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Abstract

We propose a general variance reduction strategy to compute averages with diffusion
processes. Our approach does not require the knowledge of the measure which is sampled,
which may indeed be unknown as for nonequilibrium dynamics in statistical physics. We show
by a perturbative argument that a control variate computed for a simplified version of the
model can provide an efficient control variate for the actual problem at hand. We illustrate
our method with numerical experiments and show how the control variate is built in three
practical cases: the computation of the mobility of a particle in a periodic potential; the
thermal flux in atom chains, relying on a harmonic approximation; and the mean length of a
dimer in a solvent under shear, using a non-solvated dimer as the approximation.

1 Introduction
Diffusion processes have won an increasing interest in the past years in the statistical physics
community, to model physical phenomena and to sample the underlying probability measure
characterizing the state of the system [6]. The average value of a thermodynamic function R
(as the energy, the pressure, a length, a flux, ...) under this probability distribution is given
by an integral over the very high-dimensional configurational space. An important motivation
for this work is the averaging of mean properties for systems subject to an external driving.
In this case the invariant probability measure is often not known explicitly. The goal can be
to compute a transport coefficient, a free energy or more generally the response to a non-
equilibrium forcing. From a practical point of view, the unknown probability measure is
sampled by integrating a stochastic dynamics [1, 22, 67, 40]

dXt = b(Xt) dt+ σ(Xt) dWt. (1)

Two prototypical dynamics in molecular simulation are the Langevin and overdamped Langevin
dynamics [1, 39]. At equilibrium, the Langevin dynamics evolves positions q and momenta p
as  dqt = pt

m
dt,

dpt = −∇V (qt) dt− γ

m
pt dt+

√
2γβ−1 dWt,

(2)

where γ > 0 is the friction coefficient, m > 0 is the mass of a particle and β > 0 is proportional
to the inverse temperature. The potential energy function is denoted by V and Wt is a multi-
dimensional standard Brownian motion. In the limit of large frictions γ, this equation becomes
after proper rescaling the overdamped Langevin dynamics [21]:

dqt = −∇V (qt) dt+
√

2β−1 dWt. (3)

Nonequilibrium versions of the above dynamics are obtained for instance by considering non-
gradient forces rather than −∇V .
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For any ergodic dynamics (1), macroscopic properties are computed via averages over a
trajectory as

E[R] := lim
T→∞

R̂T a.s., R̂T = 1
T

∫ T

0
R(Xt) dt.

The statistical error for these estimators is characterized by the asymptotic variance:

σ2
R = lim

T→∞
T Var

[
R̂T

]
. (4)

In many cases of interest ergodic means converge very slowly, requiring the use of variance
reduction techniques to speed up the computation. Two types of phenomena can lead to
large statistical errors: first, the metastability arising from multimodal potentials, which can
greatly increase the correlation of the trajectory in time and lead to large variances; second,
a high signal-to-noise ratio, which is typical when averaging small linear responses as for the
computation of transport coefficients [18, 67].

When the system is at equilibrium, by which we mean that detailed balance holds, the
invariant probability measure is often known and it is possible to use standard variance
reduction techniques [58, 20, 10, 45, 38] such as importance sampling [13, 45] or stratifica-
tion [23, 47, 34, 63, 60]. This allows to address both metastability issues and high noise-to-
signal ratios.

For non-equilibrium systems, and more generally when the invariant probability measure
is not known, reducing the variance is challenging since standard variance reduction methods
cannot be used. Note that reducing the metastability would require modifying the dynamics
while keeping the invariant probability measure unchanged, or at least knowing how it changes
(see for instance [42, Section 3.4]). When the latter is not known, this task is hard to perform.
On the other hand increasing the signal-to-noise ratio is feasible even for non-equilibrium
dynamics. This is the goal of the present work, where we rely on control variates. Control
variates laying on the concept of "zero-variance" principle have been already used in molecular
simulation [3]. This approach was also studied in Bayesian inference simulations [28, 48, 14,
49, 51], where configurations are sampled with Markov chains rather than diffusion processes.
This type of techniques has however been restricted to cases where the invariant probability
measure is known, except for specific settings such as [24], where a coupling strategy is
described.

In the present work, which relies on ideas announced in [42, Section 3.4.2], control variates
are constructed without any knowledge of the expression of the invariant probability measure.
We build an unbiased modified observable R + ξ = R + LΦ, where L is the generator of the
dynamics, which is of smaller variance (at least in some asymptotic regime):

E[R+ ξ] = E[R] and σ2
R+ξ < σ2

R.

The optimal choice for the control variate ξ is ξ = LΦ where Φ is the solution of the following
Poisson equation:

−LΦ = R− E[R].
The general strategy we consider consists in approximating this partial differential equation
(PDE) by a simplified one, with an operator L0, for which the solution Φ0 can be analytically
computed or numerically approximated with a good precision. Theorems 2 and 4 provide an
analysis of the asymptotic variance σ2

R+ξ.
We present numerical results illustrating the general method in three practical cases. In

particular we provide in each case a simplified process, associated to a simplified Poisson prob-
lem. In these applications we are interested in averaging the linear response of an observable
with respect to a non-equilibrium perturbation. This is a challenging class of problems since
the average quantity is small and thus the relative statistical error is large. We present the
problems we consider by increasing complexity of the setup. We start with the computation of
the mobility of a particle in a periodic two-dimensional potential. The control variate can be
approached with a very high precision by a numerical method based on a spectral basis, allow-
ing to illustrate Theorem 4. We next estimate the conductivity of an atom chain [8, 44, 15].
The number of state variables is much larger (up to several hundreds of degrees of freedom
in our simulations) but the geometrical setting is one-dimensional. The control variate can
be computed analytically when taking a harmonic model as a reference, and thus it does not
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require any additional numerical procedure. The third application is a dimer in a solvent,
whose mean length is estimated under an external shearing force. In the latter case the dif-
ficulty comes from the fact that the system is high-dimensional and not as structured as the
atom chain.

This article is organized as follows. We present in Section 2 the general strategy for
building control variates and state a result making precise how control variates behave in a
perturbative framework. We then turn to the case of a single particle in a one-dimensional
periodic potential under a non-gradient forcing in Section 3; the computation of the thermal
flux passing through a chain in Section 4; and the estimation of the mean length of a dimer in
a solvent under an external shearing stress in Section 5. Some technical results are gathered
in the appendices.

2 General strategy
The definition of the asymptotic variance of time averages along a trajectory requires to
introduce more precisely the generator of the process and some associated functional spaces,
which is done in Section 2.1. The concept of control variate is then explained Section 2.2,
as well as the so-called "zero-variance principle". We give in Section 2.3 our perturbative
construction of control variate in an abstract setting and state the main theorem quantifying
the variance reduction in a limiting regime. Finally Section 2.4 provides a generalized version
of this theorem in the case when an approximate solver is used.

2.1 Asymptotic variance
The state space X is typically the full space Rd or a bounded domain with periodic boundary
conditions Td. For some dynamics such as Langevin dynamics, auxiliary variables with values
in Rd are added, so that in this case X = Rd × Rd or X = Td × Rd. As suggested in the
introduction, we decompose the generator of the process (1) as a sum L = L0+L̃ of a reference
generator L0 and a perturbation L̃. In order to study the asymptotic regime corresponding
to small perturbations, we use a parameter η ∈ R to interpolate smoothly between L0 and L,
and define

Lη = L0 + ηL̃.
We suppose that these operators Lη write:

Lη = bη ·∇+ 1
2σησ

>
η : ∇2 =

d∑
i=1

(bη)i ∂xi + 1
2

d∑
i,j=1

(
σησ

>
η

)
i,j
∂xixj ,

with bη and ση are smooth. They are then the generators of the following stochastic processes
on X , indexed by η:

dXη
t = bη(Xη

t ) dt+ ση(Xη
t ) dWt, (5)

where Wt is a d-dimensional standard Brownian motion. Let us assume that bη and ση are
such that the following holds.
Assumption 1. The dynamics (5) admits a unique invariant probability measure πη for any
η ∈ R. Moreover, trajectorial ergodicity holds: for any observable R ∈ L1(πη),

Eη[R] :=
∫
X
R(x) dπη(x) = lim

T→∞

1
T

∫ T

0
R(Xη

t ) dt a.s.

Sufficient conditions for this to hold are discussed after Assumption 2. Let us now make
the functional spaces precise. We denote by (Kn)n∈N a family of so-called Lyapunov functions
with values in [1,+∞). The associated weighted L∞ spaces are:

∀n ∈ N, L∞n =
{
ϕ measurable

∣∣ ‖ϕ‖L∞n <∞
}
, ‖ϕ‖L∞n =

∥∥∥ ϕ

Kn

∥∥∥
L∞

.

We make the following assumption on the Lyapunov functions.
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Assumption 2. For any η ∈ R, the function Kn belongs to L2(πη). In particular,

∀n ∈ N, ∀η ∈ R, L∞n ⊂ L2(πη).

We also assume that for any n, n′ ∈ N, there exists m ∈ N such that KnKn′ ∈ L∞m .
The first part of Assumption 2 is typically obtained by using a family of Lyapunov functions

satisfying conditions of the form

LηKn 6 −αn,ηKn + bn,η, (6)

for some αn,η > 0 and bn,η ∈ R. Indeed, after integration against πη,

0 =
∫
X
LηKndπη 6 −αn,η

∫
X
Kndπη + bn,η,

so that
1 6

∫
X
Kndπη 6

bn,η
αn,η

.

We can then conclude with the second part of Assumption 2 since, for any n > 1, there exist
Cn > 0 and m > 1 such that 1 6 K2

n 6 CnKm. The condition (6) also implies the existence of
an invariant probability measure for any η ∈ R when a minorization condition holds [27]. A
typical choice for the Lyapunov functions are the polynomials Kn(x) = 1 + |x|n. This choice
satisfies the second part of Assumption 2 when the invariant probability measure has moments
of any order. Unless otherwise mentioned, we always consider this choice in the sequel (which
is standard for Langevin and overdamped Langevin dynamics, see [62, 46, 35, 36]). As for
Assumption 1, trajectorial ergodicity holds when the generator Lη is elliptic or hypoelliptic,
and there exists an invariant probability measure with positive density with respect to the
Lebesgue measure [33]. The latter condition follows if the measure which appears in the
minorization condition has a positive density with respect to the Lebesgue measure.

We denote for any function ϕ ∈ L1(πη) the projection on the space of mean zero functions
by:

Πηϕ = ϕ− Eη[ϕ].
For any operator A ∈ B(E) (bounded on the Banach space E), the operator norm is defined
as

‖A‖B(E) = sup
‖ϕ‖E=1

‖Aϕ‖E .

Let us now make the following assumption.
Assumption 3. For any n ∈ N, the L2(πη) norms of the Lyapunov functions are uniformly
bounded on compact sets of η: for any η∗ > 0 there exists a constant Cn,η∗ such that

∀|η| 6 η∗, ‖Kn‖L2(πη) 6 Cn,η∗ . (7)

Moreover Lη is invertible on ΠηL∞n . Finally the inverse generator is bounded uniformly on
compact sets of η:

∀|η| 6 η∗,
∥∥−L−1

η

∥∥
B(ΠηL∞n ) 6 Cn,η∗ . (8)

The invertibility of Lη on ΠηL∞n is a standard result which follows typically from the
Lyapunov conditions (6) and a so-called minorization condition [27]. It has been proved for
a large variety of problems [17, 62, 46, 35, 36]. Conditions (7) and (8) are needed to prove
Theorems 2 and 4 to come. Condition 7 can be obtained by showing uniform bounds on
the coefficients which appear in the Lyapunov conditions, while condition (8) additionally
requires some uniformity on the minorization condition.

When Assumptions 1 to 3 hold, the asymptotic variance introduced in (4) is finite for any
ϕ ∈ L∞n and the following formula holds [42]:

σ2
ϕ,η = 2

〈
ϕ,−L−1

η Πηϕ
〉
η
, (9)

where 〈 · , · 〉η denotes the canonical scalar product on L2(πη). We refer to Appendix D for
more details on the numerical estimation of the asymptotic variance.
Remark 1. We choose to work directly with weighted L∞ spaces as this is the relevant setting
for Theorems 2 and 4. Note that the asymptotic variance of an observable ϕ ∈ L2(πη) can also
be defined using perturbative arguments relatively to an equilibrium reference dynamics [16,
30]. Contrarily to the L∞n framework one would however be restricted in this case to small
non-equilibrium perturbations.
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2.2 Ideal control variate
We recall in this section what a control variate is in our context and show how the construction
of an optimal control variate can be reformulated as solving a Poisson problem. The functional
framework is made precise in a second step using Assumption 3. We say that a function ξ is
a control variate of the observable R for the process Xη

t with generator Lη if

Eη[R+ ξ] = Eη[R] and σ2
R+ξ,η < σ2

R,η.

The principle of our method, already explained in [42], is based on the equation which char-
acterizes the invariance of the measure πη: for any function Φ,

Eη[LηΦ] = 0.

This shows that control variates ξ of the form ξ = LηΦ automatically ensure that Eη[R+ξ] =
Eη[R], whatever the choice of Φ. In order for ξ to be a good control variate, the modified
observable R + ξ = R + LηΦ should however be of small asymptotic variance. The optimal
choice, denoted by Φη and referred to as the "zero-variance principle" [3, 48], is to make the
modified observable constant. This constant is then necessarily equal to Eη[R], and Φη is the
solution of the Poisson problem:

− LηΦη = R− Eη[R]. (10)

Assuming that R ∈ L∞n for some n ∈ N, the problem (10) admits a unique solution Φη ∈ L∞n
when Assumption 3 holds.

In practice two problems arise when trying to solve (10). First, the equation (10) is
a very high-dimensional PDE for most purposes and the complexity of such problems scales
exponentially with the dimension. Second, Eη[R] is not known since it is precisely the quantity
we are trying to compute. We discuss in the next section how to approximate the solution
of (10), at least for small η.

2.3 Perturbative control variate
The key assumption in our approach is to assume that we can compute the solution Φ0 of the
reference Poisson problem corresponding to η = 0:

− L0Φ0 = R− E0[R]. (11)

In practice L0 is the generator of a simplified dynamics (depending on the problem), and
Lη is the generator of the problem at hand (say for η = 1). Let us emphasize that the
dynamics associted with L0 need not be an equilibrium dynamics (see the example discussed
in Section 4). The small parameter η is used to quantify the discrepancy between the optimal
function Φη and its approximation Φ0 in a perturbative framework. We refer to Section 2.4
for a discussion on the numerical resolution of (11), and to the end of this section for further
comments on the decomposition.

We define the so-called core space S as the set of all C∞ functions which grow at infinity
at most like Kn for some n, and whose derivatives also grow at most like Kn for some n. Such
a space was considered in [62] for instance. More precisely,

S =
{
ϕ ∈ C∞(X )

∣∣ ∀k ∈ N, ∃n ∈ N, ∂kϕ ∈ L∞n
}
. (12)

The space S is dense in L2(πη) under Assumption 2, since C∞ functions with compact support
are included in S. We need an additional assumption in our analysis to ensure that Φ0 ∈ S.
Assumption 4. The space S is stable by the generator L0 and L0 is invertible on the space
Π0S composed of functions with average 0 with respect to the invariant probability measure π0.
This means that, for any ϕ ∈ Π0S, there exists a unique solution ψ ∈ Π0S to the Poisson
equation

−L0ψ = ϕ.

Assumption 4 can be proved to hold for Langevin and overdamped Langevin dynamics at
equilibrium under certain assumptions on the potential V , see [62, 35, 36]. The generator of
the perturbation should also satisfy the following condition.
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Assumption 5. The generator L̃ of the perturbation is such that S is stable by L̃ and L̃∗1 ∈
L2(π0).

Here and in the following we denote by B∗ the adjoint of a closed operator B on the
functional space L2(π0). Assumption 5 is easy to check, since L̃ is typically a differential
operator with coefficients in S.

Let us define the following modified observable involving Φ0 ∈ Π0S, defined in (11):

φη := R+ LηΦ0.

The following theorem makes precise the main properties of this modified observable.
Theorem 2. Fix R ∈ S. Under Assumptions 1 to 5, φη ∈ S is well defined for any η ∈ R,
and Eη[φη] = Eη[R]. Moreover, for any η∗ > 0, there exists CR,η∗ > 0 such that, for any
|η| 6 η∗, the asymptotic variance satisfies

σ2
φη,η = 2η2 〈AR,−L−1

0 AR
〉

0
+ η3ER,η, (13)

with A = −L̃L−1
0 Π0 and |ER,η| 6 CR,η∗ .

The scalar products involved in the previous theorem are well defined since S is stable

by A, and S ⊂ L2(πη) for any η ∈ R. Equation (13) shows that the standard error
√

σ2
φη,η

T

committed on the empirical estimator ϕ̂T of Eη[R] after a time T is of leading order η/
√
T .

The scaling η2 of the asymptotic variance formally comes from the fact that the modified
observable writes φη = Eη[R] + O(η). Indeed,

LηL−1
0 Π0 = Πη(L0 + ηL̃)L−1

0 Π0 = Πη + ηΠηL̃L−1
0 Π0 = Πη(1− ηA), (14)

so that the modified observable can be rewritten as:

φη = R+ LηΦ0 = R− LηL−1
0 Π0R = Eη[R] + ηΠηAR. (15)

In particular,
Πηφη = ηΠηAR. (16)

The remainder of the proof consists in carefully estimating remainders in some truncated
series expansion of −L−1

η Πη; see Appendix A.
Remark 3. The formula (13) can in fact be replaced by an expansion in powers of η with a
truncation at an arbitrarily high order and a remainder controlled uniformly in |η| 6 η∗. This
can be proved by an immediate generalization of the proof we provide in Appendix A.

In the following applicative sections we cannot always prove that Assumptions 3 and 4
hold true, but the scaling of the variance predicted by Theorem 2 is nevertheless numerically
observed to hold. More importantly, let us emphasize that the modeling process is crucial to
write the generator as the sum of a reference generator L0 for which we can solve Poisson
equations, and an additional term. Such a decomposition can always be performed, but the
quality of the resulting control variate will strongly depend on the choice of the decomposition.
Typically, the control variate method works well when the additional term is a perturbation of
the reference generator (which corresponds to the regime where Theorem 2 can be applied).
In practice, this can be checked a posteriori, once the simulation has been carried out, by
comparing the asymptotic variance of the two estimators, one with and one without the
control variate. Of course, one should keep the one with the smallest variance.

2.4 Numerical resolution of the reference Poisson problem
We discuss in this section a strategy to compute the solution to (11) when this equation
cannot be analytically solved. We rely for this on a Galerkin strategy, and look for an
approximation of the solution Φ0 to the Poisson problem (11) in a subspace VM ⊂ L2(π0) of
finite dimension M . For simplicity we suppose that VM ⊂ Π0L2(π0) (which corresponds to
a conformal approximation). This implies in particular that ΦM ∈ Π0L2(π0) has mean zero
with respect to π0. We also assume that VM ⊂ H2(π0) to avoid regularity issues. The optimal
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choice for the approximation Φ0,M is to minimize the variance of the modified observable
R+ L0Φ0,M for the reference dynamics:

min
ϕ∈VM

σ2
R+L0ϕ,0 = σ2

R,0 + min
ϕ∈VM

1
2
〈
(L0 + L∗0)ϕ, 2L−1

0 Π0R+ ϕ
〉

0
. (17)

The latter equality follows from Lemma 2 in Appendix A, in the particular case when η = 0.
In the case when L0 is not the generator of a stochastic differential equation the quantity
σ2
R+L0ϕ,0 cannot be interpreted as a variance but the analysis we provide here remains valid.

The necessary optimality condition for a minimizer Φ0,M of (17) is given by the following
Euler-Lagrange equation:

∀ψ ∈ VM ,
〈
(L0 + L∗0)(Φ0,M + L−1

0 Π0R), ψ
〉

0
= 0.

Introducing the orthogonal projector ΠM on VM (with respect to the scalar product on
L2(π0)), the latter equation can be rewritten as

ΠM (L0 + L∗0)(Φ0,M + L−1
0 Π0R) = 0. (18)

In practice we distinguish two cases.
(i) For reversible dynamics such as the overdamped Langevin dynamics (3) L0 = L∗0, so the

equation reduces to
−ΠML0Φ0,M = ΠMR. (19)

(ii) For Langevin dynamics at equilibrium (see (2)), we consider a tensorized basis involving
Hermite elements as in Section 3 or in [57]. The symmetric part of the generator:

1
2 (L0 + L∗0) = −γβ−1∇∗p∇p,

diagonalizes the Hermite polynomials so we have the commutation rule ΠM (L0 +L∗0) =
(L0 +L∗0)ΠM . Moreover the kernel of L0 +L∗0 is composed of functions depending only
on the position variables. The condition (18) then implies that there exists g = g(q) in
L2(π0) such that

Φ0,M = −ΠML−1
0 Π0R+ g. (20)

The solution to (19) coincides with the result provided by the Galerkin method on the
approximation space VM . For (20) the optimal solution, for g = 0, is given by the Galerkin
method apart from a consistency error (see [57] for a detailed analysis). This justifies the use
of Galerkin methods to determine a good approximation Φ0,M of Φ0 in the general case.

For the Langevin equation the operator L is not coercive on L2
0(π) so the associated

rigidity matrix is not automatically invertible. The existence of a unique solution Φ0,M ∈ VM
converging to Φ0 = −L−1Π0R when M → +∞, as well as error estimates and a discussion
on non-conformal approximations, can be found in [57].

When a Galerkin method (or any other approximation method) is used, the error commit-
ted on Φ0 induces an error on the modified observable φη. The modified asymptotic variance
is then the sum of terms coming from (13) (depending on η) and terms coming from the
approximation error (of order ε) committed on Φ0, as made precise in the following result.
Theorem 4. Fix R ∈ S and assume that Φ0 is approximated by Φ0,ε = Φ0 + εf with f ∈ S
and ε > 0. Denote by φη,ε = R+LηΦ0,ε the modified observable. Under Assumptions 1 to 5,
for any η∗, ε∗ > 0, there exists ER,η∗,ε∗ > 0 such that, for any |η| 6 η∗ and |ε| 6 ε∗,

σ2
φη,ε,η = 2ε2 〈−L0f, f〉0 − 2εη

〈
(L0 + L∗0)f,L−1

0 Π0AR
〉

0

+ 2η2 〈AR,−L−1
0 Π0AR

〉
0

+ (η3 + ε3)CR,η,ε,
(21)

with |CR,η,ε| 6 ER,η∗,ε∗ .
The proof of this result can be read in Appendix A. It shows that the variance is globally

of order 2 with respect to both η and ε. This suggests to take η and ε of the same order.
Remark 5. The dependence of C̃R,η∗,ε∗ with respect to R can be made more explicit (see for
instance the discussion in [40]).
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The error committed on Φ0 can also arise from additional approximations on the right
hand side of the Poisson problem, in situations when the observable Rη = R0 + ηR̃ depends
on η. A result similar to Theorem 4 can be obtained upon assuming that R̃ ∈ S, where Φ0 is
the solution to (11) with R replaced by R0.
Remark 6. Note that in the expression (21) the error term f only appears through (L0+L∗0)f .
This term may vanish even if f is not identically zero. For example, for a Langevin process
at equilibrium, (L0 + L∗0)f vanishes when f is a function depending only on the positions.

3 One-dimensional Langevin dynamics
We construct in this section a control variate for a one-dimensional system by solving a
simplified Poisson equation using a spectral Galerkin method. The simplification consists in
neglecting a non-equilibrium perturbation, the small parameter η being the amplitude of this
perturbation. We first present in Section 3.1 the model and define the quantity of interest,
namely the mobility. We next construct in Section 3.2 the approximate control variate and
conclude in Section 3.3 with some numerical results.

3.1 Full dynamics
We consider the following Langevin process on the state space X = 2πT× R: dqt = pt

m
dt,

dpt = (−v′(qt) + η) dt− γ

m
pt dt+

√
2γβ−1 dWt,

(22)

where γ,m, β > 0 and v is a smooth 2π-periodic potential. The particle experiences a constant
external driving of amplitude η ∈ R. This force is not the gradient of a periodic function, so
the system is out of equilibrium and the invariant measure is not known. We are interested
in the average velocity R(q, p) = p

m
induced by the non-gradient force η, which can also be

seen as a mass flux. The linear response of the average velocity with respect to the external
driving is characterized by the mobility of the particle [56]:

D = lim
η→0

Eη[R]
η

.

The generator of (22) is the sum of the generator associated with the Langevin dynamics at
equilibrium and of a non-equilibrium perturbation:

Lη = L0 + ηL̃,

where
L0 = −v′(q)∂p + p

m
∂q −

γ

m
p∂p + γβ−1∂2

p , L̃ = ∂p.

In this setting the Lyapunov functions are defined for all n ∈ N as:

∀(q, p) ∈ X , Kn(q, p) = 1 + |p|n,

and Assumptions 1, 2, 3 and 4 correspond to standard results for Langevin dynamics [62, 54,
36, 40, 42]. Assumption 5 trivially holds: the core space S is stable by L̃ = ∂p by definition,
while L̃∗1 = (−∂p + β

m
p)1 = β

m
p ∈ L2(π0).

3.2 Simplified dynamics and control variate
Solving the Poisson problem−LηΦη = R−Πη[R] associated with the nonequilibrium dynamics
is not practical because Eη[R] is not know. For this simple one-dimensional example it would
still be technically doable. Since our purpose is however to illustrate both Theorems 2 and 4,
we do not follow this path. We therefore consider the control variate associated to a reference
Poisson problem, namely

− L0Φ0 = R. (23)
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Note that the average drift vanishes at equilibrium: E0[R] = 0. Equation (23) cannot be solved
analytically, but it is possible to approach its solution by a Galerkin method as explained in
Section 2.4. The modified observable is

φη,M = R+ LηΦ0,M ,

with the notation of Theorem 4 (the error committed when estimating Φ0 is indexed by M
instead of ε). In practice we construct a basis (em)m of VM and write Φ0,M =

∑M

m=1 amem
where the coefficients (am)m ∈ RM are the solution of a linear system obtained from (18)
(see [57]). The modified observable is then φη,M = R +

∑M

m=1 amLηem where the functions
Lηem are explicit for appropriate choices of basis functions (em)m; see Section 3.3.

The mobility is estimated with an ergodic average of R along a trajectory during a time T ,
for a forcing η, byD̂η,T = 1

η
R̂T . This estimator has an expectation of order 1 and a large

variance when η is small and T is large [41, 42]:

E[D̂η,T ] = D + O
(
η + 1

T

)
, Var[D̂η,T ] ∼ σ2

R

η2T
,

so that the relative statistical error scales as√
Var[D̂η,T ]

E[D̂η,T ]
∼ σR

Dη
√
T
.

In order for this quantity to be small, the simulation time should be taken of order T ∼ 1
η2 ,

which is very large since η is small.
When the Poisson problem is exactly solved, the modified observable is

φη = R+ LηΦ0 = ηL̃Φ0,

which is proportional to η, so that the associated asymptotic variance scales as σ2
φη ∼ η2.

The relative statistical error for the mobility estimator D̃η,T = 1
η
φ̂η,T is then bounded with

respect to η:
Var[D̃η,T ]
E[D̃η,T ]

∼ 1
D
√
T
,

and the simulation time can be fixed independently of the value of η. Now, if an error of order
εM is committed on Φ0, the asymptotic variance of φη,M scales as η2 + ε2

M so the relative
statistical error on D̃η,T is of order

|η|+ εM√
T |η|

= 1√
T

(
1 + εM
|η|

)
.

This implies that the simulation time T can be taken of order 1 +
(
εM
η

)2

instead of η−2.

3.3 Numerical results
In order to simplify the numerical resolution of the Galerkin problem (see Section 2.4) we
consider the simple potential:

∀q ∈ 2πT, v(q) = 1− cos(q).

We construct VM using a tensorized basis made of weighted Fourier modes in position and
Hermite modes in momenta. The particular weights of the Fourier modes are chosen so that
the basis is orthogonal for the L2(π0) scalar product. Obtaining error estimates on Φ0−Φ0,M
requires some work, see [57, Section 4] for a detailed analysis and a precise expression of the
basis. In the following we take either M = 15× 10 basis elements (15 Fourier modes and 10
Hermite modes), M = 7 × 5 or 5 × 3 basis elements. Estimating Φ0 allows to construct a
control variate, and also to compute directly the mobility since the Green–Kubo formula [37]
states that

D = β
〈
R,−L−1

0 R
〉

0
= β 〈R,Φ0〉0 . (24)

9



Figure 1: Linear response for the standard MC simulation (black squares) compared to the version
with control variate (blue, red) and to the asymptotic response Dη ≈ 0.48η (black line).
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In order to compute the mobility using Monte-Carlo simulations, we fix η > 0 small and
rely on the estimators D̂η,T or D̃η,T defined in Section 3.2. We are interested in the reduction
of the asymptotic variance provided by our control variate, i.e. comparing Var[D̃η,T ] and
Var[D̂η,T ]. The Langevin dynamics is integrated over a time T = 2 × 104 with time steps
∆t = 0.02 for an external forcing η ranging from 0.01 to 2.56. The numerical integration
is done with a Geometric Langevin Algorithm [9]. This scheme ensures that the invariant
probability measure is correct up to terms of order O(∆t2) at equilibrium. Moreover the
transport coefficients estimated by linear response are also correct up to terms of order ∆t2
(see [40]). The scheme writes:

pk+1/2 = pk +
(
−v′(qk) + η

) ∆t
2 ,

qk+1 = qk + pk+1/2

m
∆t,

p̃k+1 = pk+1/2 +
(
−v′(qk+1) + η

) ∆t
2 ,

pk+1 = α∆tp̃
k+1 +

√
mβ−1(1− α2

∆t) G
k,

(25)

where the superscript k is the iteration index, α∆t = exp
(
− γ
m

∆t
)
and the (Gk)k∈N are

independent and identically distributed (i.i.d.) standard one-dimensional Gaussian random
variables. The results which are reported are obtained for m = γ = β = 1.

Linear response. The results presented in Figure 1 (Left) show that the average velocity
scales linearly with respect to the forcing for η small, as predicted by linear response theory.
The slope, which is the mobility D, matches the one computed using (24) for M large. An
effective mobility is obtained by dividing the average velocity by the forcing, see Figure 1
(Right). We are interested in its limiting value for a small forcing. On the one hand the result
is biased if η is too large, but on the other hand the statistical error scales like 1

η
. For the

standard observable we see that the optimal trade-off value of η is around 0.2 for the chosen
simulation time T . When using a control variate the variance is much smaller in the small
forcing regime, so η can be taken very small to reduce the bias while keeping the statistical
error under control. We discuss next the estimation of the error bars plotted on Figure 1.

Correlation profiles. The asymptotic variance of time averages for an observable ϕ ∈ S
writes, using the Green–Kubo formula [37],

σ2
ϕ = 2

∫ ∞
0

Cϕ(t) dt, Cϕ(t) = E[(ϕ(X0)− E[ϕ])(ϕ(Xt)− E[ϕ])],

where the autocorrelation function Cϕ involves an expectation over all initial condition X0 =
(q0, p0) ∈ X distributed according to the invariant probability measure π0 at equilibrium,

10



Figure 2: Illustrative autocorrelation profile. The dashed line is the exponential envelope of the
correlation function.
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and for all realizations of the dynamics with generator L0. The integrability of Cϕ(t) can be
guaranteed when the semi-group etL0 decays sufficiently fast in L∞n [42]. The function Cϕ
is characterized by three major features explaining the value of the asymptotic variance; see
Figure 2 for an illustration.
(i) The first one is the amplitude of the signal ‖ϕ− E[ϕ]‖2L2(π0) = Cϕ(0) corresponding to

the value of the autocorrelation at t = 0.
(ii) The second one is the characteristic decay time τ of the autocorrelation, which can be

related to the decay of its exponential envelope.
(iii) The last one is the presence of anticorrelations, which arise only for non-reversible dy-

namics such as Langevin dynamics.
A proper estimation of the asymptotic variance requires to compute autocorrelation profiles
on a sufficiently long time interval [0, tdeco] (here tdeco = 6). One can check a posteriori
that this time is sufficient by looking at the convergence of the cumulated autocorrelation
t 7→

∫ t
0 Cϕ toward its limit σ2

ϕ

2 =
∫∞

0 Cϕ (see Appendix D for more details on the variance
estimators, and the computation of error bars for these quantities).

Figure 3 compares the autocorrelation profile of the velocity with the ones for the modified
observables, for two different Galerkin basis sizes M and two different forcing amplitudes η.
For a small forcing η = 0.08 the two modified observables have an amplitude and a decorre-
lation time which are both much smaller than for the standard velocity. Note that the two
modified observables do not exhibit any anti-correlation, contrarily to the velocity observable.
The cumulated plots show that the control variates drastically reduce the asymptotic variance
in this case, especially for the one based on a more accurate Galerkin approximation. For
a larger value η = 1.28 the modified observables have a significantly larger amplitude (i.e.
Cϕ(0) is larger), especially in the case of a low accuracy M . However the decorrelation times
are small and there is anti-correlation, resulting in a reasonable variance reduction in both
cases.

Asymptotic variances. Let us now compute the asymptotic variance for a whole range
of Galerkin accuraciesM and forcing amplitudes η. The results presented in Figure 4 confirm
that for a very accurate Galerkin resolution the variance of the modified observable scales as
η2 with the prefactor α =

〈
Π0AR,−L−1

0 Π0AR
〉

0
predicted theoretically in Theorem 2. This

prefactor has been computed independently by solving (23) using a Galerkin method and plug-
ging this approximation in (24). When the Galerkin discretization is not sufficiently accurate,
the variance reaches a plateau in the region of small forcings as predicted by Theorem 4.

4 Thermal transport in atom chains
Thermal transport in one-dimensional systems has been the topic of many investigations,
both from theoretical and numerical points of view [8, 44, 15]. Determining which micro-
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Figure 3: Left: Autocorrelation profile of the velocity compared to the one of the modified ob-
servables for two different accuracies, either for a small forcing η = 0.08 (top) or a larger one
η = 1.28 (bottom). Right: Corresponding cumulated autocorrelations. The limit value is half the
asymptotic variance of the observable.
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Figure 4: Asymptotic variance of the velocity (black squares) compared to its counterpart when
using a control variate (blue, grey, red) and to the reduced variance (black line) predicted theo-
retically (α ≈ 0.53 computed with a Galerkin discretization).
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Figure 5: Heat transport in a one-dimensional chain.

scopic ingredients influence the scaling of the conductivity with respect to the length of the
chain is still an active line of research. Studying numerically this scaling requires to simulate
chains of thousands of particles. In these systems the temperature gradient and the thermal
flux are both very small, which induces large statistical errors when estimating the conduc-
tivity. Introducing variance reduction techniques not requiring the knowledge of the invariant
probability measure could alleviate (at least partly) these difficulties.

4.1 Full dynamics
4.1.1 Equations of motion
We consider a chain composed of N particles interacting through a nearest-neighbor poten-
tial v (see Figure 5). The evolution is dictated by a Hamiltonian dynamics and a thermal-
ization mechanism at the boundaries, where the first and the last particles are submitted to
Ornstein-Uhlenbeck processes, at temperatures TL and TR respectively. The unknowns are
the momenta p = (pn)16n6N of the particles and the interparticle distances r = (rn)16n6N−1.
In these variables, the dynamics reads:

drn = 1
m

(pn+1 − pn) dt,

dp1 = v′(r1) dt− γ

m
p1 dt+

√
2γTLdWL

t ,

dpn = (v′(rn)− v′(rn−1)) dt,

dpN = −v′(rN−1) dt− γ

m
pN dt+

√
2γTRdWR

t ,

(26)

where m > 0 is the mass of a particle, γ > 0 is the friction coefficient, TL > TR and WL
t ,

WR
t are two independent standard one-dimensional Brownian motions. Notice that the ends

of the chain are free. The Hamiltonian of the system is the sum of the potential and kinetic
energies:

H(r, p) = V (r) +
N∑
n=1

p2
n

2m, V (r) =
N−1∑
n=1

v(rn).

The infinitesimal generator of the dynamics (26) reads

L = 1
m

N−1∑
n=1

(pn+1 − pn)∂rn +
N∑
n=1

(v′(rn)− v′(rn−1))∂pn

− γ

m
p1∂p1 + γTL∂

2
p1 −

γ

m
pN∂pN + γTR∂

2
pN ,

using the convention v′(r0) = v′(rN ) = 0.

4.1.2 Properties of the dynamics
Let us recall some properties of the dynamics (26) which hold under the following assumption.
Assumption 6. The interaction potential v is C∞ and there exist k > 2 and a > 0 such that

∀r1 ∈ R, lim
τ→+∞

τ−kv(τr1) = a|r1|k, lim
τ→+∞

τ1−kv′(τr1) = ka|r1|k−1sign(r1).

Moreover the interaction potential is not degenerate: for any r1 ∈ R there exists m = m(r1) >
2 such that ∂mv(r1) 6= 0.

13



These conditions hold for the potentials we use in the numerical simulations reported in
Section 4.3. When Assumption 6 holds, the dynamics admits a unique invariant probability
measure π (see [12]). This invariant probability measure is explicit when the chain is at
equilibrium (TL = TR = β−1), in which case it has the tensorized form

πeq(dr dp) = Z−1
β exp

(
−β
(
|p|2

2m + V (r)
))

dr dp, (27)

where Z−1
β is a normalization constant. Let us emphasize that the reference system considered

later on in Section 4.2 is not at equilibrium. Following the framework considered in [12] (which
is itself based on [55]), we consider in this section the Lyapunov functions Kθ = eθH . There
exist θ∗ > 0 such that Kθ ⊂ L2(π) for any θ ∈ [0, θ∗). The functional spaces we use are also
indexed by the continuous parameter θ ∈ [0, θ∗):

L∞θ =
{
ϕ measurable

∣∣ ‖ϕ e−θH‖L∞ < +∞
}
,

and the space S is defined similarly to (12). For θ ∈ [0, θ∗), we also define the vector space
L∞θ,0 of functions of L∞θ with mean zero with respect to π. One can prove the exponential
decay of the semi-group on the associated functional space L∞θ,0 (see [12]): for any θ ∈ [0, θ∗),
there exist C, λ > 0 such that, for any ϕ ∈ L∞θ,0,

∀t > 0, ‖etLϕ‖L∞
θ

6 Ce−λt‖ϕ‖L∞
θ
.

This implies that L is invertible on L∞θ,0, and that its inverse is bounded.

Validity of Assumptions 1 and 2. Assumption 1 holds true since there exist a unique
invariant probability measure with positive density with respect to the Lebesgue measure,
and the generator of the dynamics is hypoelliptic [12, 33, 55]. The first part of Assumption 2
is also satisfied for θ ∈ [0, θ∗). Note that at equilibrium (TL = TR = β−1) the invariant
probability measure is explicit and θ∗ = β/2. The product of two Lyapunov functions Kθ
and Kθ′ is in a Lyapunov space only if θ+ θ′ < θ∗, so the second part of Assumption 2 is not
satisfied.

4.1.3 Heat flux and conductivity
When studying heat transport in atom chains the typical quantity of interest is the thermal
flux through the chain:

∀n ∈ [1, N − 1], jn(r, p) = −pn + pn+1

2 v′(rn), (28)

see for example the review [43] on thermal transport in low-dimensional lattices for further
background material. We also make use of the two boundary elementary fluxes:

j0(r, p) = γ

m

(
TL −

p2
1
m

)
, jN (r, p) = γ

m

(
p2
N

m
− TR

)
. (29)

The definition of the elementary fluxes jn is motivated by the local energy balance, centered
on particle n:

∀n ∈ [1, N ], Lεn = jn−1 − jn, εn(r, p) = v(rn−1)
2 + p2

n

2m + v(rn)
2 . (30)

The quantity Lεn is of mean zero since it is in the image of the generator. Therefore the
elementary fluxes jn all have the same stationary values:

Eπ[j0] = Eπ[j1] = · · · = Eπ[jN ]. (31)

Any linear combinations of such fluxes, namely

Jλ =
N∑
n=0

λnjn,

N∑
n=0

λn = 1, (32)
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has the same stationary value. The most common choice is the spatial mean

R̃ = 1
N − 1

N−1∑
n=1

jn. (33)

We call the latter observable "standard heat flux" in the sequel. Notice that it does not depend
on the boundary fluxes j0 and jN . The linear response of R̃ (or of any flux Jλ) with respect
to the temperature gradient TL−TR

N−1 defines the effective conductivity:

κ = N − 1
TL − TR

Eπ[R̃], (34)

which is here the transport coefficient of interest. There exist infinitely many observables
having the same expectation as R̃, see (32) for example. Let us first discuss the choice of
observable for the heat flux, before trying to reduce its variance by constructing a control
variate.

Asymptotic variance of the heat fluxes at equilibrium. The chain is supposed to
be at equilibrium in all this paragraph (TL = TR = β−1). The conclusions remain unchanged
for nonequilibrium systems when TL−TR is small since the results are only perturbed to first
order with respect to this quantity. In the remainder of Section 4, an index ’eq’ refers to
the equilibrium dynamics and to the equilibrium invariant probability measure πeq. In this
setting the asymptotic variance σ2

R̃,eq
for the standard heat flux R̃ is not smaller than the one

associated with any elementary flux (jn)16n6N−1. These two variances are in fact equal, as
made precise in the following proposition (similar in spirit to Remark 6).
Proposition 1. Consider an observable ϕ ∈ S and a function U ∈ S which does not depend
on p1 and pN . Then adding LU to the observable does not modify the variance:

σ2
ϕ+LU,eq = σ2

ϕ,eq. (35)

Proof. At equilibrium, the invariant probability measure πeq is explicit. The symmetric part
of the generator can then be computed and it corresponds to the fluctuation-dissipation part
of the process:

1
2 (L+ L∗) = LFD := −γ

β

(
∂∗p1∂p1 + ∂∗pN ∂pN

)
, (36)

where adjoints are considered on L2(πeq). When U does not depend on p1 nor pN , it holds
LFDU = 0. The claimed result then follows from Lemma 2.

The equality (35) is perturbed by terms of order TL − TR for out of equilibrium dynamics
according to linear response theory. Upon taking for U a linear combination of the energies
(εn)26n6N−1, we directly obtain, thanks to (30), that all the fluxes of the form (32) which
do not depend on the boundary fluxes (λ0 = λN = 0) share the same asymptotic variance at
equilibrium; in particular

∀1 6 n 6 N − 1, σ2
jn,eq = σ2

R̃,eq
. (37)

Remark 7. Linear response theory indicates that the previous asymptotic variances are re-
lated to the conductivity through the Green–Kubo formula [37]:

σ2
R̃,eq

= 2κ
β2(N − 1) . (38)

We show in Appendix B.2 that, in this equilibrium situation, the variance of the two boundary
fluxes j0 and jN is also related to the conductivity as:

σ2
j0,eq = γ

mβ2 −
2κ

β2(N − 1) , σ2
jN ,eq = γ

mβ2 −
2κ

β2(N − 1) . (39)

Apart from special cases such as integrable systems (as the harmonic system considered in
Appendix B.4), we generically observe numerically that κ(N)

N−1 −−−−→N→∞
0. The boundary fluxes

therefore have (asymptotically in N) a larger variance than bulk fluxes. Since the variances
are perturbed to first order in TL−TR in nonequilibrium situations, the same conclusion holds
for temperature differences which are not too large.
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In the next section we construct a modified observable by adding a control variate to
the reference observable R = 1

2 (j0 + jN ). This particular heat flux does not depend on
the potential energy function v, which simplifies the computation of the control variate (see
Appendix B.4). In Appendix B.1 we prove using Proposition 1 that, at equilibrium, the
asymptotic variance of the resulting modified observable does not depend on the choice of the
reference observable R.

4.2 Simplified dynamics and control variate
We split the interaction potential into a harmonic part with parameters ω̂ > 0 and r̂ ∈ R,
and an anharmonic part w:

v(r1) = v0(r1) + w(r1), v0(r1) = 1
2mω̂

2(r1 − r̂)2. (40)

The potential energy is then decomposed as

V (r) = V0(r) +W (r), V0(r) =
N−1∑
n=1

v0(rn), W (r) =
N−1∑
n=1

w(rn).

Following the general strategy outlined in Section 2 we decompose the generator as

L = L0 + L̃,

where L0 is the generator of the harmonic chain corresponding to the harmonic interaction
potential v0 and L̃ is the generator of the anharmonic perturbation:

L̃ =
N∑
n=1

(
w′(rn)− w′(rn−1)

)
∂pn ,

with the same convention w′(r0) = w′(rN ) = 0 as for the potential v. We simplify the Poisson
problem for the optimal control variate

−LΦ = R− E[R],

into the harmonic Poisson problem

− L0Φ0 = R− E0[R]. (41)

Note that the observable R does not depend on the potential, contrarily to other heat fluxes
such as R̃ in (33), so that the right hand side of the Poisson equation needs not be changed
when looking for an approximate control variate. Equation (41) can be solved analytically
for Φ0. In Appendix B.4 we show that

E0[R] = ν2

1 + ν2
γ(TL − TR)

2m ,

Φ0(r, p) = m

2γ (1 + ν2)

[
−ω̂2

N−1∑
n=1

(rn − r̂)(pn + pn+1) + γ

2m2

(
p2
N − p2

1
)]

+ C,

(42)

where ν = mω̂
γ

and C ∈ R is such that E0[Φ0] = 0. The modified observable is therefore

(R+ LΦ0)(r, p) = E0[R] + L̃Φ0(r, p)

= 1
2(1 + ν2)

[
νω̂(TL − TR)− νω̂

N−1∑
n=1

(rn − r̂)
(
w′(rn+1)− w′(rn−1)

)
−
(
p1

m
w′(r1) + pN

m
w′(rN−1)

)]

= 1
2(1 + ν2)

[
νω̂(TL − TR)−

N−1∑
n=1

(ṽn+1(r, p)− ṽn−1(r, p))w′(rn)

]
,

(43)
where

ṽn(r, p) =

{ − p1
m

if n = 0,
−νω̂(rn − r̂) if 1 6 n 6 N − 1,

pN
m

if n = N.

Notice that, by construction, this observable is constant when the chain is harmonic (i.e.
w = 0).

16



Harmonic fitting. For a given pair potential v = v(r), there is some freedom in the
decomposition (40), namely the choice of the parameters ω̂ and r̂. The optimal choice would
be such that the variance of the modified observable (43) is minimal, but this condition is not
practical. A possible (and simpler) heuristic is to choose these coefficients in order to minimize
the L2(πeq) norm of the anharmonic force −∇W at equilibrium, namely when TL = TR = β−1.
In view of the tensorized form (27) of the invariant probability measure at equilibrium,

‖∇W (r)‖2eq = (N − 1)z−1
β

∫
R

(
v′(r1)−mω̂2(r1 − r̂)

)2 e−βv(r1)dr1,

where zβ =
∫
R e−βv(r1)dr1. Therefore the minimization problem defining r̂ and Ω̂ = mω̂2

writes
argmin
ω̂,r̂

∫
R

(
v′(r1)− Ω̂(r1 − r̂)

)2 e−βv(r1)dr1. (44)

There exists a minimizer (r̂, Ω̂) since the function to be minimized is continuous and coercive;
uniqueness is proved in Appendix B.3. Define the moments of the marginal measure for
inter-particle distances as:

Mk =
∫
R
rk1 e−βv(r1)dr1.

The Euler-Lagrange equation associated with (44) provides the expression of the minimizer
(see Appendix B.3):

r̂ = M1

M0
, Ω̂ = mω̂2 = β−1 M2

0
M0M2 −M2

1
, (45)

where, by the Cauchy-Schwarz inequality, M0M2 −M2
1 > 0 for any continuous potential v

which is not constant.

Validity of Assumptions 3 to 5. The standard way to verify Assumption 3 would be
to show that the coefficients in the Lyapunov condition exhibited in [12] depend continuously
on perturbations of the potential v. This is not straightforward, especially if the exponent k
introduced in Assumption 6 is discontinuous with the perturbation amplitude at η = 0 (which
corresponds to the harmonic chain). For example, for the FPU potential (46), k = 2 for
the harmonic chain (η = 0) and k = 4 for η > 0. We show that Assumption 4 holds
under Assumption 6 in Appendix B.5. Moreover it is clear that S is stable by L̃. A simple
computation shows that π0 is a Gaussian probability measure, which implies that L̃∗1 ∈
L2(π0). Therefore Assumption 5 holds as well.

4.3 Numerical results
We consider a Fermi-Pasta-Ulam (FPU) potential

v(r1) = a

2 r
2
1 + b

3r
3
1 + c

4r
4
1, (46)

where c = b2

3a is such that v′′(r1) = a + 2br1 + 3cr2
1 = 1

a
(a + br1)2 is positive except at a

single point where it vanishes. This choice makes the potential both asymmetric and convex.
Symmetric potentials indeed exhibit special behaviors [61], whereas we want to be as general
as possible. On the other hand, non-convex potentials are not typical in the literature on the
computation of thermal conduction in one-dimensional chains. In the following we fix a = 1
and vary b only. The parameters r̂ and ω̂ are given by (45), where the moments Mk are
computed using one-dimensional numerical quadratures.

The system is simulated for a time T = 108 with time steps ∆t = 10−2, and with m =
γ = 1. The atom chain is simulated either at equilibrium with TL = TR = 2, or for TL = 3
and TR = 1. The dynamics is discretized using a Geometric Langevin Algorithm scheme
as in (25). The estimator of the asymptotic variance is made precise in Appendix D. The
decorrelation time is set to tdeco = 3N for the standard flux R and to tdeco = 32 for the
modified observable.
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Figure 6: Comparison of results obtained either with the elementary flux jn (28) or with the
modified observable (43), for two different anharmonicities b = 0.08, 0.64, and for a chain of
N = 128 particles at equilibrium. Left: Autocorrelation profile. Right: Cumulated autocorrelation
t 7→

∫ t

0 C at longer times.

We plot in Figure 6 the autocorrelation profiles of the heat flux for a chain of size N = 128
at equilibrium, for two different anharmonicities. Let us comment this picture in greater
detail. The results first show that the chosen decorrelation time tdeco is sufficiently large.
Similar plots were used to check this is also the case for all the range of anharmonicities b
and numbers of particles N we consider. They can also be used to understand the eventual
variance reduction granted by the control variate (42). For a small anharmonicity b = 0.08 we
see that the asymptotic variance, which is twice the limit of the cumulated autocorrelation
(right plot) is greatly reduced for two reasons. First, the signal amplitude, which is related
to the autocorrelation value at t = 0 (left plot), is slightly smaller, and (right plot) the
contribution of the times 0 6 t 6 2 is twice smaller for the modified flux. Second, and that is
the actual reason for the variance reduction, there is anticorrelation for 2 6 t 6 5. For a larger
anharmonicity it appears that the amplitude of the modified observable is much larger, but
this is compensated by a long-time anticorrelation. The resulting asymptotic variance of the
modified flux is slightly smaller than the one of the standard flux. The plots are essentially
the same out of equilibrium, when TL = 3 and TR = 1 (numerical results not presented here).

The asymptotic variances, with associated error bars (see Appendix D), are plotted on
Figure 7 for a whole range of anharmonicities b and numbers of particles N . The two left plots
are at equilibrium (TL = TR = 2) while the two right plots are out of equilibrium (TL = 3 and
TR = 1). We check that the variances are extremely similar in both cases, which is expected
by linear response theory. We observe that the asymptotic variance of the modified flux scales
as b2 for b� 1, as expected from Theorem 2, providing an excellent variance reduction in this
case. Note that, in the limit b→ 0, the variance of the standard flux tends to γν2

mβ2(1+ν2) = 2
(since ν = mω

γ
= 1 here), which is the theoretical value predicted at equilibrium in view of the

expression of the mean flux for a harmonic chain (see Equations (42), (38), and (34)). The
modified flux can sometimes have a larger variance than the standard one, for example in the
regime b = O(1) and N large. Note that for the particular choice ω̂ = 0 the modified flux
is 1

2 (j1 + jN−1), which has the same asymptotic variance as the standard flux R̃ according
to (37). Therefore, for any set of parameters, there exist an optimal choice of the coefficients
ω̂, r̂ providing a modified flux whose asymptotic variance is smaller or equal to its counterpart
without control variate. In the present application these two coefficients are instead chosen
according to the heuristic (45), leading to a degradation of the asymptotic variance in certain
cases.

5 Solvated dimer under shear
A solvated dimer is a pair of bonded particles in a bath constituted of many other particles.
It serves as a prototypical model of a molecule in solvent (e.g. peptide in water). This model
has been used in the context of free energy computations [41]. We apply to this system
an external shearing force as in [32], also coined sinusoidal transverse field in the physics
literature (see [66, Section 9.1] and [18, 65]), so that the invariant measure of the system is
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Figure 7: Comparison of variances for the standard and modified fluxes. The reported variance
ratio corresponds to the modified variance divided by the standard one. Left: Chain at equilibrium
(TL = TR = 2). Right: Chain out of equilibrium (TL = 3 and TR = 1).

not known. A typical question is the influence of the shear force on the average bond length
of the dimer.

5.1 Full dynamics
We consider N particles in a two-dimensional box of length L with periodic boundary condi-
tions, with positions q = (q1, · · · , qN ) ∈ D = (LT)2N . Two of these particles, with positions q1
and q2, form a dimer whereas the other N − 2 particles, with positions q3, · · · , qN , constitute
the solvent. The potential energy of the system is composed of three parts:

V (q) = v(|q1 − q2|) +
∑

i∈{1,2}

N∑
j=3

vsol(|qi − qj |) +
∑

36i<j6N

vsol(|qi − qj |)

=: Vdim(q) + Vinter(q) + Vsol(q),

where Vdim is the potential energy of the dimer, Vinter is the interaction energy between the
dimer and the solvent and Vsol is the potential energy of the solvent. The two particles forming
the dimer interact via a double-well potential: denoting by r = |q1 − q2| the bond length,

v(r) = h

[
1−

(
r − r0

∆r

)2
]2

, (47)

where r0, ∆r > 0 (see Figure 8, Left). The potential v presents two minima: one associated
with a compact state of length r = r0−∆r and one associated with a stretched state of length
r = r0 + ∆r. These minima are separated by a potential barrier of height h. The particles of
the solvent interact both with the other particles of the solvent and the particles of the dimer
through a purely repulsive potential. In the following we consider two types of potentials with
compact support (see Figure 8, Right): a soft repulsion potential (used in [25] for example)

∀r > 0, vsol(r) = ε
(

1− r

rcut

)2
1r6rcut , (48)
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Figure 8: Pairwise potentials for the solvated dimer model. Left: Potential for the dimer and
associated free energy in vacuum (see (52)). Right: Potentials for the solvent interaction.
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where ε, rcut > 0; and a singular Coulomb-like potential:

∀r > 0, vsol(r) = ε

(
1√
r
− 1√

rcut
1√
σ
− 1√

rcut

)2

1r<rcut = ε
σ

r

(
1−

√
r
rcut

1−
√

σ
rcut

)2

1r6rcut . (49)

This potential behaves like 1
r

for r → 0, reaches the value ε at r = σ and vanishes at
r = rcut,where its derivative also vanishes. Note that we recover the Coulomb potential εσ

r

in the limit rcut → +∞.
The system is driven out of equilibrium by a shearing force of amplitude ν. More precisely,

a particle located at a position (qi,x, qi,y) experiences the force [32, 66]:

(0, f(qi,x)) =
(

0, ν sin
(

2π qi,x
L

))
.

This force is in the y direction and depends only on x. It therefore induces a non-equilibrium
forcing since it is not of gradient type. We are interested in computing the mean length of
the dimer R(q, p) = |q1− q2| as a function of this external forcing. The corresponding average
is denoted by E[|q1 − q2|].

For simplicity we study the overdamped dynamics associated with V , but everything can
be adapted to the Langevin case. Since the spaceD is compact and the noise in the dynamics is
non degenerate, there exist a unique invariant probability measure π by the Doeblin condition
when the potentials under consideration are smooth. This invariant measure depends on ν,
and is not explicit. Proving a similar result for singular potentials such as the Coulomb-like
potential (49) would require more work.

The generator can be decomposed as:

L = −∇V (q) ·∇+ β−1∆ + ν

N∑
i=1

f(qi,x)∂qi,y = Ldim + Linter + Lsol + νLpert,

where

Ldim =
∑
i=1,2

(
−∇qiVdim(q) ·∇qi + β−1∆qi

)
, Linter = −∇Vinter(q) ·∇,

Lsol =
N∑
i=3

(
−∇qiVsol(q) ·∇qi + β−1∆qi

)
, Lpert =

N∑
i=1

f(qi,x)∂qi,y .

Note that Ldim is the generator of the dynamics of the dimer at equilibrium in vacuum and
Lsol is the generator of the dynamics of the solvent at equilibrium and without dimer.
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5.2 Simplified dynamics and control variate
We consider the following reference Poisson equation where the system is at equilibrium and
the interaction between the dimer and the solvent has been switched off:

− L0Φ0 = R− E0[R], (50)

where
L0 = Ldim + Lsol.

Let us show that this equation admits a solution Φ0 depending only on the length |q1 − q2|
of the dimer. In order to highlight the dependence on the dimension of the underlying space,
let us denote by d = 2 this dimension. Assume that Φ0 is defined for any q ∈ (LT)dN by
Φ0(q) = 1

2ψ(|q1 − q2|) for some smooth function ψ. The Laplacian of Φ0 can be rewritten
using spherical coordinates as:

∆Φ0(q) = ψ′′(|q1 − q2|) + d− 1
|q1 − q2|

ψ′(|q1 − q2|), (51)

where d = 2 is the dimension of the underlying physical space. We obtain by substituting Φ0
into (50) that ψ satisfies the following one-dimensional differential equation:

∀r > 0, v′∗(r)ψ′(r)− β−1ψ′′(r) = r − r∗, (52)

where v∗(r) = v(r)− d−1
β

ln(r) and r∗ = E∗[r] is the expectation of the length r with respect
to the probability measure π∗(dr) = Z−1

∗ e−βv∗(r) dr. Note the additional term − d−1
β

ln(r) in
the expression of v∗ coming from (51), which can be interpreted as an entropic contribution.

Let us first discuss the well-posedness of (52). The double-well potential (47) considered
here is such that v∗ is a bounded perturbation of a convex function. Therefore π∗(dr) satisfies
a log-Sobolev inequality and thus a Poincaré inequality by the Holley-Stroock theorem [29] and
the Bakry-Emery criterion [5]. This implies that the one-dimensional Poisson problem (52)
then admits a unique solution in

H1(π∗) ∩ L2
0(π∗) =

{
ϕ ∈ H1(π∗),

∫ +∞

0
ϕdπ∗ = 0

}
by the Lax-Milgram theorem for the variational formulation:

∀u ∈ H1(π∗) ∩ L2
0(π∗), β−1

∫ ∞
0

ψ′(r)u′(r)π∗(dr) =
∫ ∞

0
(r − r∗)u(r)π∗(dr).

We discuss precisely in Appendix C how we numerically solve (52). Knowing the solution ψ,
the corresponding modified observable then writes

(R+ LΦ0)(q) = |r12|+ β−1ψ′′(|r12|)

+
[

1
2
(
∇q1V (q)−∇q2V (q)− ν(f(q1,x)− f(q2,x))ey

)
· r12

|r12|
+ d− 1
β|r12|

]
ψ′(|r12|),

where r12 = q2 − q1 and ey = (0, 1). Note that ∇q1V and ∇q2V are the forces that apply on
particles 1 and 2 respectively, which depend also on the solvent variables.

5.3 Numerical results
We simulate a system of N = 64 particles in d = 2 dimensions, using periodic boundary
conditions. We fix L = 8 (so that the particle density is 1), and β = 1. The parameters of the
potentials are set to rcut = 2.5, ε = 1, h = 1, r0 = 3 and ∆r = 1 (see Figure 8). For the finite
difference method used to solve the Poisson equation (52) we use a mesh size ∆r = 10−3 on
an interval [0, rmax] with rmax = 10 (see Appendix C).

The influence of the shearing on the average dimer length is plotted on Figure 9. We see
that a shear force of amplitude ν = 1 increases the mean length by roughly 1%, and that the
response of the mean length to the nonequilibrium forcing is of order 2. The response is small
thus difficult to estimate accurately, hence the need for control variates to alleviate this issue.
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Figure 9: Left: Mean length of a dimer, either unsolvated (in vacuum) or in a solvent with soft
or Coulomb-like potential. Right: Relative variation of this mean length induced by the shearing.
The solid line represents the reference scaling ν2.
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In the case of an unsolvated dimer, Figure 10 (Left) shows that the variance of the modified
observable scales like ν2, as predicted by Theorem 2. Note that in the limit ν → 0 the modified
observable is the constant E0[R] = r∗, which is computed by a numerical quadrature, so that
the variance converges to zero.

When the solvent interacts with the dimer the variance of the modified observable plateaus
at a certain value when ν → 0 , as expected from Theorem 4. For the soft potential (48), the
variance scales like ν for a forcing amplitude of order 1, which is expected from Theorem 4
(see Figure 10, Right). The variance stabilizes at a value which is ten times smaller than
the initial one. For the Coulomb-like potential the influence of the solvent on the dimer is
stronger and the control variate does not perform as well, as seen on Figure 10 (Bottom). For
a small shearing the variance is however reduced by a factor 4.

Generalization. The variance reduction strategy discussed here can be easily adapted
to similar systems. For example Langevin dynamics can be treated by replacing (52) by a
two-dimensional PDE where the variables are the dimer length and the radial part of the
momentum associated to this length. The Poisson equation should then be solved using
a Galerkin approximation similar to what is done Section 3. One could also consider a
solvated molecule more complex than a dimer. In this case the PDE (52) would be posed in
several dimensions and thus become rapidly impossible to solve in practice. In general one
has to reduce the system to a few relevant variables corresponding to a simplified Poisson
equation in order to use the control variate approach developed here. This is connected to
coarse-graining, i.e. finding a few (nonlinear) functions of the degrees of freedom providing
some macroscopic information on the system – think of identifying an appropriate molecular
backbone for proteins. An alternative route, which does not require an a priori physical
knowledge of the system, would be to resort to greddy methods [50, 64, 11, 19]. If the system
possesses in addition a specific symmetry or structure, one can make profit of dedicated
tensor formats [26] as done for the Schrödinger equation in [68]. This approach would be
particularly adapted when studying an isotropic system composed of identical particles for
example. Let us also mention recent advances on the resolution of Poisson equations based
on deep convolutional neural networks [59, 4], which offer the promise of a better scalability
with respect to the dimension of the system.
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Figure 10: Asymptotic variance of the length of the dimer, with or without control variate.
Left: Unsolvated dimer. Right: Solvent with the soft potential (48). Bottom: Solvent with the
Coulomb-like potential (49).
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A Proofs of Theorems 2 and 4
Let us first prove Theorem 2, and deduce Theorem 4 in a second step. We suppose in all
this section that Assumptions 1 to 5 hold true. The norm and scalar product indexed by η
correspond to the canonical ones on L2(πη). We start by giving a useful technical result.
Lemma 1. For any η∗ > 0 and n ∈ N, there exists Cn,η∗ ∈ R+ such that, for any |η| 6 η∗,

∀ϕ ∈ L∞n , |Eη[ϕ]− E0[ϕ]| 6 Cn,η∗ |η| ‖ϕ‖L∞n .

Proof. For any ψ ∈ S,
E0[Lηψ] = ηE0[L̃ψ],

so that, for a given ϕ ∈ S, the previous equality applied to ψ = L−1
η Πηϕ leads to

E0[Πηϕ] = ηE0[L̃L−1
η Πηϕ] = η

〈
L̃L−1

η Πηϕ,1
〉

0
= η

〈
L−1
η Πηϕ, L̃∗1

〉
0
.

Since E0[Πηϕ] = E0[ϕ]− Eη[ϕ] and |ϕ| 6 ‖ϕ‖L∞n Kn, we obtain

|Eη[ϕ]− E0[ϕ]| 6 |η|
∥∥L−1

η

∥∥
B(ΠηL∞n )

‖ϕ‖L∞n
∥∥Kn∥∥0

∥∥L̃∗1∥∥
0
6 Cη∗,n|η|‖ϕ‖L∞n ,

since L̃∗1 ∈ L2(π0) by Assumption 4 and
∥∥Kn∥∥0

< +∞ by Assumption 2. The proof is
concluded by the density of S in L∞n .
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Corollary 1. For any η∗ > 0 and n, n′ ∈ N, there exists Cn,n′,η∗ ∈ R+ such that, for any
|η| 6 η∗,

∀ϕ ∈ L∞n , ∀ψ ∈ L∞n′ , | 〈ϕ,ψ〉η − 〈ϕ,ψ〉0 | 6 Cn,n′,η∗ |η|‖ϕ‖L∞n ‖ψ‖L∞n′ ; (53)

and, for a given ψ ∈ S, there exists Cψ,n,η∗R+ such that

∀ϕ ∈ L∞n , | 〈ϕ,Lηψ〉η − 〈ϕ,L0ψ〉0 | 6 Cψ,n,η∗ |η|‖ϕ‖L∞n . (54)

Proof. In view of Assumption 2 there exist m ∈ N depending only on n and n′ such that
‖KnKn′‖L∞m < +∞. Therefore, writing

ϕψ = ϕ

Kn
ψ

Kn′
KnKn′ .

we obtain
‖ϕψ‖L∞m 6 ‖ϕ‖L∞n ‖ψ‖L∞n′ ‖KnKn′‖L∞m .

The estimate (53) then follows from Lemma 1 since 〈ϕ,ψ〉η = Eη[ϕψ]. Fix now ψ ∈ S. There
exist n′, n′′ ∈ N such that L0ψ ∈ L∞n′ and L̃ψ ∈ L∞n′′ . Therefore, using Lemma 1 twice,

| 〈ϕ,Lηψ〉η − 〈ϕ,L0ψ〉0 | 6
∣∣ 〈ϕ,L0ψ〉η − 〈ϕ,L0ψ〉0

∣∣+ |η|
∣∣∣∣〈ϕ, L̃ψ〉

η

∣∣∣∣
6 Cn,n′,η∗ |η| ‖ϕ‖L∞n ‖L0ψ‖L∞

n′
+ |η|

∣∣∣〈ϕ, L̃ψ〉
0

∣∣∣+ η2Cn,n′′,η∗‖ϕ‖L∞n ‖
∥∥∥L̃ψ∥∥∥

L∞
n′′

.

This implies (54) since n′ and n′′ depend only on ψ.

We can now provide the proof of Theorem 2.

Proof of Theorem 2. When Π0A is not bounded one needs to define an approximation of
−L−1

η Πηφη at order K in η, as done in [53] for instance:

QK := −ΠηL−1
0 Π0

K∑
k=1

ηkAkR ∈ S.

Let us show that this is indeed a good approximation. Using successively (14) and (16) the
corresponding truncation error reads:

Πηφη + LηQK = Πηφη − LηL−1
0 Π0

K∑
k=1

ηkAkR

= ηΠηAR−Πη(1− ηA)
K∑
k=1

ηkAkR

= ηK+1ΠηA
K+1R,

which implies:
QK + L−1

η Πηφη = ηK+1L−1
η ΠηA

K+1R. (55)
Let us first show that the corresponding approximated asymptotic variance σ2

φη,K
:=

2
〈
Πηφη, Q

K
〉
η
is close to σ2

φη,η (defined in (9)). Indeed,

σ2
φη,η − σ

2
φη,K = 2

〈
Πηφη,−L−1

η Πηφη −QK
〉
η

= 2ηK+1 〈Πηφη,−L−1
η ΠηA

K+1R
〉
η
.

Note that ΠηA
K+1R ∈ S because S is stable by L−1

0 Π0 and L̃ in view of Assumptions 4 and 5.
Since Πηφη ∈ S as well, there exist n ∈ N (depending on R and K) and m ∈ N (depending on
R) such that ΠηA

K+1Π0R ∈ L∞n and Πηφη ∈ L∞m . Note that m does not depend on η in view
of the expression (15) of φη. Using Assumption 4 we obtain, for any η∗ > 0 and |η| 6 η∗,

|σ2
φη,η − σ

2
φη,K | 6 2|η|K+1‖Πηφη‖L∞m

∥∥L−1
η ΠηA

K+1R
∥∥

L∞n
〈Km,Kn〉η

6 2|η|K+2‖ΠηAR‖L∞m
∥∥L−1

η

∥∥
B(ΠηL∞n )

∥∥AK+1R
∥∥

L∞n
‖Km‖L2(πη) ‖Kn‖L2(πη),

(56)

24



where the four terms on the right hand side are uniformly bounded for |η| 6 η∗ in view of
Assumption 3 and Lemma 1. This shows that there exists CR,η∗,K ∈ R+ such that, for any
|η| 6 η∗,

σ2
φη,η − σ

2
φη,K = ηK+2ER,η,K , (57)

where |ER,η,K | 6 CR,η∗,K .
At this stage it is sufficient to prove the expansion (13) for σ2

φη,K
. The approximate

variance σ2
φη,K

can be expanded in powers of η as follows:

σ2
φη,K = 2

〈
Πηφη, Q

K
〉
η

= 2
〈
ηΠηAR,Q

K
〉
η

= −2η
K∑
k=1

ηk
〈
ΠηAR,L−1

0 Π0A
kR
〉
η
.

In fact it suffices to consider K = 1. We use Lemma 1 and Corollary 1 to replace integrals
with respect to πη by integrals with respect to π0: there exists CR,η∗ ∈ R+ such that, for any
|η| 6 η∗,

σ2
φη,1 = −2η2 〈ΠηAR,L−1

0 Π0AR
〉
η

= −2η2 〈AR,L−1
0 Π0AR

〉
0

+ η3ẼR,η,

with |ẼR,η| 6 CR,η∗ . The claimed result then follows by (57).

The following lemma is useful for the proof of Theorem 4 and is also used in Section 4.
Denote by LS

η the symmetric part of Lη on L2(πη), defined as

∀ϕ,ψ ∈ S,
〈
LS
ηϕ,ψ

〉
η

= 1
2

(
〈Lηϕ,ψ〉η + 〈ϕ,Lηψ〉η

)
.

Note that the action of this operator is not explicit when πη is not known.
Lemma 2. For any ϕ,U ∈ S,

σ2
ϕ+LηU,η = σ2

ϕ,η +
〈
−LS

ηU, 2L−1
η Πηϕ+ ΠηU

〉
η
.

Proof. By definition of the asymptotic variance,

σ2
ϕ+LηU,η =

〈
ϕ+ LηU,−L−1

η Πη (ϕ+ LηU)
〉
η

= σ2
ϕ,η − 〈ϕ,ΠηU〉η −

〈
LηU,L−1

η Πηϕ
〉
η
− 〈LηU,ΠηU〉η

= σ2
ϕ,η −

〈
ΠηU,LηL−1

η Πηϕ
〉
η

+
〈
LηU,−L−1

η Πηϕ
〉
η

+
〈
−LS

ηU,ΠηU
〉
η

= σ2
ϕ,η +

〈
−LS

ηU, 2L−1
η Πηϕ+ ΠηU

〉
η
,

which is the desired result.

We now deduce Theorem 4 from Theorem 2 using Lemma 2.

Proof of Theorem 4. We use Lemma 2 with U = εf to compute the asymptotic variance of

φη,ε = φη + εLηf,

with φη given by (15). Noting that (from (55) with K = 1)

L−1
η Πηφη = η2L−1

η ΠηA
2R+ ηΠηL−1

0 Π0AR,

it comes

σ2
φη,ε,η = σ2

φη,η + ε
〈
−LS

ηf, 2L−1
η Πηφη + εΠηf

〉
η

= σ2
φη,η + 2εη

〈
−LS

ηf,ΠηL−1
0 Π0AR

〉
η

+ ε2 〈−LS
ηf,Πηf

〉
η

+ 2εη2 〈−LS
ηf,L−1

η ΠηA
2R
〉
η

= σ2
φη,η + εη

〈
Lηf,−L−1

0 Π0AR
〉
η
− εη

〈
f,LηL−1

0 Π0AR
〉
η

+ ε2 〈−Lηf, f〉η + εη2 〈Lηf,−L−1
η ΠηA

2R
〉
η
− εη2 〈f,ΠηA

2R
〉
η
.

(58)
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In order to retain only the leading order terms in the expansion in η and ε we first bound the
two last terms in the last equation of (58) in a fashion similar to (56). Then we change the
scalar products in L2(πη) by their equivalents in L2(π0) and replace Lη by L0 (controlling
the error with Corollary 1). All higher order terms are gathered in the remainder, using
the inequalities |ε|η2 6 |ε|3 + |η|3 and ε2|η| 6 |ε|3 + |η|3. Finally, there exist ε∗ > 0 and
CR,η∗,ε∗,f ∈ R+ such that, for any |η| 6 η∗ and any |ε| 6 ε∗,

σ2
φη,ε,η = σ2

φη,η + εη
〈
(L0 + L∗0)f,−L−1

0 Π0AR
〉

0
+ ε2 〈−L0f,Π0f〉0 + (ε3 + η3)ER,η,ε,f ,

where |ER,η,ε,f | 6 CR,η∗,ε∗,f . Formula (21) then follows in view of Theorem 2.

B Technical results used in Section 4
B.1 Equivalence of modified flux observables
There exist infinitely many observables whose average is the average heat flux in the chain. In
particular (see (31)) any linear combination of the elementary fluxes with weights summing
to 1 (i.e. of the form (32)) has the same average. The procedure described in Section 2 allows
to construct a modified observable φ starting from any observable R. A legitimate question is
which choice of R provides the modified observable with the smallest asymptotic variance. We
show here that, starting from any linear combination of the form (32), the resulting modified
observable has the same asymptotic variance in the equilibrium setting. Note that the linear
combination can involve the fluxes at the ends of the chain j0 and jN .

Consider two fluxes R1 and R2 = R1 + LU , where R1, R2 are linear combinations of
the elementary fluxes (jn)06n6N , while U is a linear combinations of the elementary energies
(εn)16n6N . The function U can indeed be assumed to be of this form since jn+1 = jn−Lεn in
view of (30). The functions R1, R2 and U have their counterparts in the simplified (harmonic)
setting: R2

0 = R1
0 + L0U0. The two associated simplified Poisson equations read{

−L0Φ1
0 = R1

0 − E0[R1
0],

−L0Φ2
0 = R2

0 − E0[R2
0].

The right hand side of these two equations is modified as well since the definition of the fluxes
jn depends on the potential v. The average E0[R1

0] = E0[R2
0] is the heat flux for the harmonic

chain. The solutions of these Poisson equations satisfy Φ2
0 = Φ1

0 − U0 (up to elements of the
kernel of L0, which are constants [12]), so the two corresponding modified observables are
such that

φ2 = R2 + LΦ2
0 = R1 + LU + L(Φ1

0 − U0) = φ1 + L(U − U0).
Assume now that the chain is at equilibrium (TL = TR). In view of Proposition 1, the two
modified observables thus have the same asymptotic variance (i.e. σ2

φ1 = σ2
φ2) as soon as

U −U0 does not depend on p1 nor on pN . This is indeed the case for the elementary energies
εn − εn,0 = 1

2 (w(rn−1) +w(rn)) for 0 6 n 6 N , where εn,0 is defined by (30) with v replaced
by v0. This is in particular true at the ends of the chain (n = 0 and n = N), so the boundary
flux R defined in (33) and the standard (bulk) flux R̃ provide two modified observables with
the same asymptotic variance.

When the temperature difference TL−TR is not too large, the asymptotic variances of the
two modified observables are approximately equal. This shows that the choice of the linear
combination of the form (32), from which the modified observable φ is constructed, does not
significantly change the asymptotic variance in this regime.

B.2 Computation of the asymptotic variances of j0 and jN

Since we are in the setting of Remark 7, we assume in this section that the system is at
equilibrium (TL = TR = β−1). Recall that Lε1 = j0 − j1, and more precisely LFDε1 = j0
where LFD is the symmetric part of the generator at equilibrium, which is known explicitly
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(see (36)). Therefore, using Lemma 2 with ϕ = j0 and U = −ε1 (so that ϕ+ LU = j1),

σ2
j1 = σ2

j0 +
〈
LFDε1, 2L−1j0 − ε1

〉
eq

= σ2
j0 + 2

〈
j0,L−1j0

〉
eq

+
〈
γβ−1∂∗p1∂p1ε1, ε1

〉
eq

= −σ2
j0 + γβ−1

∥∥∥∥∂p1

(
p2

1
2m

)∥∥∥∥2

eq

= −σ2
j0 + γ

m
β−2.

Therefore,
σ2
j0 = γ

m
β−2 − σ2

j1 ,

from which (39) follows in view of (38). Similar computations give the result for jN .

B.3 Euler-Lagrange equation for (45)
Denoting by Ω̂ = mω̂2, the minimization problem (44) can be recast as minimizing the
following function for (r̂, Ω̂) ∈ R× (0,+∞):

f(r̂, Ω̂) =
∫
R

[
v′(r1)− Ω̂(r1 − r̂)

]2 e−βv(r1) dr1

=
∫
R

[
v′(r1)2 − 2Ω̂v′(r1)(r1 − r̂) + Ω̂2(r1 − r̂)2] e−βv(r1) dr1

=
∫
R

[
v′(r1)2 − 2β−1Ω̂ + Ω̂2(r1 − r̂)2] e−βv(r1) dr1

= C − 2β−1Ω̂M0 + Ω̂2(M2 − 2M1r̂ +M0r̂
2),

with C =
∫
R v
′(r1)2e−βv(r1) dr1 and where the third line is obtained with an integration by

parts. The gradient of f vanishes if and only if:{
0 = Ω̂2(−2M1 + 2M0r̂),

0 = −2β−1M0 + 2Ω̂(M2 − 2M1r̂ +M0r̂
2).

The only solution of this system is indeed given by (45).

B.4 Harmonic chain
We establish in this section the formulas (42) using the linear structure of the harmonic
chain, see [43, Appendix B] for similar computations. The interaction potential writes v0(r) =
1
2mω

2(r − r̂)2, so (26) reduces to

drn = 1
m

(pn+1 − pn) dt,

dp1 = mω2(r1 − r̂) dt− γ

m
p1 dt+

√
2γTLdWL

t ,

dpn = mω2(rn − rn−1) dt,

dpN = −mω2(rN−1 − r̂) dt− γ

m
pN dt+

√
2γTRdWR

t .

(59)

In order to simplify the algebra we make the change of variables

x = (p1,mω(r1 − r̂), p2, · · · , pN−1,mω(rN−1 − r̂), pN ) ∈ R2N−1,

and denote by ν = mω
γ
> 0 the dimensionless ratio between the respective time scales of the

harmonic potential and of the fluctuation-dissipation process. The process (59) is in fact a
generalized Ornstein-Uhlenbeck process:

dx = γ

m
Axdt+

√
2γβ−1

(
S + 1

2β(TL − TR) R
)1/2

dWt, (60)
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where β−1 = (TL + TR)/2 and

A = ν
(
J− J>

)
− S ∈ R2N−1×2N−1,

with

J =


0 1 (0)

. . . . . .
. . . 1

(0) 0

 , S =

( 1 (0)
(0)

(0) 1

)
, R =

( 1 (0)
(0)

(0) −1

)
.

The generator of this process writes, for any smooth function ϕ:

L0ϕ(x) = γ

m
x>A>∇ϕ(x) + γβ−1

(
S + 1

2β(TL − TR) R
)

: ∇2ϕ(x).

Recall that the observable we consider is the heat flux R = 1
2 (j0 + jN ) at the ends of the

chain, with j0 and jN given by (29). This corresponds to the following quadratic form:

R(x) = − γ

2m2 x
>Rx+ γ(TL − TR)

2m .

We look for the solution Φ0 to the Poisson equation

− L0Φ0 = R− E0[R]. (61)

The observable R is the sum of a quadratic part and a constant. Since L0 stabilizes the space
of functions x 7→ a+ x>Mx with a ∈ R and M a symmetric matrix, we consider the ansatz

Φ0(x) = 1
2mx>Kx+ C,

where K ∈ R(2N−1)×(2N−1) is symmetric and C ∈ R is chosen such that E0[Φ0] = 0. The
Poisson equation (61) then writes: for all x ∈ R2N−1,

− γ

m2 x
>A>Kx− γβ−1(S + β(TL − TR) R) : 1

m
K = − γ

2m2 x
>Rx+ γ(TL − TR)

2m − E0[R],

which is equivalent toA>K + KA = R,

E0[R] = γ(TL − TR)
2m + γβ−1

m

(
S + β

TL − TR

2 R
)

: K,
(62)

by separating the constant and the quadratic term. The solution is in fact fully explicit since
there is an analytical formula for K.
Proposition 2. The solution to (62) is the following symmetric matrix

K = − 1
2(1 + ν2)

[
ν(J + J>) + R

]
. (63)

In particular,

E0[R] = ν2

1 + ν2
γ(TL − TR)

2m .

Proof. Denoting by M = J− J> and N = J + J>, the following relations hold true

MN−NM = 2R, MR = −NS, RM = SN, RS = SR = R,

R : R = 2, R : S = 0, S : N = 0, R : N = 0.

This allows to develop AK + KA> with K defined in (63) and obtain R. By injecting the
expression of K into (62) we obtain the expression of E0[R].
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Remark 8. There exists in fact a unique solution to the Lyapunov equation (62) for any
right hand side, since A is Hurwitz [7]. This latter assertion is equivalent to the exponential
decay of the semigroup etL, proved in [12] for example for more general interaction potentials.
To prove that A is Hurwitz, take a non-zero eigenvector x associated to an eigenvalue λ ∈ C.
Suppose that R(λ) > 0. Then,

−|x1|2 − |x2N−1|2 = x̄>Ax = R(λ)|x|2 > 0,

so R(λ) = 0 and x1 = x2N−1 = 0. Using Ax = λx we iteratively obtain x2 = 0, then x3 = 0,
and so on until x = 0. The contradiction proves that any eigenvalue of A has a negative real
part.

The optimal harmonic control variate Φ0 is thus

Φ0(x) = − 1
2m(1 + ν2)

[
ν

2N−2∑
k=1

xkxk+1 + 1
2x

2
1 −

1
2x

2
2N−1

]
+ C

= m

2γ(1 + ν2)

[
−ω2

N−1∑
n=1

(rn − r̂)(pn + pn+1) + γ

2m2

(
p2
N − p2

1
)]

+ C

= m

2γ(1 + ν2)

N∑
n=0

(jn,0 − E0[R]),

where jn,0 is the n-th elementary flux (28) with v replaced by v0. This function indeed has
the dimensions of an energy since it is the product of some characteristic time by a heat flux.

B.5 Proof of Assumption 4 for the harmonic chain
The space S is easily seen to be stable by L. We prove next that L−1ϕ is in S when ϕ ∈ S.
Note first that it is possible to analytically integrate the dynamics (60) as

xt = eγtA/mx0 +
√

2γ
β

∫ t

0
eγ(t−s)A/m

(
S + 1

2β(TL − TR)R
)1/2

dWt. (64)

The matrix A is Hurwitz (see Remark 8) so there exist λ > 0 and CA > 1 such that the
Frobenius norm of the associated semi-group decays exponentially with rate λ:∥∥eγtA/m

∥∥ 6 CAe−λt 6 CA.

Take ϕ ∈ S with mean zero with respect to π. There exist θ0, θ1 ∈ [0, θ∗/2) such that ϕ ∈ L∞θ0
and, for any n ∈ [1, 2N − 1], ∂xnϕ ∈ L∞θ1 . By the results of [12] (recalled in Section 4.1.2) we
know already that L−1ϕ ∈ L∞θ0 . Denoting by | · | the Euclidean norm in R2N−1, and using (64),∣∣∇x0

(
etLϕ

)
(x0)

∣∣ = |∇x0Ex0 [ϕ(xt)]| =
∣∣Ex0 [eγtA/m∇ϕ(xt)]

∣∣
6
∥∥eγtA/m

∥∥ ∣∣Ex0 [∇ϕ(xt)]
∣∣ 6 CAe−λt‖∇ϕ‖L∞

θ1
Ex0 [Kθ1 (xt)].

(65)

By the exponential decay of the semi-group etL on the functional space L∞θ1 (see [12]),
there exist Cθ1 , λ

′ such that∣∣etLKθ1 (x0)− E[Kθ1 ]
∣∣ 6 Cθ1 e−λ

′tKθ1 (x0),

so that
Ex0 [Kθ1 (xt)] 6 E[Kθ1 ] + Cθ1 e−λ

′tKθ1 (x0) 6 C′θ1Kθ1 (x0),
with C′θ1 = max (E[Kθ1 ], Cθ1 ). Using this result and integrating (65) from t = 0 to ∞,∣∣∇x0L

−1ϕ(x0)
∣∣ 6 ∫ ∞

0

∣∣∇x0 etLϕ(x0)
∣∣ dt 6 ∫ ∞

0
CAe−λt‖∇ϕ‖L∞

θ1
C′θ1Kθ1 (x0) dt,

so that ∥∥∇x0L
−1ϕ

∥∥
L∞
θ1

6
CAC

′
θ1

λ
‖∇ϕ‖L∞

θ1
.

This implies that ∇L−1ϕ ∈ L∞θ1 . Similar formulas hold for higher order derivatives. This
allows to show that L−1ϕ ∈ S, proving that the core Π0S is stable by L−1.
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C Resolution of the differential equation (52)
The Poisson equation (52) can be easily solved using finite differences. In order to provide
a stable numerical solution of this equation, let us first determine its boundary conditions.
Denoting by ϕ = ψ′, (52) can be reformulated as

β−1ϕ′(r) = r∗ − r + v′∗(r)ϕ(r). (66)

Note that it is sufficient to determine ϕ in order to evaluate LΦ0.
Proposition 3. Assume that v ∈ C1((0,+∞),R) is such that

lim sup
r→0

v′(r) < +∞ and v′(r)
r
−−−−−→
r→+∞

+∞. (67)

Then (66) admits a unique solution ϕ ∈ L2(π∗) whose primitives are in L2(π∗). Moreover
this solution in continuous on [0,+∞), ϕ(0) = 0 and ϕ converges to 0 at +∞.

The conditions (67) are satisfied for the double-well potential (47) and for many potentials
used in practice. They imply in particular that v∗(r) −−−→

r→0
+∞ and that π∗ vanishes at 0

and +∞.

Proof. Let us introduce the function

f(r) =
∫ r

0
β (r∗ − s) e−βv∗(s)ds.

We prove that ϕ(r) = f(r)eβv∗(r) is the only bounded solution to (66), and that it vanishes at
the boundary of the domain. We first obtain bounds on f to this end. The function f satisfies
f(0) = 0 and f ′(r) = β (r∗ − r) e−βv∗(r). Using the short-hand notation z(r) =

∫ r
0 e−βv∗ (with

limiting value z∞ as r → +∞) and e(r) =
∫ r

0 se
−βv∗(s)ds (with limiting value e∞ as r → +∞),

f can be rewritten as

f(r) = βr∗z(r)− βe(r)

= βe∞

(
z(r)
z∞
− e(r)

e∞

)
= βe∞

(
e∞ − e(r)

e∞
− z∞ − z(r)

z∞

)
,

(68)

since r∗ = e∞/z∞, which shows that f(r) −−−→
r→∞

0. Note that f is increasing on [0, r∗],
decreasing on [r∗,+∞] and vanishes at 0 and infinity. Therefore, f > 0. Let us now bound
the behavior of this function near 0 and +∞, in order to prove that ϕ vanishes at 0 and at
+∞. In view of (67), there exist 0 < ε < M < +∞ such that v′∗(r) = v′(r)− d−1

βr
is negative

on (0, ε] and positive on [M,+∞). Define

v′∗(r) = sup
0<s6r

v′∗(s), v′∗(r) = r inf
s>r

v′∗(s)
s

.

The functions v′∗ and v′∗ are increasing on (0,+∞), v′∗ converges to −∞ as r → 0 while v′∗
converges to +∞ as r → +∞. Moreover, by definition,

∀0 < s 6 r 6 ε, 1 6
v′∗(s)
v′∗(r)

, and ∀M 6 r 6 s, 1 6
v′∗(s)/s
v′∗(r)/r

.

Therefore,

∀r 6 ε, z(r) =
∫ r

0
e−βv∗(s)ds 6 1

βv′∗(r)

∫ r

0
βv′∗(s)e−βv∗(s)ds = − 1

βv′∗(r)
e−βv∗(r),

∀r >M, e∞ − e(r) =
∫ ∞
r

se−βv∗(s)ds 6 r

βv′∗(r)

∫ ∞
r

βv′∗(s)e−βv∗(s)ds = r

βv′∗(r)
e−βv∗(r).

(69)
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From (68) and (69) we deduce that the solution ϕ(r) = f(r)eβv∗(r) of (66) is non negative
on R∗+ and satisfies

∀r 6 ε, 0 6 ϕ(r) 6 βr∗z(r)eβv∗(r) 6 r∗
1∣∣v′∗(r)∣∣ ,

∀r >M, 0 6 ϕ(r) 6 β(e∞ − e(r))eβv∗(r) 6
r

v′∗(r)
.

This shows that ϕ vanishes at 0 and +∞. Moreover, any primitive ψ of ϕ is in L2(π∗) (because
ψ′ = ϕ is bounded and π∗ integrates functions which increase linearly). The other solutions
of (66) differ from this one by a factor proportional to eβv∗(r) (which is the solution of the
homogeneous equation associated with (66)) so that their primitives ψ are not in L2(π∗).

Proposition 3 shows that the solution ϕ of (66) we are interested in corresponds to the
boundary condition ϕ(0) = 0. This solution is estimated numerically using a finite difference
method. The expectation r∗ = E∗[r] is computed with a one-dimensional numerical quadra-
ture. The so-obtained solution is then interpolated by a function ϕ̂ which is affine on each
mesh, so that Lψ̂ can be evaluated exactly at any point. This ensures that the modified
observable is not biased since the control variate indeed belongs to the image of L.

D Asymptotic variance estimator
In the three applications we consider, we provide estimators of the asymptotic variances
associated with some function ϕ together with error bars on this quantity. We make precise
in this section this estimator of the variance and how error bars on these variance estimates
are computed. Under Assumptions 1 to 5, the stochastic process admits a unique invariant
probability measure π, and the asymptotic variance is well defined for an observable ϕ =
Πϕ+E[ϕ] ∈ S (we suppress in this section the subscripts η in order to simplify the notation).
The empirical mean of ϕ is

ϕ̂t = 1
t

∫ t

0
ϕ(xt) dt.

The associated asymptotic variance (4) can be computed using the Green–Kubo formula [37]

σ2
ϕ = 2

∫
X
ϕ
(
−L−1Πϕ

)
dπ = 2

∫ ∞
0

Ex0 [Πϕ(xs)Πϕ(x0)] ds

= 2
∫ ∞

0

(
Ex0 [ϕ(xs)ϕ(x0)]− E[ϕ]2

)
ds,

where E denotes the expectation with respect to initial conditions x0 distributed according to
the invariant probability measure π and for all realizations of the dynamics with generator L.
All these expressions are well defined if we assume a sufficiently fast decay of the associated
semi-group (see [42, Section 3.1.2]). In order to approximate σ2

ϕ we first truncate the time
integral as

σ2
ϕ ≈ 2

∫ tdeco

0
Ex0 [ϕ(xs)ϕ(x0)] ds− 2tdecoE[ϕ]2,

where the integrand E [ϕ(xs)ϕ(x0)] is neglected for s > tdeco. The expectations in the inte-
grand are estimated using an empirical average over all the continuous trajectory (xt)t∈[0,T ]
(see [2]):

σ̂ϕ
2 = 1

T

∫ T

0

∫ tdeco

−tdeco

ϕ(xt)ϕ(xt+s) dtds− 2tdecoϕ̂
2
T , (70)

which is a biased estimator of σ2
ϕ:

E
[
σ̂ϕ

2] = 2
∫ tdeco

0
Ex0 [ϕ(xs)ϕ(x0)] ds− 2tdecoE[ϕ]2. (71)

Of course, in practice, the formula for σ̂ϕ2 is slightly changed in order not to involve xt for
t < 0 or t > T . The double integral is approximated using a Riemann sum or a trapezoidal
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rule for instance. Consider a discretization (xn)16n6Niter of the trajectory (xt)t∈[0,T ] with a
timestep ∆t, of length T = Niter∆t. Introducing Ndeco = tdeco/∆t, the discretized version of
the estimator (70) is

̂̂σϕ2
= ∆t
Niter

Niter∑
i=1

Ndeco∑
j=−Ndeco

ϕ(xi)ϕ(xi+j)− 2tdeco

(
1

Niter

Niter∑
i=0

ϕ(xn)

)2

. (72)

This is the estimator we use throughout this work to provide error bars on average properties.
The leading term of the variance of the estimator ̂̂σϕ2

in the regime ∆t� 1 and 1� Ndeco �
Niter is

Var
[̂̂σϕ2]

≈ 2(2Ndeco + 1)
Niter

σ4
ϕ ≈

4tdeco

T
σ4
ϕ.

Here we made the assumption that Isserlis’ theorem [31] holds, as if (xt)t was a Gaussian
process. It is thus straightforward to provide error bars for the estimator ̂̂σϕ2

, and even to
choose the simulation time T a priori. Indeed the relative standard statistical error on the
variance is very explicit: √

Var
[̂̂σϕ2]

σ2
ϕ

≈ 2
√
tdeco

T
.

For example to estimate the variance with an uncertainty of 1% one should run the simulation
for a time T = 104× tdeco. There is a trade-off concerning the choice of tdeco: if it is too small
the estimators of the integrals are biased in view of (71), but if it is too large the variance of
the estimator increases. In practice one picks a large value of tdeco and uses the cumulated
empirical autocorrelation profile to check a posteriori that this value is indeed sufficiently
large.

Block averaging. Let us relate the previous estimator of the variance to the common
variance estimator σ̃ϕ2 considered in the method of block averaging (or batch means); see [52]
as well as the references in [41, Section 2.3.1.3]. This method consists in cutting the trajectory
into several blocks, computing the empirical average of ϕ on each block, and estimating the
variance of these random variables (considered as independent and identically distributed).
If the size of the blocks is 2tdeco this estimator has the same variance as σ̂ϕ2 but the bias is
different since

E
[
σ̃ϕ

2] = 2
∫ 2tdeco

0

(
1− s

2tdeco

)
Ex0 [ϕ(xs)ϕ(x0)] ds− 2tdecoE[ϕ]2.

Implementation. It is crucial to compute on-the-fly the first term of the estimator (72),
without resorting to a double sum which is computationally prohibitive. In practice the sum
Si =

∑Ndeco
j=0 ϕ(xi−j) is not recomputed from scratch at every time step but updated using

Si+1 = Si + ϕ(xi+1)− ϕ(xi−Ndeco ). The complexity of this algorithm is thus independent of
the choice of tdeco.
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