
ar
X

iv
:1

80
2.

03
50

4v
3 

 [
m

at
h.

O
C

] 
 1

6 
Ju

l 2
01

9

COMPLEXITY OF A QUADRATIC PENALTY ACCELERATED

INEXACT PROXIMAL POINT METHOD FOR SOLVING LINEARLY

CONSTRAINED NONCONVEX COMPOSITE PROGRAMS

WEIWEI KONG ∗, JEFFERSON G. MELO † , AND RENATO D.C. MONTEIRO ∗

Abstract. This paper analyzes the iteration-complexity of a quadratic penalty accelerated
inexact proximal point method for solving linearly constrained nonconvex composite programs. More
specifically, the objective function is of the form f + h where f is a differentiable function whose
gradient is Lipschitz continuous and h is a closed convex function with possibly unbounded domain.
The method, basically, consists of applying an accelerated inexact proximal point method for solving
approximately a sequence of quadratic penalized subproblems associated to the linearly constrained
problem. Each subproblem of the proximal point method is in turn approximately solved by an
accelerated composite gradient (ACG) method. It is shown that the proposed scheme generates
a ρ−approximate stationary point in at most O(ρ−3) ACG iterations. Finally, numerical results
showing the efficiency of the proposed method are also given.

Key words. quadratic penalty method, composite nonconvex program, iteration-complexity,
inexact proximal point method, first-order accelerated gradient method.

AMS subject classifications. 47J22, 90C26, 90C30, 90C60, 65K10.

1. Introduction. Our main goal in this paper is to describe and establish the
iteration-complexity of a quadratic penalty accelerated inexact proximal point (QP-
AIPP) method for solving the linearly constrained nonconvex composite minimization
problem

(1) min {f(z) + h(z) : Az = b, z ∈ ℜn}

where A ∈ ℜl×n, b ∈ ℜl, h : ℜn → (−∞,∞] is a proper lower-semicontinuous convex
function and f is a real-valued differentiable (possibly nonconvex) function whose
gradient is Lf -Lipschitz continuous on domh. For given tolerances ρ̂ > 0 and η̂ > 0,
the main result of this paper shows that the QP-AIPP method, started from any point
in domh (but not necessarily satisfying Az = b), obtains a triple (ẑ, v̂, p̂) satisfying

(2) v̂ ∈ ∇f(ẑ) + ∂h(ẑ) +A∗p̂, ‖v̂‖ ≤ ρ̂, ‖Aẑ − b‖ ≤ η̂

in at most O(ρ̂−2η̂−1) accelerated composite gradient (ACG) iterations. It is worth
noting that this result is obtained under the mild assumption that the optimal value
of (1) is finite and hence assumes neither that domh is bounded nor that (1) has an
optimal solution.

The QP-AIPP method is based on solving penalized subproblems of the form

(3) min
{

f(z) + h(z) +
c

2
‖Az − b‖2 : z ∈ ℜn

}

for an increasing sequence of positive penalty parameters c. These subproblems in
turn are approximately solved so as to satisfy the first two conditions in (2) and the

∗School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,
30332-0205. (E-mails: wkong37@gatech.edu and monteiro@isye.gatech.edu). The work of Renato
D.C. Monteiro was partially supported by NSF Grant CMMI-1300221, ONR Grant N00014-18-1-2077
and CNPq Grant 406250/2013-8.

†Institute of Mathematics and Statistics, Federal University of Goias, Campus II- Caixa Postal
131, CEP 74001-970, Goiânia-GO, Brazil. (E-mail: jefferson@ufg.br). The work of this author
was supported in part by CNPq Grants 406250/2013-8, 406975/2016-7 and FAPEG/GO.

1

http://arxiv.org/abs/1802.03504v3


2 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

QP-AIPP method terminates when c is large enough so as to guarantee that the third
condition in (2) also hold. Moreover, each subproblem in turn is approximately solved
by an accelerated inexact proximal point (AIPP) method which solves a sequence of
prox subproblems of the form

(4) min

{

f(z) + h(z) +
c

2
‖Az − b‖2 + 1

2λ
‖z − zk−1‖2 : z ∈ ℜn

}

where zk−1 is the previous iterate and the next one, namely zk, is a suitable approxi-
mate solution of (4). Choosing λ sufficiently small ensures that the objective function
of (4) is a convex composite optimization which is approximately solved by an ACG
method.

More generally, the AIPP method mentioned above solves problems of the form

(5) φ∗ := min {φ(z) := g(z) + h(z) : z ∈ ℜn}

where h is as above and g is a differentiable function whose gradient is M -Lipschitz
continuous on domh and whose lower curvature is bounded below on domh by some
constant m ∈ (0,M ], i.e.,

g(u)− [g(z) + 〈∇g(z), u− z〉] ≥ −m
2
‖u− z‖2 ∀ z, u ∈ domh.

Note that the penalized subproblem (3) is a special case of (5) with g(z) = f(z) +
(c/2)‖Az − b‖2, and hence m = Lf and M = Lf + c‖A‖2. It is well-known that the
composite gradient method finds a ρ-solution of (5), i.e., a pair (z̄, v̄) ∈ domh× ℜn
such that v̄ ∈ ∇f(z̄)+∂h(z̄) and ‖v̄‖ ≤ ρ, in at most O(M(φ(z0)−φ∗)/ρ2) composite-
type iterations where z0 is the initial point. On the other hand, the AIPP method
finds such solution in at most

(6) O
(√

Mm

ρ2
min

{

φ(z0)− φ∗,md20
}

+

√

M

m
log+1

(

M

m

)

)

composite type-iterations where d0 denotes the distance of z0 to the set of optimal
solutions of (5). Hence, its complexity is better than that for the composite gradient
method by a factor of

√

M/m. The main advantage of the AIPP method is that its

iteration-complexity bound has a lower dependence on M , i.e., it is O(
√
M) instead

of the O(M)-dependence of the composite gradient method. Hence, the use of the
AIPP method instead of the composite gradient method to solve (4) (whose associated
M = O(c)) in the scheme outlined above is both theoretically and computationally
appealing.

Related works. Under the assumption that domain of φ is bounded, [9] presents
an ACG method applied directly to (5) which obtains a ρ-approximate solution of (5)
in

(7) O
(

MmD2
h

ρ2
+

(

Md0
ρ

)2/3
)

whereDh denotes the diameter of the domain of h. Motivated by [9], other papers have
proposed ACG methods for solving (5) under different assumptions on the functions
g and h (see for example [5, 7, 10, 19, 28]). In particular, their analyses exploit the



QUADRATIC PENALTY ACCELERATED METHOD 3

lower curvature m and the work [5], which assumes h = 0, establishes a complexity
which depends on

√
M logM instead of M as in [9]. As in the latter work, our AIPP

method also uses the idea of solving a sequence of convex proximal subproblems by
an ACG method, but solves them in a more relaxed manner and, as a result, achieves
the complexity bound (6) which improves the one in [5] by a factor of log(M/ρ). It
should be noted that the second complexity bound in (6) in terms of d0 is new in the
context of the composite nonconvex problem (5) and follows as a special case of a more
general bound, namely (61), which actually unifies both bounds in (6). Moreover, in
contrast to the analysis of [9], ours does not assume that Dh is finite. Also, inexact
proximal point methods and HPE variants of the ones studied in [21, 30] for solving
convex-concave saddle point problems and monotone variational inequalities, which
inexactly solve a sequence of proximal suproblems by means of an ACG variant, were
previously proposed by [11, 12, 16, 22, 27]. The behavior of an accelerated gradient
method near saddle points of unconstrained instances of (5) (i.e., with h = 0) is
studied in [24].

Finally, complexity analysis of first-order quadratic penalty methods for solving
special convex instances of (1) where h is an indicator function was first studied in [17]
and further analyzed in [4, 20, 23]. Papers [18, 29] study the iteration-complexity of
first-order augmented Lagrangian methods for solving the latter class of convex prob-
lems. The authors are not aware of earlier papers dealing with complexity analysis of
quadratic penalty methods for solving nonconvex constrained optimization problems.
However, [14] studies the complexity of a proximal augmented Lagrangian method
for solving nonconvex instances of (1) under the very strong assumption that ∇f is
Lipschitz continuous everywhere and h = 0.

Organization of the paper. Subsection 1.1 contains basic definitions and notation
used in the paper. Section 2 is divided into two subsections. The first one introduces
the composite nonconvex optimization problem and discusses some approximate so-
lutions criteria. The second subsection is devoted to the study of a general inexact
proximal point framework to solve nonconvex optimization problems. In this subsec-
tion, we also show that a composite gradient method can be seen as an instance of
the latter framework. Section 3 is divided into two subsections. The first one reviews
an ACG method and its properties. Subsection 3.2 presents the AIPP method and its
iteration-complexity analysis. Section 4 states and analyzes the QP-AIPP method for
solving linearly constrained nonconvex composite optimization problems. Section 5
presents computational results. Section 6 gives some concluding remarks. Finally, the
appendix gives the proofs of some technical results needed in our presentation.

1.1. Basic definitions and notation. This subsection provides some basic
definitions and notation used in this paper.

The set of real numbers is denoted by ℜ. The set of non-negative real numbers
and the set of positive real numbers are denoted by ℜ+ and ℜ++, respectively. We
let ℜ2

++ := ℜ++ ×ℜ++. Let ℜn denote the standard n-dimensional Euclidean space
with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. For t > 0, define
log+1 (t) := max{log t, 1}. The diameter of a set D ⊂ ℜn is defined as sup{‖z − z′‖ :
z, z′ ∈ D}.

Let ψ : ℜn → (−∞,+∞] be given. The effective domain of ψ is denoted by
domψ := {x ∈ ℜn : ψ(x) < ∞} and ψ is proper if domψ 6= ∅. Moreover, a proper
function ψ : ℜn → (−∞,+∞] is µ-strongly convex for some µ ≥ 0 if

ψ(αz + (1− α)u) ≤ αψ(z) + (1− α)ψ(u) − α(1− α)µ
2

‖z − u‖2



4 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

for every z, u ∈ domψ and α ∈ [0, 1]. If ψ is differentiable at z̄ ∈ ℜn, then its affine
approximation ℓψ(·; z̄) at z̄ is defined as

(8) ℓψ(z; z̄) := ψ(z̄) + 〈∇ψ(z̄), z − z̄〉 ∀z ∈ ℜn.
Also, for ε ≥ 0, its ε-subdifferential at z ∈ domψ is denoted by

(9) ∂εψ(z) := {v ∈ ℜn : ψ(u) ≥ ψ(z) + 〈v, u − z〉 − ε, ∀u ∈ ℜn} .
The subdifferential of ψ at z ∈ domψ, denoted by ∂ψ(z), corresponds to ∂0ψ(z).
The set of all proper lower semi-continuous convex functions ψ : ℜn → (−∞,+∞] is
denoted by Conv (ℜn).

The proof of the following result can be found in [13, Proposition 4.2.2].
Proposition 1. Let ψ : ℜn → (−∞,+∞], z, z̄ ∈ domψ and v ∈ ℜn be given

and assume that v ∈ ∂ψ(z). Then, v ∈ ∂εψ(z̄) where ε = ψ(z̄)−ψ(z)−〈v, z̄− z〉 ≥ 0.

2. Inexact proximal point method for nonconvex optimization. This
section contains two subsections. The first one states the composite nonconvex opti-
mization (CNO) problem and discusses some notions of approximate solutions. The
second subsection proposes and analyzes a general framework for solving noncon-
vex optimization problems and shows under very mild conditions that the composite
gradient method is an instance of the general framework.

2.1. The CNO problem and corresponding approximate solutions. This
subsection describes the CNO problem which will be the main subject of our analysis
in Subsection 3.2. It also describes different notions of approximate solutions for the
CNO problem and discusses their relationship.

The CNO problem we are interested in is (5) where the following conditions are
assumed to hold:

(A1) h ∈ Conv (ℜn);
(A2) g is a differentiable function on domh which, for some M ≥ m > 0, satisfies

(10) − m

2
‖u− z‖2 ≤ g(u)− ℓg(u; z) ≤

M

2
‖u− z‖2 ∀z, u ∈ domh;

(A3) φ∗ > −∞.
We now make a few remarks about the above assumptions. First, if∇g is assumed

to be M -Lipschitz continuous, then (10) holds with m =M . However, our interest is
in the case where 0 < m≪M since this case naturally arises in the context of penalty
methods for solving linearly constrained composite nonconvex optimization problems
as will be seen in Section 4. Second, it is well-known that a necessary condition for
z∗ ∈ domh to be a local minimum of (5) is that z∗ be a stationary point of g + h,
i.e., 0 ∈ ∇g(z∗) + ∂h(z∗).

The latter inclusion motivates the following notion of approximate solution for
problem (5): for a given tolerance ρ̂ > 0, a pair (ẑ, v̂) is called a ρ̂-approximate
solution of (5) if

(11) v̂ ∈ ∇g(ẑ) + ∂h(ẑ), ‖v̂‖ ≤ ρ̂.
Another notion of approximate solution that naturally arises in our analysis of the
general framework of Subsection 2.2 is as follows. For a given tolerance pair (ρ̄, ε̄) ∈
ℜ2

++, a quintuple (λ, z−, z, w, ε) ∈ ℜ++ ×ℜn ×ℜn ×ℜn ×ℜ+ is called a (ρ̄, ε̄)-prox-
approximate solution of (5) if

(12) w ∈ ∂ε
(

φ+
1

2λ
‖ · −z−‖2

)

(z),

∥

∥

∥

∥

1

λ
(z− − z) + w

∥

∥

∥

∥

≤ ρ̄, ε ≤ ε̄.



QUADRATIC PENALTY ACCELERATED METHOD 5

Note that the first definition of approximate solution above depends on the com-
posite structure (g, h) of φ but the second one does not.

The next proposition, whose proof is presented in Appendix A, shows how an
approximate solution as in (11) can be obtained from a prox-approximate solution by
performing a composite gradient step.

Proposition 2. Let h ∈ Conv (ℜn) and g be a differentiable function on domh
whose gradient satisfies the second inequality in (10). Let (ρ̄, ε̄) ∈ ℜ2

++ and a (ρ̄, ε̄)-
prox-approximate solution (λ, z−, z, w, ε) be given and define

zg := argminu

{

ℓg(u; z) + h(u) +
M + λ−1

2
‖u− z‖2

}

,(13)

qg := [M + λ−1](z − zg),(14)

δg := h(z)− h(zg)− 〈qg −∇g(z), z − zg〉,(15)

vg := qg +∇g(zg)−∇g(z).(16)

Then, the following statements hold:
(a) qg ∈ ∇g(z) + ∂h(zg) and

(

M + λ−1
)

‖z − zg‖ = ‖qg‖ ≤ ρ̄+
√

2ε̄(M + λ−1);

(b) δg ≥ 0, qg ∈ ∇g(z) + ∂δgh(z) and

‖qg‖2 + 2(M + λ−1)δg ≤
[

ρ̄+
√

2ε̄(M + λ−1)
]2

;

(c) if ∇g is M -Lipschitz continuous on domh, then

vg ∈ ∇g(zg) + ∂h(zg), ‖vg‖ ≤ 2‖qg‖ ≤ 2
[

ρ̄+
√

2ε̄(M + λ−1)
]

.

Proposition 2 shows that a prox-approximate solution yields three possible ways of
measuring the quality of an approximate solution of (5). Note that the ones described
in (a) and (b) do not assume ∇g to be Lipschitz continuous while the one in (c) does.
This paper only derives complexity results with respect to prox-approximate solutions
and approximate solutions as in (c) but we remark that complexity results for the ones
in (a) or (b) can also be obtained. Finally, we note that Lemma 20 in Appendix A
provides an alternative way of constructing approximate solutions as in (a), (b) or (c)
from a given prox-approximate solution.

2.2. A general inexact proximal point framework. This subsection in-
troduces a general inexact proximal point (GIPP) framework for solving the CNO
problem (5).

Although our main goal is to use the GIPP framework in the context of the CNO
problem, we will describe it in the context of the following more general problem

(17) φ∗ := inf{φ(z) : z ∈ ℜn}

where φ : ℜn → (−∞,∞] is a proper lower semi-continuous function, and φ∗ > −∞.
We now state the GIPP framework for computing prox-approximate solutions of

(17).

GIPP Framework



6 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

(0) Let σ ∈ (0, 1) and z0 ∈ domφ be given, and set k = 1;
(1) find a quadruple (λk, zk, ṽk, ε̃k) ∈ ℜ++ ×ℜn ×ℜn ×ℜ+ satisfying

ṽk ∈ ∂ε̃k
(

λkφ+
1

2
‖ · −zk−1‖2

)

(zk),(18)

‖ṽk‖2 + 2ε̃k ≤ σ‖zk−1 − zk + ṽk‖2;(19)

(2) set k ← k + 1 and go to (1).

Observe that GIPP framework is not a well-specified algorithm but rather a con-
ceptual framework consisting of (possibly many) specific instances. In particular, it
does not specify how the quadruple (λk, zk, ṽk, ε̃k) is computed and whether it exists.
These two issues will depend on the specific instance under consideration and the
properties assumed about problem (17). In this paper, we will discuss two specific in-
stances of the above GIPP framework for solving (5), namely, the composite gradient
method briefly discussed at the end of this subsection and an accelerated proximal
method presented in Subsection 3.2. In both of these instances, the sequences {ṽk}
and {ε̃k} are non-trivial (see Proposition 7 and Lemma 12(c)).

Let {(λk, zk, ṽk, ε̃k)} be the sequence generated by an instance of the GIPP frame-
work and consider the sequences {(rk, vk, εk)} defined as

(20) (vk, εk) :=
1

λk
(ṽk, ε̃k), rk :=

zk−1 − zk
λk

.

Then, it follows from (18) that the quintuple (λ, ẑ, z, v, ε) = (λk, zk−1, zk, vk, εk) sat-
isfies the inclusion in (12) for every k ≥ 1. In what follows, we will derive the iteration
complexity for the quintuple (λk, zk−1, zk, vk, εk) to satisfy: i) the first inequality in
(12) only, namely, ‖vk+rk‖ ≤ ρ̄; and ii) both inequalities in (12), namely, ‖vk+rk‖ ≤ ρ̄
and εk ≤ ε̄, and hence a (ρ̄, ε̄)-prox-approximate solution of (5).

Without necessarily assuming that the error condition (19) holds, the following
technical but straightforward result derives bounds on ε̃k and ‖ṽk + zk−1 − zk‖ in
terms of the quantities

(21) δk = δk(σ) :=
1

λk
max

{

0, ‖ṽk‖2 + 2ε̃k − σ‖zk−1 − zk + ṽk‖2
}

, Λk :=

k
∑

i=1

λi

where σ ∈ [0, 1) is a given parameter. Note that if (19) is assumed then δk = 0.
Lemma 3. Assume that the sequence {(λk, zk, ṽk, ε̃k)} satisfies (18) and let σ ∈

(0, 1) be given. Then, for every k ≥ 1, there holds

(22)
1

σλk

(

‖ṽk‖2 + 2ε̃k − λkδk
)

≤ 1

λk
‖zk−1 − zk + ṽk‖2 ≤

2[φ(zk−1)− φ(zk)] + δk
1− σ

where δk is as in (21).
Proof. First note that the inclusion in (18) is equivalent to

λiφ(z) +
1

2
‖z − zi−1‖2 ≥ λiφ(zi) +

1

2
‖zi − zi−1‖2 + 〈ṽi, z − zi〉 − ε̃i ∀z ∈ ℜn.

Setting z = zi−1 in the above inequality and using the definition of δi given in (21),
we obtain

λi(φ(zi−1)− φ(zi)) ≥
1

2

(

‖zi−1 − zi‖2 + 2 〈ṽi, zi−1 − zi〉 − 2ε̃i
)

=
1

2

[

‖zi−1 − zi + ṽi‖2 − ‖ṽi‖2 − 2ε̃i
]

≥ 1

2

[

(1− σ)‖zi−1 − zi + ṽi‖2 − λiδi
]



QUADRATIC PENALTY ACCELERATED METHOD 7

and hence the proof of the second inequality in (22) follows after simple rearrange-
ments. The first inequality in (22) follows immediately from (21).

Lemma 4. Let {(λk, zk, ṽk, ε̃k)} be generated by an instance of the GIPP frame-
work. Then, for every u ∈ ℜn, there holds

φ(zk) ≤ φ(u) +
1

2(1− σ)λk
‖zk−1 − u‖2, ∀k ≥ 1.

Proof. Using a simple algebraic manipulation, it is easy to see that (19) yields

(23) 〈ṽk, zk − zk−1〉+
1

σ
ε̃k −

1

2
‖zk−1 − zk‖2 ≤ −

1− σ
2σ
‖ṽk‖2.

Now, letting θ := (1− σ)/σ > 0, recalling definition (9), using (18) and (23), and the
fact that 〈v, v′〉 ≤ (θ/2)‖v‖2 + (1/2θ)‖v′‖2 for all v, v′ ∈ ℜn, we conclude that

λk[φ(zk)− φ(u)] ≤
1

2
‖zk−1 − u‖2 + 〈ṽk, zk − u〉+ ε̃k −

1

2
‖zk − zk−1‖2

≤ 1

2
‖zk−1 − u‖2 + 〈ṽk, zk−1 − u〉 −

1− σ
2σ
‖ṽk‖2

≤ 1

2
‖zk−1 − u‖2 +

(

θ

2
‖ṽk‖2 +

1

2θ
‖zk−1 − u‖2

)

− 1− σ
2σ
‖ṽk‖2

and hence that the conclusion of the lemma holds due to the definition of θ.
Let z0 ∈ ℜn, σ ∈ (0, 1), and λ ≥ 0 be given and consider the following quantity

(24) R(φ;λ) := inf

{

R(u;φ, λ) :=
1

2
‖z0 − u‖2 + (1 − σ)λ[φ(u) − φ∗] : u ∈ ℜn

}

where φ∗ is as in (17). Clearly, R(u;φ, λ) ∈ ℜ+ for all u ∈ domh and R(φ;λ) ∈ ℜ+.
Proposition 5. Let {(λk, zk, ṽk, ε̃k)} be generated by an instance of the GIPP

framework. Then, the following statements hold:
(a) for every k ≥ 1,

(25)
1− σ
2λk

‖zk−1 − zk + ṽk‖2 ≤ φ(zk−1)− φ(zk);

(b) for every k > 1, there exists i ≤ k such that

(26)
1

λ2i
‖zi−1 − zi + ṽi‖2 ≤

2R(φ;λ1)

(1 − σ)2λ1(Λk − λ1)
where Λk and R(·; ·) are as in (21) and (24), respectively.

Proof. (a) The proof of (25) follows immediately from (22) and the fact that (19)
is equivalent to δk = 0.

(b) It follows from definitions of φ∗ and R(·; ·, ·) in (17) and (24), respectively,
(25) and Lemma 4 with k = 1 that for all u ∈ ℜn,

R(u;φ, λ1)

(1 − σ)λ1
=

1

2(1− σ)λ1
‖z0 − u‖2 + φ(u)− φ∗ ≥ φ(z1)− φ∗ ≥

k
∑

i=2

[φ(zi−1)− φ(zi)]

≥ (1− σ)
k
∑

i=2

‖zi−1 − zi + ṽi‖2
2λi

≥ (1 − σ)(Λk − λ1)
2

min
i≤k

1

λ2i
‖zi−1 − zi + ṽi‖2

and hence that (26) holds in view of the definition of R(·; ·) in (24).



8 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

Proposition 5(a) shows that GIPP enjoys the descent property (25) which many
frameworks and/or algorithms for solving (17) also share. It is worth noting that,
under the assumption that φ is a KL-function, frameworks and/or algorithms sharing
this property have been developed for example in [1, 2, 6, 8] where it is shown that
the generated sequence {zk} converges to some stationary point of (17) with a well-
characterized asymptotic (but not global) convergence rate, as long as {zk} has an
accumulation point.

The following result, which follows immediately from Proposition 5, considers
the instances of the GIPP framework in which {λk} is constant. For the purpose of
stating it, define

(27) d0 := inf{‖z0 − z∗‖ : z∗ is an optimal solution of (17)}.

Note that d0 <∞ if and only if (17) has an optimal solution in which case the above
infimum can be replaced by a minimum in view of the first assumption following (17).

Corollary 6. Let {(λk, zk, ṽk, ε̃k)} be generated by an instance the GIPP frame-
work in which λk = λ for every k ≥ 1, and define {(vk, εk, rk)} as in (20). Then, the
following statements hold:

(a) for every k > 1, there exists i ≤ k such that

(28)
1

λ2
‖zi−1−zi+ṽi‖2 ≤

2R(φ;λ)

λ2(1− σ)2(k − 1)
≤

min
{

2[φ(z0)− φ∗], d2
0

(1−σ)λ

}

λ(1 − σ)(k − 1)

where R(·; ·) and d0 are as in (24) and (27), respectively;
(b) for any given tolerance ρ̄ > 0, the GIPP generates a quintuple (z−, z, ṽ, ε̃)

such that ‖z− − z + ṽ‖ ≤ λρ̄ in a number of iterations bounded by

(29)

⌈

2R(φ;λ)

λ2(1− σ)2ρ̄2 + 1

⌉

.

Proof. (a) The proof of the first inequality follows immediately from Proposi-
tion 5(b) and the fact that λk = λ for every k ≥ 1. Now, note that due to (24), we have
R(φ;λ) ≤ R(z0;φ, λ) = (1−σ)λ[φ(z0)−φ∗] and R(φ;λ) ≤ R(z∗;φ, λ) = ‖z0− z∗‖2/2
for every optimal solution z∗ of (17). The second inequality now follows from the
previous observation and the definition of d0 in (27).

(b) This statement follows immediately from the first inequality in (a).
In the above analysis, we have assumed that φ is quite general. On the other hand,

the remaining part of this subsection assumes that φ has the composite structure as
in (5), i.e., φ = g + h where g and h satisfy conditions (A1)-(A3) of Subsection 2.1.

We now briefly discuss some specific instances of the GIPP framework. Recall
that, for given stepsize λ > 0 and initial point z0 ∈ domh, the composite gradient
method for solving the CNO problem (5) computes recursively a sequence {zk} given
by

(30) zk = argminz

{

ℓg(z; zk−1) +
1

2λ
‖z − zk−1‖2 + h(z)

}

where ℓg(·; ·) is defined in (8). Note that if h is the indicator function of a closed
convex set then the above scheme reduces to the classical projected gradient method.

The following result, whose proof is given in Appendix B, shows that the compos-
ite gradient method with λ sufficiently small is a special case of the GIPP framework
in which λk = λ for all k.



QUADRATIC PENALTY ACCELERATED METHOD 9

Proposition 7. Let {zk} be generated by the composite gradient method (30)
with λ ≤ 1/m and λ < 2/M , and define ṽk := zk−1 − zk, λk := λ and

(31) ε̃k := λ

[

g(zk)− ℓg(zk; zk−1) +
1

2λ
‖zk − zk−1‖2

]

.

Then, the quadruple (λk, zk, ṽk, ε̃k) satisfies the inclusion (18) with φ = g + h, and
the relative error condition (19) with σ := (λM + 2)/4. Thus, the composite gradient
method (30) can be seen as an instance of the GIPP framework.

Under the assumption that λ < 2/M and ∇g is M -Lipschitz continuous, it is
well-known that the composite gradient method obtains a ρ̂-approximate solution
in O([φ(z0) − φ∗]/(λρ̂2)) iterations. On the other hand, under the assumption that
λ ≤ 1//M and ∇g is M -Lipschitz continuous, we can easily see that the above result
together with Corollary 6(b) imply that the composite gradient method obtains a
ρ̂-approximate solution in O(R(φ;λ)/(λ2 ρ̂2)) iterations.

We now make a few general remarks about our discussion in this subsection so
far. First, the condition on the stepsize λ of Proposition 7 forces it to be O(1/M) and
hence quite small whenever M ≫ m. Second, Corollary 6(b) implies that the larger
λ is, the smaller the complexity bound (29) becomes. Third, letting λk = λ in the
GIPP framework for some λ ≤ 1/m guarantees that the function λkφ+ ‖ ·−zk−1‖2/2
which appears in (18) is convex.

In the remaining part of this subsection, we briefly outline the ideas behind an
accelerated instance of the GIPP framework which chooses λ = O(1/m). First, note
that when σ = 0, (18) and (19) imply that (ṽk, ε̃k) = (0, 0) and

(32) 0 ∈ ∂
(

λkφ+
1

2
‖ · −zk−1‖2

)

(zk).

and hence that zk is an optimal solution of the prox-subproblem

(33) zk = argminz

{

λkφ(z) +
1

2
‖z − zk−1‖2

}

.

More generally, assuming that (19) holds for some σ > 0 gives us an interpretation
of zk, together with (ṽk, ε̃k), as being an approximate solution of (33) where its (rel-
ative) accuracy is measured by the σ-criterion (19). Obtaining such an approximate
solution is generally difficult unless the objective function of the prox-subproblem (33)
is convex. This suggests choosing λk = λ for some λ ≤ 1/m which, according to a
remark in the previous paragraph, ensures that λkφ+(1/2)‖ ·‖2 is convex for every k,
and then applying an ACG method to the (convex) prox-subproblem (33) to obtain
zk and a certificate pair (ṽk, ε̃k) satisfying (19). An accelerated prox-instance of the
GIPP framework obtained in this manner will be the subject of Subsection 3.2.

3. Accelerated gradient methods. The main goal of this section is to present
another instance of the GIPP framework where the triples (zk, ṽk, ε̃k) are obtained by
applying an ACG method to the subproblem (33). It contains two subsections. The
first one reviews an ACG variant for solving a composite strongly convex optimization
problem and discusses some well-known and new results for it which will be useful in
the analysis of the accelerated GIPP instance. Subsection 3.2 presents the acceler-
ated GIPP instance for solving (5) and derives its corresponding iteration-complexity
bound.



10 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

3.1. Accelerated gradient method for strongly convex optimization.

This subsection reviews an ACG variant and its convergence properties for solving
the following optimization problem

(34) min{ψ(x) := ψs(x) + ψn(x) : x ∈ ℜn}

where the following conditions are assumed to hold
(B1) ψn : ℜn → (−∞,+∞] is a proper, closed and µ-strongly convex function with

µ ≥ 0;
(B2) ψs is a convex differentiable function on domψn which, for some L > 0,

satisfies ψs(u) − ℓψs
(u;x) ≤ L‖u − x‖2/2 for every x, u ∈ domψn where

ℓψs
(·; ·) is defined in (8).

The ACG variant ([3, 12, 25, 26, 31]) for solving (34) is as follows.

ACG Method

(0) Let a pair of functions (ψs, ψn) as in (34) and initial point x0 ∈ domψn be
given, and set y0 = x0, A0 = 0, Γ0 ≡ 0 and j = 0;

(1) compute

Aj+1 = Aj +
µAj + 1 +

√

(µAj + 1)2 + 4L(µAj + 1)Aj

2L
,

x̃j =
Aj
Aj+1

xj +
Aj+1 −Aj
Aj+1

yj , Γj+1 =
Aj
Aj+1

Γj +
Aj+1 −Aj
Aj+1

ℓψs
(·; x̃j),

yj+1 = argminy

{

Γj+1(y) + ψn(y) +
1

2Aj+1
‖y − y0‖2

}

,

xj+1 =
Aj
Aj+1

xj +
Aj+1 −Aj
Aj+1

yj+1;

(2) compute

uj+1 =
y0 − yj+1

Aj+1
,

ηj+1 = ψ(xj+1)− Γj+1(yj+1)− ψn(yj+1)− 〈uj+1, xj+1 − yj+1〉;

(3) set j ← j + 1 and go to (1).

Some remarks about the ACG method follow. First, the main core and usually the
common way of describing an iteration of the ACG method is as in step 1. Second, the
extra sequences {uj} and {ηj} computed in step 2 will be used to develop a stopping
criterion for the ACG method when the latter is called as a subroutine in the context
of the AIPP method stated in Subsection 3.2. Third, the ACG method in which
µ = 0 is a special case of a slightly more general one studied by Tseng in [31] (see
Algorithm 3 of [31]). The analysis of the general case of the ACG method in which
µ ≥ 0 was studied in [12, Proposition 2.3].

The next proposition summarizes the basic properties of the ACG method.
Proposition 8. Let {(Aj ,Γj , xj , uj, ηj)} be the sequence generated by the ACG

method applied to (34) where (ψs, ψn) is a given pair of data functions satisfying (B1)
and (B2) with µ ≥ 0. Then, the following statements hold



QUADRATIC PENALTY ACCELERATED METHOD 11

(a) for every j ≥ 1, we have Γj ≤ ψs and

ψ(xj) ≤ min
x

{

Γj(x) + ψn(x) +
1

2Aj
‖x− x0‖2

}

,(35)

Aj ≥
1

L
max

{

j2

4
,

(

1 +

√

µ

4L

)2(j−1)
}

;(36)

(b) for every solution x∗ of (34), we have

(37) ψ(xj)− ψ(x∗) ≤
1

2Aj
‖x∗ − x0‖2 ∀j ≥ 1;

(c) for every j ≥ 1, we have

(38) uj ∈ ∂ηj (ψs + ψn)(xj), ‖Ajuj + xj − x0‖2 + 2Ajηj ≤ ‖xj − x0‖2.

Proof. For the proofs of (a) and (b) see [12, Proposition 2.3].
(c) It follows from the optimality condition for yj and the definition of uj that

uj ∈ ∂(Γj + ψn)(yj), for all j ≥ 1. Hence Proposition 1 yields

(39) (Γj + ψn)(x) ≥ (Γj + ψn)(xj) + 〈uj , x− xj〉 − η̃j , ∀x ∈ ℜn,

where η̃j = (Γj+ψn)(xj)−(Γj+ψn)(yj)−〈uj, xj−yj〉 ≥ 0. Thus the inclusion in (38)
follows from (39), the first statement in (a), and the fact that ηj = η̃j+ψs(xj)−Γj(xj).
Now, in order to prove the inequality in (38), note that y0 = x0 and that the definitions
of uj and ηj yield

‖Ajuj + xj − x0‖2 − ‖xj − x0‖2 = ‖yj − y0‖2 + 2〈y0 − yj, xj − y0〉(40)

2Ajηj = 2Aj [ψ(xj)− (Γj + ψn)(yj)] + 2〈y0 − yj, yj − xj〉.(41)

Then adding the above two identities we obtain

‖Ajuj + xj − x0‖2 + 2Aηj − ‖xj − x0‖2 = 2Aj [ψ(xj)− (Γj + ψn)(yj)]− ‖yj − y0‖2

≤ 2Aj

[

ψ(xj)−
(

(Γj + ψn)(yj) +
1

2Aj
‖yj − y0‖2

)]

.

Hence, the inequality in (38) follows from the last inequality, the definition of yj and
(35).

The main role of the ACG variant of this subsection is to find an approximate
solution zk of the subproblem (18) together with a certificate pair (ṽk, ε̃k) satisfying
(18) and (19). Indeed, since (33) with λ sufficiently small is a special case of (34), we
can apply the ACG method with x0 = zk−1 to obtain the triple (zk, ṽk, ε̃k) satisfying
(18) and (19).

The following result essentially analyzes the iteration-complexity to compute the
aforementioned triple.

Lemma 9. Let {(Aj , xj , uj, ηj)} be the sequence generated by the ACG method
applied to (34) where (ψs, ψn) is a given pair of data functions satisfying (B1) and
(B2) with µ ≥ 0. Then, for any σ > 0 and index j such that Aj ≥ 2(1 +

√
σ)2/σ, we

have



12 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

(42) ‖uj‖2 + 2ηj ≤ σ‖x0 − xj + uj‖2.

As a consequence, the ACG method obtains a triple (x, u, η) = (xj , uj, ηj) satisfying

u ∈ ∂η(ψs + ψn)(x) ‖u‖2 + 2η ≤ σ‖x0 − x+ u‖2

in at most
⌈

2
√
2L(1 +

√
σ)/
√
σ
⌉

iterations.

Proof. Using the triangle inequality for norms, the relation (a+ b)2 ≤ 2(a2 + b2)
for all a, b ∈ ℜ, and the inequality in (38), we obtain

‖uj‖2 + 2ηj ≤ max{1/A2
j , 1/(2Aj)}(‖Ajuj‖2 + 4Ajηj)

≤ max{1/A2
j , 1/(2Aj)}(2‖Ajuj + xj − x0‖2 + 2‖xj − x0‖2 + 4Ajηj)

≤ max{(2/Aj)2 , 2/Aj}‖xj − x0‖2 ≤
σ

(1 +
√
σ)2
‖xj − x0‖2

where the last inequality is due to Aj ≥ 2(1+
√
σ)2/σ. On the other hand, the triangle

inequality for norms and simple calculations yield

‖xj − x0‖2 ≤ (1 +
√
σ)‖x0 − xj + uj‖2 +

(

1 +
1√
σ

)

‖uj‖2.

Combining the previous estimates, we obtain

(43) ‖uj‖2 + 2ηj ≤
σ

1 +
√
σ
‖x0 − xj + uj‖2 +

√
σ

1 +
√
σ
‖uj‖2

which easily implies (42). Now if j ≥
⌈

2
√
2L(1 +

√
σ)/
√
σ
⌉

then it follows from (36)

that Aj ≥ 2(1+
√
σ)2/σ and hence, due to the first statement of the lemma, (42) holds.

The last conclusion combined with the inclusion in (38) prove the last statement of
the lemma.

Note that Proposition 8 and Lemma 9 hold for any µ ≥ 0. On the other hand,
the next two results hold only for µ > 0 and derive some important relations satisfied
by two distinct iterates of the ACG method. They will be used later on in Subsection
3.2 to analyze the refinement phase (step 3) of the AIPP method stated there.

Lemma 10. Let {(Aj , xj , uj, ηj)} be generated by the ACG method applied to (34)
where (ψs, ψn) is a given pair of data functions satisfying (B1) and (B2) with µ > 0.
Then,

(44)

(

1− 1
√

Ajµ

)

‖x∗ − x0‖ ≤ ‖xj − x0‖ ≤
(

1 +
1

√

Ajµ

)

‖x∗ − x0‖ ∀j ≥ 1,

where x∗ is the unique solution of (34). As a consequence, for all indices i, j ≥ 1
such that Aiµ > 1, we have

(45) ‖xj − x0‖ ≤





1 + 1√
Ajµ

1− 1√
Aiµ



 ‖xi − x0‖.



QUADRATIC PENALTY ACCELERATED METHOD 13

Proof. First note that condition (B1) combined with (34) imply that ψ is µ-
strongly convex. Hence, it follows from (37) that

µ

2
‖xj − x∗‖2 ≤ ψ(xj)− ψ(x∗) ≤

1

2Aj
‖x∗ − x0‖2

and hence that

(46) ‖xj − x∗‖ ≤
1

√

Ajµ
‖x∗ − x0‖.

The inequalities

‖x∗ − x0‖ − ‖xj − x∗‖ ≤ ‖xj − x0‖ ≤ ‖xj − x∗‖+ ‖x∗ − x0‖,
which are due to the triangle inequality for norms, together with (46) clearly implies
(44). The last statement of the lemma follows immediately from (44).

As a consequence of Lemma 10, the following result obtains several important
relations on certain quantities corresponding to two arbitrary iterates of the ACG
method.

Lemma 11. Let {(Aj , xj , uj, ηj)} be generated by the ACG method applied to (34)
where (ψs, ψn) is a given pair of data functions satisfying (B1) and (B2) with µ > 0.
Let i be an index such that Ai ≥ max{8, 9/µ}. Then, for every j ≥ i, we have

(47) ‖xj − x0‖ ≤ 2‖xi − x0‖, ‖uj‖ ≤
4

Aj
‖xi − x0‖, ηj ≤

2

Aj
‖xi − x0‖2,

(48) ‖x0 − xj + uj‖ ≤
(

4 +
8

Aj

)

‖x0 − xi + ui‖, ηj ≤
8‖x0 − xi + ui‖2

Aj
.

Proof. The first inequality in (47) follows from (45) and the assumption that
Aiµ ≥ 9. Now, using the inequality in (38) and the triangle inequality for norms, we
easily see that

‖uj‖ ≤
2

Aj
‖xj − x0‖, ηj ≤

1

2Aj
‖xj − x0‖2

which, combined with the first inequality in (47), prove the second and the third
inequalities in (47). Noting that Ai ≥ 8 by assumption, Lemma 9 implies that (42)
holds with σ = 1 and j = i, and hence that

(49) ‖ui‖ ≤ ‖x0 − xi + ui‖.
Using the triangle inequality, the first two inequalities in (47) and relation (49), we
conclude that

‖x0 − xj + uj‖ ≤ ‖x0 − xj‖+ ‖uj‖ ≤
(

2 +
4

Aj

)

‖x0 − xi‖

≤
(

2 +
4

Aj

)

(‖x0 − xi + ui‖+ ‖ui‖) ≤
(

4 +
8

Aj

)

‖x0 − xi + ui‖,

and that the first inequality in (48) holds. Now, the last inequality in (47), combined
with the triangle inequality for norms and the relation (a + b)2 ≤ 2(a2 + b2), imply
that

ηj ≤
2

Aj
‖x0 − xi‖2 ≤

4

Aj

(

‖x0 − xi + ui‖2 + ‖ui‖2
)

.

Hence, in view of (49), the last inequality in (48) follows.



14 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

3.2. The AIPP method. This subsection introduces and analyzes the AIPP
method to compute approximate solutions of the CNO problem (5). The main results
of this subsection are Theorem 13 and Corollary 14 which analyze the iteration-
complexity of the AIPP method to obtain approximate solutions of the CNO problem
in the sense of (12) and (11), respectively.

We start by stating the AIPP method.

AIPP Method

(0) Let z0 ∈ domh, σ ∈ (0, 1), a pair (m,M) satisfying (10), a scalar 0 < λ ≤
1/(2m) and a tolerance pair (ρ̄, ε̄) ∈ ℜ2

++ be given, and set k = 1;

(1) perform at least
⌈

6
√
2λM + 1

⌉

iterations of the ACG method started from
zk−1 and with

(50) ψs = ψks := λg +
1

4
‖ · −zk−1‖2, ψn = ψkn := λh+

1

4
‖ · −zk−1‖2

to obtain a triple (x, u, η) ∈ ℜn ×ℜn ×ℜ+ satisfying

(51) u ∈ ∂η
(

λ(g + h) +
1

2
‖ · −zk−1‖2

)

(x), ‖u‖2+2η ≤ σ‖zk−1−x+u‖2;

(2) if

(52) ‖zk−1 − x+ u‖ ≤ λρ̄

5
,

then go to (3); otherwise set (zk, ṽk, ε̃k) = (x, u, η), k ← k + 1 and go to (1);
(3) restart the previous call to the ACG method in step 1 to find an iterate

(x̃, ũ, η̃) satisfying (51) with (x, u, η) replaced by (x̃, ũ, η̃) and the extra con-
dition

(53) η̃/λ ≤ ε̄

and set (zk, ṽk, ε̃k) = (x̃, ũ, η̃); finally, output (λ, z−, z, w, ε) where

(z−, z, w, ε) = (zk−1, zk, ṽk/λ, ε̃k/λ).

Some comments about the AIPP method are in order. First, the ACG iterations
performed in steps 1 and 3 are referred to as the inner iterations of the AIPP method.
Second, in view of the last statement of Lemma 9 with (ψs, ψn) given by (50), the
ACG method obtains a triple (x, u, η) satisfying (51). Observe that Proposition 8(c)
implies that every triple (x, u, η) generated by the ACG method satisfies the inclusion
in (51) and hence only the inequality in (51) needs to be checked for termination.
Third, the consecutive loops consisting of steps 1 and 2 (or, steps 1, 2 and 3 in the
last loop) are referred to as the outer iterations of the AIPP method. In view of (51),
they can be viewed as iterations of the GIPP framework applied to the CNO problem
(5). Fourth, instead of running the ACG method by at least the constant number
of iterations described in step 1, one could run the more practical variant which
stops (usually, much earlier) whenever the second inequality in (51) is satisfied. We
omit the tedious analysis and more complicated description of this AIPP variant, but



QUADRATIC PENALTY ACCELERATED METHOD 15

remark that its iteration complexity is the same as the one studied in this subsection.
Finally, the last loop supplements steps 1 and 2 with step 3 whose goal is to obtain a
triple (x̃, ũ, η̃) with a possibly smaller η̃ while preserving the quality of the quantity
‖zk−1 − x̃ + ũ‖ which at its start is bounded by λρ̄/5 and, throughout its inner
iterations, can be shown to be bounded by λρ̄ (see the first inequality in (58)).

The next proposition summarizes some facts about the AIPP method.
Lemma 12. The following statements about the AIPP method hold:
(a) at every outer iteration, the call to the ACG method in step 1 finds a triple

(x, u, η) satisfying (51) in at most

(54)

⌈

max

{

2(1 +
√
σ)√

σ
, 6

}√
2λM + 1

⌉

inner iterations;
(b) at the last outer iteration, the extra number of ACG iterations to obtain the

triple (x̃, ṽ, η̃) is bounded by

(55)

⌈

2
√
2λM + 1 log+1

(

2ρ̄
√

(2λM + 1)λ

5
√
ε̄

)

+ 1

⌉

;

(c) the AIPP method is a special implementation of the GIPP framework in which
λk = λ for every k ≥ 1;

(d) the number of outer iterations performed by the AIPP method is bounded by

(56)

⌈

25R(φ;λ)

(1 − σ)2λ2ρ̄2 + 1

⌉

where R(·; ·) is as defined in (24).
Proof. (a) First note that the function ψs defined in (50) satisfies condition (B2)

of Subsection 3.1 with L = λM +1/2, in view of (10). Hence, it follows from the last
statement of Lemma 9 that the ACG method obtains a triple (x, u, η) satisfying (51)
in at most

(57)

⌈

2
√
2(1 +

√
σ)√

σ

√

λM + 1/2

⌉

inner iterations. Hence, (a) follows from the above conclusion and the fact that the

ACG method performs at least
⌈

6
√

2λM + 1)
⌉

inner iterations, in view of step 1.

(b) Consider the triple (x, u, η) obtained in step 1 during the last outer iteration
of the AIPP method. In view of step 1, there exists an index i ≥

⌈

6
√
2λM + 1

⌉

such
that (x, u, η) is the i-iterate of the ACG method started from x0 = zk−1 applied to
problem (34) with ψs and ψn as in (50). Noting that the functions ψn and ψs satisfy
conditions (B1) and (B2) of Subsection 3.1 with µ = 1/2 and L = λM + 1/2 (see
(10)) and using the above inequality on the index i and relation (36), we conclude
that Ai ≥ 18 = max{8, 9/µ}, and hence that i satisfies the assumption of Lemma 11.
It then follows from (48), (52) and (36) that the continuation of the ACG method as
in step 3 generates a triple (x̃, ũ, η̃) = (xj , uj, ηj) satisfying

(58) ‖zk−1 − x̃+ ũ‖ ≤
(

4 +
8

Aj

)

λρ̄

5
≤ λρ̄, η̃ ≤ 8λ2ρ̄2

25Aj
≤ 8Lλ2ρ̄2

25
(

1 +
√

µ
4L

)2(j−1)
.



16 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

Noting the stopping criterion (53) and using the last inequality above, the fact that
µ = 1/2 and L = λM + 1/2, and the relation that log(1 + t) ≥ t/2 for all t ∈ [0, 1],
we can easily see that (b) holds.

(c) This statement is obvious.
(d) This statement follows by combining (c), the stopping criterion (52), and

Corollary 6(b) with ρ̄ replaced by ρ̄/5.

Next we state one of our main results of this paper which derives the iteration-
complexity of the AIPP method to obtain prox-approximate solutions of the CNO
problem in the sense of (12). Recall that the AIPP method assumes that λ ≤ 1/(2m).

Theorem 13. Under assumptions (A1)-(A3), the AIPP method terminates with
a prox-solution (λ, z−, z, w, ε) within

(59) O
{

√
λM + 1

[

R(φ;λ)

λ2ρ̄2
+ log+1

(

ρ̄
√

(λM + 1)λ√
ε̄

)]}

inner iterations where R(·; ·) is as defined in (24).
Proof. It follows from the second statement following the AIPP method and the

definition of (λ, z−, z, w, ε) in step 3 that the quintuple (λ, z−, z, w, ε) satisfies the
inclusion in (12). Now, the bound in (59) follows by multiplying the bounds in
Lemma 54(a) and (b), and adding the result to the bound in Lemma 54(d).

Before stating the next result, we make two remarks about the above result. First,
even though our main interest is in the case where m ≤ M (see assumption (A.2)),
bound (59) also holds for the case in which m > M . Second, the AIPP version
in which λ = 1/(2m) yields the the best complexity bound under the reasonable
assumption that, inside the squared bracket in (59), the first term is larger than the
second one.

The following result describes the inner iteration complexity of the AIPP method
with λ = 1/(2m) to compute approximate solutions of (5) in the sense of (11).

Corollary 14. Assume that (A1)-(A3) hold and let a tolerance ρ̂ > 0 be given.
Also, let (λ, z−, z, w, ε) be the output obtained by the AIPP method with inputs λ =
1/(2m) and (ρ̄, ε̄) defined as

(60) (ρ̄, ε̄) :=

(

ρ̂

4
,

ρ̂2

32(M + 2m)

)

.

Then the following statements hold:
(a) the AIPP method terminates in at most

(61) O
{
√

M

m

(

m2R(φ;λ)

ρ̂2
+ log+1

(

M

m

))

}

inner iterations where R(·; ·) is as in (24).
(b) if ∇g is M -Lipschitz continuous, then the pair (ẑ, v̂) = (zg, vg) computed

according to (13) and (16) is a ρ̂-approximate solution of (5), i.e., (11) holds.
Proof. (a) This statement follows immediately from Theorem 13 with λ = 1/(2m)

and (ρ̄, ε̄) as in (60) and the fact that m ≤M due to (A2).
(b) First note that Theorem 13 implies that the AIPP output (λ, z−, z, w, ε)

satisfies criterion (12) with (ρ̄, ε̄) as in (60). Since (60) also implies that

ρ̂ = 2
[

ρ̄+
√

2ε̄ (M + 2m)
]

,



QUADRATIC PENALTY ACCELERATED METHOD 17

the conclusion of (b) follows from Proposition 2(c) and the fact that λ = 1/2m.

We now make a few remarks about the iteration-complexity bound (61) and
its relationship to two other ones obtained in the literature under the reasonable
assumption that the term O(1/ρ̂2) in (61) dominates the other one, i.e., bound (61)
reduces to

O
(

m
√
MmR(φ;λ)

ρ̂2

)

.

First, using the definition ofR(φ;λ), it is easy to see that the above bound is majorized
by the one in (6) (see the proof of Corollary 6(a)). Second, since the iteration-
complexity bound for the composite gradient method with λ = 1/M is O(M(φ(z0)−
φ∗)/ρ̂

2) (see the discussion following Proposition 7), we conclude that (6), and hence
(61), is better than the first bound by a factor of (M/m)1/2. Third, bound (6), and
hence (61), is also better than the one established in Corollary 2 of [9] for an ACG
method applied directly to the nonconvex problem (5), namely (7), by at least a factor
of (M/m)1/2. Note that the ACG method of [9] assumes that the diameter Dh of
domh is bounded while the AIPP method does not.

4. The QP-AIPP method. This section presents the QP-AIPP method for
obtaining approximate solutions of the linearly constrained nonconvex composite op-
timization problem (1) in the sense of (2).

Throughout this section, it is assumed that (1) satisfies the following conditions:
(C1) h ∈ Conv (ℜn), A 6= 0 and F := {z ∈ domh : Az = b} 6= ∅;
(C2) f is a differentiable function on domh and there exist scalars 0 < mf ≤ Lf

such that for every u, z ∈ domh,

‖∇f(z)−∇f(u)‖ ≤ Lf‖z − u‖,(62)

−mf

2
‖u− z‖2 + ℓf (u; z) ≤ f(u);(63)

(C3) there exists ĉ ≥ 0 such that ϕ̂ĉ > −∞ where

(64) ϕ̂c := inf
z

{

ϕc(z) := (f + h)(z) +
c

2
‖Az − b‖2 : z ∈ ℜn

}

, ∀c ∈ ℜ;

We make two remarks about conditions (C1)-(C3). First, (C1) and (C3) imply
that the optimal value of (1) is finite but not necessarily achieved. Second, (C3) is
quite natural in the sense that the penalty approach underlying the QP-AIPP method
would not make sense without it. Finally, (62) implies that

(65)
−Lf
2
‖u− z‖2 ≤ f(u)− ℓf (u; z) ≤

Lf
2
‖u− z‖2, ∀z, u ∈ domh.

and hence that (63) automatically holds with mf = Lf , i.e., (63) is redundant when
mf = Lf . Our analysis in this section also considers the case in which a scalar
0 < mf < Mf satisfying (63) is known.

Given a tolerance pair (ρ̂, η̂) ∈ ℜ2
++, a triple (ẑ, v̂, p̂) is said to be a (ρ̂, η̂)-

approximate solution of (1) if it satisfies (2). Clearly, a (ρ̂, η̂)-approximate solution
(ẑ, v̂, p̂) for the case in which (ρ̂, η̂) = (0, 0) means that 0 = v̂ ∈ ∇f(ẑ) + ∂h(ẑ) +A∗p̂
and Aẑ = b, and hence that (ẑ, p̂) is a first-order stationary pair of (1).

The QP-AIPPmethod is essentially a quadratic penalty approach where the AIPP
method is applied to the penalty subproblem (64) associated with (1) for a fixed c > 0



18 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

or for c taking values on an increasing sequence {ck} converging to infinity. Note that
(64) is a particular case of (5) in which

(66) g = gc := f +
c

2
‖A(·)− b‖2.

Moreover, we easily see that (63) and (65) imply that ∇gc satisfies condition (10)
with (m,M) = (mf , Lf + c‖A‖2).

Lemmas 15 and 17 below describe how a ρ̄-approximate solution of (64) in the
sense of (11) yields a (ρ̂, η̂)-approximate solution of (1) whenever c is sufficiently large.
Lemma 16 introduces an important quantity associated with the penalized problem
(64) which plays a fundamental role in expressing the inner iteration complexity of
the QP-AIPP method stated below for the case in which domh is not necessarily
bounded (see Theorem 18). It also establishes a few technical inequalities involving
this quantity, one of which plays an important role in the proof of Theorem 18 and
the statement of Lemma 17.

Lemma 15. Let (c, ρ̂) ∈ ℜ2
++ be given and let (ẑ, v̂) be a ρ̂-approximate solution

of (64) in the sense of (11) with g = gc where gc is as in (66). Then the triple (ẑ, v̂, p̂)
where p̂ := c(Aẑ − b) satisfies the inclusion and the first inequality in (2).

Proof. Since (ẑ, v̂) is a ρ̂-approximate solution of (64), we have v̂ ∈ ∇gc(ẑ)+∂h(ẑ)
and ‖v̂‖ ≤ ρ̂. Hence the result follows from the definition of p̂ and the fact that
∇gc(ẑ) = ∇g(ẑ) +A∗(c(Aẑ − b)) = ∇g(ẑ) +A∗p̂.

The above result is quite general in the sense that it holds for any c > 0. We
will now show that, by choosing c sufficiently large, we can actually guarantee that
(ẑ, v̂, p̂) of Lemma 15 also satisfies the second inequality in (2) as long as (ẑ, v̂) is
generated by an instance of the GIPP framework. We first establish the following
technical result.

Lemma 16. Let ĉ be as in (C3) and define

(67) Rc(λ) := inf{R(u;ϕc, λ) : u ∈ F} ∀(c, λ) ∈ ℜ2
+

where F , R(· ; ·, ·) and ϕc are as defined in (C1), (24) and (64), respectively. Then,

for every c ≥ ĉ and λ ≥ λ̂ ∈ R+, we have

0 ≤ R(u;ϕc, λ) ≤ R(u;ϕĉ, λ̂) <∞ ∀u ∈ F ,(68)

0 ≤ Rc(λ) ≤ Rĉ(λ̂) <∞.(69)

Moreover, if (1) has an optimal solution z∗, then

(70) Rc(λ) ≤
1

2
‖z0 − z∗‖2 + (1− σ)λ[ϕ̂∗ − ϕ̂c]

where ϕ̂∗ denotes the optimum value of (1).
Proof. Using (64) and assumption (C3), it easy to see that for every c ≥ ĉ, we

have ϕ̂c ≥ ϕ̂ĉ > −∞ and ϕc(u) = ϕĉ(u) = (f + h)(u) for every u ∈ F . Hence, the
conclusion of the lemma follows immediately from (67) and the definition of R(· ; ·, ·)
in (24).

We are now ready to describe the feasibility behavior of a GIPP instance applied
to (64).

Lemma 17. Assume that {(λk, zk, ṽk, ε̃k)} is a sequence generated by an instance
of the GIPP framework with input σ ∈ (0, 1) and z0 ∈ domh and with φ = ϕc for



QUADRATIC PENALTY ACCELERATED METHOD 19

some c > ĉ where ĉ is as in (C3) and ϕc is as in (64). Also, let η̂ ∈ ℜ++ be given
and define

(71) Tη̂(λ) :=
2Rĉ(λ)

η̂2(1 − σ)λ + ĉ ∀λ ∈ ℜ++

where Rĉ(·) is as defined in (67). Then for every ẑ ∈ ℜn such that ϕc(ẑ) ≤ ϕc(z1),
we have

(72) ‖Aẑ − b‖2 ≤ [Tη̂(λ1)− ĉ]η̂2
c− ĉ .

As a consequence, if c ≥ Tη̂(λ1) then
‖Azk − b‖ ≤ η̂, ∀k ≥ 1.

Proof. First note that the definitions of ϕc and ϕ̂c in (64) imply that for every
c > 0,

ϕc(u) = ϕĉ(u) +
c− ĉ
2
‖Au− b‖2 ≥ ϕ̂ĉ +

c− ĉ
2
‖Au− b‖2 ∀u ∈ ℜn.(73)

Now, let ẑ ∈ ℜn be such that ϕc(ẑ) ≤ ϕc(z1). Lemma 4 with φ = ϕc and k = 1, the
previous inequality on ẑ, and (73) with u = ẑ, then imply that for every u ∈ F ,

‖z0 − u‖2
2(1− σ)λ1

+ ϕc(u) ≥ ϕc(z1) ≥ ϕc(ẑ) ≥ ϕ̂ĉ +
c− ĉ
2
‖Aẑ − b‖2.

Since ϕc(u) = ϕĉ(u) for every u ∈ F , it then follows from the above inequality and
the definition of R(· ; ·, ·) in (24) that

‖Aẑ − b‖2 ≤ 2R(u;ϕĉ, λ1)

(c− ĉ)(1 − σ)λ1
∀u ∈ F .

Since the above inequality holds for every u ∈ F , it then follows from (67) and the
definition of Tη̂(·) in (71) that the first conclusion of the lemma holds. Now, since by
assumption {(λk, zk, ṽk, ε̃k)} is generated by an instance of the GIPP framework with
φ = ϕc, it follows from (25) that ϕc(zk) ≤ ϕc(z1) for every k ≥ 1, and hence that the
second conclusion of the lemma follows immediately from the first one together with
the assumption that c ≥ Tη̂(λ1).

We now make some remarks about the above result. First, it does not assume
that F , and hence domh, is bounded. Also, it does not even assume that (1) has
an optimal solution. Second, it implies that all iterates (excluding the starting one)
generated by an instance of the GIPP framework applied to (64) satisfy the feasibility
requirement (i.e., the last inequality) in (2) as long as c is sufficiently large, i.e.,
c ≥ Tη̂(λ1) where Tη̂(·) is as in (71). Third, since the quantity Rĉ(λ1), which appears
in the definition of Tη̂(λ1) in (71), is difficult to estimate, a simple way of choosing
a penalty parameter c such that c ≥ Tη̂(λ1) is not apparent. The QP-AIPP method
described below solves instead a sequence of penalized subproblems (64) for increasing
values of c (i.e., updated according to c← 2c). Moreover, despite solving a sequence
of penalized subproblems, it is shown that its overall ACG iteration complexity is the
same as the one for the ideal method corresponding to solving (64) with c = Tη̂(λ1).

We are ready to state the QP-AIPP method.

QP-AIPP Method



20 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

(0) Let z0 ∈ domh, σ ∈ (0, 1), Lf satisfying (65), mf satisfying (63), and a
tolerance pair (ρ̂, η̂) ∈ ℜ2

++ be given, and set

(74) λ =
1

2mf
, c = ĉ+

Lf
‖A‖2 ;

(1) apply the AIPP method with inputs z0, σ, λ,

(75) (m,M) = (mf , Lf + c‖A‖2),

and (ρ̄, ε̄) as in (60) to find a (ρ̄, ε̄)-prox approximate solution (λ, z−, z, w, ε)
of problem (5) (according to (12)) with g := gc and gc as in (66);

(2) use (λ, z−, z, w, ε) to compute (zg, vg) as in Proposition 2 with g = gc;
(3) if ‖Azg − b‖ > η̂ then set c = 2c and go to (1); otherwise, stop and output

(ẑ, v̂, p̂) = (zg, vg, c(Azg − b)).

Every loop of the QP-AIPP method invokes in its step 1 the AIPP method of Sub-
section 3.2 to compute a (ρ̄, ε̄)-prox approximate solution of (5). The latter method
in turn uses the ACG method of Subsection 3.1 as a subroutine in its implementa-
tion (see step 1 of the AIPP method). For simplicity, we refer to all ACG iterations
performed during calls to the ACG method as inner iterations.

We now make a few remarks about the QP-AIPP method. First, it follows from
Corollary 14(b) that the pair (zg, vg) is a ρ̂-approximate solution of (64) in the sense
of (11) with g = gc and gc as in (66). As a consequence, Lemma 15 implies that
the output (ẑ, v̂, p̂) satisfies the inclusion and the first inequality in (2). Second, since
(λ, z−, z, w, ε) computed at step 1 is an iterate of the AIPP method, which in turn is a
special instance of the GIPP framework, and φc(zg) ≤ φc(z) due to (91) of Lemma 19,
we conclude from Lemma 17 that ẑ = zg satisfies (72). Third, since every loop of
the QP-AIPP method doubles c, the condition c > Tη̂(λ1) will be eventualy satisfied.
Hence, in view of the previous remark, the zg corresponding to this c will satisfy
the feasibility condition ‖Azg − b‖ ≤ ρ̂ and the QP-AIPP method will stop in view
of its stopping criterion in step 3. Finally, in view of the first and third remarks,
we conclude that the QP-AIPP method terminates in step 3 with a triple (ẑ, v̂, p̂)
satisfying (2).

The next result derives a bound on the overall number of inner iterations of the
quadratic penalty AIPP method to obtain an approximate solution of (1) in the sense
of (2).

Theorem 18. Let ĉ be as in (C1) and define

(76) λ :=
1

2mf
, Tη̂ :=

2Rĉ(λ)

η̂2(1− σ)λ + ĉ, Θ :=
Lf + Tη̂‖A‖2

mf

where Rĉ(λ) is as in (67). Then, the QP-AIPP method outputs a triple (ẑ, v̂, p̂)
satisfying (2) in a total number of inner iterations bounded by

(77) O
(

√
Θ

[

m2
fRĉ(λ)

ρ̂2
+ log+1 (Θ)

])

.

Proof. Let c1 := ĉ+ Lf/‖A‖2. Noting the stopping criterion in step 3, using the
second remark preceding the theorem and the fact that (74) implies c = cl := 2l−1c1



QUADRATIC PENALTY ACCELERATED METHOD 21

at the l-th loop of the QP-AIPP method, we conclude that the QP-AIPP method
stops in at most l̄ loops where l̄ is the first index l ≥ 1 such that 2l−1c1 > Tη̂. We
claim that

(78)

l̄
∑

l=1

√

Lf + cl‖A‖2
mf

≤ O
(
√

Lf + Tη̂‖A‖2
mf

)

= O(
√
Θ).

Before establishing the above claim, we will use it to show that the conclusion of the
theorem holds. Indeed, first note that the definition of c1 and the above definition of
cl imply that cl ≥ c1 ≥ ĉ for every l ≥ 1. Hence, it follows from the second inequality
in (69) with (c, λ̂) = (cl, λ) that Rcl(λ) ≤ Rĉ(λ). Since (24) and (67) easily imply that
R(ϕcl , λ) ≤ Rcl(λ), we then conclude that R(ϕcl , λ) ≤ Rĉ(λ). The latter conclusion,
(78) and Corollary 14(a) with φ = ϕcl and (m,M) as in (75) then imply that the
number of inner iterations during the l-th loop of the QP-AIPP method is bounded
by

(79) O
(
√

Lf + cl‖A‖2
mf

[

m2
fRĉ(λ)

ρ̂2
+ log+1 (Θ)

])

.

Hence, the total number of inner iterations performed by the QP-AIPP method is
bounded by the sum of the previous bound over l = 1, . . . , l̄ which is equal to (77) in
view of (78).

We will now show that (78) holds. If l̄ = 1 then it follows from the definitions of
Θ in (76) and c1 in the beginning of the proof that

(80)
c1‖A‖2
mf

=
Lf + ĉ‖A‖2

mf
≤ Lf + Tη̂‖A‖2

mf
= Θ

and hence (78) holds. Consider now the case in which l̄ > 1. Using the fact that
cl = 2l−1c1 together with the first equality in (80), we have that cl‖A‖2/mf ≥
c1|A‖2/mf ≥ Lf/mf and hence

l̄
∑

l=1

√

Lf + cl‖A‖2
mf

≤
√

2c1‖A‖2
mf

l̄
∑

l=1

(
√
2)l−1 ≤ O

(
√

c1‖A‖2
mf

√
2
l̄

)

.(81)

Using the definition of l̄ and the fact that l̄ > 1, we easily see that 2l̄−1c1 ≤ 2Tη̂
and hence that (

√
2)l̄ ≤ 2(Tη̂/c1)

1/2. The last inequality together with (81) and the
definition of Θ in (76) then imply (78).

Before ending this section, we make three remarks about Theorem 18. First, (70)
implies the quantity Rĉ(λ) admits the upper bound

Rĉ(λ) ≤
1

2
d̂20 + (1− σ)λ[ϕ̂∗ − ϕ̂ĉ]

where d̂0 := {‖z0 − z∗‖ : z∗ is an optimal solution of (1)}. Second, in terms of the
tolerance pair (ρ̂, η̂) only, the iteration-complexity bound (77) reduces to O

(

1/(ρ̂2η̂)
)

for an arbitrary initial point z0 ∈ domh. Third, the iteration-complexity bound (77)
is almost the same as the one corresponding to the case in which Tη̂ = Tη̂(λ) as in
(71) is known and the penalty parameter is set to c = Tη̂, namely,

O
(

√
Θ

[

m2
fR(ϕc, λ)

ρ̂2
+ log+1 (Θ)

])

= O
(

√
Θ

[

m2
fRc(λ)

ρ̂2
+ log+1 (Θ)

])



22 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

which follows as a consequence of Corollary 14 with M as in (75). Note that the two
bounds differ only in that the quantity Rc(λ), which appears in the above bound,
may be strictly smaller than the quantity Rĉ(λ) in (77) (see (69)).

5. Computational Results. The goal of this section is to present a few com-
putational results that show the performance of the AIPP method, which would con-
sequently assess the performance of the QP-AIPP method. In particular, while the
experiments are limited in the sense that they do not directly test the actual behavior
of the QP-AIPP method, they can be considered as examples of subproblems in the ex-
ecution of the penalty-based method. The AIPP method is benchmarked against two
other nonconvex optimization methods, namely the projected gradient (PG) method
and the accelerated gradient (AG) method recently proposed and analyzed in [9].

Several instances of the quadratic programming (QP) problem

(82) min

{

g(z) := − ξ
2
‖DBz‖2 + τ

2
‖Az − b‖2 : z ∈ ∆n

}

were considered where A ∈ ℜl×n, B ∈ ℜn×n, D ∈ ℜn×n is a diagonal matrix, b ∈ ℜl×1,
(ξ, τ) ∈ ℜ2

++, and ∆n := {z ∈ ℜn :
∑n

i=1 zi = 1, zi ≥ 0}. More specifically, we set
the dimensions to be (l, n) = (20, 300). We also generated the entries of A,B and
b by sampling from the uniform distribution U [0, 1] and the diagonal entries of D
by sampling from the discrete uniform distribution U{1, 1000}. By appropriately
choosing the scalars ξ and τ , the instance corresponding to a pair of parameters
(M,m) ∈ ℜ2

++ was generated so that M = λmax(∇2g) and −m = λmin(∇2g) where
λmax(∇2g) and λmin(∇2g) denote the largest and smallest eigenvalues of the Hessian
of g respectively. The parameters (λ, σ) were set to be (0.9/m, 0.3). The AIPP, PG,
and AG methods were implemented in MATLAB 2016a scripts and were run on Linux
64-bit machines each containing Xeon E5520 processors and at least 8 GB of memory.

All three methods use the centroid of the set ∆n as the initial starting point z0
and were run until a pair (z, v) was generated satisfying the condition

(83) v ∈ ∇g(z) +N∆n
(z),

‖v‖
‖∇g(z0)‖ + 1

≤ ρ̄

for a given tolerance ρ̄ > 0. Here, NX(z) denotes the normal cone of X at z, i.e.
NX(z) = {u ∈ ℜn : 〈u, z̃ − z〉 ≤ 0, ∀z̃ ∈ X}. The results of the two tables below were
obtained with ρ̄ = 10−7. They present results for different choices of the curvature
pair (M,m). Each entry in the ḡ-column is the value of the objective function of (82)
at the last iterate generated by each method. Since they are approximately the same
for all three methods, only one value is reported. The bold numbers in each table
highlight the algorithm that performed the most efficiently in terms of total number
of iterations. It should be noted that both AIPP and PG methods perform a single
projection step per iteration while the AG method performs two.



QUADRATIC PENALTY ACCELERATED METHOD 23

Size
ḡ

Iteration Count
M m PG AG AIPP

16777216 16777216 -2.24E+05 5445 374 14822

16777216 1048576 -3.83E+04 7988 4429 6711

16777216 65536 -4.46E+02 91295 22087 24129

16777216 4096 4.07E+03 80963 26053 5706

16777216 256 4.38E+03 82029 20371 1625

16777216 16 4.40E+03 81883 20761 2308

Table 1: Numerical results with σ = 0.3 and λ = 0.9/m

Size
ḡ

Iteration Count
M m PG AG AIPP

4000 1 9.68E-01 80560 24813 5752

16000 1 4.11E+00 77813 24861 2830

64000 1 1.67E+01 82000 20373 1621

256000 1 6.71E+01 81929 20767 1942

1024000 1 2.68E+02 81882 20761 2297

4096000 1 1.07E+03 81871 20759 2083

Table 2: Numerical results with σ = 0.3 and λ = 0.9/m

From the tables, we can conclude that if the curvature ratio M/m is sufficiently
large then the AIPP method performs fewer iterations than the PG and the AG meth-
ods. This indicates that the QP-AIPP, which is based on the AIPP method, might
be a promising approach towards solving linearly constrained nonconvex optimization
problems. This is due to the fact that the curvature ratios of the penalty subproblems
grow substantially as c increases and, as a result, AIPP can efficiently solve them.
On the other hand, AIPP does not do well on instances whose associated curvature
ratio is small. However, preliminary computational experiments seem to indicate that
a variant of AIPP can also efficiently solve instances with small curvature ratios by
significantly choosing λ much larger than 0.9/m. Since this situation is not covered
by the theory presented in this paper, we are not reporting these results in this paper,
opting instead to leave this preliminary investigation for a future work.

6. Concluding remarks. Paper [14] proposed a linearized version of the aug-
mented Lagrangian method to solve (1) but assumes the strong condition (among a
few others) that h = 0, which most important problems arising in applications do not
satisfy. To circumvent this technical issue, [15] proposed a penalty ADDM approach
which introduces an artificial variable y in (1) and then penalizes y to obtain the
penalized problem

(84) min
{

f(z) + h(z) +
c

2
‖y‖2 : Ax+ y = b

}

,

which is then solved by a two-block ADMM. Since (84) satisfies the assumption that its
y-block objective function component has Lipschitz continuous gradient everywhere
and its y-block coefficient matrix is the identity, an iteration-complexity of the two-
block ADDM for solving (84), and hence (1), can be established. More specifically, it
has been shown in Remark 4.3 of [15] that the overall number of composite gradient
steps performed by the aforementioned two-block ADMM penalty scheme to obtain



24 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

a triple (ẑ, v̂, p̂) satisfying (2) is bounded by O(ρ̂−6) under the assumptions that
η̂ = ρ̂, the level sets of f + h are bounded and the initial triple (z0, y0, p0) satisfies
(y0, p0) = (0, 0), Az0 = b and z0 ∈ domh.

Note that the last complexity bound is derived under a boundedness assump-
tion and is worse than the one obtained in this paper for the QP-AIPP method,
namely O(ρ̂−2η̂−1), without any boundedness assumption. Moreover, in contrast to
the complexity of the QP-AIPP which is established for an arbitrary infeasible point
z0 ∈ domh, the complexity bound of the aforementioned two-block ADMM penalty
scheme assumes that z0 is feasible for (1). In fact, as far as we know, QP-AIPP is
the first method for solving (1) from an infeasible starting point with a guaranteed
complexity bound under the general assumptions considered in this paper.

Appendix A. Proof of Proposition 2.

We first state two technical lemmas before giving the proof of Proposition 2.
Lemma 19. Assume that h ∈ Conv (ℜn), z ∈ domh and f is a differentiable

function on domh which, for some L > 0, satisfies

(85) f(u)− ℓf(u; z) ≤
L

2
‖u− z‖2, ∀u ∈ domh,

and define

zf = z(z; f) := argminu

{

ℓf(u; z) + h(u) +
L

2
‖u− z‖2

}

,(86)

qf = q(z; f) := L(z − zf),(87)

δf = δ(z; f) := h(z)− h(zf )− 〈qf −∇f(z), z − zf 〉.(88)

Then, there hold

qf ∈ ∇f(z) + ∂h(zf ), qf ∈ ∇f(z) + ∂δfh(z), δf ≥ 0,(89)

(qf , δf ) = argmin(r,ε)

{

1

2L
‖r‖2 + ε : r ∈ ∇f(z) + ∂εh(z)

}

,(90)

δf +
1

2L
‖qf‖2 ≤ (f + h)(z)− (f + h)(zf ).(91)

Proof. We first show that (89) holds. The optimality condition for (86) and the
definition of qf in (87) immediately yield the first inclusion in (89). Hence, it follows
from Proposition 1 and the definition of δf in (88) that the second inclusion and the
inequality in (89) also hold.

We now show that (90) holds. Clearly, the second inclusion in (89) implies that
(qf , δf ) is feasible to (90). Assume now that (r, ε) satisfies r ∈ ∇f(z) + ∂εh(z), or
equivalently,

h(u) ≥ h(z) + 〈r −∇f(z), u− z〉 − ε ∀u ∈ ℜn.
Using the above inequality with u = zf and the definitions of qf and δf given in (87)
and (88), respectively, we then conclude that

δf +
‖qf‖2
2L

= h(z)− h(zf)− 〈∇f(z), zf − z〉 −
L

2
‖z − zf‖2

≤ −〈r, zf − z〉+ ε− ‖qf‖
2

2L
=

1

L
〈r, qf 〉+ ε− ‖qf‖

2

2L

≤ 1

2L
‖r‖2 + 1

2L
‖qf‖2 + ε− ‖qf‖

2

2L
=

1

2L
‖r‖2 + ε



QUADRATIC PENALTY ACCELERATED METHOD 25

where the last inequality is due to Cauchy Schwarz inequality and 2ab ≤ a2 + b2, for
every a, b ∈ ℜ. Hence (90) holds. Finaly, to see that (91) holds, note that the last
relation, the definition of ℓf (·; z) in (8) and inequality (85) with u = zf imply that

δf +
‖qf‖2
2L

= (f + h)(z)− (f + h)(zf ) + [f(zf )− ℓf(zf ; z)]−
L

2
‖z − zf‖2

≤ (f + h)(z)− (f + h)(zf ).

Lemma 20. Assume that h ∈ Conv (ℜn), z ∈ domh and g is a differentiable
function on domh which, for some M > 0, satisfies (85) with (f, L) replaced by
(g,M). Let λ > 0, (z−, z, w, ε) ∈ ℜn × domh×ℜn ×ℜ+ and ρ > 0 be such that

(92) w ∈ ∂ε
(

g + h+
1

2λ
‖ · −z−‖2

)

(z),

∥

∥

∥

∥

1

λ
(z− − z) + w

∥

∥

∥

∥

≤ ρ

and set

L =M + λ−1, f(·) = g(·) + 1

2λ
‖ · −z−‖2 − 〈w, ·〉,(93)

(zf , qf , δf ) = (z(z; f), q(z; f), δ(z; f)),

where the quantities z(z; f), q(z; f) and δ(z; f) are defined in (86), (87) and (88),
respectively. Then, the following statements hold:

(a) the pair (v, δf ) where

(94) v := qf +
z− − z
λ

+ w,

satisfies

v ∈ ∇g(z) + ∂δfh(z), 0 ≤ δf ≤ ε;(95)

‖v‖2 + 2
(

M + λ−1
)

δf ≤
[

ρ+
√

2(M + λ−1)ε
]2

;(96)

(b) if ∇g is M -Lipschitz continuous, then the pair (zf , vf ) where

(97) vf := v +∇g(zf )−∇g(z)

satisfies

(98) vf ∈ ∇g(zf) + ∂h(zf ), ‖vf‖ ≤ ρ+ 2
√

2(M + λ−1)ε.

Proof. (a) First note that the pair (f, L) defined in (93) satisfies (85) and that
λ and (z−, z, w, ε) satisfy the inclusion in (92) if and only if 0 ∈ ∂ε(f + h)(z), or
equivalently, (f+h)(u) ≥ (f+h)(z)−ε for every u. In particular, the latter inequality
with u = zf implies that (f + h)(z) − (f + h)(zf ) ≤ ε. Hence, combining the last
inequality, Lemma 19 with (f, L) as in (93), and the definition of v given in (94), we
conclude that the relations in (95) hold and

(99) ‖qf‖2 + 2(M + λ−1)δf ≤ 2(M + λ−1)ε.



26 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

Now, the inequality in (92), definition of v in (94) and the triangle inequality for
norms imply that ‖v‖ ≤ ρ+ ‖qf‖, and hence, in view of (99), that

‖v‖2 + 2(M + λ−1)δf ≤
[

‖qf‖2 + 2(M + λ−1)δf
]

+ 2ρ‖qf‖+ ρ2

≤ 2(M + λ−1)ε+ 2ρ
√

2(M + λ−1)ε+ ρ2

=
[

ρ+
√

2(M + λ−1)ε
]2

,

showing that (96) holds.
(b) The inclusion in (98) follows immediately from the first inclusion in (89) and defi-
nition of vf in (97). Finally, using the assumption that ∇g isM -Lipschitz continuous,
the triangle inequality for norms, definition of vf and qf in (97) and (87), respectively,
we conclude that

‖vf‖ − ‖v‖ ≤ ‖vf − v‖ = ‖∇g(zf)−∇g(z)‖ ≤M‖zf − z‖ =
M

M + λ−1
‖qf‖ ≤ ‖qf‖

and hence, in view of (96) and the inequality in (92), the inequality in (98) holds.

Lemma 20 assumes that the inclusion in (12) holds, or equivalently, that the
function f defined in (93) satisfies (f +h)(u) ≥ (f +h)(z)− ε for every u. However, a
close examination of its proof shows that the latter inequality is used only for u = zf .

Proof of Proposition 2. First note that, since∇g satisfies the second inequality
in (10), we see that (85) is satisfied with f = g and L =M (in particular L =M+λ−1).
Moreover, the elements defined in (13), (14), and (15) correspond to (86), (87), and
(88), respectively, with f replaced by g and L replaced by M + λ−1. Hence, the
inclusions in (a) and (b) as well as the first inequality in (b) follow immediately from
(89). Now note that the equality in (a) follows immediately from the definition of qg
in (14). Moreover, the inequality in (b) implies the inequality in (a). Hence, let us
proceed to prove the inequality in (b). It follows from Lemma 20 that the pair (v, δf )
as in (94) and (88) satisfies the inclusion in (95) and hence due to (90) with (f, L)
replaced by (g,M + λ−1) and (96), we have

‖qg‖2 + 2
(

M + λ−1
)

δg ≤‖v‖2 + 2
(

M + λ−1
)

δf ≤
[

ρ̄+
√

2(M + λ−1)ε
]2

,

proving the second inequality in (b), and consequently concluding the proof of (a)
and (b). Now to prove (c) first note that the inclusion follows immediately from
the inclusion in (a) and the definition of vg in (16). On the other hand, the M -
Lipschitz continuity of ∇g together with the definitions of qg and vg in (14) and (16),
respectively, and the triangle inequality for norms imply that

‖vg‖ ≤M‖z − zg‖+ ‖qg‖ =
M

M + λ−1
‖qg‖+ ‖qg‖ ≤ 2‖qg‖

which combined with the inequality in (a) proves the inequality in (c). �

Appendix B. Proof of Proposition 7.

From the optimality condition for (30), we obtain

(100) 0 ∈ ∇g(zk−1) +
zk − zk−1

λ
+ ∂h(zk).



QUADRATIC PENALTY ACCELERATED METHOD 27

Now let

(101) Ψλ = Ψλ,k := g +
1

2λ
‖ · −zk−1‖2, rk :=

zk−1 − zk
λ

,

and note that ∇Ψλ(zk−1) = ∇g(zk−1), and that Ψλ is convex due to (10) and the as-
sumption λ < 1/m. Hence Proposition 1 yields ∇g(zk−1) = ∇Ψλ(zk−1) ∈ ∂εkΨλ(zk)
where εk = Ψλ(zk) − Ψλ(zk−1) − 〈∇Ψλ(zk−1), zk − zk−1〉 ≥ 0. The above inclusion
combined with (100) and definition of rk imply that rk ∈ ∂h(zk) + ∂εkΨλ(zk) ⊂
∂εk(h + Ψλ)(zk) where the last inclusion follows immediately from the definition of
the operator ∂εk and convexity of h. Hence, since (ε̃k, ṽk) = λ(εk, rk) (see (31) and
(101)), it follows from the above inclusion and the definition of Ψλ that the triple
(zk, ṽk, ε̃k) satisfies the inclusion in (18) with φ = g + h and λk = λ.

Now, to prove that the inequality in (19) holds, first note that the definitions of
εk and Ψλ together with property (10), imply that εk ≤ (λM + 1)‖zk−1 − zk‖2/(2λ).
Combining the latter inequality with the relations ṽk = zk−1 − zk and ε̃k = λεk, we
obtain

‖ṽk‖2 + 2ε̃k = ‖zk−1 − zk‖2 + 2λεk ≤ ‖zk−1 − zk‖2 + (λM + 1)‖zk−1 − zk‖2

= (λM + 2)‖zk−1 − zk‖2 =
λM + 2

4
‖zk−1 − zk + ṽk‖2.

Hence, since λM < 2, we conclude that σ = (λM +2)/4 < 1 and that (19) holds. �

REFERENCES

[1] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth

functions involving analytic features, Math. Programming, 116 (2009), pp. 5–16.
[2] H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic

and tame problems: proximal algorithms, forward–backward splitting, and regularized

Gauss–Seidel methods, Math. Programming, 137 (2011), pp. 91–129.
[3] H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-

backward method is actually faster than 1/k−2, SIAM J. Optim., 26 (2016), pp. 1824–1834.
[4] N. Aybat and G. Iyengar, A first-order smoothed penalty method for compressed sensing,

SIAM J. Optim., 21 (2011), pp. 287–313.
[5] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, Accelerated methods for non-convex

optimization, Available on arXiv:1611.00756, (2017).
[6] E. Chouzenoux, J. Pesquet, and A. Repetti, A block coordinate variable metric forward–

backward algorithm, J. Global Optim., 66 (2016), pp. 457–485.
[7] D. Drusvyatskiy and C. Paquette, Efficiency of minimizing compositions of convex func-

tions and smooth maps, Available on arXiv:1605.00125, (2016).
[8] P. Frankel, G. Garrigos, and J. Peypouquet, Splitting methods with variable metric for

kurdyka– lojasiewicz functions and general convergence rates, J. Optim. Theory Appl., 165
(2015), pp. 874–900.

[9] S. Ghadimi and G. Lan, Accelerated gradient methods for nonconvex nonlinear and stochastic

programming, Math. Programming, 156 (2016), pp. 59–99.
[10] S. Ghadimi, G. Lan, and H. Zhang, Generalized uniformly optimal methods for nonlinear

programming, Available on arXiv:1508.07384, (2015).
[11] Y. He and R. D. C. Monteiro, Accelerating block-decomposition first-order methods for solv-

ing composite saddle-point and two-player Nash equilibrium problems, SIAM J. Optim.,
25 (2015), pp. 2182–2211.

[12] Y. He and R. D. C. Monteiro, An accelerated HPE-type algorithm for a class of composite

convex-concave saddle-point problems, SIAM J. Optim., 26 (2016), pp. 29–56.
[13] J. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms II,

Springer, Berlin, 1993.
[14] M. Hong, Decomposing linearly constrained nonconvex problems by a proximal primal dual ap-

proach: algorithms, convergence, and applications, Avaliable on arXiv:1604.00543, (2016).



28 WEIWEI KONG, J.G. MELO AND R.D.C. MONTEIRO

[15] B. Jiang, T. Lin, S. Ma, and S. Zhang, Structured nonconvex and nonsmooth optimization:

algorithms and iteration complexity analysis, Comput. Optim. Appl., (2018).
[16] O. Kolossoski and R. D. C. Monteiro, An accelerated non-euclidean hybrid proximal

extragradient-type algorithm for convex-concave saddle-point problems, Optim. Methods
Softw., 32 (2017), pp. 1244–1272.

[17] G. Lan and R. D. C. Monteiro, Iteration-complexity of first-order penalty methods for convex

programming, Math. Programming, 138 (2013), pp. 115–139.
[18] G. Lan and R. D. C. Monteiro, Iteration-complexity of first-order augmented Lagrangian

methods for convex programming, Math. Programming, 155 (2016), pp. 511–547.
[19] H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, Adv.

Neural Inf. Process. Syst., 28 (2015), pp. 379–387.
[20] C. Molinari, J. Peypouquet, and F. Roldan, Alternating forward–backward splitting for

linearly constrained optimization problems, Optim. Lett., (2019), pp. 1–18.
[21] R. D. C. Monteiro and B. F. Svaiter, On the complexity of the hybrid proximal extragradient

method for the iterates and the ergodic mean, SIAM J. Optim., 20 (2010), pp. 2755–2787.
[22] R. D. C. Monteiro and B. F. Svaiter, An accelerated hybrid proximal extragradient method

for convex optimization and its implications to second-order methods, SIAM J. Optim., 23
(2013), pp. 1092–1125.

[23] I. Necoara, A. Patrascu, and F. Glineur, Complexity of first-order inexact Lagrangian and

penalty methods for conic convex programming, Optim. Methods Softw., (2017), pp. 1–31.
[24] M. O. Neill and S. J. Wright, Behavior of accelerated gradient methods near critical points

of nonconvex functions, Available on arXiv:1706.07993, (2017).
[25] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Programming,

(2012), pp. 1–37.
[26] Y. E. Nesterov, Introductory lectures on convex optimization : a basic course, Kluwer Aca-

demic Publ., Boston, 2004.
[27] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr., An accelerated linearized alternating

direction method of multipliers, SIAM J. Imaging Sci., 8 (2015), pp. 644–681.
[28] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui, Catalyst acceleration

for gradient-based non-convex optimization, Available on arXiv:1703.10993, (2017).
[29] A. Patrascu, I. Necoara, and Q. Tran-Dinh, Adaptive inexact fast augmented Lagrangian

methods for constrained convex optimization, Optim. Lett., 11 (2017), pp. 609–626.
[30] M. V. Solodov and B. F. Svaiter, A hybrid approximate extragradient-proximal point algo-

rithm using the enlargement of a maximal monotone operator, Set-Valued Anal., 7 (1999),
pp. 323–345.

[31] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization,
http://www.mit.edu/˜ dimitrib/PTseng/papers.html, (2008).


	1 Introduction
	1.1 Basic definitions and notation

	2 Inexact proximal point method for nonconvex optimization
	2.1 The CNO problem and corresponding approximate solutions
	2.2 A general inexact proximal point framework

	3 Accelerated gradient methods
	3.1 Accelerated gradient method for strongly convex optimization
	3.2 The AIPP method

	4 The QP-AIPP method
	5 Computational Results
	6 Concluding remarks
	Appendix A. Proof of Proposition 2
	Appendix B. Proof of Proposition 7
	References

