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Abstract

This article was published in Multiscale Model. Simul., 16(4), 1684–1731 (2017). In this
updated arXiv version we correct the statement and proof of Corollary 4.2. Clarifying edits
were also made in the statements of Corollaries 5.4 and C.1.

The dynamics of waves in periodic media is determined by the band structure of the under-
lying periodic Hamiltonian. Symmetries of the Hamiltonian can give rise to novel properties of
the band structure. Here we consider a class of periodic Schrödinger operators, HV = −∆+V ,
where V is periodic with respect to the lattice of translates Λ = Z2. The potential is also
assumed to be real-valued, sufficiently regular and such that, with respect to some origin of
coordinates, inversion symmetric (even) and invariant under π/2 rotation.

1. We present general conditions ensuring that the band structure of HV contains dispersion
surfaces which touch at multiplicity two eigenvalues at the vertices (high-symmetry quasi-
momenta) of the Brillouin zone. Locally, the band structure consists of two intersecting
dispersion surfaces described by a normal form which is π/2−rotationally invariant, and
to leading order homogeneous of degree two. Furthermore, the effective dynamics of wave-
packets, which are spectrally concentrated near high-symmetry quasi-momenta, is given
by a system of coupled Schrödinger equations with indefinite effective mass tensor.

2. For small amplitude potentials, εV with ε small or weak coupling, certain distinguished
Fourier coefficients of the potential control which of the low-lying dispersion surfaces (first
four) of Hε = HεV intersect and have the above local behavior.

3. The existence of quadratically touching dispersion surfaces with the above properties
persists for all real ε, without restriction on the size of ε, except for ε in a discrete set.

Our results apply to periodic superpositions of spatially localized “atomic potentials” centered
on the square (Z2) and Lieb lattices. We show, in particular, that the well-known conical plus
flat-band structure of the 3 dispersion surfaces of the Lieb lattice tight-binding model does not
persist in the corresponding Schrödinger operator with finite depth potential wells. Finally, we
corroborate our analytical results with extensive numerical simulations. The present results
are the Z2− analogue of results obtained for conical degenerate points (Dirac points) in the
band structure for honeycomb structures.
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1 Introduction

The dynamics of waves in periodic media are determined by the band structure of the underlying
Hamiltonian; see, for example, [AM76, JJWM08, RS78, Kuc12, Kuc16]. Symmetries of the un-
derlying Hamiltonian give rise to novel properties of the band structure. An important example
is the band structure of the single electron model of graphene and its artificial analogues. Here,
HV = −∆ + V , with V a real-valued potential with the symmetries of a hexagonal tiling of the
plane. It is well-known that the band structure contains Dirac points, conical singularities at the
intersections of dispersion surfaces which occur at the vertices (high-symmetry quasi-momenta) of
the hexagonal Brillouin zone; see, for example, [NGP+09, FW12, FLTW17a, BCar]. A consequence
is the massless Dirac dynamics of wave-packets (quasi-particles) which evolve from initial data
which are spectrally localized near Dirac points [NGP+09, FW14].

In this article, we consider a class of periodic Schrödinger operators on R2, whose underlying
period lattice is Z2 and such that the potential is real, inversion symmetric, and invariant under
π/2 rotation. We call such potentials admissible; see Definition 2.3. The class of potentials to which
our results apply includes those which are superpositions of localized potentials (say potential wells
or potential barriers) centered on a discrete structure with the appropriate symmetries. Two such
examples are illustrated in Figure 1.1; the square lattice (left) and the Lieb lattice (right) are
displayed together with corresponding choices of fundamental cells. We call these two types of
potentials square lattice potentials and Lieb lattice potentials; see Examples 2.5 and 2.6 and the
potentials in Figures 7.1-7.5.

Our goal is to study symmetry-induced characteristics in the band structure of such operators
and to explore these in the context of the above two examples. The present results are the Z2−
analogue of results obtained in honeycomb structures [dV91, Gru09, FW12, FLTW17b, Lee16,
BCar]. Our proofs make use of the framework developed in [FW12, FLTW17b].

For the class of potentials we consider, the nature of band degeneracies at high-symmetry quasi-
momenta is described by two intersecting dispersion surfaces which are locally characterized by a
normal form which is π/2−rotationally invariant, and to leading order homogeneous of degree two.
A consequence is that the dynamics of wave-packets, which are spectrally concentrated near such
high-symmetry quasi-momenta, is given by an effective system of coupled linear time-dependent
Schrödinger equations with indefinite effective mass tensor. This is in contrast to the case of hon-
eycomb structures where the band degeneracies at the high symmetry points are conical (so-called
Dirac points) and the effective dynamics is given by a time-dependent system of Dirac equations.

1.1 A quick review of Floquet-Bloch theory; [RS78, Kuc12, Kuc16, Eas74,
JJWM08]

Consider the periodic Schrödinger operator, HV = −∆ + V , where V is real-valued and periodic
with respect to a lattice Λ = Zv1 ⊕ Zv2; for all x ∈ R2 and v ∈ Λ, we have V (x + v) = V (x).
Introduce the dual lattice, Λ∗ = Zk1 ⊕ Zk2, such that kl · vm = 2πδlm, and spaces of Λ− periodic
and k− pseudo-periodic functions:

L2(R2/Λ) =
{
f ∈ L2

loc(R2) : f(x + v) = f(x) almost everywhere in x, for all v ∈ Λ
}

and
L2
k =

{
f ∈ L2

loc(R2) : e−ik·xf(x) ∈ L2(R2/Λ)
}
.
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B C

A

Figure 1.1: An illustration of the square (left) and Lieb (right) lattices with corresponding fun-
damental cells, Ω, (shaded). The Lieb lattice is the union of 3 interpenetrating sublattices, labeled
A (red), B (black), and C (blue).

Functions f ∈ L2
k satisfy f(x + v) = eik·xf(x) almost everywhere in x for all v ∈ Λ. The inner

product on L2(R2/Λ) is given by 〈f, g〉L2(R2/Λ) =
∫

Ω
fg, where Ω ⊂ R2 is a period cell. Since

f, g ∈ L2
k implies that fg ∈ L1(R2/Λ), the same expression defines an inner product on L2

k .
Floquet-Bloch states are solutions of the self-adjoint k−pseudo-periodic eigenvalue problem:

HV Φ = µΦ, Φ ∈ L2
k . (1.1)

Since this boundary condition satisfied by f ∈ L2
k is invariant under k 7→ k + k̃, for any k̃ ∈ Λ∗, we

may restrict to k varying over a fundamental period cell in the dual variable. This Brillouin zone,
B, is often taken to be the set of all points in k ∈ R2 which are closer to the origin than to any
other point in Λ∗. For the case of the square lattice, Λ = Z2

B = {k = (k(1), k(2)) : − π ≤ k(1) ≤ π,−π ≤ k(2) ≤ π} ; (1.2)

see Figure 1.2.
An alternative formulation is to write Φ(x) = eik·xφ(x) and seek, for all k ∈ B, solutions of the

self-adjoint periodic eigenvalue problem:

HV (k)φ(x) ≡
(
−(∇x + ik)2 + V (x)

)
φ = µφ(x), φ ∈ L2(R2/Λ). (1.3)

For each k ∈ B, the self-adjoint elliptic eigenvalue problem (1.3) has a discrete set of eigenpairs
(µb(k), φb(x; k)), b = 1, 2, 3, . . . , where the eigenvalues may be listed with multiplicity, in order:

µ1(k) ≤ µ2(k) ≤ · · · ≤ µb(k) ≤ · · · ,

where {φb(x; k)}b≥1 can be taken to be a complete orthonormal sequence in L2(R2/Λ). Moreover,
the family of states Φb(x; k) = eik·xφb(x; k) where b ≥ 1 and k ∈ B are complete in L2(R2). The
eigenvalue mappings µb : B → R are Lipschitz continuous [AS78, FW14] and are called dispersion
relations, and their graphs are called dispersion surfaces. The collection of all dispersion relations
is called the band structure of the periodic Schrödinger operator, HV . The spectrum of HV acting
in L2(R2) is the union of the closed real intervals: σ(HV ) = µ1(B) ∪ µ2(B) ∪ · · · ∪ µb(B) ∪ · · · .
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Figure 1.2: Brillouin zone, B, for the square lattice Γ = Z2. The points Γ = (0, 0), M = (π, π), and
X = (π, 0) are labeled, along with successive π/2 rotations of M by R; see (2.5). An irreducible
Brillouin zone is shaded in blue. In later figures, the graphs of dispersion relation are plotted along
the cyclic path Γ→ X→M→ Γ.

1.2 Summary of results

We summarize our main results:

1. Theorem 4.1:

(A) We present general conditions on the admissible potential, V , for the following sce-
nario: there exists µS ∈ R, such that for all vertices, M? of B, µS is an L2

M?
− eigenvalue of

HV of geometric multiplicity two, with L2
M − kernel(HV − µSI) = span{Φ1,Φ2}.

(B) There exist dispersion maps k 7→ µ−(k) and k 7→ µ+(k), defined for k ∈ B with
µ−(k) ≤ µ+(k) and such that for all vertices, M?, of B we have µ±(M?) = µS ; the dispersion
surfaces associated with µ− and µ+ touch at the energy / quasi-momentum pairs (M?, µS).

(C) The two touching dispersion surfaces are locally described by a normal form which
is π/2−rotationally invariant and, at leading order in |k−M?|, homogeneous of degree two.
In particular, for |κ| = |(κ1, κ2)| =

√
κ2

1 + κ2
2 small:

µ±(M + κ)− µS = (1− α)|κ|2 + Q6(κ) ±
√∣∣∣ γ(κ2

1 − κ2
2) + 2βκ1κ2

∣∣∣2 + Q8(κ) , (1.4)

where α ∈ R and β, γ ∈ C are constants, and Q6(κ) = O(|κ|6) and Q8(κ) = O(|κ|8) are
analytic functions of κ and invariant under π/2−rotation: (κ1, κ2) 7→ (−κ2, κ1).

(D) Corollary 4.2: If V is, in addition, assumed to be reflection-invariant with respect to
the diagonal of the fundamental cell, Ω (see Figure 1.1), then (1.4) reduces to

µ±(M + κ)− µS = (1− α)|κ|2 + Q6(κ)

±
√
γ̃2(κ2

1 − κ2
2)2 + 4β2κ2

1κ
2
2 + Q8(κ), (1.5)

where α, β ∈ R and γ̃ ∈ R, and where Q6(κ) and Q8(κ) are now also invariant under the
reflection: (κ1, κ2) 7→ (κ2, κ1).
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2. Theorem 5.3: Consider Hε ≡ HεV = −∆ + εV , where V is admissible and ε is real. Let V1,1

and V1,0 denote the (1, 1) and (1, 0) indexed Fourier coefficients of V (see (2.4)) and assume
the (generically satisfied) non-degeneracy condition: V1,1 6= V1,0. Then, for all non-zero and
sufficiently small ε, there are 2 dispersion surfaces of Hε, among the lowest 4, that touch at
the vertices of B. In a neighborhood of each vertex, the local character given in (1.4) or (1.5).

3. Theorem 6: There exists a discrete set C̃ ⊂ R, such that if ε /∈ C̃, then 2 dispersion surfaces
of Hε touch at the vertices of B with local behavior described by (1.4). The constants
αε ∈ R, βε ∈ C, and γε ∈ C in Theorem 5.3, and αε and βε in Theorem 6, displayed in
(4.60), depend on the degenerate eigenspace, span{Φε1,Φε2}, for quasi-momentum. Hence, the
property of quadratically touching dispersion surfaces with local behavior given by (1.5) holds
for generic, even arbitrarily large, values of ε.

4. Lieb lattice potentials: tight-binding vs strong binding: The well-known conical plus flat band
structure dispersion surfaces of the 3-band tight-binding model for the Lieb lattice does not
persist in the Schrödinger operator with periodic Lieb lattice potential consisting of potential
wells centered on the Lieb lattice; see Section 1.3.

5. Numerical studies: In Section 7 we discuss numerical simulations for various admissible po-
tentials for a full range of coupling parameters, ε small to ε large. These include potentials
which are superpositions of spatially localized potentials, centered on vertices of the square
lattice or the vertices of a Lieb lattice. Our simulations corroborate our analytical results and
are discussed in this context.

6. Wave-packet dynamics; Appendix B: A multiscale analysis demonstrates that the envelope of
the solution of the time-dependent Schrödinger equation, i∂tψ(x, t) = (−∆x + V (x))ψ(x, t),
for wave-packet initial data: ψ(x, 0) = C10(X) Φ1(x) + C20(X) Φ2(x), where X ≡ δx =
(X1, X2), and Cj0(X), j = 1, 2 are in Schwartz class, evolves on large but finite time scales
according to a coupled system of Schrödinger equations (T = δ2t):

i
∂

∂T
Cp(X, T ) = −

2∑
q=1

2∑
r,s=1

∂

∂Xr
Υp,q
r,s

∂

∂Xs
Cq(X, T ), p = 1, 2. (1.6)

Here, Υp,q
r,s are the matrix elements of an (indefinite) inverse effective mass tensor; see Section

4.1. The branches of the dispersion relation of (1.6) are given by the expression in (1.4).

A derivation of (1.6) is presented in Appendix B. A rigorous proof of the long (finite) time
validity would be along the lines of [AP05] or [FW14], for example.

1.3 The Lieb lattice; tight-binding versus continuum models, a band
structure instability

Our original motivation for the present study was to contrast the band structure of the Lieb
lattice tight-binding Hamiltonian (see, for example, Nit, ă et al in [NOA13], Weeks and Franz in
[WF10]) with that of the corresponding continuum Schrödinger operator with Lieb lattice potential
in the high-contrast (strong binding) regime, as studied via simulation in Guzmán-Silva et al in
[GSMCB+14].
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Figure 1.3: (left) Dispersion surfaces of the 3-band tight-binding model for the Lieb lattice. The

Brillouin zone is [−π, π]
2

(right). A plot of the dispersion surface along the path Γ→ X→M→ Γ,
as described in Figure 1.2. At the vertices of the Brillouin zone, the dispersion relation has the
structure of a conical intersection and a flat band. Our analysis shows that this structure does not
persist in the continuum Schrödinger operator which limits to the tight-binding model.

Our results demonstrate that the well-known flat-band plus conical structure near the vertices of B
does not persist in the regime of strong-binding (finite deep atomic wells at each lattice site) for the
continuum Schrödinger operator.

This is in contrast to the case of honeycomb structures, where the Dirac (conical) points of the
tight-binding model of Wallace [Wal47, NGP+09] persist in the continuum honeycomb Schrödinger
operators [FLTW17a, FW12]. We now explain this in some detail.

The tight-binding model for the Lieb lattice is given by a Hamiltonian acting on wave functions
ψ ∈ l2(Z2;C3); for each (m,n) ∈ Z2, ψm,n ∈ C3 is a vector of 3 complex amplitudes assigned to
the A,B and C sites in the (m,n)th cell; see Figure 1.1 (right). This model has π/2−rotational
invariance about any B− site. The detailed setup is presented in Appendix A. The band structure
has three band dispersion relations, whose graphs (dispersion surfaces) intersect at the vertices of
the Brillouin zone, B. Figure 1.3 reveals that the three dispersion surfaces which meet at the vertex,
M, of B consists of a constant energy dispersion surface (a flat band, k 7→ E

TB

0 (k) ≡ 0), and two

other dispersion surfaces, k 7→ E
TB

± (k), which meet conically at M. An analogous picture applies
in a neighborhood of each vertex of B, as seen in the left plot of Figure 1.3. The latter observation
follows from symmetry considerations.

It is natural to contrast this behavior with that of the two-band tight-binding model of P.R.
Wallace (1947), introduced in his pioneering work on graphite [Wal47, NGP+09]. In this model,
there are two dispersion surfaces which meet conically at the high-symmetry quasi-momenta, located
at the vertices of the (hexagonal) Brillouin zone. These conical points are called Dirac points.

The tight-binding model gives an approximation to the low-lying spectrum of the continuum
Schrödinger operator −∆+λ2V , where V is a superposition of identical potential wells, centered at
the sites of a honeycomb structure and λ is sufficiently large. It was proved in [FLTW17a] for this
strong binding regime that Dirac points occur at the vertices of the Brillouin zone and that, after a
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Figure 1.4: Dispersion surfaces for −∆ + VL sampled along a two different quasi-momentum seg-
ments through the high symmetry quasi-momentum, M. Here, VL is the periodic potential whose
restriction to the primitive cell is: ṼL(x) = −V0(e−|x|

2/σ + e−|x−(1/2,0)|2/σ + e−|x−(0,1/2)|2/σ). Seg-
ments are of the form k = M ± λ(cos θ, sin θ)t for λ ∈ (−λ0, λ0) with θ = π

4 (left) and θ = 15π
16

(right).

rescaling, the first two dispersion surfaces converge uniformly to those of Wallace’s two-band tight-
binding model. It had earlier been proved in [FW12, FLTW17b] that generic Schrödinger operators,
for the class of honeycomb lattice potentials, have Dirac points within their band structure and
that these Dirac points persist against small perturbations of the potential which break inversion
or complex-conjugate symmetries; see Definitions 2.3(ii) and 2.3(iii).

Question 1.1. Consider a potential VL(x), formed as a superposition of identical deep potential
wells centered at the points of the Lieb lattice. Does the local band structure near the vertices of
B (a flat band plus two conically touching surfaces) of the tight-binding model persist in the band
structure of −∆ + VL, i.e. does this local structure persist into the strong binding regime?

The answer is no, and the precise character of the local band structure is a consequence of our
analysis of π/2−rotationally invariant potentials. Figure 1.4 displays the family of 3 curves obtained
by sampling 3 dispersion surfaces of −∆ + VL, two surfaces that touch at the vertices of B and the
nearest to these among all others, for a choice of deep atomic potential wells. The two curves which
intersect are locally described by (1.4).

Remark 1.2. In [AP05, Section 6] results on homogenized effective equations were obtained for
the dynamics of wave packets, which are spectrally localized near an isolated (quadratic) spectral
band edge. The authors also consider both the cases of simple and degenerate eigenvalues occurring
at a band edge, derive a system of coupled Schrödinger envelope equations, and remark on the
non-genericity of degenerate eigenvalues at a band edge. Although non-generic in the space of all
potentials, the results of this article show in the presence of symmetry, for example the symmetries
of our P ◦ C and π/2−rotationally invariant (admissible) potentials, such systems are realized in
many physical settings of interest.
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1.4 Outline of the paper

In Section 2, we define the class of admissible potentials considered here, characterize the Fourier
series of such potentials, and develop tools for Fourier analysis in the spaces, L2

k for k ∈ B. In
particular, L2

M has direct sum (orthogonal) decomposition into eigenspaces, L2
M,σ (σ = ±1,±i), of

the π/2−rotation operator, R, which acts unitarily on L2
M.

In Section 3 we study spectral properties of the free Laplacian, −∆, in L2
M. In particular, we

show that −∆ has four-fold degenerate L2
M eigenvalues (we consider the least energy such), which

correspond to four simple eigenvalues, one in each of the invariant subspaces, L2
M,σ .

In Section 4 we state and prove Theorem 4.1 and Corollary 4.2 which give sufficient conditions for
the quadratic touching of two dispersion surfaces at the high-symmetry quasi-momenta, situated
at the vertices, M?, of B. These results also display the detailed expansion of the dispersion maps
in a neighborhood of these quasi-momenta.

In Section 5 we verify the hypotheses of Theorems 4.1 and Corollary 4.2 for Hamiltonians of the
form Hε = −∆ + εV , where V is admissible, for all ε real, sufficiently small and non-zero. This
then proves the existence of quadratic degeneracies at high-symmetry quasi-momenta as described
in Theorem 4.1 and Corollary 4.2 for the regime of sufficiently weak-coupling (low-contrast).

In Section 6, we consider Hε = −∆ + εV , where ε is real and non-zero, but not restricted by size.
Theorem 6.1 states that the small ε−results persist for all non-zero real ε except for a possible
discrete set of ε−values. The proof, based on arguments in [FW12, FLTW17b], is sketched.

Section 7 summarizes a range of computational experiments that corroborate our analytical results.

Appendix A summarizes the formulation of the tight-binding for the Lieb lattice; see Section 1.3.

Appendix B summarizes a multiple scales asymptotic expansion yielding a coupled system of time-
dependent Schrödinger equations, which govern the evolution of wave-packets, which are spectrally
concentrated in a neighborhood of high-symmetry quasi-momenta, M? ∈ B.

Finally, in Appendix C we provide the details of a calculation of coefficients occurring in the leading
order expression for the touching dispersion surfaces in the weak coupling (ε non-zero and small)
regime; see also Corollary 5.4.

1.5 Notation

We remark on some frequently used notation and conventions.

1. Repeated indices are understood to be summed unless otherwise specified.

2. For m ∈ Z2, m~k = m1k1 +m2k2, where k1 and k2 are the dual lattice basis vectors defined
below in (2.2).

3. 〈f, g〉L2(R2/Λ) = 〈f, g〉; if not indicated the inner product is understood to be taken in

L2(R2/Λ).
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2 The Lattice Λ and Admissible Potentials

2.1 The Square Lattice

We begin with the lattice Λ = Zv1 ⊕ Zv2, where

v1 = a

(
1
0

)
and v2 = a

(
0
1

)
. (2.1)

The constant, a, is the lattice constant giving the distance between nearest neighbor sites. The
dual lattice, Λ∗, is generated by the vectors

k1 = a−1

(
2π
0

)
and k2 = a−1

(
0

2π

)
. (2.2)

For simplicity, we assume a = 1. The Brillouin zone, B, is given in (1.2); see Figure 1.2. We have
the relations kl · vm = 2πδl,m, for l,m = 1, 2.

Let R be the π/2−clockwise rotation matrix

R =

(
0 1
−1 0

)
. (2.3)

We record the elementary relations: R∗v1 = v2 and R∗v2 = −v1, and Rk1 = −k2 and Rk2 = k1.
It follows that R and R∗ map Λ to itself and Λ∗ to itself. Denote the vertices of B by:

M ≡M
++

= (π, π)T , M
+− = (π,−π)T , M−− = (−π,−π)T , M−+

= (−π, π)T .

Then, the set of vertices of B is mapped by R to itself,

M
+− = RM = M− k2, M−− = R2M = M− k1 − k2, M−+

= R3M = M− k1 .

Furthermore, R maps the affine sublattice M + Λ∗ one to one and onto itself. See Figure 1.2.

Remark 2.1. Note that the pseudo-periodic boundary condition associated with quasi-momenta
located at the vertices of B are the same and correspond to M-pseudo-periodicity, i.e. for any
choice of (a, b) ∈ {+,−}, we have ψ(x + v; Mab) = eiM·vψ(x; Mab), x ∈ R, v ∈ Λ Therefore,
for any M? ∈M + Λ, the space L2

M?
can be identified with L2

M. Furthermore, the local character
of dispersion surfaces in a neighborhood of any vertex of B determines the local character in a
neighborhood of any other vertex of B.
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2.2 Admissible Potentials

For any function f defined on R2, we define the π/2−rotational operator

R[f ](x) ≡ f(R∗x),

where R is the π/2−clockwise rotation matrix displayed in (2.5).
We consider smooth (say C∞) periodic potentials V (x) = V (x1, x2) defined on R2, with funda-

mental period cell Ω = [0, 1]× [0, 1]. Any such V can be represented as a Fourier series:

V (x) =
∑

m∈Z2

Vme
im~k·x =

∑
(m1,m2)∈Z2

Vm1m2
e2πi(m1x1+m2x2), (2.4)

where Vm = (2π)−2
∫

Ω
e−im

~k·xV (x)dx, and m~k = m1k1 +m2k2.

Definition 2.2 (P, C and R invariance). 1. Given a point x ∈ R2, its π/2−counterclockwise
rotation about xc, denoted x̂R, satisfies: x̂R − xc = R∗ (x− xc). If

R[V ](x) ≡ V (x̂R) = V (x) (2.5)

for all x ∈ R2 we say that V (x) is R−invariant, or π/2−rotationally invariant, with respect
to xc.

2. Given a point x ∈ R2, its inversion with respect to xc, denoted x̂I , satisfies: x̂I − xc =
− (x− xc). If V (x̂I) = V (x) for all x ∈ R2 we say that V (x) is P-invariant, parity invariant,
or inversion symmetric with respect to xc.

3. We say that V (x) is C-invariant or invariant under complex conjugation if V (x) = V (x) for
all x ∈ R2.

We shall study potentials which are real-valued, smooth and invariant under P◦C andR−invariant
(invariant under π/2 rotation). We call such potentials admissible.

Definition 2.3 (Admissible potentials). An admissible potential is a smooth function, V (x), defined
on R2 with the following properties.

i. Λ-periodicity: V (x + v) = V (x) for all x ∈ R2 and v ∈ Λ;

There exists xc ∈ R2 with respect to which (in the sense of Definition 2.2)

ii. V is C−invariant;

iii. V is P−invariant; and

iv. V is π/2−rotationally invariant.

Throughout this paper we shall assume, with no loss of generality, xc = 0.
In some of our results we consider admissible potentials which are also reflection invariant. Such

potentials have the full symmetry of the square lattice.

Definition 2.4 (Reflection Invariance). An admissible potential, V (x), defined on R2 is reflection
invariant if V (x1, x2) = V (x2, x1).
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We introduce two basic examples of admissible potentials, each obtained as a sum of translates
of a fixed atomic potential:

Example 2.5 (Square lattice potential). Let V (x) =
∑

m∈Z2 V0(x + m), where V0 = V0(|x|) is
real-valued, radially-symmetric, sufficiently rapidly-decaying “atomic potential” . We call V (x) a
square lattice potential. It is easily seen that this class of potentials is admissible with xc = 0.

Example 2.6 (Lieb lattice potential). We fix the fundamental period cell to be the square with side-
length one. Within a fixed cell are three points, labeled A, B and C; see Figure 1.1 (right). The Lieb
lattice, L, is the union of three sublattices: A + Z2, B + Z2 and C + Z2. A Lieb lattice potential
is given by V (x) =

∑
w∈L V0(x + w), where V0 = V0(|x|) is real-valued, radially-symmetric and

rapidly-decaying atomic potential. Lieb lattice potentials are admissible with xc = 0. An example
of an atomic Lieb lattice potential is displayed in Figure 7.4.

The next proposition states that if V is an admissible potential in the sense of Definition 2.3
then the operator HV acting in L2

k, has an additional symmetry, for k ∈M + Λ∗.

Proposition 2.7. Assume V is an admissible potential in the sense of Definition 2.3. Then
HV = −∆ + V and R map a dense subspace of L2

M to itself. Moreover, restricted to this dense
subspace of L2

M, the commutator [HV ,R] ≡ HVR−RHV = 0. In particular, if Φ(x) is a solution
of the M−pseudo-periodic eigenvalue problem for HV for energy E, then R[Φ](x) is also a solution
of the M−pseudo-periodic eigenvalue problem for HV with energy E.

Proof. Note first that −∆ commutes with rotations and the operator Φ 7→ V Φ, where V is an
admissible potential, commutes with π/2 rotations. Furthermore, assume Φ(x) is M−pseudo-
periodic and define ΦR(x) ≡ Φ(R∗x). Then, for all v ∈ Λ = Z2 and all x ∈ R2: ΦR(x + v) =
Φ(R∗x + R∗v) = eiM·R

∗vΦ(R∗x) = eiRM·vΦ(R∗x) = ei(M−k2)·vΦ(R∗x) = eiM·vΦR(x). For more
detail, see an analogous result in [FW12].

2.3 Fourier series of admissible potentials

The following proposition implies constraints on the Fourier coefficients of admissible potentials.

Proposition 2.8. Let V (x) be in C∞(R2/Λ). Then, for all m = (m1,m2) ∈ Z2

i. V (−x) = V (x) =⇒ Vm = V−m,

ii. V (x) = V (x) =⇒ Vm = V−m,

iii. R[V ](x) = V (x) =⇒ Vm1,m2 = V−m2,m1 .

Proof. Parts (i.) and (ii.) are straightforward. Part (iii.) makes use of the action of R on the dual
lattice basis {k1,k2} or equivalently R∗ on the lattice basis {v1,v2}.

Note that we may iterate the relation in part iii of Proposition 2.8 to obtain:

Vm1,m2
= V−m2,m1

= V−m1,−m2
= Vm2,−m1

. (2.6)

Introduce the mapping R̃ : Z2 → Z2 defined R̃(m1,m2) = (−m2,m1) and therefore R̃2(m1,m2) =

(−m1,−m2), R̃3(m1,m2) = (m2,−m1), and R̃4(m1,m2) = (m1,m2). Thus, R̃4 = R̃0 = Id, and

Vm = VR̃m = VR̃2m = VR̃3m . (2.7)
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Note that 0 is the unique element of the kernel (and fixed point) of R̃ and furthermore that every

m 6= 0 lies on a non-trivial 4-cycle of R̃, the set {(m1,m2), (−m2,m1), (−m1,−m2), (m2,−m1)}.
Let m and n be elements of Z2 \ {0}. We say that m ∼ n if m and n lie on the same 4-cycle

of R̃. The relation ∼ is an equivalence relation and partitions Z2 \ {0} into equivalence classes,(
Z2 \ {0}

)
/ ∼. Let S̃ denote a set consisting of one representative element from each equivalence

class.

Proposition 2.9. (a.) Let V denote an admissible potential in the sense of Definition 2.3 and let
Vm = Vm1,m2

, for m ∈ Z2, denote its Fourier coefficients; see (2.4). Then,

V (x1, x2) = V0,0 +
∑

(m1,m2)∈S̃

2Vm1,m2
[ cos (2π(m1x1 +m2x2)) + cos (2π(m2x1 −m1x2)) ] .

(2.8)

(b.) If V is also reflection invariant ( V (x1, x2) = V (x2, x1) ), then

V (x1, x2) = V0,0 +
∑
m∈Z

2Vm,m [ cos (2πm(x1 + x2)) + cos (2πm(x1 − x2)) ] . (2.9)

Proof. Expanding V (x) in a Fourier series, and using the relations in (2.7), we obtain:

V (x) = V0 +
∑
m∈S̃

Vm

(
eim

~k·x + ei(R̃m)~k·x + ei(R̃
2m)~k·x + ei(R̃

3m)~k·x
)
.

Adding this expression to its complex conjugate and dividing by two and using that the coefficients
Vm are real (Proposition 2.8 (i) and (ii) ) implies:

V (x) = V0 +
∑
m∈S̃

Vm

(
cos(m~k · x) + cos

(
(R̃m)~k · x

)
+ cos

(
(R̃2m)~k · x

)
+ cos

(
(R̃3m)~k · x

) )
,

which reduces to the expression in (2.8). Thus Part (a.) is proved.
Suppose V additionally is reflection invariant in the sense of Definition 2.4. By (2.8) this is

equivalent to: ∑
(m1,m2)∈S̃

2Vm1,m2
[ cos (2π(m2x1 +m1x2)) + cos (2π(m2x2 −m1x1)) ]

=
∑

(m1,m2)∈S̃

2Vm1,m2
[ cos (2π(m1x1 +m2x2)) + cos (2π(m2x1 −m1x2)) ] .

It follows that for all x1, x2 :

cos[2π(m2x1+m1x2)] + cos[2π(m2x2−m1x1)]− cos[2π(m1x1+m2x2)]− cos[2π(m2x1−m1x2)] = 0.
(2.10)

Using trigonometric identities, (2.10) reduces to:

f1(x1, x2) ≡ sin(2πm2x1) sin(2πm1x2) = sin(2πm1x1) sin(2πm2x2) ≡ f2(x1, x2).

This implies that the Fourier coefficients of f1 and f2 match and therefore m1 = m2.
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2.4 Fourier analysis in L2
M∗

In this subsection, we characterize the Fourier series of functions φ ∈ L2
M. Such functions may be

expressed in the form Φ(x) = eiM·xφ(x), where φ(x) is Λ = Z2−periodic. Thus, Φ has the Fourier
representation:

Φ(x) = eiM·x
∑

(m1,m2)∈Z2

c(m1,m2)ei(m1k1+m2k2)·x, (2.11)

which we rewrite as

Φ(x) =
∑

(m1,m2)∈Z2

cΦ(m1,m2)ei(M+m1k1+m2k2)·x =
∑

m∈Z2

cΦ(m)eiM
m·x, (2.12)

where Mm = M + m~k = M + m1k1 + m2k2 ∈ M + Λ∗. We denote the Fourier coefficients of a
specific Φ ∈ L2

M shown in (2.12) as cΦ(m) or c(m; Φ).

Next, observe that the transformation R : f 7→ R[f ](x) = f(R∗x) is unitary on L2
k and so its

eigenvalues lie on the unit circle in C. Furthermore, if RΦ = σΦ and Φ 6= 0, then since R4 = Id,
we have that Φ = R4Φ = σ4Φ, so that σ4 = 1. Therefore, σ ∈ {+1,−1,+i,−i}.

This induces a decomposition of L2
M as an orthogonal sum of eigenspaces of R:

L2
M = L2

M,1 ⊕ L2
M,−1 ⊕ L2

M,i ⊕ L2
M,−i , (2.13)

where
L2
M,σ = { f ∈ L2

M : R[f ] = σf }, σ ∈ {1,−1, i,−i}. (2.14)

Remark 2.10. The spectral theory of H in L2
M, can be reduced to its independent study in each of

summand subspace in the orthogonal sum (2.13).

Our next goal is to characterize Fourier series of functions in the orthogonal summands L2
M,σ

for σ = ±1,±i. We first apply R to Φ, represented as a Fourier series in (2.12). Note that

RMm = R(M + m~k) = RM +R(m1k1 +m2k2) = M +m2k1 + (−1−m1)k2 = Mm2,−1−m1 ,

and define (taking some liberty with notation)

Rm ≡ R(m1,m2) = (m2,−1−m1)

and hence R−1m = R−1(m1,m2) = (−m2 − 1,m1) . The mapping R acting on L2
M induces a

decomposition of Z2 into orbits of minimal length four:

(m1,m2)R 7→ (m2,−1−m1)R 7→ (−1−m1,−1−m2)R 7→ (−1−m2,m1)R 7→ (m1,m2) (2.15)

and we write: R2m = (−1−m1,−1−m2), R3m = (−1−m2,m1) and R4m = (m1,m2).
For m,n ∈ Z2 we write m ≈ n if m and n lie on the same orbit under R. We denote by S any

set containing exactly one representative from each equivalence class in Z2/ ≈.

Remark 2.11. One such equivalence class is {(0, 0), (0,−1), (−1,−1), (−1, 0)} and we choose
(−1, 0) as its representative in S. In Section 5 we shall define S⊥ = S \ {(0,−1)} and write
S ≡ {(−1, 0)} ∪ S⊥.
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In terms of the above notation we have

RM = Mm2,−1−m1 = MRm (2.16)

R[Φ](x) = eiM·x
∑

(m1,m2)∈Z2

cΦ(m1,m2)ei(m2k1+(−1−m1)k2)·x =
∑

m∈Z2

cΦ(m)eiM
Rm·x.

Therefore, cRφ(Rm) = cφ(m). Note that

R−1m = R3m = (−m2 − 1,m1), (2.17)

R−2m = R2m = (−1−m1,−1−m2), and (2.18)

R−3m = Rm = (m2,−m1 − 1). (2.19)

Hence,

cRjΦ(m) = cΦ(R4−jm), j = 0, 1, 2, 3. (2.20)

The Fourier series of Φ ∈ L2
k, satisfying the pseudo-periodic boundary conditions may be expressed

as a sum over 4-cycles of R:

φ(x) =
∑
m∈S

cΦ(m)eiM
m·x + cΦ(Rm)eiRMm·x + cΦ(R2m)eiR

2Mm·x + cΦ(R3m)eiR
3Mm·x . (2.21)

We next study the Fourier representation (2.21) in the case where Φ ∈ L2
M,σ for σ = ±1,±i.

Proposition 2.12. Let Φ ∈ L2
M. Then,

Φ ∈ L2
M,σ ⇐⇒ cΦ(Rjm) = σ4−j cΦ(m), j = 0, 1, 2, 3.

In particular,

RΦ = Φ ⇐⇒ c(m) = c(Rm) = c(R2m) = c(R3m)

RΦ = −Φ ⇐⇒ c(Rm) = −c(m), c(R2m) = c(m), c(R3m) = −c(m)

RΦ = iΦ ⇐⇒ c(Rm) = −ic(m), c(R2m) = −c(m), c(R3m) = +ic(m)

RΦ = −iΦ ⇐⇒ c(Rm) = +ic(m), c(R2m) = −c(m), c(R3m) = −ic(m).

Proof. Suppose Φ ∈ L2
M,σ and RΦ = σΦ. Then, R2Φ = σ2Φ and R3Φ = σ3Φ. Correspondingly,

cRjΦ(m) = σjcΦ(m) for j = 0, 1, 2, 3. By relations (2.20) we have cΦ(R4−jm) = cRjΦ(m) =
σjcΦ(m) for j = 0, 1, 2, 3. Replacing j by 4− j completes the proof.

Applying Proposition 2.12 to (2.21) we obtain:

Proposition 2.13. Let σ ∈ {+1,−1,+i,−i}. Then, Φ ∈ L2
M,σ if and only if there exists {c(m)}m∈S

in l2(S) such that

Φ(x) =
∑
m∈S

c(m)

3∑
j=0

σ4−jeiR
jMm·x. (2.22)

In detail,
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1. Φ ∈ L2
M,i ⇐⇒ there exists {c(m)}m∈S ∈ l2(S) such that

Φ(x) =
∑
m∈S

c(m)
(
eiM

m·x − ieiRMm·x − eiR
2Mm·x + ieiR

3Mm·x
)
. (2.23)

2. Φ ∈ L2
M,−i ⇐⇒ there exists {c(m)}m∈S ∈ l2(S) such that

Φ(x) =
∑
m∈S

c(m)
(
eiM

m·x + ieiRMm·x − eiR
2Mm·x − ieiR

3Mm·x
)
. (2.24)

3. Φ ∈ L2
M,1 ⇐⇒ there exists {c(m)}m∈S ∈ l2(S) such that

Φ(x) =
∑
m∈S

c(m)
(
eiM

m·x + eiRMm·x + eiR
2Mm·x + eiR

3Mm·x
)
. (2.25)

4. Φ ∈ L2
M,−1 ⇐⇒ there exists {c(m)}m∈S ∈ l2(S) such that

Φ(x) =
∑
m∈S

c(m)
(
eiM

m·x − eiRMm·x + eiR
2Mm·x − eiR

3Mm·x
)
. (2.26)

Finally, P ◦ C is a bijection between L2
M,i and L2

M,−i. If cΦ(m),m ∈ S are the Fourier coefficients

of Φ ∈ L2
M,i , then c(P◦C)Φ(m) = cΦ(m), m ∈ S are the Fourier coefficients of (P ◦ C)Φ ∈ L2

M,−i .

3 H(0) = −∆ on L2
M: A Four-fold Degenerate Eigenvalue

We consider the eigenvalue problem (1.1) for the case V ≡ 0. Let H(0) = −∆.

H(0)Φ(0) = µ(0)(k)Φ(0), Φ(0) ∈ L2
k. (3.1)

Equivalently, take Φ(0)(x; k) = eik·xφ(0)(x), where φ(0)(x) ∈ L2(R2/Λ). We have (see (1.3))

H(0)(k)φ(0) = −(∇+ ik)2φ(0) = µ(0)(k)φ(0),

φ(0)(x + v) = φ(0)(x), v ∈ Λ.
(3.2)

For m1,m2 ∈ Z, the eigenvalue problem (3.2) has solutions of the form:

φ(0)
m1,m2

(x; k) = ei(m1k1+m2k2)·x, k ∈ B,

with corresponding eigenvalues

µ(0)
m1,m2

(k) = |k +m1k1 +m2k2|2, k ∈ B.

The dispersion relation for the free Hamiltonian, H(0), is plotted in Figure 3.1.
The following result concerns the spectral problem for the high symmetry quasi-momentum k = M
(and by Remark 2.1 all vertices of B):
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Theorem 3.1. Let k = M and σ = ±1,±i. Then,

1. µ
(0)
S ≡ |M|2 = 2π2 is an L2

M−eigenvalue of multiplicity four with corresponding four-dimensional
eigenspace given by

L2
M − Kernel

(
H(0) − µ(0)

S Id
)

= span
{
eiM·x, eiRM·x, eiR

2M·x, eiR
3M·x

}
. (3.3)

2. H(0) acting in L2
M,σ has simple eigenvalue µ

(0)
S = |M|2 with corresponding eigenspace:

L2
M,σ − Kernel

(
H(0) − µ(0)

S Id
)

= span
{

Φ(0)
σ

}
,

where Φ
(0)
σ are defined as follows.

Φ
(0)
+1(x) = eiM·x + eiRM·x + eiR

2M·x + eiR
3M·x ∈ L2

M,+1 (3.4)

Φ
(0)
−1(x) = eiM·x − eiRM·x + eiR

2M·x − eiR
3M·x ∈ L2

M,−1 (3.5)

Φ
(0)
+i (x) = eiM·x − i eiRM·x − eiR

2M·x + i eiR
3M·x ∈ L2

M,+i (3.6)

Φ
(0)
−i (x) = eiM·x + i eiRM·x − eiR

2M·x − i eiR
3M·x ∈ L2

M,−i (3.7)

Furthermore,

L2
M − Kernel

(
H(0) − µ(0)

S Id
)

= span
{

Φ
(0)
+1(x)

}
⊕ span

{
Φ

(0)
−1(x)

}
⊕ span

{
Φ

(0)
+i (x)

}
⊕ span

{
Φ

(0)
−i (x)

}
.

3. µ
(0)
S = 2π2 is the lowest eigenvalue of H(0) in L2

M.

Proof. The function eik·x is an L2
k−eigenvalue of −∆ with eigenvalue |k|2. Since vertices of the

Brillouin zone, M, RM, R2M and R3M, are equidistant from the origin and are all equivalent

modulo Λ∗, we have µ
(0)
S = |M|2 = 2π2 is an L2

M−eigenvalue of multiplicity at least four with

eigenspace contained in the span of the functions eiM·x, eiRM·x, eiR
2M·x and eiR

3M·x. To show

that µ
(0)
S is of multiplicity exactly four, we seek to find m for which |Mm|2 = |M|2. Using Mm =

M +m1k1 +m2k2, we have |Mm|2 − |M|2 = (2π)2
[
m2

1 +m2
2 +m1 +m2

]
, which vanishes only if

m = (0, 0), (0,−1), (−1,−1) or (−1, 0). These four possibilities correspond to the four vertices of B.

Thus, µ
(0)
S is of multiplicity exactly four. This proves part 1. Part 2 is a consequence of Proposition

2.13 and its proof. Part 3 holds because m2
1 + m2

2 + m1 + m2 ≥ 1 > 0 for m = (m1,m2) /∈
{(0, 0), (0,−1), (−1,−1), (−1, 0)} and therefore |Mm|2 ≥ |M|2 + (2π)2 > |M|2.

4 Two-fold Degenerate L2
M Eigenvalues Imply Quadratic Touch-

ing of Dispersion Surfaces

Theorem 4.1. Let H = −∆x + V (x), where V (x) is an admissible potential in the sense of
Definition 2.3. Assume that µ? is a two-fold degenerate L2

M eigenvalue of H. More specifically,
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Figure 3.1: Dispersion surfaces of H(0) = −∆. (left) The first five dispersion surfaces are plotted

over the Brillouin zone, [−π, π]
2
. Each surface is plotted using a different color. (The first is blue,

the second is red, etc.) Some level sets of the dispersion surfaces are indicated with black lines.
(right) The same dispersion surfaces are plotted along the circuit Γ→ X→M→ Γ, displayed in
Figure 1.2. The colors match the plot on the left. As shown in Theorem 3.1, there is a multiplicity
four L2

M−eigenvalue µ(0) = |M|2 = 2π2.

(H1) H has a simple L2
M,+i eigenvalue µS with corresponding normalized eigenfunction Φ1(x) =

eiM·xφ1(x).

(H2) H has a simple L2
M,−i eigenvalue µS with corresponding normalized eigenfunction

Φ2 = (P ◦ C) [Φ1](x) = Φ1(−x) ≡ eiM·xφ2(x).

We shall also use the notation Φ1 = Φ(+i) and Φ2 = Φ(−i).

(H3) µS is neither a L2
M,+1 nor a L2

M,−1eigenvalue of H.

Then, there exist dispersion relations: k 7→ µ±(k) associated with the L2
k−eigenvalue problem

for H, whose local character in a neighborhood of the high symmetry quasi-momentum, M (and
therefore all vertices of B), is given by:

µ±(M + κ)− µS = (1− α)|κ|2 + Q6(κ) ±
√∣∣∣ γ(κ2

1 − κ2
2) + 2βκ1κ2

∣∣∣2 + Q8(κ) , (4.1)

for |k −M| =
√
κ2

1 + κ2
2 small. The constants α ∈ R and β, γ ∈ C are inner product expressions

which are quadratic in the the entries of ∇xΦ1 and ∇xΦ2; see equations (4.60). The functions
Q6(κ) = O(|κ|6) and Q8(κ) = O(|κ|8) are analytic functions of κ and invariant under π/2 rotation:
(κ1, κ2) 7→ (−κ2, κ1).

The proof of Theorem 4.1 is given in Section 4.1.
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Corollary 4.2. Assume hypotheses of Theorem 4.1. Assume further that with respect to the origin
of coordinates, xc = 0, we have, in addition, that V is reflection invariant in the sense of Definition
2.4, i.e. V (x1, x2) = V (x2, x1). Then, the coefficients β and γ in (4.1) are constrained to satisfy:
β ∈ R and γ = iγ̃ ∈ iR and we have:

µ±(M + κ)− µS = (1− α)|κ|2 + Q6(κ)

±
√
γ̃2(κ2

1 − κ2
2)2 + 4β2κ2

1κ
2
2 + Q8(κ) . (4.2)

Here, Q6(κ) and Q8(κ) are now also invariant under the reflection: (κ1, κ2) 7→ (κ2, κ1).

Before presenting the proofs of Theorem 4.1 and Corollary 4.2, we state a result on the instability
or non-persistence of the quadratic degeneracies of Theorem 4.1 against a class of real-valued
perturbations which preserve Z2−periodicity and inversion symmetry, but break π/2−rotational
invariance.

Theorem 4.3 (Non-persistence of quadratic degeneracy). Consider Hη = −∆ + V + ηW , where
V is admissible. By Theorem 4.1,
• H0 has an L2

M−eigenvalue µS of geometric multiplicity two, and

• µS has an associated orthonormal basis {Φ1,Φ2} with Φ1 ∈ L2
M,i and Φ2(x) = Φ1(−x).

We introduce a class of perturbations, W , consisting of real-valued functions which are Z2−periodic
and even, but which do not respect π/2−rotational invariance, i.e. R[W ] 6= W . In particular, we
assume that

〈Φ1,WΦ2〉 6= 0 . (4.3)

Then, the two-fold degenerate eigenvalue splits into two simple eigenvalues, ν±, given by:

ν± = µS + η〈Φ1,WΦ1〉 ± η |〈Φ1,WΦ2〉|+O(η2). (4.4)

We omit the proof of Theorem 4.3, which follows from degenerate perturbation theory argument;
see Section 9 (particularly, Remark 9.2) of [FW12] and Section 5 of [LTWZ].

Remark 4.4. It is easy to verify that if W is real-valued, Z2−periodic, even and π/2−rotationally
invariant, then 〈Φ1,WΦ2〉 = 0.

Remark 4.5. We provide an example of such potential W that is even, is not π/2−rotationally
invariant and has the property: 〈Φε1,WΦε2〉 6= 0. We set

W0(x) = 2 cos((k1 + k2) · x).

Then, R[W0] = 2 cos((k1 + k2) · R∗x) = 2 cos(R(k1 + k2) · x) = 2 cos((k1 − k2) · x) 6= W0(x). We
obtain 〈Φε1,W0Φε2〉 = −2 +O(ε) 6= 0 for ε small.

Other examples which satisfy the hypotheses of Theorem 4.3: W1(x) = 2 cos(k1 · x), W2(x) =
2 cos(k2 · x) and W3(x) = 2 cos((k1 − k2) · x). We omit the lengthy but elementary verification. A
numerical illustration of Theorem 4.3 is presented in Figure 4.1.
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Figure 4.1: The admissible potential V in Figure 7.4 with the additional perturbation W =
2 cos((k1 + k2) · x).

(a) Plot of Potential V + ηW (b) Dispersion Curves; Inset Shows Splitting at M

4.1 Proof of Theorem 4.1 on conditions for quadratic degeneracy

4.1.1 Reduction to the study of detM(µ, κ) = 0, for a 2 × 2−matrix-valued analytic
function (µ, κ) 7→ M(µ, κ) in a neighborhood of (0,0)

The proof follows closely that of Theorem 4.1 of [FW12]. For Φ ∈ L2
k as Φ(x; k) = eik·xφ(x; k),

where φ(x; k) is Λ−periodic. Let H(k) = (−(∇x + ik)2 + V (x)). We study the eigenvalue problem
H(k)φ(x; k) = µφ(x; k) for k = M + κ and | κ |� 1. In particular,[

−(∇x + i(M + κ))2 + V (x)
]
φ = µ φ,

φ(x + v) = φ(x), for all v ∈ Λ, x ∈ R2.
(4.5)

We seek a solution of (4.5), µ = µ(M + κ) and φ = φ(x; M + κ), in the form

µ(M + κ) = µS + µ(1), φ(x; M + κ) = φ(0) + φ(1), (4.6)

where
φ(0) ∈ kernel(H(M)− µSI), φ(1) ⊥ kernel(H(M)− µSI),

and µ(1) are to be determined. Substituting (4.6) into(4.5), we obtain:

(H(M)− µSI)φ(1) =
(

2iκ · (∇+ iM)− κ · κ+ µ(1)
) (

φ(0) + φ(1)
)
≡ F (1). (4.7)

The right-hand side of (4.7) depends on φ(0) ∈ kernel(H(M) − µ0I), which, by hypothesis, is
expressed for constants α1, α2 to be determined,

φ(0) = α1φ1(x) + α2φ2(x),

φj(x) = e−iM·xΦj(x), j = 1, 2,
(4.8)
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We next construct φ(1). Introduce the orthogonal projections Q‖ onto the two-dimensional

kernel of H(M)− µSI and Q⊥ = I −Q‖. Note that: Q‖ψ
(1) = 0, Q⊥ψ

(0) = 0, and Q⊥ψ
(1) = ψ(1).

Equation (4.7) is of the form (H(M) − µSI)φ(1) = F (1)(α1, α2, κ, µ
(1), φ(1)) and can be expressed

as an equivalent system for (φ(1), µ(1)):

(H(M)− µSI)φ(1) = Q⊥F
(1)(α1, α2, κ, µ

(1), φ(1)), (4.9)

0 = Q‖F
(1)(α1, α2, κ, µ

(1), φ(1)). (4.10)

We proceed as in [FW12]. Introduce the resolvent RM(µS) = (H(M) − µSI)−1, which is a
bounded linear map from Q⊥L

2(R2/Λ) to Q⊥H
2(R2/Λ). Equivalently, R(µS) = (H − µSI)−1

is a bounded linear map from Q̃⊥L
2
M to Q̃⊥H

2
M, where Q̃ and Q̃⊥ are the orthogonal projections

onto span{Φ1,Φ2} and its orthogonal complement. For |κ| and
∣∣µ(1)

∣∣ sufficiently small, we have:

φ(1) = α1 c
(1)[κ, µ(1)](x) + α2 c

(2)[κ, µ(1)](x), (4.11)

where

c(j)[κ, µ(1)](x) =
(
I + RM(µS)Q⊥

(
−2iκ · (∇+ iM) + κ · κ− µ(1)

))−1

◦ (RM(µS)Q⊥ (2iκ · (∇+ iM))φj) .
(4.12)

where (κ, µ(1)) → c(j)[κ, µ(1)] is a smooth mapping from a neighborhood (0, 0) ∈ R2 × C into
H2(R2/Λ) satisfying the bound ‖c(j)‖H2 ≤ C( |κ|2 +

∣∣µ(1)
∣∣ |κ|); j = 1, 2.

Substituting (4.11) into (4.10), we obtain a homogeneous system

M(µ(1), κ)

(
α1

α2

)
= 0 .

We therefore have the following characterization of eigenvalues, µ = µS + µ(1) for |µ(1)| small and
k = M + κ, with κ near zero.

Proposition 4.6. Let k = M+κ with |κ| < κmax sufficiently small. Then, for with , µ = µS+µ(1),
with |µ(1)| in a small neighborhood of 0, is an L2

M−eigenvalue if and only if detM(µ(1), κ) = 0.

The matrix M(µ(1), κ) is given by

M(µ(1), κ) ≡M(0)(µ(1), κ) + M(1)(µ(1), κ), (4.13)

where

M(0)(µ(1), κ) ≡
(
µ(1) − κ · κ+ 〈Φ1, 2iκ · ∇Φ1〉 〈Φ1, 2iκ · ∇Φ2〉

〈Φ2, 2iκ · ∇Φ1〉 µ(1) − κ · κ+ 〈Φ2, 2iκ · ∇Φ2〉

)
, (4.14)

and

M(1)(µ(1), κ) ≡
(〈

Φ1, 2iκ · ∇C(1)(κ, µ(1))
〉 〈

Φ1, 2iκ · ∇C(2)(κ, µ(1))
〉〈

Φ2, 2iκ · ∇C(1)(κ, µ(1))
〉 〈

Φ2, 2iκ · ∇C(2)(κ, µ(1))
〉) . (4.15)

Using the relations (∇ + iM)φj = e−iM·x∇xe
iM·xφj = e−iM·x∇xΦj , we have C(j)[κ, µ(1)](x) ≡

eiM·xc(j)[κ, µ(1)](x), where 〈Φi, C(j)〉 = 0 for i, j = 1, 2.
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Remark 4.7. Given real µ(1) and κ, the matrices M, M(0), and M(1) are Hermitian matrices.

We conclude this section with an elementary lemma which we use, along with symmetry, to

simplify the matrix entries ofM(µ(1), κ). We denoteM(1)
j1,j2

(µ(1), κ) =
〈
Φj1 , 2iκ · ∇C(j2)(κ, µ(1))

〉
.

Lemma 4.8. Suppose f : R2 → R2, f ∈ L2(Ω) satisfies f(R∗x) = f(x), where R∗ is the counter-
clockwise rotation matrix by π/2. Then,

∇xR[f ](x) = R R[∇yf ](x) or ∂xα R[f ](x) = Rαr R[∂yrf ](x) (4.16)

Proof. Let y = R∗x or yr = Rirxi. Therefore, ∂yr
∂xα

= Rαr. Fix α ∈ {1, 2}. Then,

∂xαR[f ](x) = ∂xαf(R∗x) = RαrR[∂yrf ](x) = {RR(∇f)}
α
. (4.17)

4.1.2 Symmetry implies detM(µ(1), κ) has no linear in κ terms for |κ| � 1

Proposition 4.9.

M(0)(µ(1), κ) =
(
µ(1) − κ · κ

)
× I

2×2
(4.18)

and therefore

M(µ(1), κ) =
(
µ(1) − κ · κ

)
× I

2×2
+M(1)(µ(1), κ) . (4.19)

Recall from the hypotheses of Theorem 4.1 that Φ1 ∈ L2
M,+i and Φ2 ∈ L2

M,−i and therefore

R[Φq](x) = i2q−1 Φq(x), q = 1, 2.

Proposition 4.10. For j1, j2 = 1, 2,

〈Φj1 ,∇Φj2〉L2(Ω) = 0.

Proof. Choose j1, j2 ∈ {1, 2}. Using that R is unitary and Lemma 4.8, we have

〈Φj1 ,∇yΦj2〉L2(Ωy)
= 〈R[Φj1 ],R[∇yΦj2 ]〉

L2(Ωx)
= 〈R[Φj1 ], R∗∇xR[Φj2 ]〉

L2(Ωx)
= R∗〈R[Φj1 ],∇xR[Φj2 ]〉

L2(Ωx)

= R∗〈i2j1−1Φj1 ,∇xi
2j2−1Φj2〉L2(Ωx)

= i2(j2−j1)R∗〈Φj1 ,∇xΦj2〉L2(Ωx)
.

It follows that either i2(j2−j1) is an eigenvalue of R or 〈Φj1 ,∇xΦj2〉 = 0. But the eigenvalues of R
are ±i, and since j2 − j1 is an integer, i2(j2−j1) is real. We conclude that 〈Φj1 ,∇xΦj2〉 = 0 for all
j1, j2 = 1, 2. The proof of Proposition 4.10 is complete.

Remark 4.11. As observed in Section 4.1.1, ‖C(j)(κ, µ(1))‖H1 . |κ|+ |κ|2 + |µ(1)|, we have from
Proposition 4.9 that M(µ(1), κ) = (µ(1) − |κ|2) I2×2 + O2×2(|κ|2 + |κ|3 + |µ(1)| |κ|). Therefore,

detM(µ(1), κ) = 0 has solutions µ
(1)
± = O(|κ|2). We next obtain the precise quadratic dependence

on κ of M(1)(µ(1), κ) and then give a more precise expansion of solutions to detM(µ(1), κ) = 0.
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4.1.3 Quadratic in κ terms of detM(µ(1), κ) for |κ| � 1

We next expandM(1)
j1,j2

(µ(1), κ) for |κ| and |µ(1)| small. Recall first (4.12), the relations listed after

(4.15). Then, Q̃⊥C
(j)[κ, µ(1)] = C(j)[κ, µ(1)], where

C(j)[κ, µ(1)] =
(
I + R(µS)Q̃⊥

(
−2iκ · ∇+ κ · κ− µ(1)

))−1

◦
(
R(µS)Q̃⊥ (2iκ · ∇) Φj

)
=
(
I +O

L2→L2 (| κ | + | µ(1) |)
)
◦
(
R(µS)Q̃⊥ (2iκ · ∇) Φj

)
. (4.20)

Furthermore, recalling that Q̃⊥∂xlΦm = ∂xlΦm (Proposition 4.10), we have

M(1)
j1,j2

(µ(1), κ) =
〈

Φj1 , 2iκ · ∇C(j2)(κ, µ(1))
〉

=
〈
Q̃⊥2iκ · ∇Φj1 , Q̃⊥C

(j2)(κ, µ(1))
〉
.

Therefore, by (4.20) we have for j1, j2 = 1, 2 and κ ∈ R2:

M(1)
j1,j2

(µ(1), κ) = 4

2∑
l,m=1

〈Q̃⊥∂xlΦj1 ,R(µS)Q̃⊥∂xmΦj2〉 κl κm +O
(
|κ|3 + |µ(1)| |κ|

)

= 4

2∑
l,m=1

〈∂xlΦj1 ,R(µS)∂xmΦj2〉 κl κm +O
(
|κ|3 + |µ(1)| |κ|

)
(4.21)

≡ 4 κT Aj1,j2 κ + O
(
|κ|3 + |µ(1)| |κ|

)
, (4.22)

where (4.22) defines the matrix Aj1,j2 with entries:

aj1,j2l,m = 〈∂xlΦj1 ,R(µS)∂xmΦj2〉, (4.23)

We proceed now to use symmetry to deduce the structure of the matrices Aj1,j2 .

Lemma 4.12. For fixed j1, j2 ∈ {1, 2}, we have the following:

RTAj1,j2R = i2(j2−j1)Aj1,j2 , (4.24)

where R denotes the π/2−rotation matrix displayed in (2.5). Therefore,

j1 = j2 ≡ j =⇒ RT Aj,j R = Aj,j

j1 6= j2 =⇒ RT Aj1,j2 R = −Aj1,j2 .

Proof. We will use Lemma 4.8, R[∂xlf ](x) = RnlR[∂ynf ](x). Since R is unitary and commutes
with R(µS) ,

κTAj1,j2κ = 〈∂ylΦj1 ,R(µS)∂ymΦj2〉L2(Ωy)
κlκm

= 〈R[∂ylΦj1 ], R(µS) R[∂ymΦj2 ]〉
L2(Ωx)

κlκm

= 〈Rnl∂xnR[Φj1 ],R(µS) RqmR[∂xqΦj2 ]〉
L2(Ωx)

κlκm

= 〈∂xni2j1−1Φj1 ,R(µS)∂xq i
2j2−1Φj2〉L2(Ωx)

RnlκlRqmκm

= i2(j2−j1)〈∂xnΦj1R(µS)∂xqΦj2〉L2(Ωx)
(Rκ)n(Rκ)q

= i2(j2−j1)(Rκ)TAj1,j2(Rκ).

Since κ is arbitrary, Aj1,j2 = i2(j2−j1)RT Aj1,j2 R.
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Lemma 4.13. Assume R is the π/2−rotation matrix, (2.5), and A = (aij). Then,

(j1 = j2) RT A R = A =⇒ A =

(
a11 a12

−a12 a11

)
(j1 6= j2) RT A R = −A =⇒ A =

(
a11 a12

a12 −a11

)
.

Claim 4.14. Let A† conjugate-transpose of A. Then,

(A1,1)† = A1,1, (A2,2)† = A2,2, and (A2,1)† = A1,2.

Proof. Pick j1, j2 ∈ {1, 2} and l,m ∈ {1, 2}.

(Aj1,j2)†l,m = (aj1,j2m,l ) =
[
〈∂xmΦj1 ,R(µS)∂xlΦj2〉

]
= [ 〈∂xlΦj2 ,R(µS)∂xmΦj1〉 ] = (aj2,j1l,m ) = (Aj2,j1)l,m,

and therefore (Aj1,j2)† = Aj2,j1 .

Claim 4.15. A1,1 = (A2,2)T . In particular, a1,1
11 = a2,2

11 .

Proof. Recall Φ1(x) = (P ◦ C)[Φ1](x) = Φ2(−x). For l,m ∈ {1, 2}, using that ∂xl(P ◦ C) =
−(P ◦ C)∂yl , we have

a1,1
l,m = 〈∂xlΦ1,R(µS) ∂xmΦ1〉

= 〈∂xl(P ◦ C)[Φ2],R(µS) ∂xm(P ◦ C)[Φ2]〉
= 〈(P ◦ C)[∂ylΦ2],R(µS) (P ◦ C)[∂ymΦ2]〉

= 〈C[∂ylΦ2],R(µS) C[∂ymΦ2]〉 ( = a2,2
lm )

= 〈∂ymΦ2,R(µS) ∂ylΦ2〉 = a2,2
m,l.

Therefore, A1,1 = A2,2 = (A2,2)T .

By (4.22) we have

M(1)(µ(1), κ) = 4

(
κTA1,1κ κTA2,1κ
κTA1,2κ κTA2,2κ

)
+ O2×2( |κ|3 + |µ(1)||κ| ) (4.25)

Simplifying the leading term in (4.25) we observe, by the above claims, that a1,1
1,1 ∈ R and

A1,1 =

(
a1,1

1,1 a1,1
1,2

−a1,1
1,2 a1,1

1,1

)
; A1,2 = A2,1 =

(
a1,2

1,1 a1,2
1,2

a1,2
1,2 −a1,2

1,1

)
; A2,2 =

(
a1,1

1,1 −a1,1
1,2

a1,1
1,2 a1,1

1,1

)
.

Hence,

M(1)(µ(1), κ) =

 α (κ2
1 + κ2

2) γ (κ2
1 − κ2

2) + 2β κ1κ2

γ (κ2
1 − κ2

2) + 2β κ1κ2 α (κ2
1 + κ2

2)

+ O
2×2

( |κ|3 + |µ(1)||κ| ),

(4.26)
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where, by (4.23),

α = 4a1,1
1,1 = 4 〈∂x1

Φ1,R(µS)∂x1
Φ1〉 , (4.27)

β = 4a1,2
1,2 = 4 〈∂x1

Φ1,R(µS)∂x2
Φ2〉 ,

γ = 4a1,2
1,1 = 4 〈∂x1Φ1,R(µS)∂x1Φ2〉.

Remark 4.16. Observe by Claim (4.14), the terms α = 4a1,1
1,1 are real.

4.2 Symmetries of dispersion maps k 7→ µ±(k) for k near a vertex of B
Before deriving a detailed picture of the local character of dispersion surfaces near vertices of B,
we prove a general result on the structure of dispersion surfaces in a neighborhood of a vertex
quasi-momentum of B for which the eigenvalue problem has a degenerate eigenvalue.

Assume that the potential V is admissible in the sense of Definition 2.3, where without loss of
generality we take the centering xc = 0. Suppose that in addition that V is reflection invariant, i.e.
V (x) = V (x1, x2) = V (x2, x1) = V (ρx), where

ρx =

(
0 1
1 0

) (
x1

x2

)
=

(
x2

x1

)
. (4.28)

To prove Corollary 4.2 we need to show that γ = 4 〈∂x1
Φ1,R(µS)∂x1

Φ2〉 (see (4.60)) vanishes. We
first deduce that either β = 4 〈∂x1

Φ1,R(µS)∂x2
Φ2〉 or γ vanishes based on the following symmetry

argument; then, we prove that, in fact, γ = 0 using the properties of ρ. We write

Tρ[f ] = f(ρ∗x) = f(ρx) = f(x2, x1). (4.29)

Proposition 4.17. Let V be an admissible potential in the sense of Definition 2.3; we take xc = 0
without any loss of generality. In particular, V (R∗x) = V (x) and V (−x) = V (x). Assume the
hypotheses of Theorem 4.1 which imply that HV has a degenerate (multiplicity two) L2

M−eigenvalue,
µS ∈ R.

Then, for all k = M + κ with 0 < |κ| < κ0 sufficiently small there exist two eigenvalues given
by µ±(M + κ) = µS ± µ(1)(κ).

1. For all 0 < |κ| < κ0, we have

{µ−(M + κ), µ+(M + κ)} = {µ−(M +Rκ), µ+(M +Rκ)} . (4.30)

2. Suppose in addition that V (ρ∗x) = V (ρx) (recall ρ = ρ∗). Then, for 0 < |κ| < κ0, we have

{µ−(M + κ), µ+(M + κ)} = {µ−(M + ρκ), µ+(M + ρκ)} . (4.31)

Proof of Proposition 4.17: Let (µκ, ψ) denote an L2
M+κ eigenpair of −∆ + V , where µκ is assumed

to be near µS . Then, µκ = µ−(M + κ) or µκ = µ+(M + κ). Consider now ψ̃(x) ≡ R[ψ](x) =

ψ(R∗x). Note that (−∆ + V )ψ̃ = µκψ̃ since R commutes with −∆ + V . Moreover, for all v ∈ Z2,

we have ψ̃(x + v) = ψ(R∗(x + v)) = ψ(R∗x + R∗v) = ei(M+κ)·R∗vψ̃(x) = ei(RM+Rκ)·vψ̃(x) =

ei(M+Rκ)·vψ̃(x), where we have used that RM ∈ M + Λ. Therefore, µκ is a L2
M+Rκ eigenvalue

in a neighborhood of µS . Hence, {µ−(M + κ), µ+(M + κ)} ⊂ {µ−(M + Rκ), µ+(M + Rκ)}.
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To prove the reverse inclusion, assume (µ̂κ, φ) is an L2
M+Rκ eigenpair with µ̂κ near µS . Now let

φ̃ = R3[φ](x) and note that φ̃ ∈ L2
M+κ. Hence (µ̂κ, φ̃) is an L2

M+κ−eigenpair of −∆+V . Therefore,
{µ−(M +Rκ), µ+(M +Rκ)} ⊂ {µ−(M +κ), µ+(M +κ)} and the proof of Part 1 is complete. The
proof of Part 2 is analogous. This completes the proof of Proposition 4.17.

4.3 Local behavior of degenerate dispersion surfaces near the M−point

We need to study the solutions of det(M(µ(1), κ)) = 0 for κ in a neighborhood of zero. Our strategy
is based on a general approach used in [FLTW17a] (Section 13). We extendM(µ(1), κ) to be defined
as a matrix-valued analytic function of (µ(1), κ) in a neighborhood of the origin in C×C2 and which
agrees with M(µ(1), κ) as defined above for (µ(1), κ) ∈ R× R2:

M(µ(1), κ) =

 m11(κ, µ(1)) m12(κ, µ(1))

m12(κ, µ(1)) m22(κ, µ(1))

 . (4.32)

Here,

m11(κ, µ(1)) = (α− 1) | κ |2 +µ(1) + O
2×2

( |κ|3 + |µ(1)||κ| )

m12(κ, µ(1)) = γ(κ2
1 − κ2

2) + 2βκ1κ2 + O
2×2

( |κ|3 + |µ(1)||κ| )

m21(κ, µ(1)) = m12(κ, µ(1)) = γ(κ2
1 − κ2

2) + 2βκ1κ2 + O
2×2

( |κ|3 + |µ(1)||κ| )

m22(κ, µ(1)) = m11(κ, µ(1))

Note in particular that M(µ(1), κ) given by (4.32) is Hermitian for real µ(1) and κ.

We first make the simple change of variables

ν ≡ (α− 1)
(
κ2

1 + κ2
2

)
+ µ(1). (4.33)

Define
M̃(ν, κ) = M̃(ν, κ1, κ2) ≡M( ν − (α− 1)

(
κ2

1 + κ2
2

)
, κ1, κ2 ), (4.34)

and study the equivalent equation of det(M(µ, κ)) = 0 for ν:

det(M̃(ν, κ)) = 0. (4.35)

The entries of M̃(ν, κ) are analytic functions of (ν, κ) in a neighborhood of the origin in Cν × C2
κ.

The matrix M̃(µ, κ) has the expansion

M̃(ν, κ) = M̃app(ν, κ) + O
2×2

( |κ|3 + |ν| |κ| ) , (4.36)

where

M̃app(ν, κ) =

 ν q(κ1, κ2)

q\(κ1, κ2) ν

 (4.37)
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and

q(κ1, κ2) ≡ γ(κ2
1 − κ2

2) + 2βκ1κ2 (4.38)

q\(κ1, κ2) ≡ q(κ1, κ2) = γ(κ2
1 − κ2

2) + 2βκ1κ2. (4.39)

Calculating the determinant of M̃(ν, κ) we obtain:

D(ν, κ) ≡ det
(
M̃(ν, κ)

)
= ν2 − q(κ) q\(κ) + g(ν, κ) , (4.40)

where g(ν, κ) and hence D(ν, κ) are analytic in a neighborhood of the origin in C× C2. Note also
that g(ν, κ) and ∂νg(ν, κ) satisfy the following bounds for |κ| and |ν| small:

|g(ν, κ)| ≤ Cg
(
|κ|5 + |ν| |κ|3 + |ν|2 |κ|

)
(4.41)

|∂νg(ν, κ)| ≤ C ′g
(
|κ|3 + |ν| |κ|

)
(4.42)

for some positive constants Cg and C ′g.
The problem of finding eigenvalues µ = µS +ν near µS for k = M+κ near M has been reduced

to the study of the solutions to the equation

D(ν, κ) = 0

for κ near (0, 0) ∈ R2
κ. We shall study the roots of D(ν, κ) using Rouché’s Theorem.

Consider κ ∈ R2 such that |κ| < κmax. We shall eventually take κmax to be small. For such κ
we have ∣∣∣ν2 − q(κ) q\(κ)

∣∣∣ ≥ ν2 − Cγ,β |κmax|2 ,

where Cγ,β is a positive constant depending only on γ and β. Note also that for ν constrained to
the circle |ν| = 2Cγ,βκ

2
max we have the lower bound:∣∣∣ν2 − q(κ) q\(κ)

∣∣∣ ≥ Cγ,β |κmax|2 . (4.43)

Thus, if |ν| = 2Cγ,βκ
2
max, then

|g(ν, κ)| ≤ Cγ,β,gκ5
max .

Note also that Cγ,β κ2
max > Cγ,β,g κ

5
max provided κ3

max < Cγ,β/Cγ,β,g. Therefore, if we choose
κmax to be any constant satisfying

0 < κmax <
1

2
(Cγ,β/Cγ,β,g)

1
3 , (4.44)

then for |κ| ≤ κmax we have:

|ν| = 2Cγ,βκ
2
max =⇒ |g(ν, κ)| <

∣∣∣ ν2 − q(κ) q\(κ)
∣∣∣ (4.45)

for all |ν| = 2Cγ,βκ
2
max. Therefore by Rouché’s Theorem, the functions

ν2 − q(κ) q\(κ) and D(ν, κ) = ν2 − q(κ) q\(κ) + g(ν, κ)



R.T. Keller, J.L. Marzuola, B. Osting, M.I. Weinstein 27

have the same number of zeros in the disc: |ν| < 2Cγ,βκ
2
max. We denote these zeros: ν+(κ) and

ν−(κ). For real κ these zeros are real by self-adjointness and we have:

ν+(κ), ν−(κ) ∈ [−Cγ,βκ2
max, Cγ,βκ

2
max] , |κ| < κmax, κ ∈ R2.

Next, observe by a residue calculation that for l = 1, 2:

(ν+(κ))
l

+ (ν−(κ))
l

=
1

2πi

∫
|ν|=2Cγ,βκ2

max

νl ∂νD(ν, κ)

D(ν, κ)
dν. (4.46)

Since ∂νD(ν, κ) = 2ν + ∂νg(ν, κ), we have

(ν+(κ))
l

+ (ν−(κ))
l

=
1

2πi

∫
|ν|=2Cγ,βκ2

max

2νl+1

ν2 − q(κ) q\(κ) + g(ν, κ)
dν (4.47)

+
1

2πi

∫
|ν|=2Cγ,βκ2

max

νl∂νg(ν, κ)

ν2 − q(κ) q\(κ) + g(ν, κ)
dν

=
1

2πi

∫
|ν|=2Cγ,βκ2

max

2νl+1

ν2 − q(κ) q\(κ)
dν

− 1

2πi

∫
|ν|=2Cγ,βκ2

max

2νl+1 g(ν, κ)

(ν2 − q(κ) q\(κ) + g(ν, κ)) · (ν2 − q(κ) q\(κ))
dν

+
1

2πi

∫
|ν|=2Cγ,βκ2

max

νl∂νg(ν, κ)

ν2 − q(κ) q\(κ) + g(ν, κ)
dν

(4.48)

We can use the identity, for r > a,

1

2πi

∫
|z|=r

zl+1

z2 − a2
dz =

{
0 if l = 1

a2 if l = 2,
(4.49)

to evaluate the first integral and bound the remaining two integrals using (4.41) and (4.42). This
gives

(ν+(κ))
l

+ (ν−(κ))
l

=

{
O(κ4

max |κ|) l = 1

2q(κ) q\(κ) + O(κ6
max |κ|) l = 2

(4.50)

for κmax sufficiently small.
Now note

ν+(κ) · ν−(κ) =
1

2
( ν+(κ) + ν−(κ) )

2 − 1

2

[
(ν+(κ))

2
+ (ν−(κ))

2
]
. (4.51)

Therefore, κ 7→ ν+(κ) · ν−(κ) is analytic in a C2 neighborhood of κ = 0. Moreover, we have

ν+(κ) · ν−(κ) = −1

2

(
2q(κ) q\(κ) + O(κ6

max |κ|)
)

+ O(κ8
max|κ|2)

= −q(κ) q\(κ) +O(κ6
max |κ|). (4.52)

Consider now the equation (ν − ν+(κ)) (ν − ν−(κ)) = 0 satisfied by ν = ν±(κ).
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Lemma 4.18. The roots of D(ν, κ) = 0 in the disc |κ| < 2Cγ,βκ
2
max coincide with the roots of the

quadratic equation: ν2 − t(κ)ν + d(κ) = 0, where t(κ) and d(κ) are analytic and

t(κ) = ν+(κ) + ν−(κ) = O(κ4
max |κ|)

d(κ) = ν+(κ) · ν−(κ) = −q(κ) q\(κ) +O(κ6
max |κ|).

Solving for ν we have, for |κ| < 2Cγ,βκ
2
max, two roots:

ν±(κ) =
1

2
t(κ)±

√
−d(κ) +

1

4
t2(κ) (4.53)

= c0(κ)±
√
q(κ) q\(κ) + c1(κ) , (4.54)

where c0(κ) and c1(κ) are analytic in κ in a C2 neighborhood of the origin satisfying:

|c0(κ)| . κ4
max |κ|, |c1(κ)| . κ6

max |κ|

for all |κ| ≤ κmax and κmax is any constant satisfying (4.44).
Since κ can be taken arbitrary and |κ| = κmax can be an arbitrarily small positive number, it

follows that the analytic functions c0(κ) = Q5(κ) and c1(κ) = Q7(κ) which satisfy, for |κ| → 0:
Qr(κ) = O(|κ|r).

If we now restrict to real κ = (κ1, κ2), then from (4.38)-(4.39) we have that

q(κ) q\(κ) = |q(κ)|2 =
∣∣∣ γ(κ2

1 − κ2
2) + 2βκ1κ2

∣∣∣2 . (4.55)

Therefore, ν±(κ) = Q5(κ) ±
√∣∣∣ γ(κ2

1 − κ2
2) + 2βκ1κ2

∣∣∣2 + Q7(κ).

We finally return to (4.33) which relates ν to our eigenvalue parameter µ: µ(M + κ) = (1 −
α)|κ|2 + ν(κ). Proposition 4.17 implies constraints, due to symmetry, on the mappings k 7→ µ±(k)
for k near M. Clearly |q(κ)|2 is invariant under the π/2 rotation: (κ1, κ2) 7→ (−κ2, κ1), and by
part (1) of Proposition 4.17 we must have: c0(κ) = Q6(κ) and c1(κ) = Q8(κ). We therefore have

µ±(M + κ) = (1− α)|κ|2 + Q6(κ) ±
√∣∣∣ γ(κ2

1 − κ2
2) + 2βκ1κ2

∣∣∣2 + Q8(κ) . (4.56)

This completes the proof of Theorem 4.1.

4.4 Dispersion Surfaces Near M for V Admissible and Reflection Invari-
ant; Proof of Corollary 4.2

In addition to V being admissible in the sense of Definition 2.3, we now assume that V (x1, x2) is
reflection invariant about the line x1 = x2.

Lemma 4.19. Suppose f : R2 → R2, f ∈ L2(Ω) satisfies Tρ[f ](x) ≡ f(ρ∗x) = f(x), where ρ = ρ∗

is the reflection (permutation) matrix mapping (x1, x2)→ (x2, x1). Then,

∂xn Tρ[f ](x) = ρnm Tρ[∂ymf ](x) = Tρ[ρnm∂ymf ](x). (4.57)
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Proof. Let y = ρ∗x. Then ym = ρnmxn, and furthermore ∂ym
∂xn

= ρnm. Thus,

{∇ρ[f ](x)}n =
∂

∂xn
f(ρx) = ρnm

∂

∂ym
f(y)

∣∣∣
y=ρ∗x

=
{
ρ[∇yf ]

}
n

∣∣∣
y=ρ∗x

=
{
Tρ[ρ ∇f ](x)

}
n
.

Claim 4.20. Let σ ∈ {±1,±i}. If ψ(x) solves the Floquet-Bloch eigenvalue problem with V ad-
missible and reflection-invariant, and ψ(x) ∈ L2

M,σ, then ψ̃ = ψ(x2, x1) is also a solution where

ψ̃ ∈ L2
M,σ3 . That is, ρ maps L2

M,σ → L2
M,σ3 .

Proof. First we’ll show if ψ(x) ∈ L2
M,σ, then ψ̃ = ψ(x2, x1) ∈ L2

M,σ3 . Observe that ρ is self-adjoint,
and note

ρ∗R∗ρ = R (4.58)

since

R∗ρ =

(
0 −1
1 0

)(
0 1
1 0

)
=

(
−1 0
0 1

)
=

(
0 1
1 0

)(
0 1
−1 0

)
= ρR.

We seek to show
R[ψ̃] = σ3ψ̃,

or, equivalently, R[ρ[ψ]](x) = σ3ρ[ψ](x). If that holds, then ψ̃ ∈ L2
M,σ3 .

R[ψ̃] = R[ρ[ψ]](x)

= ψ(R∗ρx)
(4.58)

= ψ(ρRx) = ψ(ρ(R∗)3x)

= ρ(ψ((R∗)3x)) = ρ(R3ψ(x))

= σ3ρ[ψ](x) = σ3ψ̃.

Therefore, if ψ(x) ∈ L2
M,σ, then ψ̃ = ψ(x2, x1) ∈ L2

M,σ3 .

Now consider the setting of Theorem 4.1; µS is an eigenvalue of H = −∆ + V acting in L2
M of

multiplicity 2. In particular, µS is simple L2
M,i eigenvalue with corresponding eigenfunction Φ1, and

µS is a simple L2
M,−i eigenvalue with corresponding eigenfunction Φ2, with Φ2(x) = Φ1(−x). By

Claim 4.20, ρΦ1 ∈ L2
M,−i and since ρ commutes with H we have that ρΦ1 is an L2

M,−i eigenfunction.

Thus, ρΦ1 = eiνΦ2, for some ν ∈ R or equivalently ρe−i
ν
2 Φ1 = ei

ν
2 Φ2. Hence, for the case ν 6= 0

replace Φ1 by e−i
ν
2 Φ1 and Φ2 by ei

ν
2 Φ2, to obtain the relation

ρΦ1 = Φ2 (4.59)

in all cases. Recall from (4.60) that

α = 4a1,1
1,1 = 4 〈∂x1Φ1,R(µS)∂x1Φ1〉 , (4.60)

β = 4a1,2
1,2 = 4 〈∂x1

Φ1,R(µS)∂x2
Φ2〉 ,

γ = 4a1,2
1,1 = 4 〈∂x1Φ1,R(µS)∂x1Φ2〉.

We have shown that α ∈ R. Using (4.59) we have the following constraints on β and γ:
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Claim 4.21. Assume [ρ,H] = 0. Then,

β ∈ R (4.61)

γ = iγ̃, γ̃ ∈ R. (4.62)

Proof. We first prove (4.61). Since with [ρ,H] = 0 and ρ∂x1
= ∂x2

ρ, we have:

β = 4 〈∂x1Φ1,R(µS)∂x2Φ2〉
= 4 〈ρ ∂x1Φ1, ρR(µS)∂x2Φ2〉
= 4 〈∂x2ρ Φ1,R(µS)∂x1ρ Φ2〉
= 4 〈∂x2Φ2,R(µS)∂x1Φ1〉
= 4 〈R(µS)∂x2Φ2, ∂x1Φ1〉

= 4 〈∂x1Φ1,R(µS)∂x2Φ2〉 = β.

To prove (4.62), let κ ∈ R2 be arbitrary. Using that R[Φ1] = iΦ1 and R[Φ2] = −iΦ2, we have
for j1, j2 ∈ {1, 2}:

κTAj1,j2κ = 〈∂ylΦj1 ,R(µ?)∂ymΦj2〉L2(Ωy)
κlκm

= 〈R(ρ[∂ylΦj1 ]), R(µ?) R(ρ[∂ymΦj2 ])〉
L2(Ωx)

κlκm

= 〈Rnsρln∂xsR[ρΦj1 ],R(µ?)Rqtρmq∂xtR[ρΦj2 ]〉
L2(Ωx)

κlκm

= 〈∂xsi2j2−1Φj2 ,R(µ?)∂xq i
2j1−1Φj1 ]〉

L2(Ωx)
Rns(ρlnκl) Rqt(ρmqκm)

= i2(j1−j2) 〈∂xsΦj2 ,R(µ?)∂xtΦj1〉
L2(Ωx)

Rns(ρκ)nRqt(ρκ)q

= i2(j1−j2)(Rρκ)TAj2,j1Rρκ,

for any choice of pairs (j1, j2) with j1, j2 ∈ {1, 2}. Since κ is arbitrary,

Aj1,j2 = i2(j1−j2)ρ RTAj2,j1R ρ.

For any pair j1, j2 ∈ {1, 2}, let Aj1,j2 = A =

(
a b
c d

)
. Then,

RTAR =

(
d −c
−b a

)
. (4.63)

Consider j1 = 1 and j2 = 2. From the above analysis,

A = A1,2 = −ρ R A2,1 RT ρ = −ρ R (A1,2)† RT ρ = −ρ R A† RT ρ

so

−ρ R A† RT ρ = −
(

0 1
1 0

)(
d̄ −b̄
−c̄ ā

)(
0 1
1 0

)
= −

(
−c̄ ā
d̄ −b̄

)(
0 1
1 0

)
= −

(
ā −c̄
−b̄ d̄

)
=

(
−ā c̄
b̄ −d̄

)
=

(
a b
c d

)
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In particular, a = −ā and d = −d̄. That is, a1,2
1,1 = −ā1,2

1,1, and a1,2
2,2 = −ā1,2

2,2, so that

<γ = 4<(a1,2
1,1) = 4<(a1,2

2,2) = 0.

Corollary 4.2 is now an immediate consequence of Part 2 of Proposition 4.17. 1

5 Spectral band degeneracies for small amplitude potentials

In this section we apply Theorem 4.1 to the case of small amplitude potentials. Our analysis follows
that of Section 6 in [FW12] in the case of honeycomb potentials. We consider the Floquet-Bloch
eigenvalue problem:

HεΦ(x) ≡ (−∆ + εV (x)) Φ(x) = µΦ(x), Φ ∈ L2
M,σ , (5.1)

where σ ∈ {+1,−1,+i,−i}, and ε is small and non-zero.
By Proposition 2.13, we may seek an L2

M,σ eigenstate of the form:

Φ(x) =
∑
m∈S

cΦ(m)
(
σ4eiM

m·x + σ3eiRMm·x + σ2eiR
2Mm·x + σeiR

3Mm·x
)
.

We use the notations c(m) = cΦ(m) = c(m; Φ). Applying (−∆− µ) to Φ and using that R is an
orthogonal matrix yields

(−∆− µ) Φ =
∑
m∈S

(
|Mm|2 − µ

)
c(m; Φ)

(
3∑
i=0

σ4−ieiR
iMm·x

)

Since V (R∗x) = V (x), we have that V (x)Φ(x) ∈ L2
M,σ. Therefore, by Proposition 2.13, V Φ has an

expansion

V (x)Φ(x) =
∑
m∈S

 4∑
j=0

σ4−jeiR
jMm·x

 c(m;V Φ), (5.2)

where

c(m;V Φ) =
1

| Ω |

∫
Ω

e−iM
m·yV (y)Φ(y)dy. (5.3)

1miw: still need to fix Corollary 4.2. See previous footnote.
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Recall that q~k · x = (q1k1 + q2k2) · x and RMr = MRr; see (2.16). Thus,

c(m;V Φ) =
1

| Ω |

∫
Ω

e−iM
m·yV (y)Φ(y)dy

=
1

| Ω |

∫
Ω

e−iM
m·y

∑
q∈Z2

Vqe
iq~k·y

∑
r∈S

c(r; Φ)

 3∑
j=0

σ4−jeiR
jMr·y

 dy

=
1

| Ω |
∑
q∈Z2

∑
r∈S

∫
Ω

Vqc(r; Φ)

 3∑
j=0

σ4−jei(M
Rjr−Mm+q~k)·y

 dy
=

1

| Ω |
∑

q∈Z2,r∈S

Vqc(r; Φ)

∫
Ω

3∑
j=0

(
σ4−jei(q−(m−Rjr))~k·y

)
dy

=
∑

q∈Z2,r∈S

Vqc(r; Φ)

3∑
j=0

[
σ4−j δ

(
q− (m−Rjr)

)]
=
∑
r∈S

 3∑
j=0

σ4−j Vm−Rjr

 c(r; Φ)

=
∑
r∈S

(
Vm−r + σ3Vm−Rr + σ2Vm−R2r + σVm−R3r

)
c(r; Φ)

Thus,

c(m;V Φ) =
∑
r∈S
Kσ(m, r)c(r; Φ). (5.4)

Kσ(m, r) =

3∑
j=0

σ4−jVm−Rjr (5.5)

= Vm−r + σ3 Vm−Rr + σ2 Vm−R2r + σ Vm−R3r

= Vm1−r1,m2−r2 + σ3 Vm1−r2,m2+r1+1

+ σ2 Vm1+r1+1,m2+r2+1 + σ Vm1+r2+1,m2−r1 .

We have the following analogue of Proposition 6.1 of [FW12]:

Proposition 5.1. Let σ ∈ {+i,−i,+1,−1}. The L2
M,σ−spectral problem (5.1) is equivalent to the

following algebraic eigenvalue problem for {c(m)}m∈S and µ:(
|Mm|2 − µ

)
c(m) + ε

∑
r∈S
Kσ(m, r) c(r) = 0, m ∈ S. (5.6)

For each σ, we next solve (5.6) for ε 7→ {cε(m)}m∈S , µε, perturbatively in ε.
We first set ε = 0 in (5.6). Then, (5.6) reduces to eigenvalue problem:(

|M +m1k1 +m2k2|2 − µ(0)
)
c0(m) = 0, m = (m1,m2) ∈ S, (5.7)

which has a simple eigenpair:

µ(0) = |M|2 = 2π2 = µ
(0)
S , c(0)(m) = δm1+1,m2

, (5.8)



R.T. Keller, J.L. Marzuola, B. Osting, M.I. Weinstein 33

In arriving at (5.8), recall from Theorem 3.1 that µ
(0)
S = |M|2 = 2π2 is an eigenvalue of

multiplicity four with four dimensional eigenspace spanned by the eigenvectors: c(m1,m2) = δm1,m2
,

δm1,m2+1, δm1+1,m2+1 and δm1+1,m2 , corresponding to those (m1,m2) such that Mm = M+m1k1+
m2k2 is a vertex of B and to the orbit under R : {(0, 0), (0,−1), (−1,−1), (−1, 0)} ∈ Z2/ ∼ . Recall
from Remark 2.11 that (m1,m2) = (−1, 0) is the representative from this equivalence class, and
hence the choice of eigenstate in (5.8).

Note also that the solution (5.8) of the ε = 0 algebraic eigenvalue problem corresponds the
simple L2

M,σ−eigenpair of H(ε=0), µ(0) = |M(0,−1)|2 = |M|2, with corresponding eigenstate

Φ(ε=0)(x) =

3∑
j=0

σ4−jei(R
jM0,−1)·x = σeiM·x

(
1 + σe−ik1·x + σ2e−i(k1+k2)·x + σ3e−ik2·x

)
. (5.9)

We next proceed to solve the system (5.6) for smooth curve of eigenpairs: ε 7→ µε, {cε(m)}m∈S
for all ε sufficiently small. We write {c(m)}m∈S ∈ l2(S) = (c‖, c⊥) ∈ C× l2(S⊥), where

c‖ ≡ c(0,−1), and c⊥ = {c⊥(m)}m∈S⊥ , S⊥ ≡ S \ {(−1, 0)}.

Then (5.6) is equivalent to the following coupled system for c‖ and c⊥ = {c⊥(m)}m∈S⊥ :[
|M|2 − µ+ εKσ(0,−1, 0,−1)

]
c‖ + ε

∑
r∈S⊥

Kσ(0,−1, r)c⊥(r) = 0. (5.10)

εKσ(m, 0,−1)c‖ +
(
|Mm|2 − µ

)
c⊥(m) + ε

∑
r∈S⊥

Kσ(m, r)c⊥(r) = 0, m ∈ S⊥. (5.11)

For ε small, we shall solve (5.10)-(5.11) in a neighborhood of the solution to the ε = 0 problem:

c
(0)
‖ = 1, µ

(0)
S = |M|2, c

(0)
⊥ (r) = 0, r ∈ S⊥. We proceed by a Lyapunov-Schmidt reduction strategy

in which we first solve (5.11) for the mapping c‖ 7→ c⊥[c‖, µ] in a neighborhood of µ = µ
(0)
S = |M|2,

and then substitute this mapping into (5.10) to obtain a closed equation for c‖. We provided a
sketch of the argument. For the details, see [FW12].

Equation (5.11) for c⊥ may be expressed in the form:

(I + εTKσ (µ))c⊥ = ε c‖ Fσ(µ), (5.12)

with the definitions: Fσ(µ) = {Fσ(m, µ)}m∈S⊥ , Fσ(m, µ) ≡ −Kσ(m,0,−1)
|Mm|2−µ , and

[(I + εTKσ (µ))c⊥] (m) ≡

δm,r +
ε

|Mm |2 −µ
∑
r∈S⊥

Kσ(m, r)

 c⊥(r) , m ∈ S⊥. (5.13)

For all µ in a fixed neighborhood of µ(0) = |M|2, we have for all m ∈ S⊥ that
∣∣∣|Mm|2−µ

∣∣∣ ≥ θ > 0

independent of ε. It follows that for all |ε| < ε0 sufficiently small, (I+εTKσ (µ))−1 is well-defined as
a bounded operator on l2(S⊥). Solving (5.12) for cε⊥[c‖, µ] and substituting into (5.10) we conclude:

Proposition 5.2. For all |ε| < ε0, µ is an L2
M,σ eigenvalue if and only if Mσ(µ, ε) = 0, where

Mσ(µ, ε) ≡|M |2 −µ+ ε Kσ(0,−1, 0,−1) + ε2
∑
r∈S⊥

Kσ(0,−1, r)[(I + ε TKσ (µ))−1Fσ(m, µ)](r)

(5.14)

is analytic in a neighborhood about (ε, µ) = (0, µ
(0)
S ) = (0, |M|2).
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SinceMσ(µ
(0)
S , 0) = 0 and ∂µMσ(µ

(0)
S , 0) = −1 6= 0, the implicit function theorem, implies that

there is a function ε→ µε, defined and analytic for |ε| < ε1 ≤ ε0, such that Mσ(µεS , ε) = 0. Thus
taking cε‖ ≡ 1, the solution of the coupled system (5.10)-(5.11), for |ε| < ε1, is

µεS =|M |2 +εKσ(0,−1, 0,−1) +O(ε2) (5.15)

cε‖ = c(0,−1) ≡ 1

cε⊥ = {cε(m)}m∈S⊥ = ε(I + εTKσ (µ))−1Fσ(m, µε), m ∈ S⊥, (5.16)

where Fσ(m, µε) =
−Kσ(m, 0,−1)

|Mm |2 −µε
.

From (5.15) we may now make explicit the splitting of the four-fold degenerate L2
M eigenvalue of

Hε = −∆ + εV for ε non-zero and small. By (5.5) and the relations among the Fourier coefficients
of V displayed in (2.6) we have

Kσ(0,−1, 0,−1) = V00 +
(
σ3 + σ

)
V01 + σ2 V11 (5.17)

Therefore,

K±1(0,−1, 0,−1) = V0,0 ± 2V0,1 + V1,1 (5.18)

K+i(0,−1, 0,−1) = K−i(0,−1, 0,−1) = V0,0 − V1,1 (5.19)

This establishes that for typical choices of Fourier coefficients — specifically V0,0 ± 2V0,1 + V1,1 6=
V0,0 − V1,1 or equivalently V1,1 6= V0,1— and for ε small and non-zero, the multiplicity four L2

M

eigenvalue, µ
(0)
S = |M|2, splits, at order ε, distinct L2

M,+1 and L2
M,−1 eigenvalues and an L2

M−double

eigenvalue in the subspace L2
M,+i ⊕ L2

M,−i. Note in fact that the latter is an exact (to all orders)

double eigenvalue in L2
M,+i⊕L2

M,−i. Indeed, consider the simple L2
M,+i eigenvalue, whose existence

is guaranteed by the above proof for σ = +i. Applying P ◦C to the corresponding eigenfunction we
obtain an eigenfunction in the space L2

M,+i with the identical eigenvalue. This must coincide with
the simple eigenvalue constructed for σ = −i. Summarizing we have:

Theorem 5.3. Consider Hε = −∆ + εV , where V is admissible (Definition 2.3) and 0 < |ε| < ε1

is sufficiently small. Assume the non-degeneracy condition on distinguished Fourier coefficients:

V1,1 6= ±V0,1, (5.20)

where Vm1,m2
denotes the (m1,m2) Fourier coefficient of V . Then the 4−dimensional eigenspace

of H0 corresponding to the eigenvalue µ
(0)
S = |M|2 perturbs to a 2−dimensional eigenspace with

eigenvalue µεS and additionally two 1−dimensional eigenspaces with eigenvalues µε(+1) and µε(−1) as
follows:

1. µεS is of geometric multiplicity 2 eigenvalue, with a 2−dimensional eigenspace Xi ⊂ L2
M,i and

X−i ⊂ L2
M,−i, and has the expansion

µεS = |M|2 + ε(V0,0 − V1,1) +O(ε2). (5.21)

Associated with it are the eigenstates Φε1 ∈ L2
M,i and Φε2 ∈ L2

M,−i, related by the symmetry:

Φ2(x) = (P ◦ C) [Φ1](x) = Φ1(−x),
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which we also denote Φε(+i) and Φε(−i), respectively. Their Fourier expansions are:

Φε(+i) = Φε1(x) =
∑
m∈S

cε(+i)(m)
(
eiM

m·x − ieiRMm·x − eiR
2Mm·x + ieiR

3Mm·x
)
, and

(5.22)

Φε(−i) = Φε2(x) =
∑
m∈S

cε(+i)(m)
(
eiM

m·x + ieiRMm·x − eiR
2Mm·x − ieiR

3Mm·x
)
. (5.23)

2. The distinct eigenvalues µε(+1) and µε(−1) is each of geometric multiplicity 1, with corresponding

1−dimensional eigenspaces X±1 ⊂ L2
M,±1, and they are given by :

µε(±1) = |M|2 + ε(V0,0 ± 2V0,1 + V1,1) +O(ε2), (5.24)

with associated eigenstates Φε(±1):

Φε(±1)(x) =
∑
m∈S

cε(±1)(m)
(
eiM

m·x + eiRMm·x + eiR
2Mm·x + eiR

3Mm·x
)
. (5.25)

Theorems 5.3 and 4.1 imply

Corollary 5.4. Consider the setup of Theorem 5.3. There exists ε1 > 0 and κ1(ε) > 0, which
tends to zero as ε→ 0, such that the following holds. Fix ε ∈ (−ε1, ε1) \ {0}. Then,

1. for all |κ| =
√
κ2

1 + κ2
2 < κ1(ε), the two dispersion surfaces which touch at M (and therefore

the vertices of B) are locally described by:

µε±(M + κ)− µεS = (1− αε)|κ|2 + Qε6(κ) ±
√∣∣∣ γε(κ2

1 − κ2
2) + 2βεκ1κ2

∣∣∣2 + Qε8(κ) (5.26)

If |V11| 6= |V01|, then coefficients αε, βε and γε are expressions which depend on {Φε(+i),Φ
ε
(−i)}

and have the following expansions for ε positive and small:

αε =
32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1); (5.27)

βε =
32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1); (5.28)

γε = −32π2

ε
i

(
V01

V 2
11 − V 2

01

)
+O(1). (5.29)

The functions Qε6(κ) = O(|κ|6) and Qε8(κ) = O(|κ|8) are analytic in a complex neighorhood of
the origin in C2; see Theorem 4.1 for more discussion.

2. Let V be admissible and assume the following (generically satisfied) conditions on Fourier
coefficients:

V11 6= ±V01, V11 6= 0 and V01 6= 0.

Then, for all ε ∈ (−ε1, ε1) \ {0}, the coefficients αε, βε and γε are all non-zero.
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3. In the case where V is admissible and also reflection invariant, by Corollary 4.2, we have
γε = 0 for any ε, and in particular V01 = 0. If V11 6= 0, then the coefficients for all ε ∈
(−ε1, ε1) \ {0}, the coefficients αε and βε are both non-zero.

The proof of Corollary 5.4 is completed in Appendix C with the derivation of expansions (5.27),
(5.28) and (5.29).

6 Hε = −∆ + εV for V admissible and ε generic

Theorem 5.3 considers degeneracies among dispersion surfaces for all ε non-zero, real and small. In
this section we extend this result to generic real values of ε, with no constraint on its size. Thus,
generic large (high contrast) potentials are included.

Theorem 6.1. Let V denote an admissible potential (Definition 2.3). Let ε1 be as in Theorem 5.3
and Corollary 5.4. Consider either of the two scenarios:

(I) V admissible with V11 6= ±V01, V11 6= 0 and V01 6= 0, or

(II) V admissible and reflection invariant with V11 6= 0.

Then, there exists a discrete set C̃ ⊂ R\ (0, ε1) such that if ε /∈ C̃, the conditions of Theorem 4.1 are
satisfied and two dispersion surfaces touch at the vertices of B. Moreover, in scenario (I), αε, βε

and γε are all non-zero for all ε /∈ C̃, and αε and βε are both non-zero for all ε /∈ C̃.

Remark 6.2. For ε ∈ (−ε1, ε1) \ {0}, Theorem 5.3 ensures that a pairs of dispersion surfaces,
among the first four, touch at band degeneracies for quasi-momenta at the vertices of B; for the
specific scenarios see Section 7. For general ε /∈ C̃ we make no assertions about which of the in-
finitely many dispersion surfaces touch at high-symmetry quasi-momenta. But in analogy with the
honeycomb setting studied in [FLTW17a], we expect for the case of a potential which is a superpo-
sition of potential wells, that in the strong binding regime there will exist quadratic degeneracies at
the intersection of the first two dispersion surfaces.

We discuss the strategy for the proof of Theorem 6.1, but do not present all details. Arguments
of this type, rooted in complex analysis, were developed in [FW12] and Appendix D of [FLTW17b].
The strategy is based on a continuation argument in the parameter ε, starting with ε varying in
the open interval (0, ε1); analogous arguments apply to negative values of ε. Eigenvalues, µ, of the
operator Hε = −∆ + εV , in the spaces L2

M,σ, for σ = ±1,±i, are realized as zeros of a modified

Fredholm determinant Eσ(µ, ε). The mapping (µ, ε) 7→ Eσ(µ, ε) is analytic. For ε real, µ is an L2
M,σ

eigenvalue of geometric multiplicity m if and only if µ is a zero of Eσ(µ, ε) of multiplicity m. The
strategy of [FW12] (see also Appendix D of [FLTW17b]) can be used to establish that there is a

discrete set C̃ ⊂ R \ (0, ε1) such that for all ε /∈ C̃, there exists µεS ∈ R such that

1. µ = µεS ∈ R is a simple zero of E+i(µ, ε) and of E−i(µ, ε).

2. E1(µεS , ε) 6= 0 and E−1(µεS , ε) 6= 0.

3. For scenario (I), αε, βε and γε are all non-zero and αε and for scenario (II), αε and βε are
non-zero.

Therefore, by Theorem 4.1, for all ε /∈ C̃ there exist quadratic degeneracies at the quasi-momentum
/ energy pairs (µεS ,M?), where M? varies over the four vertices of B. These are locally described
by (4.1) of Theorem 4.1; see also (4.2) of Corollary 4.2.
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7 Computational Experiments

In this section, we describe numerical computations of the spectrum of periodic Schrödinger opera-
tors with admissible potentials in the sense of Definition 2.3. We discuss these numerical results in
the context our analytical results. First, in Section 7.1, we consider examples of admissible poten-
tials which exhibit quadratic intersections of dispersion surfaces at M; see Theorems 4.1, 5.3 and
6.1. In order to observe clear numerical separation of the bands, we work here with ε generically
not so small, meaning many of our results fit more into Theorem 6.1 but display many of the effects
described in the small ε setting.

In Section 7.2, we consider large amplitude potentials and revisit the question posed in Section
1.3 regarding Lieb lattice potentials.

To numerically approximate the dispersion surfaces for the Schrödinger operator, we use the
periodic formulation of the self-adjoint eigenvalue problem (1.3). For the numerical experiments of
Section 7.1 we discretized the fundamental period cell, Ω, and used a finite difference approximation
to HV (k) for a fixed k ∈ B. In the numerical experiments of Section 7.2, we discretized the mapping:
f 7→ [−(∂x + ikx)2 − (∂y + iky)2]f in Fourier space, and the operator f 7→ V f in physical space.
For both approaches, we used the MATLAB function eigs using the ’sr’ flag. For each fixed k
varying over a discretization of an appropriate subset of B, i.e. the irreducible Brillouin zone or
the circuit Γ→ X→M→ Γ outlined in Figure 1.2, we compute the five smallest eigenvalues.

7.1 Computations of quadratic degeneracy of dispersion surfaces near M
and comparison with Theorem 5.3

We consider a class of periodic potentials, which are the Z2− periodic extension of the function

V (x) =
∑
i

sif(|x− xi|), x ∈ Ω = [0, 1]2. (7.1)

Here f(x) = 1
2 (1 + cos(πx/r))χ{x<r} is a compactly supported, C1 function and r = 0.2. The

points {xi} are lattice points within the primitive cell, [0, 1]2. The binary variables, si ∈ {+1,−1},
determine the sign of the potential at the lattice points. We choose {xi} and {si} so that V (x) is an
admissible potential; see Definition 2.3. By varying {xi} and {si}, we show that the combinations of

Fourier coefficients: V00, V01 and V11 (Vm,n = (2π)−2
∫ 1

0

∫ 1

0
V (x, y) e−2πi(mx+ny) dxdy), appearing

in Theorem 5.3 can be varied in order to exhibit different local behavior of the first four dispersion
surfaces near M. We remark that, while Theorem 5.3 describes the dispersion surfaces for the
operator HV = −∆ + εV near the point k = M for sufficiently small and non-zero and real ε, our
computations are performed for ε = O(1).

In each of Figures 7.1 – 7.5 we plot, over one period cell, an admissible potential of the form in
(7.1) and the first five dispersion curves for HV = −∆+εV , and compare the numerically computed
results with the assertions of Theorem 5.3. For each potential, the lattice sites, {xi}, and signs,
{si}, are easily inferred from the plot of the potential. They are also summarized in the following
table:
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Figure ε xi si
7.1 2 [(0, 0), (1/2, 0), (0, 1/2)] (1,−1,−1)
7.2 2 [(0,0), (1/2,0), (0, 1/2)] (−1, 1, 1)
7.3 2 [(1/2, 1/4), (1/4, 1/2), (3/4, 1/2), (1/2, 3/4)] (1, 1, 1, 1)
7.4 4 [(0, 0), (1/2, 0), (0, 1/2)] (−1,−1,−1)
7.5 2 [(1/2, 1/2)] (−1)

The potentials in Figures 7.1, 7.2, and 7.4 are Lieb lattice potentials (see Example 2.6) while the
potential in Figure 7.3 is a square lattice potential (see Example 2.5); see Figure 1.1. The dispersion
curves which pass through µεi , µ

ε
−i, µ

ε
1 and µε−1 are plotted for quasi-momentum K along the cyclic

path Γ→ X→M→ Γ in B; see Figure 1.2. In all dispersion plots, we observe saddle-like touching
of the dispersion surfaces as described in Theorem 4.1.

We note that the ordering of the dispersion surfaces, specified by certain Fourier coefficients of
the potential, in Theorem 5.3 (which applies to ε sufficiently small) persists for larger (order 1)
values of ε. These dispersion surface orderings are summarized in the following table.

Fourier Coefficient Condition Dispersion Surface Ordering
(1a) V1,1 > 0, V0,1 < 0 and |V0,1| < V1,1 µε+i = µε−i < µε+1 < µε−1

(1b) 0 < V0,1 < V1,1 µε+i = µε−i < µε−1 < µε+1

(2a) V1,1, V0,1 < 0 and |V0,1| > |V1,1| µε+1 < µε+i = µε−i < µε−1

(2b) V1,1 < 0 and V0,1 > |V1,1| µε−1 < µε+i = µε−i < µε+1

(3a) V1,1, V0,1 < 0 and |V0,1| < |V1,1| µε+1 < µε−1 < µε+i = µε−i
(3b) V1,1 < 0, V0,1 > 0, and |V0,1| < |V1,1| µε−1 < µε+1 < µε+i = µε−i

Here, we’ve enumerated the various cases so that, e.g., the multiplicity occurs in the first eigenvalue
for cases (1a) and (1b). For larger values of ε this ordering may be violated. However, by Theorem
6.1, quadratic degeneracies in the band structure of −∆ + εV will still occur for all but a discrete
set of ε− values.

The potential in Figure 7.1 satisfies condition (1b) and we observe that the first two surfaces
intersect at M, with the others separated and laying above. The potential in Figure 7.2 satisfies
condition (3a) and we observe that the third and fourth surfaces intersect at M, with the others
separated and laying below.

In Figure 7.3 the coefficients satisfy (2a), except that V1,1 = 0. Here, the first and fourth bands
are strongly separated, but the second and third bands not only intersect at M, but, interestingly,
remain touching on the M→ Γ interval.

In Figure 7.4, the potential consists of potential wells centered on the Lieb lattice sites and
satisfies condition (2b). Consequently, we observe an intersection at M between the second and
third surfaces. The coefficients satisfy V0,1 ≈ −V1,1, so the first dispersion surface is quite close
to the second and third surfaces at M, but does not touch. The first three bands are separating
from the fourth and we observe the emergence of the tight-binding dispersion relation, as shown in
Figure 1.3. This will be further investigated in Section 7.2; see Figure 7.6.

Finally, in Figure 7.5, we consider a potential that consists of potential wells centered on the
square lattice sites and satisfies condition (2a). We see that the second and third band remaining
touching with the fourth band close but laying above. The first band is well separated and lays
below. Interestingly, the linear prediction is that µε+1 = 2π2 + 0.0005 ε+ o(ε), but for this value of
ε, we have µε+1 < 2π2 so we are already in a higher-order regime. This will be further investigated
in Section 7.2; see Figure 7.7.



R.T. Keller, J.L. Marzuola, B. Osting, M.I. Weinstein 39

Figure 7.1: Eigenvalue ordering, up to O(ε): µε+i = µε−i < µε−1 < µε+1.

(a) Potential (b) Dispersion curves for HV

Figure 7.2: Eigenvalue ordering, up to O(ε): µε+1 < µε−1 < µε+i = µε−i.

(a) Potential (b) Dispersion curves for HV

7.2 Periodic arrays of deep potential wells; the strong binding regime

We will consider here potentials which are a sum over translates of a fixed potential Ṽ , which is
localized within a unit cell:

V (x) =
∑

m∈Z2

Ṽ (x−m).

The potential Ṽ is taken to be a finite sum of well-localized identical negative Gaussians (potential
wells) with centers located within the primitive cell [0, 1]2, i.e. an arrangement of “atoms” within
the unit cell. The regime where the depth of the atomic potentials is large is the regime of strong
binding. The spectral properties associated with the “low-lying” bands are expected to be well-
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Figure 7.3: Eigenvalue ordering, up to O(ε): µε+1 < µε+i = µε−i < µε−1.

(a) Potential (b) Dispersion curves for HV

Figure 7.4: Eigenvalue ordering, up to O(ε): µε−1 < µε+i = µε−i < µε1.

(a) Potential (b) Dispersion curves for HV

approximated, after appropriate rescaling, by a tight-binding limiting model; see, for example,
[AM76]. A rigorous analysis of the low-lying dispersion surfaces and their approximation by those
of the tight-binding model was carried out for honeycomb structures in [FLTW17a].

Figures 7.6 – 7.8 of this section display dispersion surfaces for −∆ + V , for different choices of
V , each for increasing atomic well-depths. We now discuss these examples.

Example 7.1 (Superposition over the Lieb lattice of Gaussian wells).
To address the structural stability Question 1.1 in the Introduction, we consider a periodic potential,
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Figure 7.5: Eigenvalue ordering, up to O(ε): µε+1 < µε+i = µε−i < µε−1.

(a) Potential (b) Dispersion curves for HV

whose restriction to the primitive cell is:

ṼL(x) = −V0(e−|x|
2/σ + e−|x−(1/2,0)|2/σ + e−|x−(0,1/2)|2/σ) , V0 > 0.

As a typical value of σ we take σ = .001 and vary the depth of the atomic wells by increasing V0.
In Figure 7.6, we observe that as V0 is increased the first 3 (the low-lying) dispersion surfaces come
together in a manner approaching that of the tight-binding limit shown in Figure 1.3; see Appendix
A for a discussion of the tight-binding model. Also related is the discussion around Figure 7.4.

However, as indicated in Theorem 4.1 for finite V0, there are only two surfaces touching at
M = (π, π) and the 2nd band has hyperbolic character. The inset in Figure 7.4 displays this
character.

Example 7.2 (Superposition of Z2−translates of Gaussian wells). We consider the potential, whose
restriction to the primitive cell is given by:

Ṽ (x) = −V0e
−|x|2/σ.

For V0 positive and large, we expect that the lowest dispersion surfaces will be governed by a tight-
binding model with a single band, namely the discrete Laplacian on a square lattice. Indeed, Figure
7.7 shows that the first (lowest) dispersion surface separates from the other (higher) dispersion
surfaces and takes on a quadratic character in a neighborhood of k = 0. The second and third
surfaces intersect for all V0 as is consistent with the curves in Figure 7.5.

Example 7.3 (A potential which is not invariant under reflection about the line x1 = x2). In
Figure 7.8 we demonstrate how the absence of reflection symmetry about the line x1 = x2 in the
physical domain manifests itself in less symmetry in the dispersion surfaces. In this case, Theorem
4.1 anticipates lesser symmetry, manifested in the non-zero cross-term, β, in then normal form
(4.1). Hence, we take a simple potential of the form

Ṽ (x) = −V0(cos(2π(x1 + 2x2)) + cos(2π(2x1 − x2))).
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Thus, in Figure 7.8, we observe a lack of reflection symmetry about the line κ1 = κ2 even as we
take V0 →∞ to account for the fact that the potential studies here is in reality periodic on a sub-cell
of the primitive domain on which we work here.
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Figure 7.6: A plot of the dispersion surfaces for the Gaussian Lieb Lattice potential with depth
V0 = 10 (top left), 500 (top right), 1000 (bottom left) and 2000 (bottom right).

A Tight-binding model for the Lieb lattice

Denote by Ψ
(m,n)
A , Ψ

(m,n)
B , Ψ

(m,n)
C the amplitudes associated with the sites of the three sublattices

comprising the Lieb lattice; see Figure 1.1(right). We consider the nearest neighbor tight-binding
model for the Lieb lattice is given by (HTBΨ)mn = EΨmn for m,n ∈ Z: Ψ

(m,n)
B + Ψ

(m,n+1)
B

Ψ
(m,n)
A + Ψ

(m,n)
C + Ψ

(m−1,n)
C + Ψ

(m,n−1)
A

Ψ
(m,n)
B + Ψ

(m+1,n)
B

 = E

Ψ
(m,n)
A

Ψ
(m,n)
B

Ψ
(m,n)
C

 , m, n ∈ Z. (A.1)

Quasi-periodic (plane-wave) solutions with Bloch momentum k = (k1, k2) ∈ B = [−π, π]2 are of the
form: Ψ(m,n) = ei(mk1+nk2)ψ, where ψ ∈ C3 is independent of (m,n). Substituting into (A.1) we
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(d) A zoom in of the bottom surface for V0 = 1000.0

Figure 7.7: A plot of the dispersion surfaces for the Gaussian Square Lattice potential with depth
V0 = 10 (top left), 500 (top right), 1000 (bottom left) and a close-up of the bottom surface at
depth V0 = 1000 (bottom right).

obtain the algebraic eigenvalue problem:
(
A(k) − E(k) I3×3

)
ψ = 0, where

A(k) =

 0 1 + eik2 0
1 + e−ik2 0 1 + e−ik1

0 1 + eik1 0

 .

The three bands of the tight-binding model are given by the three solution branches of the algebraic
equation: det(A(k)− E(k)I) = 0, which are given explicitly:

E0(k) = 0, E±(k) = ±
√

4 + 2 cos k1 + 2 cos k2. k ∈ B,

These three dispersion surfaces are plotted in Figure 1.3.
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Figure 7.8: A plot of the dispersion surfaces for the Non-Reflection Symmetric potential with depth
V0 = 10 (top left) and 100 (top right), V0 = 500 (bottom left) showing the lack of reflection
symmetry in the surfaces. To highlight the asymmetry, we have included a plot of cross-sections of
the first three dispersion surfaces with V0 = 100 along the line from X = (0, π) to ρ(X) = (π, 0).

B Dynamics of wave-packets spectrally localized near M

In this section, we study the Schrödinger evolution: i∂tψ = HV ψ for wave-packet initial conditions
which are spectrally located near the M-point. In particular, denote by µS a multiplicity two L2

M

eigenvalue with corresponding eigenspace given by span{Φ1,Φ2}; see Theorem 4.1. We consider
initial conditions of the form ψ(x, t = 0) = C10(δx)Φ1(x) + C20(δx)Φ2(x), where 0 < δ � 1 and
C10 and C20 are smooth and localized functions on R2. The Floquet-Bloch components of such
initial conditions are concentrated near M.

Here we derive a formal multi-scale solution. A proof of the validity of this expansion can be
derived along the lines of [FW14] in the context of honeycomb structures; see also [AP05].

We seek a solution depending on multiple spatial and temporal scales: ψ = ψδ(x, t; ~X, ~T ),

where ~X = (X1,X2, . . . ) = (δx1, δ
2x2, . . . ) and ~T = (T1, T2, . . . ) = (δt1, δ

2t2, . . . ). In terms of this
extended set of variables, the time-dependent Schrödinger equation becomes:

i(∂t + δ∂T1
+ δ2∂T2

+ . . .)ψδ = −
(
∇x + δ∇X1

+ δ2∇X2

)2
ψδ + V (x)ψδ + . . . . (B.1)
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We seek a solution which is time-harmonic with respect to the fast time variable, t:

ψδ = e−iµSt
∑
j≥0

δj ψj(x; ~X, ~T ).

Substitution into (B.1) and equating terms of order O(δj), j ≥ 0 we obtain the following hierarchy
of equations at each order in the small parameter δ. The first several are:

O(δ0) : (µS −HV )ψ0 = 0 ; (B.2)

O( δ ) : (µS −HV )ψ1 = − (i∂T1
+ 2 ∇x · ∇X1

)ψ0 ; (B.3)

O(δ2) : (µS −HV )ψ2 = −(i∂T2
+ 2 ∇x · ∇X2

+ ∆X1
)ψ0 − (i∂T1

+ 2∇x · ∇X1
)ψ1 . (B.4)

We regard each equation as a linear elliptic equation (non-homogeneous for j ≥ 1) in the variable

x ∈ R2, depending on slow variables (~X, ~T ), treated as frozen parameters . The precise dependence
of ψj on these parameters is determined through solvability conditions for the above hierarchy.
In fact, to the order in δ that we solve, O(δ2), we find it necessary to modulate only the scales

X1,X2, T1 and T2, and so henceforth we assume ~X = (X1,X2) and ~T = (T1, T2).
Consider the O(δ0) equation (B.2). By assumption, the general solution is

ψ0(x; ~X, ~T ) = C1(~X, ~T )Φ1(x) + C2(~X, ~T )Φ2(x) , (B.5)

where C1(~X, ~T ) and C2(~X, ~T ) are to be determined. The expression (B.5) satisfies the M−pseudo-

periodic boundary condition ψ0(x + v; ~X, ~T ) = eiM·vψ0(x; ~X, ~T ) for all v ∈ Z2 and all x ∈ R2 and
we shall impose this same pseudo-periodicity at all subsequent orders:

ψj(x + v; ~X, ~T ) = eiM·vψ0(x; ~X, ~T ) , j ≥ 1.

Continuing on to O(δ2), we have from (B.3) that

(µS −H)ψ1 =

2∑
q=1

[ −i∂T1
Cq Φq(x) + 2∇X1

Cq · ∇xΦq(x) ] (B.6)

ψ1(x + v; ~X, ~T ) = eiM·vψ1(x; ~X, ~T )

Solvability of (B.6) requires that orthogonality of the right hand side of (B.6) to the span of
{Φ1,Φ2} . Using the orthonormality relations: 〈Φp,Φq〉 = δp,q, p, q = 1, 2 and Proposition 4.10:
〈Φp,∇xΦq〉 = 0, p, q = 1, 2, we obtain that ∂T1Cp = 0, p = 1, 2. Therefore, in terms of the
resolvent operator R(µS) = (H − µSI)−1, we have

ψ1(x; X1,X2, T2) = 2 R(µS)

2∑
q=1

∇X1
Cq(X1,X2, T2) · ∇xΦq(x) . (B.7)

We proceed finally to the equation and boundary conditions for ψ2 at (B.4):

(µS −H)ψ2 = −(i∂T2
+ 2∇x · ∇X2

+ ∆X1
)ψ0 − 2∇x · ∇X1

ψ1 (B.8)

ψ2(x + v; ~X, ~T ) = eiM·vψ2(x; ~X, ~T ),

where the expressions for ψ0 and ψ1 are displayed in (B.5) and (B.7).
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Proposition B.1. A sufficient condition for the solvability of (B.8) is that the pair of amplitudes
C1 = C1(X1, T2) and C2 = C2(X1, T2) satisfy the coupled system of constant coefficient homogenized
Schrödinger equations:

i∂T2
Cp = −∆X1

Cp + 4

2∑
q=1

2∑
r,s=1

ap,qr,s
∂2Cq

∂X1r∂X1s

, p = 1, 2. (B.9)

Here, ap,qs,r are the matrix elements of (Ap,q)sr displayed in (4.23): ap,qr,s = 〈∂rΦp,R(µS)∂sΦq〉 which
were simplified using symmetry arguments in Section 4.1.

As a consequence of Proposition B.1, we have item 6 in our summary of results, Section 1.2.
Namely, solutions of the time-dependent Schrödinger equation with initial conditions of the form:

ψ(x, 0) = ψδ0(x) = C1(X) Φ1(x) + C2(X) Φ2(x),

evolve on large, finite time scales according to:

i
∂

∂T
Cp = −

2∑
q=1

2∑
r,s=1

∂

∂Xr
Υp,q
r,s

∂

∂Xs
Cq, p = 1, 2,

where T = T2 = δ2t and Υp,q
r,s depend on (Ap,q)sr as stated above.

Proof. Taking the inner product of the right hand side of (B.8) with Φp(x), p = 1, 2, substituting
in the expressions for ψ0 and ψ1, recalling that ∂T1Cp = 0 and applying Proposition 4.10, we have:

(i∂T2
+ ∆X1

)Cp − 4

2∑
q=1

〈 ∇xΦp · ∇X1
, R(µS) ∇xΦq · ∇X1

Cq〉 = 0, p = 1, 2. (B.10)

Expansion of the dot products yields (B.9).

Remark B.2. The dispersion relation for system (B.9) is

detM̃app(ν, κ) = ν2 − |q(κ)|2 = ν2 − |γ(κ2
1 − κ2

2) + 2βκ1κ2|2 = 0,

for κ = (κ1, κ2) ∈ R2 yielding two branches given by the leading order expressions in (1.4).

C Calculations for −∆ + εV , V admissible and ε small

Theorem 4.1 and Corollary 4.2 give a precise description of touching dispersion surfaces at the
vertices of B. The local expansions of these dispersion surfaces are given in terms of coefficients
α, β and γ. In this section we consider Hε = −∆ + εV , where ε is real, non-zero and sufficiently
small, and we obtain the leading order expressions of αε, βε and γε for |ε| > 0 small, required to
complete the proof of Theorem 5.4. The expressions for αε, βε and γε are displayed in (4.60) and
are given by:

a
(r),(s)
`,m = 〈∂x`Φε(r),R

ε(µεS)∂xmΦε(s)〉, r, s ∈ {+i,−i}, `,m ∈ {1, 2}. (C.1)
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In (C.1) we have used the notation Φ1 = Φ(+i) and Φ2 = Φ(−i) of Theorem 5.3. We now seek the

leading order behavior of a
(r),(s)
`,m for ε small and non-zero.

Recall by Theorem 5.3 there are four L2
M eigenvalues counting multiplicity on an O(ε) neigh-

borhood of µεS . Two correspond to multiplicity one L2
M,+i and L2

M,−i eigenstates Φε(+i) and Φε(−i)
with corresponding eigenvalue which we denote µεS . The other two eigenpairs consist of two dis-
tinct L2

M,+1 and L2
M,−1 eigenstates Φε(+1) and Φε(−1) with corresponding eigenvalues we denote

µε(+1) = µS +O(ε) and µε(−1) = µS +O(ε), respectively; see equations (5.21) and (5.24). All other

eigenvalues of Hε are at a distance of order 1 from µεS for ε small, and hence we express a
(r),(s)
`,m

as dominant parts coming from these “nearby” eigenvalues, with a remainder which is smaller for
ε > 0 and small.

We have

a
(r),(s)
`,m = 〈∂x`Φε(r),R(µεS)∂xmΦε(s)〉

=
∑

q∈{+1,−1}

〈Φε(q), ∂x`Φ
ε
(r)〉〈Φ

ε
(q), ∂xmΦε(s)〉

µε(q) − µ
ε
S

+
∑
b≥5

〈Φεb, ∂x`Φε(r)〉〈Φ
ε
b, ∂xmΦε(s)〉

µεb − µεS
.

(C.2)

Observe the terms of (C.2), for q ∈ {+1,−1}, are of order O( 1
ε ), while the contributions from the

higher-order bands b ≥ 5 are O(1). From the expansion of a
(r),(s)
`,m , we show, in fact:

Proposition C.1. Assume |V11| 6= |V01|. Given ε sufficiently small and non-zero,

αε = 4a1,1
1,1 = 4a

(+i),(+i)
1,1 =

32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1); (C.3)

βε = 4a1,2
1,2 = 4a

(+i),(−i)
1,2 =

32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1); (C.4)

γε = 4a1,2
1,1 = 4a

(+i),(−i)
1,1 = −32π2

ε
i

(
V01

V 2
11 − V 2

01

)
+O(1). (C.5)

C.0.1 Derivation of Terms in Summand

First, note that k1 = (2π, 0)T and k2 = (0, 2π)T are the dual lattice basis vectors for Λ = Z2.

〈Φε(+1), ∂x`Φ
ε
(+i)〉 = (k1 − k2)` + i(k1 + k2)` +O(ε); (C.6)

〈Φε(−1), ∂x`Φ
ε
(+i)〉 = (k2 − k1)` + i(k1 + k2)` +O(ε); (C.7)

〈Φε(+1), ∂x`Φ
ε
(−i)〉 = (k2 − k1)` + i(k1 + k2)` +O(ε); (C.8)

〈Φε(−1), ∂x`Φ
ε
(−i)〉 = (k1 − k2)` + i(k1 + k2)` +O(ε). (C.9)

We have derived the expressions

Φε(+i)(x) =
∑
m∈S

cε(+i)(m)(eiM
m·x − ieiRMm·x − eiR

2Mm·x + ieiR
3Mm·x)
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∂x`Φ
ε
(+i)(x) =

∑
m∈S

cε(+i)(m)

[
i(M +m1k1 +m2k2)`e

iMm·x − i2(M +m2k1 − (m1 + 1)k2)`e
iRMm·x

− i(M− (m1 + 1)k1 − (m2 + 1)k2)`e
iR2Mm·x + i2(M− (1 +m2)k1 +m1k2)`e

iR3Mm·x
]

Φε(±1)(x) =
∑
m∈S

cε(±1)(m)(eiM
m·x ± eiRMm·x + eiR

2Mm·x ± eiR
3Mm·x)

Now we proceed to prove the results in (C.6)-(C.9).

〈Φε(+1), ∂x`Φ
ε
(+i)〉 =∫

Ω

∑
n∈S

∑
m∈S

cε(+1)(n)cε(+i)(m)(eiM
n·x + eiRMn·x + eiR

2Mn·x + eiR
3Mn·x)

∗ {i(Mm)`e
iMm·x + (RMm)`e

iRMm·x − i(R2Mm)`e
iR2Mm·x − (R3Mm)`e

iR3Mm·x}dx

=

∫
Ω

∑
n∈S

∑
m∈S

cε(+1)(n)cε(+i)(m)(eiM
n·x + eiRMn·x + eiR

2Mn·x + eiR
3Mn·x)

∗
[
i(M +m1k1 +m2k2)`e

iMm·x − i2(M +m2k1 − (m1 + 1)k2)`e
iRMm·x

− i(M− (m1 + 1)k1 − (m2 + 1)k2)`e
iR2Mm·x + i2(M− (1 +m2)k1 +m1k2)`e

iR3Mm·x
]
.

The leading-order term is associated with n = m = (0, 0) ∈ S, for which cε(+1)(n) = cε(−1)(n) =

cε(+i)(m) = 1. Then,

〈Φε(+1), ∂x`Φ
ε
(+i)〉 =

∫
Ω

(eiM
n·x + eiRMn·x + eiR

2Mn·x + eiR
3Mn·x)(

iM`e
iMm·x + (M− k2)`e

iRMm·x − i(M− k1 − k2)`e
iR2Mm·x

− (M− k1)`e
iR3Mm·x)dx +O(ε)

= [(M− k2)− (M− k1)]` + i[M− (M− k1 − k2)]` +O(ε)

= (k1 − k2)` + i(k1 + k2)` +O(ε).

Similarly, we have

〈Φε(−1), ∂x`Φ
ε
(+i)〉 =

∫
Ω

(eiM
n·x − eiRMn·x + eiR

2Mn·x − eiR
3Mn·x)(

iM`e
iMm·x + (M− k2)`e

iRMm·x − i(M− k1 − k2)`e
iR2Mm·x

− (M− k1)`e
iR3Mm·x)dx + O(ε)

= −[(M− k2)− (M− k1)]` + i[M− (M− k1 − k2)]` +O(ε)

= (k2 − k1)` + i(k1 + k2)` +O(ε).

The inner products of Φ(+1) and Φ(−1) with ∂x`Φ(−i) are calculated similarly. Recall that

Φε(−i)(x) =
∑
m∈S

cε(−i)(m)(eiM
m·x + ieiRMm·x − eiR

2Mm·x − ieiR
3Mm·x)
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Then,

∂x`Φ
ε
(−i)(x) =

∑
m∈S

cε(−i)(m)

[
i(M +m1k1 +m2k2)`e

iMm·x + i2(M +m2k1 − (m1 + 1)k2)`e
iRMm·x

− i(M− (m1 + 1)k1 − (m2 + 1)k2)`e
iR2Mm·x − i2(M− (1 +m2)k1 +m1k2)`e

iR3Mm·x
]
.

Expanding 〈Φε(+1), ∂x`Φ
ε
(−i)〉, we obtain

〈Φε(+1), ∂x`Φ
ε
(−i)〉 =

∫
Ω

(eiM
n·x + eiRMn·x + eiR

2Mn·x + eiR
3Mn·x)(

iM`e
iMm·x − (M− k2)`e

iRMm·x − i(M− k1 − k2)`e
iR2Mm·x

+ (M− k1)`e
iR3Mm·x)dx + O(ε)

= −[(M− k2)− (M− k1)]` + i[M− (M− k1 − k2)]` +O(ε)

= (k2 − k1)` + i(k1 + k2)` +O(ε).

Similarly,

〈Φε(−1), ∂x`Φ
ε
(−i)〉 =

∫
Ω

(eiM
n·x − eiRMn·x + eiR

2Mn·x − eiR
3Mn·x)(

iM`e
iMm·x − (M− k2)`e

iRMm·x − i(M− k1 − k2)`e
iR2Mm·x

+ (M− k1)`e
iR3Mm·x)dx + O(ε).

= [(M− k2)− (M− k1)]` + i[M− (M− k1 − k2)]` +O(ε)

= (k1 − k2)` + i(k1 + k2)` +O(ε).

Collecting the results, we have the equations (C.6)-(C.9). That is,

〈Φε(+1), ∂x`Φ
ε
(+i)〉 = (k1 − k2)` + i(k1 + k2)` +O(ε);

〈Φε(−1), ∂x`Φ
ε
(+i)〉 = (k2 − k1)` + i(k1 + k2)` +O(ε);

〈Φε(+1), ∂x`Φ
ε
(−i)〉 = (k2 − k1)` + i(k1 + k2)` +O(ε);

〈Φε(−1), ∂x`Φ
ε
(−i)〉 = (k1 − k2)` + i(k1 + k2)` +O(ε).

C.0.2 Coefficient Calculations: αε, βε, γε

For `,m ∈ {1, 2} and r, s ∈ {+i,−i}

a
(r),(s)
`,m = 〈∂x`Φε(r),R(µεS)∂xmΦε(s)〉

=
∑

q∈{+1,−1}

〈Φε(q), ∂x`Φ
ε
(r)〉〈Φ

ε
(q), ∂xmΦε(s)〉

µε(q) − µ
ε
S

+O(1).
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Further, recall αε = 4a
(+i),(+i)
1,1 = 4〈∂x1

Φε(+i),R(µεS)∂x1
Φε(+i)〉. From the analysis above,

〈Φ(+1), ∂x1
Φε(+i)〉〈Φ(+1), ∂x1

Φε(+i)〉
µε(+1) − µ

ε
S

=
(k1 − k2)1 + i(k1 + k2)1[(k1 − k2)1 + i(k1 + k2)1] +O(ε)

ε(V00 + 2V01 + V11)− ε(V00 − V11) +O(ε2)

=
4π2 (1 + i)(1 + i) +O(ε)

2ε(V01 + V11) +O(ε2)

=
2π2

ε

(
|1 + i|2 +O(ε)

(V01 + V11) +O(ε)

)

=
2π2

ε

(
2 +O(ε)

V01 + V11 +O(ε)

)
. (C.10)

We calculate the inner products now with q = −1:

〈Φ(−1), ∂x1Φε(+i)〉〈Φ(−1), ∂x1Φε(+i)〉
µε(−1) − µ

ε
S

=
(k2 − k1)1 + i(k1 + k2)1[(k2 − k1)1 + i(k1 + k2)1] +O(ε)

ε(V00 − 2V01 + V11)− ε(V00 − V11) +O(ε2)

=
4π2 (−1 + i)(−1 + i) +O(ε)

2ε(V11 − V01) +O(ε2)

=
2π2

ε

(
|−1 + i|2 +O(ε)

(V11 − V01) +O(ε)

)

=
2π2

ε

(
2 +O(ε)

V11 − V01 +O(ε)

)
. (C.11)

Substituting (C.10) and (C.11) into the expression for a
(+i),(+i)
1,1 (ε),

αε = 4a
(+i),(+i)
1,1 (ε) =

8π2

ε

[(
2 +O(ε)

V01 + V11 +O(ε)

)
+

(
2 +O(ε)

V11 − V01 +O(ε)

)]
+O(1)

=
8π2

ε

(
2(V11 − V01) + 2(V01 + V11) +O(ε)

(V 2
11 − V 2

01) +O(ε)

)
+O(1)

=
32π2

ε

(
V11 +O(ε)

(V 2
11 − V 2

01) +O(ε)

)
+O(1).

Therefore, we have (C.3):

αε =
32π2

ε

(
V11 +O(ε)

(V 2
11 − V 2

01) +O(ε)

)
+O(1) =

32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1).

The results for βε and γε follow similarly. First, consider βε.

βε = 4a
(+i),(−i)
1,2 (ε) = 4〈∂x1

Φε1,R(µεS)∂x2
Φε(−i)〉

=
4〈Φ(+1), ∂x1

Φε(+i)〉〈Φ(+1), ∂x2
Φε(−i)〉

µε(+1) − µ
ε
S

+
4〈Φ(−1), ∂x1

Φε(+i)〉〈Φ(−1), ∂x2
Φε(−i)〉

µε(−1) − µ
ε
S

+O(1).
(C.12)
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Following the analysis as for αε, we find the following.

〈Φ(+1), ∂x1
Φε(+i)〉〈Φ(+1), ∂x2

Φε(−i)〉
µε(+1) − µ

ε
S

=
2π2

ε

(
2 +O(ε)

V01 + V11 +O(ε)

)
; (C.13)

〈Φ(−1), ∂x1
Φε(+i)〉〈Φ(−1), ∂x2

Φε(−i)〉
µε(−1) − µ

ε
S

=
2π2

ε

(
2 +O(ε)

V11 − V01 +O(ε)

)
. (C.14)

Combining (C.13) and (C.14),

βε = 4〈∂x1
Φε(+i),R(µεS)∂x2

Φε(−i)〉 =
8π2

ε

[(
2 +O(ε)

V01 + V11 +O(ε)

)
+

(
2 +O(ε)

V11 − V01 +O(ε)

)]
=

(
8π2

ε

)
2(V11 − V01) + 2(V01 + V11) +O(ε)

(V 2
11 − V 2

01) +O(ε)

=

(
8π2

ε

)
4V11 +O(ε)

(V 2
11 − V 2

01) +O(ε)
.

Thus we have (C.4):

βε =

(
32π2

ε

)
V11 +O(ε)

(V 2
11 − V 2

01) +O(ε)
=

32π2

ε

(
V11

V 2
11 − V 2

01

)
+O(1).

Finally, consider the decomposition for γε.

γε = 4a
(+i),(−i)
1,1 (ε) = 4〈∂x1Φε(+i),R(µεS)∂x1Φε(−i)〉

=
4〈Φ(+1), ∂x1Φε(+i)〉〈Φ(+1), ∂x1Φε(−i)〉

µε(+1) − µ
ε
S

+
4〈Φ(−1), ∂x1Φε(+i)〉〈Φ(−1), ∂x1Φε(−i)〉

µε(−1) − µ
ε
S

+O(1).
(C.15)

Again, similarly as for αε, the first two terms of (C.15) yield the following.

〈Φ(+1), ∂x1Φε(+i)〉〈Φ(+1), ∂x1Φε(−i)〉
µε(+1) − µ

ε
S

=
2π2

ε

(
2i+O(ε)

V01 + V11 +O(ε)

)
; (C.16)

〈Φ(−1), ∂x1
Φε(+i)〉〈Φ(−1), ∂x1

Φε(−i)〉
µε(−1) − µ

ε
S

=
2π2

ε

(
−2i+O(ε)

V11 − V01 +O(ε)

)
. (C.17)

Combining (C.16) and (C.17),

〈∂x1
Φε(+i),R(µεS)∂x1

Φε(−i)〉 =
2π2

ε

[(
2i+O(ε)

V01 + V11 +O(ε)

)
+

(
−2i+O(ε)

V11 − V01 +O(ε)

)]
=

(
2π2

ε

)
2i(V11 − V01)− 2i(V01 + V11) +O(ε)

(V 2
11 − V 2

01) +O(ε)

=

(
2π2

ε

)
(−4i)V01 +O(ε)

(V 2
11 − V 2

01) +O(ε)
.
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Therefore, we have (C.5):

γε = 4〈∂x1Φε(+i),R(µεS)∂x1Φε(−i)〉 = −
(

32π2

ε
i

)
V01 +O(ε)

(V 2
11 − V 2

01) +O(ε)
+O(1) = −32π2

ε
i

(
V01

V 2
11 − V 2

01

)
+O(1).

With the coefficients αε, βε, and γε, expanded, the description for the expression (5.26):

µε±(M + κ)− µεS = (1− αε)|κ|2 + Qε6(κ) ±
√∣∣∣ γε(κ2

1 − κ2
2) + 2βεκ1κ2

∣∣∣2 + Qε8(κ),

described in Corollary 5.4 is complete.
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