
Pr
|ψ〉

(
Qh

M
=~h

)
=

Pr
|φ〉

(
Q1

M
=~1, . . . ,Q(h− 1)

M
=~h−1,Q(h+ 1)

M
=~h+1, . . . ,Qq

M
=~q

)
Pr
|ψ〉

(
Qh

M
=~h

)
,

where |φ〉 is the state obtained from |ψ〉 after measuring the qubit in position h and observing
~h. Therefore, we have:

|φ〉 =
∑

~k∈{0,1}q :
~kh=~h

α~k√∑
~k∈{0,1}q :~kh=~h |α~k|

2
|~k〉q :=

∑
~k∈{0,1}q :
~kh=~h

β~k|~k〉q,

and the coefficients β~k, as given above, are only defined for ~k ∈ {0, 1}q : ~kh = ~h. By the
definition of single-qubit measurement, we also have:

Pr
|ψ〉

(
Qh

M
=~h

)
=

∑
~k∈{0,1}q :~kh=~h

|α~k|
2.

By the induction hypothesis:

Pr
|φ〉

(
Q1

M
=~1, . . . ,Q(h− 1)

M
=~h−1,Q(h+ 1)

M
=~h+1, . . . ,Qq

M
=~q

)
= |β~|2,

because: |φ〉 is the state after measuring the h-th qubit and obtaining ~h as the outcome,
therefore it only contains basis states ~k with ~kh =~h; and the induction hypothesis imposes
that to compute the probability of observing ~`, ` 6= h in the respective positions we simply
need to look at the coefficient of the corresponding basis state. Remembering that β~k =
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α~k/
(√∑

~k∈{0,1}q :~kh=~h |α~k|
2
)

, we finally obtain:

Pr
|ψ〉

(
Q1

M
=~1, . . . ,Qq

M
=~q

)
=

|α~|2∑
~k∈{0,1}q :~kh=~h

|α~k|
2

∑
~k∈{0,1}q :
~kh=~h

|α~k|
2 = |α~|2.

Proposition 3 above shows that the two circuits in Figure 8 are equivalent.

|ψ〉 |ψ〉

Figure 8: Multiple-qubit measurement.

In other words, the single-qubit measurement gate is sufficient to measure any number of qubits
in the most natural way, i.e., the measurement outcome~ on the q qubits occurs with probability
that is exactly equal to the modulus squared of the state coefficients α~. Notice that with this
simple rule, it is easy to compute the probability of obtaining a given string on a given subset
of the qubits: we just need to add up the modulus squared of the coefficients for all those basis
states that contain the desired string in the desired position.

Example 6. Consider again the following 2-qubit state:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 =
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

We remarked that this is a product state. As usual, let qubit Q1 the first qubit (i.e., the one
corresponding to the first digit in the two-digit binary strings), and let qubit Q2 be the second
qubit (i.e., the one corresponding to the second digit in the two-digit binary strings). Then:

Pr(Q1
M
= 0) = |α00|2 + |α01|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(Q1
M
= 1) = |α10|2 + |α11|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(Q2
M
= 0) = |α00|2 + |α10|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2

Pr(Q2
M
= 1) = |α01|2 + |α11|2 =

(
1

2

)2

+

(
1

2

)2

=
1

2
.

Suppose we measure Q2 and we obtain 1 as the outcome of the measurement. Then the state of
the 2-qubit system collapses to:

1√
2
|01〉+

1√
2
|11〉.

The outcome distribution for Q1 for this new state is:

Pr(Q1
M
= 0) =

1

2
Pr(Q1

M
= 1) =

1

2
.
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Hence, the probability of observing 0 or 1 when measuring qubit Q1 did not change after the
measurement.

Consider now the following entangled 2-qubit state:

β00|00〉+ β11|11〉 =
1√
2
|00〉+

1√
2
|11〉.

Doing the calculations, we still have:

Pr(Q1
M
= 0) = |β00|2 =

1

2
Pr(Q1

M
= 1) = |β11|2 =

1

2

Pr(Q2
M
= 0) = |β00|2 =

1

2
Pr(Q2

M
= 1) = |β11|2 =

1

2
.

Suppose we measure qubit Q2 and we obtain 1 as the outcome of the measurement. Then the
state of the 2-qubit system collapses to:

|11〉.

If we measure Q1 from this state, we obtain:

Pr(Q1
M
= 0) = 0 Pr(Q1

M
= 1) = 1.

The situation is now very different: the probability of the outcomes from a measurement on Q1
have changed after measuring Q2. This is exactly the concept of entanglement: when two or
more qubits are entangled, they affect each other, and measuring one qubit changes the probability
distribution for the other qubits.

The example above can be seen in terms of conditional probabilities: if, for all x, y ∈ {0, 1},
we have Pr(Q1

M
= x) = Pr(Q1

M
= x|Q2

M
= y), then the two qubits are not entangled (product

state), whereas if Pr(Q1
M
= x) 6= Pr(Q2

M
= x|Q2

M
= y) for some x, y, there is entanglement.

Indeed, recall from Example 1 that taking the tensor product of two vectors containing out-
come probabilities for independent random variables yields the joint probability distribution.
Quantum state vectors do not contain outcome probabilities, but the modulus squared of the
components of the state vector corresponds to a probability. Furthermore, for any two complex
numbers α, β ∈ C we have |αβ|2 = |α|2|β|2, so the operation applied to compute probabilities
from state coefficients is distributive with respect to multiplication. A product state is a tensor
product of smaller-dimensional state vectors, hence it leads to outcome probabilities that are
simply the product of the outcome probabilities corresponding to measuring each of the qubits
independently. Conversely, an entangled state is not a product state, and the outcomes of
measuring each of the qubits are no longer independent.

Remark 8. Despite the above discussion, it would be wrong to think of the quantum state as
a probability distribution: the quantum state induces a probability distribution by taking the
modulus squared of its entries, but it is not a probability distribution! Indeed, the coefficients in
a quantum state are complex numbers unrestricted in sign, while probabilities are nonnegative
real numbers. Furthermore, just as there is an infinite set of complex numbers that have the
same modulus (i.e., the set {a ∈ C : |a| = v} for some real number v > 0 is infinite), there is
an infinite number of quantum state vectors in (C2)⊗q that yield the same distribution. Some
of these may yield the same outcome of the computation, but others may not: this is discussed
in the next two examples.
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Example 7. Suppose we have two q-qubit quantum states |ψ〉, |φ〉 satisfying |ψ〉 = eiθ|φ〉 for
some θ ∈ R. Now consider the application of some unitary matrix U onto |ψ〉 and |φ〉, followed
by a measurement of all the qubits. Define:

U |φ〉 :=
∑

~∈{0,1}q
α~|~〉

for some (normalized) coefficients α~, which implies:

U |ψ〉 = Ueiθ|φ〉 =
∑

~∈{0,1}q
eiθα~|~〉.

This means that for a given ~k:

Pr
|φ〉

(Q1
M
=~k1, . . . ,Qq

M
=~kq) = |α~k|

2, Pr
|ψ〉

(Q1
M
=~k1, . . . ,Qq

M
=~kq) = |eiθα~k|

2 = |α~k|
2,

so the probability of obtaining ~k as the outcome of a measurement is the same for both |ψ〉 and
|φ〉. Since this is true after applying an arbitrary unitary U , it is also true after applying a
whole circuit, which is just a sequence of unitaries. Hence, if the vectors |ψ〉, |φ〉 satisfy the
relationship |ψ〉 = eiθ|φ〉, they induce the same outcome distribution. The factor eiθ is usually
called global phase and can be safely be ignored.

Example 8. Consider the following two 1-qubit state vectors:

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉 |φ〉 =

1√
2
|0〉 − 1√

2
|1〉.

Both induce the same probability distribution on the measurement outcomes:

Pr
|ψ〉

(Q1
M
= 0) =

1

2
Pr
|ψ〉

(Q1
M
= 1) =

1

2

Pr
|φ〉

(Q1
M
= 0) =

1

2
Pr
|φ〉

(Q1
M
= 1) =

1

2
.

But |ψ〉 and |φ〉 are very different states! If we apply a certain unitary matrix to both (this
gate is called Hadamard gate, as we will see in Section 3.4), we obtain very different results –
orthogonal vectors, in fact:

1√
2

(
1 1
1 −1

)
|ψ〉 =

1

2

(
1 1
1 −1

)(
1
1

)
=

1

2

(
2
0

)
= |0〉

1√
2

(
1 1
1 −1

)
|φ〉 =

1

2

(
1 1
1 −1

)(
1
−1

)
=

1

2

(
0
2

)
= |1〉.

This illustrates the danger of thinking about the quantum state as a probability distribution.

3.3 The no-cloning principle

Because measurement destroys the quantum state, it is natural to look for a way to create a copy
of a quantum state. If a clone could be created, it would be possible to perform measurements
on the clone, so that the original state would not be destroyed. Furthermore, cloning would
allow us to take several measurements of the same set of qubits without having to repeat the
circuit that creates the quantum state. However, it turns out that cloning is impossible: this
is a direct consequence of the properties of quantum gates, in particular the fact that gates are
unitary matrices.
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Proposition 4. Let |ψ〉 be an arbitrary quantum state on q qubits. There does not exist a
unitary matrix that maps |ψ〉q ⊗ |~0〉q to |ψ〉q ⊗ |ψ〉q.

Proof. Suppose there exists such a unitary U . Then for any two quantum states |ψ〉q, |φ〉q,
we have:

U(|ψ〉q ⊗ |~0〉q) = |ψ〉q ⊗ |ψ〉q
U(|φ〉q ⊗ |~0〉q) = |φ〉q ⊗ |φ〉q.

Using these equalities, and remembering that U∗U = I, we can write:

〈φ|ψ〉 = 〈φ|ψ〉〈~0|~0〉 = 〈φ|ψ〉 ⊗
(
〈~0|~0〉

)
= (〈φ|q ⊗ 〈~0|q)(|ψ〉q ⊗ |~0〉q)

= (〈φ|q ⊗ 〈~0|q)U
∗U(|ψ〉q ⊗ |~0〉q) = (〈φ|q ⊗ 〈φ|q)(|ψ〉q ⊗ |ψ〉q) = 〈φ|ψ〉2.

But 〈φ|ψ〉 = 〈φ|ψ〉2 is only true if 〈φ|ψ〉 is equal to 0 or to 1, contradicting the fact that
|φ〉, |ψ〉 are arbitrary quantum states.

The above proposition shows that we cannot copy an arbitrary quantum state. We remark
that the proof does not rule out the possibility of constructing a gate that copies a specific
quantum state. In other words, if we know what quantum state we want to copy, one could
construct a unitary matrix to do that; but it is impossible to construct a single unitary matrix
to copy all possible states. This establishes that we cannot “cheat” the destructive effect of a
measurement by simply cloning the state before the measurement. Hence, whenever we run a
circuit that produces an output quantum state, in general we can reproduce the output quantum
state only by repeating all the steps of the algorithm.

3.4 Basic operations and universality

Quantum computation does not allow the user to specify just any unitary matrix in the code,
just as classical computations do not allow the user to specify any classical function. Rather, the
user is limited to gates (unitary matrices) which are efficiently specifiable and implementable,
just as classically one can only write efficient programs by specifying a polynomial-size sequence
of basic operations on bits. The specification of a unitary matrix must be done by combining
gates out of a basic set, which can be thought of as the instruction set of the quantum computer.
We will now discuss what these basic gates are, and how they can be combined to form other
operations.

The first operations that we discuss are the Pauli gates.

Definition 10. The four Pauli gates are the following single-qubit gates:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

Proposition 5. The Pauli gates form a basis for C2×2, they are Hermitian, and they satisfy
the relationship XY Z = iI.
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The proof is left as an exercise. The X gate is the equivalent of a NOT gate in classical
computers, as it implements a bit (rather, qubit) flip, changing from |0〉 to |1〉 and vice versa:

X|0〉 = |1〉 X|1〉 = |0〉.

The Z gate is also called a phase flip gate: it leaves |0〉 unchanged, and maps |1〉 to −|1〉.

Z|0〉 = |0〉 Z|1〉 = −|1〉.

A single-qubit gate that is used in many quantum algorithms is the so-called Hadamard
gate:

H =
1√
2

(
1 1
1 −1

)
.

The action of H is as follows:

H|0〉 =
1√
2

(|0〉+ |1〉) H|1〉 =
1√
2

(|0〉 − |1〉)

In subsequent sections we will need an algebraic expression for the action of Hadamard gates on
basis states. The effect of H on a 1-qubit basis state |x〉 (where x = 0 or 1) can be summarized
as follows:

H|x〉 =
1√
2

(|0〉+ (−1)x|1〉) =
1√
2

1∑
k=0

(−1)kx|k〉.

This is consistent with our previous definition. If we apply H⊗q on a q-qubit basis state |~x〉q,
we obtain:

H⊗q|~x〉q =
1√
2q

1∑
k1=0

· · ·
1∑

kq=0

(−1)
∑q
h=1 kh~xh |k1〉1 ⊗ · · · ⊗ |kq〉1

=
1√
2q

∑
~k∈{0,1}q

(−1)
~k•~x|~k〉q,

(5)

where • is the bitwise dot product, as defined in Section 1.3. When considering multiple
Hadamard gates in parallel, we will also make use of the following relationship, that can be
easily verified using the definition:

H⊗q =
1√
2

(
H⊗q−1 H⊗q−1

H⊗q−1 −H⊗q−1
)
. (6)

The next proposition shows one of the reasons why the Hadamard gate is frequently employed
in many quantum algorithms.

Proposition 6. Given a q-qubit quantum computing device initially in the state |~0〉q, applying

the Hadamard gate to all qubits, or equivalently the matrix H⊗q, yields the uniform superposition
of basis states 1√

2q

∑
~∈{0,1}q |~〉.

Proof. We have:

H⊗q|~0〉q = H⊗q|0〉⊗q = (H|0〉)⊗q =

(
1√
2
|0〉+

1√
2
|1〉
)⊗q

=
1√
2q

∑
~∈{0,1}q

|~〉.
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Remark 9. The uniform superposition of the 2q basis states on q qubits can be obtained from
the initial state |~0〉q by applying q gates only.

The multiple Hadamard can be represented by one of the equivalent circuits given in Figure
9. Many quantum algorithms (for example, the algorithms discussed in Sections 4 and 5) start

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉 H
1√
2

(|0〉+ |1〉)

|0〉

H⊗3

1√
2

(|0〉+ |1〉)

|0〉 1√
2

(|0〉+ |1〉)

|0〉 1√
2

(|0〉+ |1〉)

Figure 9: Two representations for multiple Hadamard gates.

by setting the state of the quantum device to a uniform superposition, and then apply further
operations which, by linearity, are simultaneously applied to all the possible binary strings.
This is a remarkable advantage of quantum computing over classical computing.

Readers with advanced knowledge of theoretical computer science might be wondering
how this compares to classical probabilistic computation: after all, probabilistic Turing ma-
chines are a well-known concept in computational complexity. A probabilistic Turing machine
is initialized with a set of random bits that take an unknown value and influence the state
transition. The state is described by a probability distribution over all the possible states,
because we do not know the value of the random bits with which the machine is initialized.
When a state transition occurs, to update the description of the state we need to apply the
transition to all states that appear with positive probability. In this sense, operations in
a probabilistic Turing machine can be thought of as being simultaneously applied to many
(possibly all) binary strings. However, a probabilistic Turing machine admits a more compact
description of the state: if we know the random bits with which the machine is initialized,
then the state becomes deterministically known. Hence, for a given value of the random bits,
the state of the probabilistic Turing machine can be described in linear space, and operations
map one state into another state. On the other hand, it is not known how to obtain such a
compact description for a quantum computer: there is no equivalent for the random bits, and
a characterization of the state truly requires an exponential number of complex coefficients.
In fact, it is believed that quantum computers are more powerful than probabilistic Turing
machines, although there is no formal proof.

To conclude our discussion on single-qubit gates, we remark that all single-qubit can be
represented by the following parameterized matrix that describes all unitary matrices (up to
a global phase factor, see Example 7):

U(θ, φ, λ) =

(
e−i(φ+λ)/2 cos(θ/2) −e−i(φ−λ)/2 sin(θ/2)

ei(φ−λ)/2 sin(θ/2) ei(φ+λ)/2 cos(θ/2)

)
All single-qubit gates can be obtained by an appropriate choice of parameters θ, φ, λ. The
open-source library Qiskit used for the numerical experiments in Section 6 allows specifying
a single-qubit gate in terms of θ, φ, λ, if so desired.

Another fundamental gate is the CNOT gate, also called “controlled NOT”. The CNOT
gate is a two-qubit gate that has a control bit and a target bit, and acts as follows: if the
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Figure 10: The CNOT12, or controlled NOT, gate with control qubit 1 and target qubit 2.

control bit is |0〉, nothing happens, whereas if the control bit is |1〉, the target bit is bit-flipped
(i.e., the same effect as the X gate). The corresponding circuit is given in Figure 10.
The matrix description of the gate with control qubit 1 and target qubit 2 is as follows:

CNOT12 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

We can easily see that the effect of CNOT is as follows:

CNOT12|00〉 = |00〉 CNOT12|01〉 = |01〉
CNOT12|10〉 = |11〉 CNOT12|11〉 = |10〉.

An interesting feature of the CNOT gate is that it can be used to swap two qubits. A swap
between two qubits Qi and Qj is defined as the operation that maps a quantum state into a new
quantum state in which every basis state has its i-th and j-th digit permuted. If two qubits are
in a product state |ψ〉1⊗ |φ〉1, then SWAP(|ψ〉1⊗ |φ〉1) = |φ〉1⊗ |ψ〉1. Considering that CNOT,
like all quantum gates, is a linear map, it may sound surprising that it can implement a swap.
However, the SWAP gate can indeed be constructed out of CNOTs as depicted in Figure 11.

• •
•

Figure 11: A circuit that swaps two qubits.

Proposition 7. The circuit in Figure 11, constructed with three CNOTs, swaps qubits 1 and
2.

Proof. By linearity, it suffices to show that the circuit above maps |00〉 → |00〉, |01〉 → |10〉, |10〉 →
|01〉, and |11〉 → |11〉. We have:

CNOT12CNOT21CNOT12|00〉 = CNOT12CNOT21|00〉 = CNOT12|00〉 = |00〉.
CNOT12CNOT21CNOT12|01〉 = CNOT21CNOT21|01〉 = CNOT12|11〉 = |10〉.
CNOT12CNOT21CNOT12|10〉 = CNOT12CNOT21|11〉 = CNOT12|01〉 = |01〉.
CNOT12CNOT21CNOT12|11〉 = CNOT12CNOT21|10〉 = CNOT12|10〉 = |11〉.

Therefore, the SWAP circuit maps:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 → α00|00〉+ α01|10〉+ α10|01〉+ α11|11〉.

The SWAP circuit is particularly important for practical reasons: in the current generation
of quantum computing hardware, two-qubit gates can only be applied among certain pairs of
qubits. For example, when employing one of the most prevalent quantum hardware technologies
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(superconducting qubits, see e.g. [Castelvecchi, 2017, Devoret and Schoelkopf, 2013]), two-qubit
gates can only be applied to qubits that are physically adjacent on a chip. Thanks to the SWAP,
as long as the connectivity graph of the qubits on the device is a connected graph, two-qubit
gates can be applied to any pair of qubits: if the qubits are not directly connected on the graph
(e.g., physically located next to each other on the chip), we just need to SWAP one of them as
many times as is necessary to bring it to a location adjacent to the other qubit. This way, we
can assume that each qubit can interact with all other qubits from a theoretical point of view,
even if from a practical perspective this may require extra SWAP gates.

A set of gates consisting of (some) single-qubit gates plus CNOT can be shown to be sufficient
to construct any unitary matrix with arbitrary precision. This is the concept of universality.

Definition 11. A unitary matrix A is an ε-approximation of a unitary matrix U if supψ:‖ψ‖=1 ‖(U−
A)ψ‖ < ε. A set of gates that can be used to construct an ε-approximation of any unitary matrix,
for any ε > 0 and on any given number of qubits, is called a universal set of gates.

To build a universal set of gates, the first step is to show how to construct arbitrary single-
qubit gates, then use these gates to build larger ones.

Theorem 1. (Solovay-Kitaev [Kitaev, 1997, Nielsen and Chuang, 2002]) Let U ∈ C2×2 be an
arbitrary unitary matrix. Then there exists a constant c such that there exists a sequence
S of gates of length O(logc 1

ε ) that yields an ε-approximation of U and consists only of H,

T =

(
1 0

0 ei
π
4

)
and CNOT gates.

The theorem implies that just two single-qubit gates together with CNOT allow us to build
any single-qubit gate with arbitrary precision. [Dawson and Nielsen, 2005] gives a proof with
c ≈ 3.98. More recent work gives improved algorithm with smaller c, in fact even c = 1 (but
different constants), see [Selinger, 2012, Kliuchnikov et al., 2016]. To go from single-qubit gates
to general q-qubit gates, one needs at most O(q24q) basic gates (i.e., the gates of Theorem
1); intuitively, this is because each gate on q qubits has 2q × 2q elements, and it takes q2

basic gates to “fill” an arbitrary element of a large matrix – for a detailed discussion, see
[Nielsen and Chuang, 2002, Ch. 4]. In other words, the set of gates consisting of just H,T and
CNOT is universal. This shows that with a very small set of basic gates, we can construct
any unitary matrix in any dimension, although this may require many operations. Once again,
this is important for practical reasons: the current generation of quantum hardware only allows
(natively) certain single-qubit gates and CNOT gates, but all other gates can be constructed
from these.

We conclude our discussion on basic operations with a quantum circuit for the logic AND
gate. Although this gate is not used by the algorithm described later, it is used in the numerical
examples. We already know that the X gate performs the logic NOT: having access to the
AND guarantees that we can construct any Boolean circuit (since we stated already in Section
3 that quantum computers are Turing-complete, they can of course perform Boolean logic).
The quantum version of the AND gate is the CCNOT (doubly-controlled NOT) gate, that
acts on three qubits: it has two control qubits, and it flips (bit flip, i.e., as the X gate) the
third qubit if and only if both control qubits are |1〉. The gate is depicted in Figure 12. The
action of CCNOT can be described as: |x〉1 ⊗ |y〉1 ⊗ |z〉1 → |x〉1 ⊗ |y〉1 ⊗ |z ⊕ (x · y)〉1, where
x, y, z ∈ {0, 1}. Notice that if z = 0, CCNOT indeed computes the logical AND between x and
y because 0⊕ (x · y) = x ∧ y.
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Figure 12: The CCNOT, or doubly-controlled NOT, gate.

Of course, following our earlier discussion, CCNOT can be constructed using only the
basic gates indicated in Theorem 1. For this, we can use the circuit in Figure 13, see
[Nielsen and Chuang, 2002]. In this circuit we also use the conjugate transpose T ∗ of the T
gate, but it is easy to see that if we really want to stick to the gates H,T , CNOT only, T ∗

can be constructed from T because e−i
π
4 = ei

7π
8 . Verifying correctness of the construction in

Figure 13 requires a few calculations, that we leave as an exercise. One way is to carry out
the matrix multiplications; another way, probably more manageable if doing calculations by
hand, is to use linearity and look at the effect of the circuit on each of the 23 possible basis
states. We show only part of the calculations here. Suppose the circuit is applied to the basis
state |11x〉 with x ∈ {0, 1}. After performing several simplifications (T and T ∗ cancel out,
the T gate has no effect on a qubit in state |0〉, and we can transform the CNOTs on the
third qubit line into X gates because we already know that the first and second qubit are in
state |1〉), we find out that the circuit maps:

|1〉 ⊗ |1〉 ⊗ |x〉 → (T |1〉)⊗ (T |1〉)⊗ (HTXT ∗XTXT ∗XH|x〉).

Doing the calculations, we see that:

HTXT ∗XTXT ∗XH =

(
0 −i
−i 0

)
,

so that the mapping reads:

|1〉 ⊗ |1〉 ⊗ |1〉 →(T |1〉)⊗ (T |1〉)⊗ (HTXT ∗XTXT ∗XH|1〉) =

(ei
π
4 |1〉)⊗ (ei

π
4 |1〉)⊗ (−i|0〉) = |1〉 ⊗ |1〉 ⊗ |0〉

|1〉 ⊗ |1〉 ⊗ |0〉 →(ei
π
4 |1〉)⊗ (ei

π
4 |1〉)⊗ (−i|1〉) = |1〉 ⊗ |1〉 ⊗ |1〉.

In general, coming up with these constructions requires a good deal of experience, or a piece
of code implementing the algorithms referenced above.

• • • • T

• • T ∗ T ∗ T T

H T ∗ T T ∗ T H

Figure 13: Decomposition of CCNOT in terms of the universal set of gates of Theorem 1.
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3.5 Can we solve NP-hard problems?

It is important to remark that even if we can easily create a uniform superposition of all
basis states, the rules of measurement imply that using just this easily-obtained superposition
does not allow us satisfactorily solve NP-complete problems such as, for example, SAT (the
satisfiability problem). Indeed, suppose we have a quantum circuit Uf that encodes a SAT
formula on q boolean variables; in other words, a unitary Uf : |~〉q ⊗ |0〉1 → |~〉q ⊗ |f(~)〉1,
where f(~) is 1 if the binary string~ satisfies the formula, and 0 if not. We might be tempted
to apply H⊗q to the initial state |~0〉q to create the uniform superposition 1√

2q

∑
~∈{0,1}q |~〉,

apply Uf to this superposition (which evaluates the truth assignment of all possible binary
strings), and then perform a measurement on all q + 1 qubits. But measuring the state:

Uf

 1√
2q

∑
~∈{0,1}q

|~〉 ⊗ |0〉1

 =
1√
2q

∑
~∈{0,1}q

|~〉 ⊗ |f(~)〉

will return a binary string that satisfies the formula if and only if the last qubit has value
1 after the measurement, and this happens with a probability that depends on the number
of binary assignments that satisfy the formula. If the SAT problem at hand is solved by
exactly ρ assignments out of 2n possible assignments, then the probability of finding the
solution after one measurement is ρ

2n : we have done nothing better than randomly sampling
a binary string and hoping that it satisfies the SAT formula. Clearly, this is not a good
algorithm. In fact, in general solving NP-hard problems in polynomial time with quantum
computers is not believed to be possible: most researchers believe that the complexity class
BQP, which is the class of problems solvable in polynomial time by a quantum computer with
bounded (and small) error probability, does not contain the class NP. Of course, one cannot
hope to prove this unconditionally, because showing NP 6⊆ BQP would resolve the famous
P vs NP problem. Nevertheless, it is strongly believed that NP 6⊆ BQP, due to the lower
bound on black-box search of [Bennett et al., 1997], and the inability of quantum computing
researchers to develop an efficient quantum algorithm for SAT.

Even if we cannot solve all difficult problems in polynomial time using a quantum com-
puter, we will see in the next sections two examples of quantum algorithms that are faster
than any known classical algorithm. The basic principle employed by these algorithms is to
start with a uniform superposition of basis states, then apply operations that make the basis
states interact with each other so that the modulus of the coefficients for some (desirable)
basis states increase, which implies that the other coefficients decrease. Performing a mea-
surement will then reveal the solution to the problem at hand, or some useful information
about the solution, with high probability. Of course, how to do this in order to solve a specific
problem is exactly where the crux of the matter lies.

4 A simple period finding problem: Simon’s algorithm

In this section we describe a quantum algorithm, known as Simon’s algorithm [Simon, 1997],
that gives an expected exponential speedup with respect to classical algorithms. Simon’s al-
gorithm is one of the first examples of quantum speedup presented in the literature; other
early examples are [Deutsch and Jozsa, 1992, Bernstein and Vazirani, 1997]. However, we dis-
cuss Simon’s algorithm because it has many interesting features from an educational perspective
(namely, the fact that it uses both classical and quantum computation, and that it yields an
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exponential speedup).
Admittedly, the problem that Simon’s algorithm solves is not very useful, but the ideas

shown here give us a flavor of what quantum computation can do. In fact, this algorithm was
an inspiration for the well-known and groundbreaking work of Shor on integer factorization
[Shor, 1997]: a large part of Shor’s algorithm relies on the solution of a period finding problem,
and Simon’s algorithm solves a simplified problem of the same flavor. Shor’s algorithm is,
however, much more involved than Simon’s algorithm, and a full treatment requires several
number-theoretical results that are beyond the scope of this introductory material. Thus, we
will focus on Simon’s algorithm, but at the end of this tutorial the reader should be capable of
undertaking the study of Shor’s algorithm by himself or herself, see also Section 7.

For Simon’s algorithm, we are told that there exists a function f : {0, 1}n → {0, 1}n with
the property that f(~x) = f(~z) if and only if ~x = ~z ⊕~a, for some unknown ~a ∈ {0, 1}n. We do
not know anything else about the function, and the goal is to find ~a by querying the function
the smallest number of times.

Remark 10. For both Simon’s algorithm and Grover’s algorithm, the complexity of an algorithm
is determined only in terms of the number of calls to the function f . Considerations on what
the function f actually implements, and how many operations are performed inside of f , or
between the calls to f , are not part of our analysis. This model is known as query complexity,
because – as the name implies – it defines the complexity of an algorithm as the number of
queries to a given function (in this case, f). Query complexity is used as a model to answer
important theoretical questions. There are many quantum algorithms that yield speedups under
the query complexity model, but some others, e.g., Shor’s algorithm, are faster than (known)
classical algorithms under the more traditional computational complexity model, i.e., number of
basic operations.

Notice that if ~a = ~0 then the function is one-to-one, whereas if ~a 6= ~0 the function is two-
to-one, because for every ~x, there is exactly another number in domain for which the function
has the same value. The function f is assumed to be given as a quantum circuit on q = 2n
qubits, via the unitary Uf depicted in Figure 14, and we are allowed to query the function in
superposition. Remember that by linearity, to describe the effect of Uf it is enough to describe
its behavior on all basis states.

|~x〉n /n
Uf

/n |~x〉n
|~y〉n /n /n |~y ⊕ f(~x)〉n

Figure 14: The circuit implementing Uf for Simon’s problem, with basis states ~x,~y ∈ {0, 1}n.

This particular form of the function, that maps |~x〉n⊗|~y〉n to |~x〉n⊗|~y⊕f(~x)〉n, is typical of
the quantum world. Notice that if ~y =~0, then |~y⊕f(~x)〉n = |f(~x)〉n so the circuit computes the
desired function. Furthermore, this is a reversible function, because applying the same circuit
Uf goes back to the initial state:

UfUf (|~x〉n ⊗ |~y〉n) = Uf (|x〉n ⊗ |~y ⊕ f(~x)〉n) = |~x〉n ⊗ |~y ⊕ f(~x)⊕ f(~x)〉n = |~x〉n ⊗ |~y〉n.

4.1 Classical algorithm

Because we do not know anything about the binary string~a, the best we can do is to feed inputs
to the function, and try to extract information from the output. The number ~a is determined
once we find two distinct inputs ~x,~z such that f(~x) = f(~z), because then ~x = ~z ⊕~a which
implies ~x⊕~z =~a.
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Suppose we have evaluated m distinct input values and we did not find a match. Then
~a 6= ~x ⊕~z for all ~x,~z previously evaluated, therefore we have eliminated at most m(m − 1)/2
values of ~a. (Fewer values may have been eliminated if we test inputs equal to ~x ⊕~y ⊕~z for
any three input values ~x,~y,~z already tested. In fact, if we test ~w such that ~w = ~x⊕~y ⊕~z, we
have that ~w ⊕~z = ~x ⊕~y, therefore the value ~w ⊕~z had already been eliminated from the list
of possible valus of ~a.) Since m(m − 1)/2 is small compared to 2n, the probability of success
m(m−1)
2n+1 is very small until we have evaluated a number of inputs that is in the order of 2n.

In particular, to guarantee a probability of success of at least ρ, we need m(m − 1) ≥ ρ2n+1,
which implies that m ∈ O(

√
ρ2n). Hence, for any positive constant ρ, the number of required

iterations is exponential. After evaluating 1+
√
2n+3+1
2 ∈ O(2n/2) distinct input values satisfying

the condition outlined above for non-matching triplets (to obtain this number, we found the
smallest value of m such that m(m − 1) ≥ 2n+1), we are guaranteed that a matching pair has
been found, or we can safely determine that ~a =~0.

4.2 Simon’s algorithm: quantum computation

Using a quantum computer, we can determine ~a much faster. The idea, first described in
[Simon, 1997], is to apply the circuit in Figure 15.

|~0〉n /n H⊗n /n
Uf

/n H⊗n /n

|~0〉n /n /n

Figure 15: Quantum circuit used in Simon’s algorithm.

From an algebraic point of view, the circuit is described by the following equation:

(H⊗n ⊗ I⊗n)Uf (H⊗n ⊗ I⊗n)(|~0〉n ⊗ |~0〉n).

We now analyze the output of the quantum circuit, by looking at the quantum states at inter-
mediate steps of the circuit. Let |ψ〉 be the state just before the Uf gate, |φ〉 the state just after
Uf , and |χ〉 the final state. In other words:

|ψ〉 = (H⊗n ⊗ I⊗n)(|~0〉n ⊗ |~0〉n)

|φ〉 = Uf (H⊗n ⊗ I⊗n)(|~0〉n ⊗ |~0〉n)

|χ〉 = (H⊗n ⊗ I⊗n)Uf (H⊗n ⊗ I⊗n)(|~0〉n ⊗ |~0〉n).

For |ψ〉, we know that H⊗n creates a uniform superposition of |~〉n,~ ∈ {0, 1}n over the first n
quantum bits. Therefore we can write:

|ψ〉 = (H⊗n ⊗ I⊗n)(|~0〉n ⊗ |~0〉n) =
1√
2n

∑
~∈{0,1}n

|~〉n ⊗ |~0〉n.

By linearity, applying Uf to this state yields:

|φ〉 = Uf |ψ〉 =
1√
2n

∑
~∈{0,1}n

|~〉n ⊗ |~0⊕ f(~)〉n =
1√
2n

∑
~∈{0,1}n

|~〉n ⊗ |f(~)〉n.
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We now need to analyze the effect of applying further Hadamard gates on the top lines of the
circuit. Using (5), the next step in the circuit is given by:

|χ〉 = (H⊗n ⊗ I⊗n)
1√
2n

∑
~∈{0,1}n

|~〉n ⊗ |f(~)〉n =

=
1

2n

∑
~∈{0,1}n

∑
~k∈{0,1}n

(−1)
~k•~|~k〉n ⊗ |f(~)〉n. (7)

When we make a measurement on the top n qubit lines of |χ〉 (i.e., the first n-qubit register,
containing qubits 1 through n), we obtain one of the stings~k with probability equal to the sum
of the modulus squared of the coefficient of the states |~k〉n ⊗ |f(~)〉, for all ~. It is easier to
analyze the case ~a 6= ~0 first: we will deal with the case ~a = 0 later in Section 4.3. Assuming
~a 6=~0, |~k〉n⊗ |f(~)〉n = |~k〉n⊗ |f(~⊕~a)〉n. Let R be a set with the following property: for every
~ ∈ {0, 1}n, R contains either~ or~⊕~a, but not both. (For the reader familiar with the concept
of quotient sets, R is the quotient set {0, 1}n/ ∼ where ∼ is the equivalence relationship defined
as: ~x ∼ ~y if and only if ~x = ~y ⊕~a.) Then, for each ~k, the string ~k appears in the top qubit
lines exactly in the 2n−1 basis states |~k〉n ⊗ |f(~)〉n for ~ ∈ R. For each ~ ∈ R, the coefficient of

the basis state |~k〉n ⊗ |f(~)〉n is exactly the sum of the coefficients in (7) for |~k〉n ⊗ |f(~)〉n and

|~k〉n ⊗ |f(~⊕~a)〉n, that is:

(−1)
~k•~ + (−1)

~k•(~⊕~a)

2n
=

(−1)
~k•~ + (−1)

~k•~(−1)
~k•~a

2n

=
(−1)

~k•~
(

1 + (−1)
~k•~a
)

2n
.

Therefore the probability of obtaining the binary string ~k after measuring the top qubit lines
is:

∑
~∈R

(−1)
~k•~
(

1 + (−1)
~k•~a
)

2n

2

= 2n−1


(

1 + (−1)
~k•~a
)

2n

2

=

{
1

2n−1 if ~k •~a ≡ 0 mod 2

0 if ~k •~a ≡ 1 mod 2,

where the multiplication factor 2n−1 comes from the fact that |R| = 2n

2 . Thus, the only binary

strings that have positive probability to be observed are those strings ~k for which ~k •~a ≡ 0
mod 2. The remaining strings are never sampled: by carefully applying quantum operations we
have reduced their state coefficients to zero, a phenomenon known as destructive interference.
Notice that unless ~k =~0, then there is a nonempty set of bits for which the modulo 2 sum of ~a
must vanish. In this case, unless we are unlucky and we obtain the vector ~k =~0 (or some other
undesirable cases that will be specified later), we can express one of such bits as a modulo 2
sum of the others, and we eliminate half of the possible values for ~a.

Our discussion shows that with a single quantum query to Uf , in the case ~a 6=~0 with high
probability we learn very valuable information about ~a, and we can approximately halve the
search space for~a. It now remains to fully specify in a more precise manner how this information
can be used, and how to deal with the case ~a =~0.

4.3 Simon’s algorithm: description and analysis

The quantum algorithm described in the previous section yields information on ~a, but it does
not output~a directly. To recover~a, further calculations have to be performed. This is a typical
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situation in quantum algorithms: a quantum computation measures some properties of the
desired answer; then, classical computations are used to analyze these properties and obtain
the desired answer. Thus, even if the quantum algorithm does not explicitly output the desired
answer, it allows us to get closer to our goal.

In the specific case of the problem discussed here, the quantum computation allows us to
learn ~k such that ~k •~a ≡ 0 mod 2. We embed this equation into an algorithm as follows: we
initialize E to the empty set; then, while the system of equations E does not have a unique
solution, we apply the circuit described in the previous section to obtain~k, and add the equation
~k•~a ≡ 0 mod 2 to E. Notice that~a =~0 is always a solution of the homogeneous system E, but
we are interested in the nonzero solutions, if any exist. In other words, we want to determine
if the null space contains any nonzero vector. We can have two possible situations: either
the system has a uniquely determined nonzero solution ~a 6= ~0, or the only possible solution is
~a =~0. Since there are n unknowns and we are dealing with a homogeneous system, to identify
which of these situations happens we need E to contain n linearly independent vectors~k, where
independence is intended modulo 2. Because at every iteration we obtain a random~k for which
~k •~a ≡ 0 mod 2, we need to analyze how many iterations we need to obtain n such vectors
with high probability.

In continuous space, uniform random sampling of vectors yields linearly independent vectors
with probability 1. In this case we are considering linear independence among vectors that have
coefficients 0 or 1, and independence is in terms of the modulo 2 sum, so the argument is less
clear; however, it is possible to show that the probability of obtaining n such linearly independent
vectors after sampling n + t times is bounded below by 1 − 1

2t [Mermin, 2007, Apx. G]. This
lower bound does not depend on n. Hence, with overwhelming probability after slightly more
than n executions of the quantum circuit, and therefore O(n) queries to the function f , we
determine the solution to the problem with a classical computation that can be performed in
polynomial time (i.e., O(n2) to determine a solution to the system of linear equations modulo
2). We remark that once the unique nonzero~a is determined, we can easily verify that it is the
solution by querying the function. On the other hand, if ~a =~0, the algorithm will detect that
this is the case because at some point the system of linear equations E will have ~a =~0 as the
only possible solution (notice that if~a =~0, then~k•~a ≡ 0 mod 2 for any~k). Compare the O(n)
queries of this approach with the O(2n/2) queries that are required by a classical algorithm, and
we have shown an exponential speedup.

This algorithm shows a typical feature of many quantum algorithms: oftentimes, there is
a classical computation to complement the quantum computation. For example, the classi-
cal computation could verify that the correct solution to the problem has indeed been found.
In this case, the verification is carried out by checking whether the system of equations has
a unique solution. Indeed, quantum algorithms are probabilistic algorithm, and we can only
try to increase the probability that the correct answer is returned; only in rare cases the so-
lution can be obtained with probability 1, see e.g. [Brassard et al., 2002]. For this reason, it
is desirable to have a way to deterministically verify correctness. This may require a classical
computation. In other words, the quantum algorithm is applied to a problem for which it is
difficult to classicaly compute the solution, but once the solution (or some information about it)
is obtained, it is easy to classically verify that we have the right answer. This is not known to
be possible in general, since the complexity class BQP is not known or believed to be contained
in NP (recall that NP is the class of problems admitting an efficient classical proof that the
solution has been found, i.e., a certificate that can be checked in polynomial time); indeed, it
is an active topic of research to design verification protocols for generic quantum computations
[Broadbent et al., 2009, Aharonov et al., 2017, Reichardt et al., 2013, Mahadev, 2018]. How-
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ever, the quantum algorithms presented in this tutorial will admit simple classical verification.

5 Black-box search: Grover’s algorithm

Simon’s algorithm gives an exponential speedup with respect to a classical algorithm, but it
solves a very narrow problem that does not have practical applications. We now describe an
algorithm that gives only a polynomial – more specifically, quadratic – speedup with respect to
classical, but it applies to a very large class of problems. The algorithm is known as Grover’s
search [Grover, 1996].

The problem solved by the algorithm can be described as black-box search: we are given a
circuit that computes an unknown function of a binary string, and we want to determine for
which value of the input the function gives output 1. In other words, we are trying to determine
the unique binary string that satisfies a property encoded by a circuit. The original paper
[Grover, 1996] describes this as looking for a certain element in a database. Such an algorithm
can be applied whenever we are searching for a specific element in a set, we have a way of testing
if an element is the desired element (in fact, this test must be implementable as a quantum
subroutine – see below), and we do not have enough information to do anything smarter than
a brute force search, i.e., testing all elements in the set.

As mentioned earlier, the basic idea of the algorithm is to start with the uniform superpo-
sition of all basis states, and iteratively increase the coefficients of basis states that correspond
to binary strings for which the unknown function gives output 1.

We need some definitions. Let f : {0, 1}n → {0, 1}, and assume that there exists a unique
~̀ ∈ {0, 1}n : f(~̀) = 1, i.e., there is a unique element in the domain of the function that yields
output 1. We want to determine ~̀. The function f is assumed to be encoded by a unitary as
follows:

Uf : |~〉n ⊗ |y〉1 → |~〉n ⊗ |y ⊕ f(~)〉1.

As usual, we are allowed to query the function in superposition.

Remark 11. Grover’s search can also be applied to the case in which there are multiple input
values that yield output 1, and we want to retrieve any of them; however, the analysis in that
case is slightly more convoluted, and is not pursued here in detail. By the end of our analysis,
the reader will have all the necessary tools to study this extension.

5.1 Classical algorithm

Given the problem definition, classical search cannot do better than O(2n) operations. Indeed,
any deterministic classical algorithm may need to explore all 2n possible input values before
finding ~̀: given any deterministic classical algorithm, there exists a permutation π of {0, 1}n
that represents the longest execution path (i.e., sequence of values at which f is queried) of such
algorithm. Then, if ~̀ = π(~1) the algorithm will require 2n queries to determine the answer,
which is clearly the worst case.

At the same time, a randomized algorithm requires O(2n) function calls to have at least a
constant positive probability to determine ~̀; the expected number of function calls to determine
the answer is approximately 2n−1, i.e., the expected number of draws before we extract the black
marble from an urn containing one black marble and 2n − 1 white marbles (sampling without
replacement; the corresponding distribution is known as the hypergeometric distribution).
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(a) Initialization. (b) Sign flip.

A

2A

(c) Computation of the average.

A

2A

(d) Inversion about the average.

Figure 16: Sketch of Grover’s algorithm. The bars represent the coefficients of the basis states.

5.2 Grover’s search: algorithm description

The quantum search algorithm proposed in [Grover, 1996] requires q = n + 1 qubits, which is
exactly the number of qubits for the encoding of Uf as defined above.

The outline of the algorithm is as follows. The algorithm starts with the uniform superpo-
sition of all basis states on n qubits. The last qubit (n + 1) is used as an auxiliary qubit, and
it is initialized to H|1〉. We obtain the quantum state |ψ〉. Then, these operations are repeated
several times:

(i) Flip the sign of the vectors for which Uf gives output 1.

(ii) Invert all the coefficients of the quantum state around the average coefficient – we will
explain the precise mapping implemented by this operation in Section 5.2.3.

A full cycle of the two operations above increases the coefficient of |~̀〉n⊗
1√
2
(|0〉−|1〉), and after

a certain number of cycles (to be specified later), the coefficient of the state |~̀〉n⊗
1√
2
(|0〉− |1〉)

is large enough that it can be obtained from a measurement with probability close to 1. This
phenomenon is known as amplitude amplification.

A sketch of the ideas for the algorithm is depicted in Figure 16: we have eight basis states,
and suppose the fourth basis state is the target basis state |~̀〉. The representation is purely
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meant to convey intuition, and does not geometrically represent the vectors encoding the quan-
tum state, but solely the amplitude of the coefficients. In Figure 16a, all basis states have the
same coefficient. In Figure 16b, the coefficient of the target basis state has its sign flipped. In
Figure 16c, we can see that the average value of the coefficients is slightly below the coefficient
for the undesired states. Taking twice the average and subtracting each coefficient now yields
the red bars in Figure 16d, where the target basis state |~̀〉 has a coefficient with much larger
value than the rest, and will therefore be measured with higher probability. Of course, we need
to show that these steps can be implemented with unitary matrices that can be constructed
with a polynomial number of basic gates.

We now describe the steps above in more detail.

5.2.1 Initialization

The algorithm is initialized by applying the operation H⊗(n+1)(I⊗n⊗X) onto the state |~0〉n+1.
We can express the quantum state as follows:

(I⊗n ⊗X)|~0〉n+1 = |~0〉n ⊗ |1〉

H⊗(n+1)(I⊗n ⊗X)|~0〉n+1 =
∑

~∈{0,1}n

1√
2n
|~〉n ⊗

(|0〉 − |1〉)√
2

=
∑

~∈{0,1}n
α~|~〉n ⊗

(|0〉 − |1〉)√
2

= |ψ〉,

where α~ = 1√
2n

. Thus, the initial coefficients α~ of the state |ψ〉 are real numbers. Since all the

other steps of the algorithm will map real numbers to real numbers, we only need to consider
real numbers through the course of the algorithm.

5.2.2 Sign flip: step (i)

To flip the sign of the target state |~̀〉n ⊗
1√
2
(|0〉 − |1〉), we apply Uf to |ψ〉. We now show why

this works:

Uf |ψ〉 = Uf

 ∑
~∈{0,1}n

α~|~〉n ⊗
1√
2

(|0〉 − |1〉)


= α~̀|~̀〉n ⊗

1√
2

(|1〉 − |0〉) +
∑

~∈{0,1}n
~ 6=~̀

α~|~〉n ⊗
1√
2

(|0〉 − |1〉)

=

−α~̀|~̀〉n +
∑

~∈{0,1}n
~6=~̀

α~|~〉n

⊗ 1√
2

(|0〉 − |1〉).

As the expression above suggests, we can always think of the last qubit as being in the state
1√
2
(|0〉 − |1〉) and unentangled from the rest of the qubits, with the sign flip affecting only the

first n qubits. Therefore, the state that we obtain by applying Uf to |ψ〉 is the same as |ψ〉
except that the sign of |~̀〉n ⊗

1√
2
(|0〉 − |1〉) has been flipped.
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5.2.3 Inversion about the average: step (ii)

To perform the inversion about the average, we want to perform the following operation:

∑
~∈{0,1}n

α~|~〉n →
∑

~∈{0,1}n

2

 ∑
~k∈{0,1}n

α~k
2n

− α~
 |~〉n,

where
∑

~k∈{0,1}n
α~k
2n is the average, and therefore we are taking twice the average and subtracting

each coefficient from it. It is not clear yet that this is a unitary operation, but it will become
evident in the following. This mapping is realized by the following matrix:

W =


2
2n − 1 2

2n . . . 2
2n

2
2n

2
2n − 1 . . . 2

2n
...

...
. . .

...
2
2n

2
2n . . . 2

2n − 1

 =


2
2n

2
2n . . . 2

2n
2
2n

2
2n . . . 2

2n
...

...
. . .

...
2
2n

2
2n . . . 2

2n

− I⊗n,
where the denominator 1

2n computes the average coefficient, the numerator 2 of the fraction takes
twice the average, and finally we subtract the identity to subtract each individual coefficient
from twice the average. From the definition of the Hadamard gate in (5), we can see that the

entry of H⊗n in position j, k is (H⊗n)j,k = 1√
2n

(−1)~•
~k. But now if we let:

R =


2 0 . . . 0
0 0 . . . 0
...

. . .
...

0 0 . . . 0

 ∈ R2n×2n ,

then we can write (H⊗nRH⊗n)j,k = (H⊗n)j,0R0,0 (H⊗n)0,k = 2
2n , because Rj,k = 0 for j 6= 0 or

k 6= 0. Therefore, using the fact that H⊗nH⊗n = I⊗n, we have:

W = H⊗nRH⊗n − I⊗n = H⊗n(R− I⊗n)H⊗n = −H⊗n(I⊗n −R)H⊗n

= −H⊗ndiag(−1, 1, . . . , 1︸ ︷︷ ︸
2n

)H⊗n := −H⊗nDH⊗n. (8)

The expression (8), besides providing a decomposition for W , also shows that W is unitary,
because H⊗n is unitary (tensor product of unitary matrices) and D is diagonal with ones on
the diagonal. We must find a way to construct the matrix D := diag(−1, 1, . . . , 1). This will be
discussed in the next section. For now, we summarize our analysis of the inversion about the
average by concluding that it can be performed by applying W = −H⊗nDH⊗n to the n qubits
of interest (i.e., all qubits except the auxiliary qubit that we used for the sign flip of step (i)).

5.2.4 Constructing the matrix D

We give a sketch of the idea of how to construct D = diag(−1, 1, . . . , 1). Notice that the
effect of this quantum operation is to flip the sign of the coefficient of the basis state |~0〉n,
and leave other coefficients untouched.

Instead of flipping the sign of |~0〉n, let us start by seeing how to flip the sign of |~1〉n while
leaving all other coefficients untouched. Let Cn−1Z be the gate that applies Z to qubit n if
qubits 1, . . . , n − 1 are |1〉, and does nothing otherwise. This is similar to the CNOT gate,
except that it has multiple controls, and it applies a Z gate rather than an X (i.e., NOT)
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gate when the control qubits are |1〉. It is called a “multiply-controlled Z”. Cn−1Z in the
case of two qubits (n = 2) is given by the following matrix:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Notice that in the two-qubit case (n = 2), the two circuits depicted in Figure 17 are equivalent:
carrying out the matrix multiplications will confirm that the circuit on the right in Figure
17 implements exactly the CZ matrix as defined above. Thus, the controlled Z gate can be
easily realized with a CNOT and two Hadamard gates. If we have access to the Cn−1Z gate,
we can write:

D = X⊗n(Cn−1Z)X⊗n,

because, as can be easily verified, this operations flips the sign of the coefficient of a basis
state if and only if all qubits have value |0〉 in the basis state. In circuit form, it can be
written as depicted in Figure 18.

•
Z

•
H H

Figure 17: Controlled Z gate on two qubits: two possible representations.

X • X

X • X

X • X
...

...

X Z X

Figure 18: Quantum circuit implementing the D operation used in Grover’s algorithm.

Of course, one has to construct the operation Cn−1Z. There are several ways to do so.
Perhaps the simplest construction, suggested in [Barenco et al., 1995], is to implement a
Cn−2NOT and a controlled Z gate. The Cn−2NOT is actually easy to implement with some
auxiliary qubits, in a construction that will be used in Section 6 as well. We show this scheme
in Figure 19 with an example for for n = 4 qubits, but clearly it can be generalized to an
arbitary number of qubits. We first implement a Cn−2NOT gate, with an auxiliary qubit
(which is initialized to |0〉, as one can see from the bottom qubit in Figure 19) as the target
of the Cn−2NOT. We then implement a CCZ gate using a CCNOT and two Hadamard gates
on the target qubit; the reader can easily convince himself or herself that this implements a
doubly-controlled Z, using the identity HXH = Z and carrying out the calculations (in the
large unitary matrix for CCZ, the gate being controlled appears in the bottom right, just
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as in CNOT). Summarizing, this yields a decomposition of Cn−1Z with a linear number of
gates and auxiliary qubits. It is possible to forsake the initialization of the auxiliary qubit,
see [Barenco et al., 1995] for details. To conclude, the construction of D, and therefore of
the whole circuit implementing step (ii) of Grover’s search, can be performed in O(n) gates
and auxiliary qubits. We remark that the −1 multiplication factor appearing in front of H⊗n

in (8) can be ignored, as it is a global phase factor, see Example 7.

• •

• •

•

H H

|0〉 • |0〉

Figure 19: Decomposition of Cn−1Z for n = 4. The fifth (bottom) qubit is initialized to
|0〉 and is used as working space. This implements C3Z for the top four qubits.

5.3 Determining the number of iterations

Let Q be the matrix that applies a single iteration of Grover’s search, consisting of steps (i) and
(ii) above. It is paramount to determine how many iterations should be performed, so that the
coefficient of the desired basis state |~̀〉 ⊗ 1√

2
(|0〉 − |1〉) is as large as possible, and the binary

string ~̀ is the outcome of a measurement with high probability. This is what we attempt to do
in this section.

Since the last, auxiliary qubit is always in state 1√
2
(|0〉− |1〉) and unentangled with the rest,

we can ignore it. Let

|ψD〉 = |~̀〉n, |ψU 〉 =

 ∑
~∈{0,1}n

~6=~̀

1√
2n − 1

|~〉n


be the desirable and undesirable quantum states, respectively. We claim that after iteration
k of the algorithm, the quantum state can be expressed as |ψk〉 = dk|ψD〉 + uk|ψU 〉. We will

show this by induction. Initially, d0 = 1√
2n

and u0 =
√

2n−1
2n , where notice that to obtain

u0 from the value of an individual coefficient in |ψU 〉 (all such coefficients are 1√
2n

initially)

we have multiplied by
√

2n − 1 for normalization. Thus, the claim is true for k = 0. We
now need to show the induction step: assuming |ψk−1〉 = dk−1|ψD〉+ uk−1|ψU 〉, we must show
|ψk〉 = dk|ψD〉+ uk|ψU 〉.

The calculations in this part are heavier than usual; if the reader is not interested in the
details, he or she can simply trust the results and skip to the end of this gray box.

At step (i) of the algorithm, the algorithm flips dk|ψD〉+ uk|ψU 〉 → −dk|ψD〉+ uk|ψU 〉.
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At step (ii), the algorithm maps αh → 2Ak − αh for each coefficient αh, where Ak is the
average coefficient. Therefore:

−α~̀→ 2Ak + α~̀

α~h → 2Ak − α~h ∀~h 6= ~̀.

To compute Ak, we need to determine the value of each individual coefficient. The coefficient
for |~̀〉 is clearly dk, as there is only one such state. On the other hand, there are 2n−1 states
with coefficient uk, so the value of the coefficient for each of the states |~〉,~ 6= ~̀ is uk√

2n−1
(the square root is due to normalization, see above). The average coefficient at iteration k is
therefore:

Ak =
(2n − 1) 1√

2n−1uk − dk
2n

=

√
2n − 1uk − dk

2n
.

To obtain uk from α~h we need to multiply by
√

2n − 1, so the mapping of step (ii) can be
written, overall, as:

−dk|ψD〉+ uk|ψU 〉 →(2Ak + dk)|ψD〉+
√

2n − 1(2Ak −
uk√

2n − 1
)|ψU 〉 =

dk+1|ψD〉+ uk+1|ψU 〉,

where we defined:

dk+1 = 2Ak + dk

uk+1 = 2Ak
√

2n − 1− uk.

This shows the induction step.
Performing the substitution of Ak, we obtain:

dk+1 = 2

√
2n − 1uk − dk

2n
+ dk =

(
1− 1

2n−1

)
dk +

2
√

2n − 1

2n
uk

uk+1 = 2

√
2n − 1uk − dk

2n
√

2n − 1− uk = −2
√

2n − 1

2n
dk +

(
1− 1

2n−1

)
uk.

This transformation is exactly a clockwise rotation of the vector

(
dk
uk

)
by a certain angle θ,

because it has the form (
cos θ sin θ
− sin θ cos θ

)(
dk
uk

)
and it satisfies the relationship sin2 θ + cos2 θ = 1. The angle θ must satisfy:

sin θ =
2
√

2n − 1

2n
. (9)

Notice that because this value of the sine is very small (for large n), we can use the approx-
imation sinx ≈ x (when x is close to 0) to write:

θ =
2
√

2n − 1

2n
. (10)
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Overall, the above analysis shows that each iteration performs a rotation by an angle θ
of the vector |ψk〉, which always belongs to the plane spanned by |ψD〉 and |ψU 〉. So after k
iterations the coefficients dk, uk satisfy the following equation:(

dk
uk

)
=

(
cos θ sin θ
− sin θ cos θ

)k (
d0
u0

)
,

which can be rewritten as:

dk = cos kθd0 + sin kθu0

uk = − sin kθd0 + cos kθu0.

In order to maximize the probability of obtaining |ψD〉 after a measurement, remember that
|u0| � |d0|, so the best choice is to pick kθ = π

2 which yields the largest value of |dk|. Using
(10), the optimal number of iterations of Grover’s search algorithm is:

k ≈ 2nπ

4
√

2n − 1
≈ π

4

√
2n. (11)

After this many iterations, we have a probability close to 1 of measuring |ψD〉 and obtaining
the sought state |~̀〉. Comparing this with a classical algorithm, that requires O(2n) iterations,
we obtained a quadratic speedup.

Remark 12. If we perform more iterations of Grover’s algorithm than the optimal number,
the probability of measuring the desired state actually goes down, and reduces our chances of
success. Therefore, it is important to choose the right number of iterations.

Of course, the approximation for θ given in (10) is only valid for large n: for smaller n, it
is better to compute the optimal number of iterations deriving θ from (9). We conclude this
section by noticing that in case there are multiple input values on which f has value 1, we
should amend the above analysis adjusting the values for d0 and u0, but the main steps remain
the same.

6 Numerical implementation of Grover’s algorithm

We conclude the tutorial by showing how to implement Grover’s algorithm using the open-
source Python library Qiskit [Qiskit, 2017]. One of the advantages of using Qiskit is that the
code is self-explanatory. The library requires Python 3 and can be installed via pip:

pip i n s t a l l q i s k i t ==0.11.1

The code below was tested with Qiskit 0.11.1; it may work with other versions as well.
We apply Grover’s algorithm to the problem of finding a satisfying assignment for an instance

of the Exactly-1 3-SAT problem, which is defined as follows:

Problem (Exactly-1 3-SAT): Determining a satisfying assignment contain-
ing one true literal per clause.
Input: SAT formula in conjunctive normal form

∧m
k=1Ck over n Boolean variables

x1, . . . , xn, with 3 literals per clause C1, . . . , Cm.
Output: Does there exist an assignment of x1, . . . , xn such that every clause C1, . . . , Cm
has exactly one True literal?
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This problem is NP-hard [Garey and Johnson, 1972]. In our implementation, an instance
of Exactly-1 3-SAT is specified as a list of clauses, where each clause contains three integers: a
positive integer is the index of a positive literal, a negative integer is the index of a negative
literal. For example, the Python list of lists

[[1, 2,−3], [−1,−2,−3], [−1, 2, 3]]

represents the instance:

(x1 5 x2 5¬x3) ∧ (¬x1 5¬x2 5¬x3) ∧ (¬x1 5 x2 5 x3). (12)

We use this formula in the example given below. We use the symbol 5 rather than the usual
∨ (normally used to indicate the logical OR) to emphasize that this is not a regular 3-SAT
formula, but an Exactly-1 3-SAT formula: the problem definition requires exactly one True
literal per clause.

In the implementation presented in this section we only allow up to three boolean variables
and three clauses, i.e., n ≤ 3,m ≤ 3. At the end of the section we will discuss how to generalize
the implementation to allow an arbitrary number of clauses, which is left as an exercise. Notice
that the suggested approach requires additional qubits for each clause. The code presented here
for n ≤ 3,m ≤ 3 yields a circuit with at most 8 qubits, that can be simulated on a laptop in
1-2 minutes in most cases. Further clauses would require additional qubits and slow down the
simulation of the circuit (roughly by a factor of 2 for each additional qubit).

To apply Grover’s algorithm we will use three basic subroutines: a subroutine to construct
the initial state, a subroutine to compute the unitary Uf implementing the black-box function
f , and a subroutine to perform the inversion about the average. We will discuss them in order.

6.1 Initial state

Before we construct the initial state, let us give names to some of the quantum registers (i.e.,
groups of quantum qubits) that we need. Grover’s algorithm applies to a function with an
n-qubit input and a single-qubit output. We call f in the input register of Uf , of size n, and
f out the output register of Uf , of size 1. We construct the initial state as follows.

def i n p u t s t a t e ( c i r c u i t , f i n , f out , n ) :
””” (n+1)− q u b i t input s t a t e f o r Grover search . ”””
for j in range (n ) :

c i r c u i t . h ( f i n [ j ] )
c i r c u i t . x ( f o u t )
c i r c u i t . h ( f o u t )

This is equivalent to the circuit given in Figure 20.

f in |0〉n /n H⊗n /n

f out |0〉1 X H

Figure 20: Initialization step of Grover’s algorithm.

6.2 Black-box function Uf

Implementing Uf for the Exactly-1 3-SAT problem is the most complex part of the code, and it
can be done in several ways. To favor simplicity, we decompose the problem of computing Uf
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by introducing m auxiliary qubits (these are often called “ancillas” in the quantum computing
literature), one for each clause. For each clause we construct a circuit that bit-flips the corre-
sponding auxiliary qubit if and only if the clause has exactly one true literal (these auxiliary
qubits will be initialized in state |0〉). Finally, we apply a bit-flip on the output register of Uf
if and only if all m auxiliary qubits are 1. In Figure 21 we show a circuit that bit-flips the
bottom qubit y if the clause x1 5 ¬x2 5 x3 is satisfied. The idea is as follows. The X gate

|x1〉 • •

|x2〉 X • • X

|x3〉 • •

|y〉

Figure 21: Quantum circuit bit-flipping the bottom qubit if the clause x15¬x25x3 is satisfied
by exactly one literal.

bit-flips the qubit |x2〉, since x2 appears negated in the clause. Using three CNOT gates, we set
|y〉 = |y⊕ x1⊕¬x2⊕ x3〉, implying that y is bit-flipped if an odd number of literals is satisfied.
We use a triply-controlled NOT gate to finally obtain |y〉 = |y⊕x1⊕¬x2⊕x3⊕ (x1∧¬x2∧x3)〉,
as desired. To set |y〉 = |1〉 if and only if exactly one literal is satisfied, it is enough to assume
that |y〉 starts in |0〉 state. The final X gate resets the state of qubit |x2〉.

To implement this circuit in Qiskit, there is a small obstacle: the triply-controlled NOT
gate is not part of the basic gate set. We can implement it with a strategy similar to what is
discussed in Section 5.2.4 for the Cn−1Z gate: we use three CCNOT gates and one auxiliary
qubit, implementing the circuit in Figure 22. This has the drawback of requiring an extra qubit,
but it is easy to understand. We remark that CCNOT, while not part of the basic gate set
of Qiskit, is defined as a macro and therefore can be used as if it were part of the basic gate
set: the software will automatically perform the substitution, using the circuit of Figure 13 to
implement CCNOT.

We can quickly verify that the circuit in Figure 22 bit-flips |q5〉 if and only if |q1〉, |q2〉, |q3〉
are 1; the final CCNOT resets the state of the auxiliary qubit |q4〉, which is assumed to be
initialized at |0〉 and is left in state |0〉.

|q1〉 • •
|q2〉 • •
|q3〉 •

|q4〉 = |0〉 • |0〉
|q5〉

Figure 22: A possible implementation of a triply-controlled NOT gate.

The implementation of Uf then proceeds as follows. We loop over the clauses, using index
k = 0, . . . ,m− 1 (as it often happens, in this tutorial we use “mathematical language” and the
clauses are numbered k = 1, . . . ,m, but in the Python implementation the corresponding array
is indexed k = 0, . . . ,m− 1). For each clause we implement the circuit in Figure 21, setting the
auxiliary qubit aux[k] to 1 if clause Ck+1 is satisfied. We then perform a multiply-controlled
NOT operation to ensure that the output register f out is bit-flipped if all m auxiliary qubits
are 1. Finally, we run the same circuit in reverse to reset the state of the auxiliary qubits.

def b l a c k b o x u f ( c i r c u i t , f i n , f out , aux , n , e x a c t l y 1 3 s a t f o r m u l a ) :
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””” C i r c u i t t h a t computes the b lack−box f u n c t i o n from f i n to f o u t .

Create a c i r c u i t t h a t v e r i f i e s whether a g iven e x a c t l y −1 3−SAT
formula i s s a t i s f i e d by the input . The e x a c t l y −1 v e r s i o n
r e q u i r e s e x a c t l y one l i t e r a l out o f every c l a u s e to be s a t i s f i e d .
”””
num clauses = len ( e x a c t l y 1 3 s a t f o r m u l a )
i f ( num clauses > 3 ) :

raise ValueError ( ’We only a l low at most 3 c l a u s e s ’ )
for (k , c l a u s e ) in enumerate( e x a c t l y 1 3 s a t f o r m u l a ) :

# This loop ensures aux [ k ] i s 1 i f an odd number o f l i t e r a l s
# are t r u e
for l i t e r a l in c l a u s e :

i f l i t e r a l > 0 :
c i r c u i t . cx ( f i n [ l i t e r a l −1] , aux [ k ] )

else :
c i r c u i t . x ( f i n [− l i t e r a l −1])
c i r c u i t . cx ( f i n [− l i t e r a l −1] , aux [ k ] )

# F l i p aux [ k ] i f a l l l i t e r a l s are true , us ing a u x i l i a r y q u b i t
# ( a n c i l l a ) aux [ num clauses ]
c i r c u i t . ccx ( f i n [ 0 ] , f i n [ 1 ] , aux [ num clauses ] )
c i r c u i t . ccx ( f i n [ 2 ] , aux [ num clauses ] , aux [ k ] )

# F l i p back to r e v e r s e s t a t e o f n e g a t i v e l i t e r a l s and a n c i l l a
c i r c u i t . ccx ( f i n [ 0 ] , f i n [ 1 ] , aux [ num clauses ] )
for l i t e r a l in c l a u s e :

i f l i t e r a l < 0 :
c i r c u i t . x ( f i n [− l i t e r a l −1])

# The formula i s s a t i s f i e d i f and only i f a l l a u x i l i a r y q u b i t s
# e x c e p t aux [ num clauses ] are 1
i f ( num clauses == 1 ) :

c i r c u i t . cx ( aux [ 0 ] , f o u t [ 0 ] )
e l i f ( num clauses == 2 ) :

c i r c u i t . ccx ( aux [ 0 ] , aux [ 1 ] , f o u t [ 0 ] )
e l i f ( num clauses == 3 ) :

c i r c u i t . ccx ( aux [ 0 ] , aux [ 1 ] , aux [ num clauses ] )
c i r c u i t . ccx ( aux [ 2 ] , aux [ num clauses ] , f o u t [ 0 ] )
c i r c u i t . ccx ( aux [ 0 ] , aux [ 1 ] , aux [ num clauses ] )

# F l i p back any a u x i l i a r y q u b i t s to make sure s t a t e i s c o n s i s t e n t
# f o r f u t u r e e x e c u t i o n s o f t h i s r o u t i n e ; same loop as above .
for (k , c l a u s e ) in enumerate( e x a c t l y 1 3 s a t f o r m u l a ) :

for l i t e r a l in c l a u s e :
i f l i t e r a l > 0 :

c i r c u i t . cx ( f i n [ l i t e r a l −1] , aux [ k ] )
else :

c i r c u i t . x ( f i n [− l i t e r a l −1])
c i r c u i t . cx ( f i n [− l i t e r a l −1] , aux [ k ] )

c i r c u i t . ccx ( f i n [ 0 ] , f i n [ 1 ] , aux [ num clauses ] )
c i r c u i t . ccx ( f i n [ 2 ] , aux [ num clauses ] , aux [ k ] )

39



c i r c u i t . ccx ( f i n [ 0 ] , f i n [ 1 ] , aux [ num clauses ] )
for l i t e r a l in c l a u s e :

i f l i t e r a l < 0 :
c i r c u i t . x ( f i n [− l i t e r a l −1])

6.3 Inversion about the average

The inversion about the average is discussed in Sections 5.2.3-5.2.4. This can be implemented
as follows.

def i n v e r s i o n a b o u t a v e r a g e ( c i r c u i t , f i n , n ) :
””” Apply i n v e r s i o n about the average s t e p o f Grover ’ s a l gor i thm . ”””
# Hadamards everywhere
for j in range (n ) :

c i r c u i t . h ( f i n [ j ] )
# D matrix : f l i p s the s i g n o f the s t a t e |00 . . .00 > only
for j in range (n ) :

c i r c u i t . x ( f i n [ j ] )
n c o n t r o l l e d Z ( c i r c u i t , [ f i n [ j ] for j in range (n−1) ] , f i n [ n−1])
for j in range (n ) :

c i r c u i t . x ( f i n [ j ] )
# Hadamards everywhere again
for j in range (n ) :

c i r c u i t . h ( f i n [ j ] )

The above routine requires a Cn−1Z gate; we implement it, for three qubits, using a CCNOT
gate and two Hadamards. We raise an exception if there are more than two controls, which are
not necessary for this example.

def n c o n t r o l l e d Z ( c i r c u i t , c on t ro l s , t a r g e t ) :
””” Implement a Z g a te wi th m u l t i p l e c o n t r o l s ”””
i f ( len ( c o n t r o l s ) > 2 ) :

raise ValueError ( ’The c o n t r o l l e d Z with more than 2 ’ +
’ c o n t r o l s i s not implemented ’ )

e l i f ( len ( c o n t r o l s ) == 1 ) :
c i r c u i t . h ( t a r g e t )
c i r c u i t . cx ( c o n t r o l s [ 0 ] , t a r g e t )
c i r c u i t . h ( t a r g e t )

e l i f ( len ( c o n t r o l s ) == 2 ) :
c i r c u i t . h ( t a r g e t )
c i r c u i t . ccx ( c o n t r o l s [ 0 ] , c o n t r o l s [ 1 ] , t a r g e t )
c i r c u i t . h ( t a r g e t )

6.4 Putting everything together

To run Grover’s algorithm, we have to initialize a quantum circuit with the desired number of
qubits, and apply the routines described above. Notice that for three qubits the optimal number
of Grover iterations is two, see (11) (the sin θ approximation is not accurate for n = 3, but doing
the calculations more carefully, we can verify that two iterations is still optimal). Including the
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small, necessary setup to initialize a quantum circuit with Qiskit (“classical registers” are used
to store the result of a measurement), this results in the following code:

import sys
from q i s k i t import QuantumRegister , C l a s s i c a l R e g i s t e r , QuantumCircuit
from q i s k i t import compi ler , Aer
from q i s k i t . t o o l s import v i s u a l i z a t i o n

# Make a quantum program f o r the n−b i t Grover search .
n = 3
# Exactly−1 3−SAT formula to be s a t i s f i e d , in con junc t i v e
# normal form . We r e p r e s e n t l i t e r a l s with i n t e g e r s , p o s i t i v e or
# negat ive to i n d i c a t e a boolean v a r i a b l e or i t s negat ion .
e x a c t l y 1 3 s a t f o r m u l a = [ [ 1 , 2 , −3] , [−1 , −2, −3] , [−1 , 2 , 3 ] ]

# Def ine three quantum r e g i s t e r s : ’ f i n ’ i s the search space ( input
# to the func t i on f ) , ’ f out ’ i s b i t used f o r the output o f func t i on
# f , aux are the a u x i l i a r y b i t s used by f to perform i t s
# computation .
f i n = QuantumRegister (n)
f o u t = QuantumRegister (1 )
aux = QuantumRegister ( l en ( e x a c t l y 1 3 s a t f o r m u l a ) + 1)
# One c l a s s i c a l r e g i s t e r to s t o r e the r e s u l t o f a measurement
ans = C l a s s i c a l R e g i s t e r (n)
# Create quantum c i r c u i t with the quantum and c l a s s i c a l r e g i s t e r s
# de f ined above
qc = QuantumCircuit ( f i n , f out , aux , ans , name=’ grover ’ )

i n p u t s t a t e ( qc , f i n , f out , n )
# Apply two f u l l i t e r a t i o n s
b l a c k b o x u f ( qc , f i n , f out , aux , n , e x a c t l y 1 3 s a t f o r m u l a )
i n v e r s i o n a b o u t a v e r a g e ( qc , f i n , n )
b l a c k b o x u f ( qc , f i n , f out , aux , n , e x a c t l y 1 3 s a t f o r m u l a )
i n v e r s i o n a b o u t a v e r a g e ( qc , f i n , n )
# Measure the output r e g i s t e r in the computat ional b a s i s
f o r j in range (n ) :

qc . measure ( f i n [ j ] , ans [ j ] )

# Create an in s t anc e o f the l o c a l quantum s imulator
quantum simulator = Aer . get backend ( ’ qasm simulator ’ )
# Compile the c i r c u i t i n to ”quantum ob j e c t code ” that can be
# executed on the s imu la tor
qobj = compi le r . assemble ( qc , quantum simulator , shot s =2048)
# Execute and s t o r e the r e s u l t s . Note that t h i s could take some
# time (up to a few minutes , depending on the machine )
job = quantum simulator . run ( qobj )
r e s u l t = job . r e s u l t ( )

# Get counts
counts = r e s u l t . g e t count s ( ’ grover ’ )
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Figure 23: Histogram of output probabilities.

p r i n t ( ’ Observed measurement outcomes : ’ )
p r i n t ( ’ s t r i n g | count ’ )
f o r key in so r t ed ( counts ) :

p r i n t ( ’ {:>5 s } { : d } ’ . format ( key , counts [ key ] ) )

# Plot histogram
f i g u r e = v i s u a l i z a t i o n . p l o t h i s tog ram ( counts )
p r i n t ( )
# We can d i s p l ay the histogram with f i g u r e . show ( ) i f matp lo t l i b i s
# proper ly con f i gu r ed . Instead , we wr i t e i t to f i l e .
f i g u r e . s a v e f i g ( ’ g r o v e r h i s t . png ’ )
p r i n t ( ’ Histogram saved as g r o v e r h i s t . png ’ )

That’s it! We have successfully executed Grover’s algorithm. The resulting histogram is
given in Figure 23: with only two calls to the black-box function Uf , we sample the correct
string 101 (the only solution of (12)) with probability ≈ 95%. The argument shots given to
the assemble() function determines the number of samples extracted from the quantum state,
i.e., the quantum circuit is executed that many times, each time performing a measurement
(and therefore potentially obtaining different outcomes).

The Qiskit allows running experiments on real quantum computing hardware accessible on
the cloud via the IBM Q experience, changing the backend object used to run the experiment.
In this example, we used a classical simulation of the quantum computer executed locally (via
the qasm simulator backend); such a simulation is only able to scale up to a dozen qubits or
so (a regular laptop should be able to simulate ≈ 18 qubits, but the computation can be slow
after 12-14 qubits).

To run experiments on a real device, one first needs an account on the IBM Q experience,
after which IBMQ can be loaded from Qiskit and one can access the list of available remote
backends — which includes some of IBM’s devices. More detailed instructions are available on
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Qiskit’s webpage. We should also remark that the current generation of quantum computing
devices has limited qubit connectivity, i.e., it only allows the application of two-qubit gates
between certain pairs of qubits. The code listed in this tutorial assumes an all-to-all connectivity,
which makes for much simpler code. The interested reader can modify the code to allow for
limited connectivity, using SWAP gates when necessary.

Another extension of the code that we leave as an exercise (and is perhaps simpler than the
above exercise) is to allow an arbitrary number of boolean variables and clauses in the Exactly-
1 3-SAT formula. For this extension, we need a controlled NOT with an arbitrary number of
controls. Such a gate will be used in two places: first, to implement the function Uf (in our
approach, we use one auxiliary qubit per clause and a final controlled NOT operation to check
that all clauses are |1〉); second, to implement the n-controlled Z. One way to implement a
controlled NOT with an arbitrary number of controls is to apply the same idea as the circuit in
Figure 22 for the triply-controlled NOT. This will require extra qubits, which will slow down
the classical simulation of the resulting circuit.

7 Further reading

In this tutorial we use several notational devices to help the reader, but they are usually not
employed in the quantum computing literature. We list them here.

• The subscript for bra-ket vectors to indicate the dimension of the space, e.g., |ψ〉q for
2q-dimensional vectors. Typically, the dimension of the space is defined elsewhere and can
be understood from the context. Whenever subscripts for kets are used, it is normally to
address registers.

• The vector arrow, e.g., ~, to indicate binary strings. Typically, binary strings are not dis-
tinguished from other mathematical symbols and they can be identified from the context.

• The use of Roman letters for basis vectors and Greek letters for general, i.e., possibly not
basis, vectors.

• The notation for the probability of observing the measurement outcomes: this tutorial
makes explicit the qubit(s) that is (are) being measured, but typically this is only defined
by the context.

Finally, the all-zero binary string of dimension q is normally denoted 0q, rather than ~0.
We end this tutorial with some pointers to papers describing quantum algorithm that provide

a speedup with respect to classical computation, in various areas of computing. This list is by
no means exhaustive: it merely serves the purpose of giving the reader some idea about existing
work showcasing the power of quantum computation. Additional references can be found from
the papers listed below, or looking up on the arXiv, where most of the quantum literature is
available.

The first article that we mention is of course Shor’s paper on integer factorization [Shor, 1997].
Shor’s algorithm determines the prime factors of an integer using a combination of a classical
algorithm and a quantum subroutine for the following period-finding problem: given integers
a, n with a < n, find the smallest integer r such that ax mod n = ax+r mod n, for all x.
We call this “period finding” because it can be seen as determining the period of the function
f(x) = ax mod n.

For readers who are familiar with topology, the work by Aharonov, Jones and Landau on
the approximation of Jones polynomial [Aharonov et al., 2009] will be of great interest. The
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Jones polynomial is an invariant of an oriented knot. It is known that exactly evaluating
the Jones polynomial is very difficult: it is a #P-hard problem, and it is not expected to
admit a polynomial-time classical algorithm. The paper [Aharonov et al., 2009] shows how to
approximately solve the problem in polynomial time using a quantum computer — an easier task
because of the approximation, but one for which no classical algorithm is known. Furthermore,
computing such an approximation is a BQP-complete problem, i.e., it solves a problem that is
as hard as any other problem that admits an efficient quantum algorithm. It is believed that
BQP-complete problems cannot be solved efficiently on classical computers, because that would
imply BQP = P, which in turn implies that there exist a polynomial-time classical algorithm
for integer factorization. Thus, surprisingly the computational power of quantum computing
can be rephrased in terms of the ability to approximate this topological quantity.

Another BQP-complete problem that received a lot of attention is Hamiltonian simulation.
This is the problem of simulating the time evolution of a quantum system, for which quantum
computers where originally proposed [Feynman, 1982]: it is known since the early days that
quantum computer can efficiently solve it [Lloyd, 1996], whereas all known classical algorithms
require exponential time. There are many papers on this topic; we refer to the very recent
[Haah et al., 2018] for an entry point with a good list of references.

Exponential speedups can also be obtained for easier-to-describe problems. As an exam-
ple, we mention the work of Harrow, Hassidim and Loyd on the solution of linear systems
[Harrow et al., 2009] in logarithmic time (although attaining logarithmic time requires several
assumptions on the input and the output of the algorithm, because parsing the equations in
the linear system trivially requires linear time already), and several papers discussing quantum
acceleration for random walks on graph [Childs et al., 2003], which find many applications in
computer science, e.g., [Ambainis, 2007].
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