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Abstract

The well posedness for a class of non local systems of conservation laws in a bounded domain
is proved and various stability estimates are provided. This construction is motivated by
the modelling of crowd dynamics, which also leads to define a non local operator adapted to
the presence of a boundary. Numerical integrations show that the resulting model provides
qualitatively reasonable solutions.
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1 Introduction

Non local conservation laws are being developed to model various phenomena, such as the dynamics
of crowd, see [12, 13, 14]; vehicular traffic, [11, 22]; supply chains, [5, 13]; granular materials, [2];
sedimentation phenomena, [9, 11]; and vortex dynamics, [6]. Often, these models are set in the
whole space RN , although the physics might require their stating in domains with boundaries.
Two difficulties typically motivate this simplification: the rigorous treatment of boundaries and
boundary data in conservation laws is technically quite demanding, see [7, 16], and the very
meaning of non local operators in the presence of a boundary is not straightforward, see [18, 22]
for recent different approaches.

Furthermore, numerical methods for non local conservation laws are typically developed in
the case of the Cauchy problem, i.e., on all of R, see [3, 9, 11], or on all RN , see [1]. However,
numerical integrations obviously refer to bounded domains and proper boundary conditions need
to be singled out.

Below we tackle both the difficulties of a careful treatment of boundary conditions and of a
proper use of non local operators in the presence of a boundary. While tackling these issues, we
propose a rigorous construction yielding the well posedness of a class of non local conservation
laws in bounded domains. Since the different equations are coupled through non local operators,
we obtain the well posedness for a class of systems of conservation laws in any space dimension.
The present construction is motivated by crowd dynamics and specific applications are explicitly
considered.

Let I be a real interval and Ω be a bounded open subset of RN . We describe the movement of
n populations, identified by their densities (or occupancies) ρ ≡ (ρ1, . . . , ρn), through the following
system of non local conservation laws:

∂tρ
i + div

[
ρi V i(t, x,J iρ)

]
= 0 (t, x)∈ I × Ω i = 1, . . . , n

ρ(t, ξ) = 0 (t, ξ)∈ I × ∂Ω

ρ(0, x) = ρo(x) x∈Ω

(1.1)
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where ρo ∈ L1(Ω;Rn) is a given initial datum and J i is a non local operator, so that by the
writing in the first equation of (1.1) we mean

∂tρ
i(t, x) + div

[
ρi(t, x) V i

(
t, x,

(
J iρ(t)

)
(x)

)]
= 0 .

The choice of the zero boundary datum implies that no one can enter Ω from outside. Nevertheless,
the usual definition of solution to conservation laws on domains with boundary, see [7, 27, 28],
allows that individuals exit through the boundary.

The next section is devoted to the statement of the well posedness result. Section 3 deals with
two specific sample applications to crowd dynamics. Proofs are left to the final sections 4 and 5.

2 Main Result

We set R+ = [0,+∞[. The space dimension N , the number of equations n and the integer m are
fixed throughout, with N,n,m ≥ 1. We denote by I the time interval R+ or [0, T ], for a fixed
T > 0. Below, B(x, `) for x ∈ RN and ` > 0 stands for the closed ball centred at x with radius `.

Given the map V : I × Ω× Rm → RN , where (t, x,A) ∈ I × Ω× Rm and Ω ⊂ RN , we set

∇xV (t, x,A) =
[
∂xkVj(t, x,A)

]
j=1,...,N
k=1,...,N

∈ RN×N ,

∇AV (t, x,A) =
[
∂AlVj(t, x,A)

]
j=1,...,N
l=1,...,m

∈ RN×m,

∇x,AV (t, x,A) =
[
∇xV (t, x,A) ∇AV (t, x,A)

]
∈ RN×(N+m) ,∥∥V (t)

∥∥
C2(Ω×Rm;RN )

=
∥∥V (t)

∥∥
L∞(Ω×Rm;RN )

+
∥∥∇x,AV (t)

∥∥
L∞(Ω×Rm;RN×(N+m))

+
∥∥∥∇2

x,AV (t)
∥∥∥
L∞(Ω×Rm;RN×(N+m)×(N+m))

.

For ρ ∈ L∞(Ω;Rn), we also denote TV (ρ) =
∑n
i=1 TV (ρi).

We pose the following assumptions:

(Ω) Ω ⊂ RN is non empty, open, connected, bounded and with C2 boundary ∂Ω.

(V) For i = 1, . . . , n, V i ∈ (C0∩L∞)(I×Ω×Rm;RN ); for all t ∈ I, V i(t) ∈ C2(Ω×Rm;RN ) and∥∥V i(t)∥∥
C2(Ω×Rm;RN )

is bounded uniformly in t and i, i.e., there exists a positive constant V
such that

∥∥V i(t)∥∥
C2(Ω×Rm;RN )

≤ V for all t ∈ I and all i = 1, . . . , n.

(J) For i = 1, . . . , n, J i : L1(Ω;Rn) → C2(Ω;Rm) is such that there exists a positive K and a
weakly increasing map K ∈ L∞loc(R+;R+) such that

(J.1) for all r ∈ L1(Ω;Rn), ∥∥∥J i(r)∥∥∥
L∞(Ω;Rm)

≤ K ‖r‖L1(Ω;Rn) ,∥∥∥∇xJ i(r)∥∥∥
L∞(Ω;Rm×N )

≤ K ‖r‖L1(Ω;Rn) ,∥∥∥∇2
xJ i(r)

∥∥∥
L∞(Ω;Rm×N×N )

≤ K
(
‖r‖L1(Ω;Rn)

)
‖r‖L1(Ω;Rn) .

(J.2) for all r1, r2 ∈ L1(Ω;Rn)∥∥∥J i(r1)− J i(r2)
∥∥∥
L∞(Ω;Rm)

≤ K ‖r1 − r2‖L1(Ω;Rn) ,∥∥∥∥∇x (J i(r1)− J i(r2)
)∥∥∥∥

L∞(Ω;Rm×N )

≤ K
(
‖r1‖L1(Ω;Rn)

)
‖r1 − r2‖L1(Ω;Rn) .
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Throughout, O(1) denotes a constant dependent only on norms of the functions in the assumptions
above, in particular it is independent of time.

Recall that if Ω satisfies (Ω), then it also enjoys the interior sphere condition with radius r > 0,
in the sense that for all ξ ∈ ∂Ω, there exists x ∈ Ω such that B(x, `) ⊆ Ω and ξ ∈ ∂B(x, `) see [19,
Section 6.4.2] and [20, Section 3.2].

In conservation laws, boundary conditions are enforced along the boundary only where char-
acteristic velocities enter the domain, so that admissible jump discontinuities between boundary
data and boundary trace of the solution have to be selected. This is provided by the following
definition, based on regular entropy solutions, see [27, Definition 3.3], [28, Definition 2.2] and
Definition 4.2 below.

Definition 2.1. A map ρ ∈ C0
(
I; L1(Ω;Rn)

)
is a solution to (1.1) whenever, setting ui(t, x) =

V i
(
t, x,

(
J iρ(t)

)
(x)
)

, for i = 1, . . . , n, the map ρi is a regular entropy solution to
∂tρ

i + div
[
ρi ui(t, x)

]
= 0 (t, x)∈ I × Ω ,

ρi(t, ξ) = 0 (t, ξ)∈ I × ∂Ω ,

ρi(0, x) = ρio(x) x∈Ω .

(2.1)

We are now ready to state the main result of this paper.

Theorem 2.2. Let (Ω) hold. Fix V satisfying (V) and J satisfying (J). Then:

(1) For any ρo ∈ (L∞ ∩ BV)(Ω;Rn), there exists a unique ρ ∈ L∞(I × Ω;Rn) solving (1.1) in
the sense of Definition 2.1.

(2) For any ρo ∈ (L∞ ∩BV)(Ω;Rn) and for any t ∈ I,∥∥ρ(t)
∥∥
L1(Ω;Rn)

≤ ‖ρo‖L1(Ω;Rn)∥∥ρ(t)
∥∥
L∞(Ω;Rn)

≤ ‖ρo‖L∞(Ω;Rn) exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))
TV

(
ρ(t)

)
≤ exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))
×

[
O(1)n ‖ρo‖L∞(Ω;Rn) + TV (ρo) + n t ‖ρo‖L1(Ω;Rn) V

×

(
1 + ‖ρo‖L1(Ω;Rn)

(
K +K2‖ρo‖L1(Ω;Rn) +K

(
‖ρo‖L1(Ω;Rn)

)))]
.

(3) For any ρo ∈ (L∞ ∩BV)(Ω;Rn) and for any t, s ∈ I,∥∥ρ(t)− ρ(s)
∥∥
L1(Ω;Rn)

≤ TV
(
ρ
(
max {t, s}

))
|t− s|.

(4) For any initial data ρo, ρ̃o ∈ (L∞ ∩ BV)(Ω;Rn) and for any t ∈ I, calling ρ and ρ̃ the
corresponding solutions to (1.1),∥∥ρ(t)− ρ̃(t)

∥∥
L1(Ω;Rn)

≤ eL(t) ‖ρo − ρ̃o‖L1(Ω;Rn),

where L(t) > 0 depends on (Ω), (V), (J) and on

R = max
{
‖ρo‖L1(Ω;Rn), ‖ρ̃o‖L1(Ω;Rn), ‖ρo‖L∞(Ω;Rn), ‖ρ̃o‖L∞(Ω;Rn), TV (ρo), TV (ρ̃o)

}
.
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(5) Fix ρo ∈ (L∞ ∩BV)(Ω;Rn). Let Ṽ satisfy (V) with the same constant V. Call ρ and ρ̃ the
solutions to problem (1.1) corresponding respectively to the choices V and Ṽ . Then, for any
t ∈ I, ∥∥ρ(t)− ρ̃(t)

∥∥
L1(Ω;Rn)

≤ C(t)
∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥
C1(Ω×Rm;RnN )

ds

where C depends on (Ω), (V), (J) and on the initial datum, see (4.33).

(6) For i = 1, . . . , n, if ρio ≥ 0 a.e. in Ω, then ρi(t) ≥ 0 a.e. in Ω for all t ∈ I.

Section 4 is devoted to the proof of the theorem above. Here, we underline that the total variation
estimate in (2) is qualitatively different from the analogous one in the case of no boundary, see
Remark 4.5.

3 The Case of Crowd Dynamics

The above analytic results are motivated also by their applicability to equations describing the
motion of a crowd, identified through its time and space dependent density ρ = ρ(t, x). Various
macroscopic crowd dynamics models based on non local conservation laws were recently considered,
see for instance [12, 13, 14], as well as [1, Section 3.1]. Therein, typically, non local interactions
among individuals are described through space convolution terms like ρ(t) ∗ η, for a suitable
averaging kernel η. We refer to [17] for a different approach and to [8] for a recent review on the
modelling of crowd dynamics.

Due to the absence of well posedness results in bounded domains, none of the results cited
above considers the presence of boundaries. On the one hand, the choice of the crowd velocity
may well encode the presence of boundaries but, on the other hand, the visual horizon of each
individual should definitely not neglect the presence of the boundary. With this motivation, below
we introduce a non local operator consistent with the presence of boundaries and show how the
theoretical results above allow to formulate equations where each individual’s horizon is affected
by the presence of the walls.

To this aim, we use the following modification of the usual convolution product

(ρ ∗
Ω
η)(x) =

1

z(x)

∫
Ω

ρ(y) η(x− y) dy , where (3.1)

z(x) =

∫
Ω

η(x− y) dy . (3.2)

A reasonable assumption on the kernel η is:

(η) η(x) = η̃(‖x‖), where η̃ ∈ C2(R+;R), spt η̃ = [0, `η], where `η > 0, η̃′ ≤ 0 and
∫
RN η(ξ) dξ = 1.

In other words, (ρ ∗
Ω
η)(x) is an average of the crowd density ρ in Ω around x. Note also that

ρ ∗
Ω
η is well defined by (3.1): indeed, under assumptions (Ω) and (η), z may not vanish in Ω,

see Lemma 5.1. As a side remark, note that (η) ensures η ≥ 0.
We investigate the properties of the non local operator defined through (3.1)–(3.2).

Lemma 3.1. Let Ω satisfy (Ω), η satisfy (η) and ρ ∈ L∞(Ω;R+). Then,

(ρ ∗
Ω
η) ∈ C2(Ω;R+) and (ρ ∗

Ω
η)(x) ∈ [ ess inf

B(x,`η)∩Ω

ρ, ess sup
B(x,`η)∩Ω

ρ]

so that, in particular, (ρ ∗
Ω
η)(Ω) ⊆ [0, ‖ρ‖L∞(Ω;R)].

The proof is in Section 5, where other properties of the modified convolution (3.1)–(3.2) are proved.
As a sample of the possible applications of Theorem 2.2 to crowd dynamics, we consider below

two specific situations, where we set N = 2, write x ≡ (x1, x2) for the spatial coordinate and
denote ∂1 = ∂x1 , ∂2 = ∂x2 ,
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The numerical integrations below are obtained through a suitable adaptation of the Lax–
Friedrichs method, on the basis of [1, 3], adapted as suggested in [10, Formula (14)] to reduce the
effects of the numerical viscosity.

For further results on crowd modelling, see for instance [12, 24, 25] and the references therein.

3.1 Evacuation from a Room

We now use (1.1) to describe the evacuation of a region, say Ω. To this aim, consider the equation:

∂tρ+ div

ρ v(ρ ∗
Ω
η1)

w(x)− β
∇(ρ ∗

Ω
η2)√

1 +
∥∥∇(ρ ∗

Ω
η2)
∥∥2


 = 0 . (3.3)

Here, each individual adjusts her/his speed according to the average population density around
her/him, according to the function v, which is C2, bounded and non increasing. The velocity
direction of each individual is given by the fixed C2 vector field w, which essentially describes
some sort of natural path to the exit, the exit being the portion of ∂Ω where w points outwards

of Ω. This direction is then adjusted by the non local term −β ∇(ρ ∗
Ω
η2)

/√
1 +

∥∥∇(ρ ∗
Ω
η2)
∥∥ ,

which describes the tendency of avoiding regions with high (average) density gradient, see [12, 14].

Lemma 3.2. Let Ω satisfy (Ω). Assume that v ∈ C2(R+;R+) and w ∈ C2(Ω;R2) are bounded
in C2. If moreover η1, η2 satisfy (η) with η2 of class C3, then equation (3.3) fits into (1.1), (V)
and (J) hold, so that Theorem 2.2 applies.

The proof is deferred to Section 5.

As a specific example we consider a square room, say Ω, with a door D, with D ⊆ ∂Ω, and two
columns each of size 0.5× 0.625, placed near to the door, symmetrically as the grey rectangles in
the figure in (3.4). We also set

Ω = [0, 8]× [−4, 4]

D= {8} × [−1, 1]

η̃i(ξ) =
315

128π li
18 (li

4 − ξ4)4 χ
[0,li]

(ξ)

v(r) = 2 min
{

1,max
{

0, (1− (r/4)3)3
}}

w(x) = see the figure here on the left,

l1 = 0.625 , l2 = 1.5 , β = 0.6 .

(3.4)

The vector field w = w(x) is obtained as a sum of the unit vector tangent to the geodesic from x
to the door and a discomfort vector field with maximal intensity along the walls. The numerical
integration corresponding to a locally constant initial datum is displayed in Figure 1. The solution
displays a realistic behaviour, with queues being formed behind the obstacles. For further details
on the modelling and numerical issues related to (1.1)–(3.3)–(3.4), we refer to [15].

3.2 Two Ways Movement along a Corridor

The validity of Theorem 2.2 also for systems of equations allows to consider the case of interacting
populations. A case widely considered in the literature, see for instance [1, 12, 14, 17, 24] and
the references in [8], is that of two groups of pedestrians heading in opposite directions along

5



Figure 1: Plot of the level curves of the solution to (1.1)–(3.3)–(3.4), computed numerically at the times

t = 0, 1.5, 3.0, 4.5, 6.0, 7.5, corresponding to the initial data in the top left figure, consisting of 5, 14,

9 and 20 people (clockwise starting from the top left) in the 4 quadrants displayed in the first figure. In

this integration, the mesh sizes are dx = dy = 0.03125.

a corridor, say Ω, with exits, say D, on each of its sides. With the notation in Section 2, this
amounts to set N = 2, n = 2 and to

∂tρ
1+ div

ρ1v1((ρ1+ρ2) ∗
Ω
η11

1 )

w1(x)−
β11∇(ρ1 ∗

Ω
η11

2 )√
1 +

∥∥∇(ρ1 ∗
Ω
η11

2 )
∥∥2
−

β12∇(ρ2 ∗
Ω
η12

2 )√
1 +

∥∥∇(ρ2 ∗
Ω
η12

2 )
∥∥2


= 0,

∂tρ
2+ div

ρ2v2((ρ1+ρ2) ∗
Ω
η22

1 )

w2(x)−
β21∇(ρ1 ∗

Ω
η21

2 )√
1 +

∥∥∇(ρ1 ∗
Ω
η21

2 )
∥∥2
−

β22∇(ρ2 ∗
Ω
η22

2 )√
1 +

∥∥∇(ρ2 ∗
Ω
η22

2 )
∥∥2


= 0.

(3.5)

The various terms in the expressions above are straightforward extensions of their analogues
in (3.3). For instance, in view of (3.1)–(3.2), vi = vi

(
(ρ1 + ρ2) ∗

Ω
ηii1
)

describes how the maximal
speed of the population i at a point x depends on the average total density of ρ1+ρ2 in Ω around x.

Similarly, the term −βij ∇(ρi ∗
Ω
ηij2 )

/√
1 +

∥∥∥ρi ∗
Ω
ηij2

∥∥∥2

describes the tendency of individuals

of the i-th population to avoid increasing values of the average density of the j-th population, in
the same spirit of the similar term in (3.3).

Lemma 3.3. Let Ω satisfy (Ω). Assume that v1, v2 ∈ C2(R+;R+) and w1, w2 ∈ C2(Ω;R2)
are bounded in C2. If moreover ηii1 , ηij2 satisfy (η) with ηij2 of class C3 for i, j = 1, 2, then
equation (3.5) fits into (1.1), (V) and (J) hold, so that Theorem 2.2 applies.

The proof is deferred to Section 5.

A qualitative picture of the possible solutions to (1.1)–(3.5) is obtained through the following
numerical integration, corresponding to the choices

6



Ω = [0, 16]× [−2, 2] , D = {0, 16} × [−2, 2]

η̃ijl (ξ) =
315

128π (liji )
2 (1− (ξ/liji )4)4 χ

[0,liji ]
(ξ)

v1(r) = min
{

1,max
{

0, (1− (r/4.5)3)3
}}

v2(r) = 1.5 min
{

1,max
{

0, (1− (r/4.5)3)3
}}

w1(x) = see the figure here on the left, top

w2(x) = see the figure here on the left, bottom

lii1 = 0.1875 , lij2 = 0.5 , βii = 0.2 , βij = 0.5 .

(3.6)

for i, j = 1, 2, see Figure 2. Note the complex dynamics arising due to the formation of regions with
high density. This description is consistent with the typical self organization of crowd motions,

Figure 2: Plot of the level curves of the solution to (1.1)–(3.5)–(3.6), computed numerically at the times

t = 0, 1.6, 3.2, 4.8, 6.4, 8.0. First and third rows refer to ρ1, while the second and fourth one to ρ2. The

initial datum varies linearly along the y coordinate between 0 and 4. In this integration, the mesh sizes

are dx = dy = 0.015625.

see [23, 24]: queues consisting of pedestrian walking in the same direction are formed, in particular
at time 3.20.

4 Proofs Related to Section 2

We recall the basic properties of the following (local) IBVP
∂tr + div

[
r u(t, x)

]
= 0 (t, x)∈ I × Ω

r(t, ξ) = 0 (t, ξ)∈ I × ∂Ω

r(0, x) = ro(x) x∈Ω ,

(4.1)

where we assume that

7



(u) u : I × Ω → RN is such that u ∈ (C0 ∩ L∞)(I × Ω;RN ), for all t ∈ I, u(t) ∈ C2(Ω;RN ) and∥∥u(t)
∥∥
C2(Ω;RN )

is uniformly bounded in I.

We refer to [27] for a comparison among various definitions of solutions to (4.1). Recall the concept
of RE–solutions, which first requires an extension of [26, Chapter 2, Definition 7.1]. Note that,
although the equation in (4.1) is linear, jump discontinuities may well arise between the solution
and the datum assigned along the boundary.

Definition 4.1 ([28, Definition 2]). The pair (H,Q) ∈ C2(R2;R)×C2(I ×Ω×R2;RN ) is called
a boundary entropy-entropy flux pair for the flux f(t, x, r) = r u(t, x) if:

i) for all w ∈ R the function z 7→ H(z, w) is convex;

ii) for all t ∈ I, x ∈ Ω and z, w ∈ R, ∂zQ(t, x, z, w) = ∂zH(z, w)u(t, x);

iii) for all t ∈ I, x ∈ Ω and w ∈ R, H(w,w) = 0, Q(t, x, w,w) = 0 and ∂zH(w,w) = 0.

Note that if H is as above, then H ≥ 0.

Definition 4.2 ([27, Definition 3.3]). A Regular Entropy solution (RE-solution) to the initial–
boundary value problem (4.1) on I is a map r ∈ L∞ (I × Ω;R) such that for any boundary entropy-
entropy flux pair (H,Q), for any k ∈ R and for any test function ϕ ∈ C1

c(R× RN ;R+)∫
I

∫
Ω

[
H
(
r(t, x), k

)
∂tϕ(t, x) +Q

(
t, x, r(t, x), k

)
· ∇ϕ(t, x)

]
dxdt

−
∫
I

∫
Ω

∂1H
(
r(t, x), k

)
r(t, x) div u(t, x)ϕ(t, x) dxdt

+

∫
I

∫
Ω

divQ
(
t, x, r(t, x), k

)
ϕ(t, x) dxdt

+

∫
Ω

H
(
ro(x), k

)
ϕ(0, x) dx+ ‖u‖L∞(I×Ω;RN )

∫
I

∫
∂Ω

H (0, k) ϕ(t, ξ) dξ dt ≥ 0.

(4.2)

Lemma 4.3. Let (Ω) and (u) hold. Assume ro ∈ (L∞ ∩ BV)(Ω;R). For (to, xo) ∈ I × Ω,
introduce the map

X( · ; to, xo) : I(to, xo) → Ω

t → X(t; to, xo)
solving

 ẋ = u(t, x)

x(to) = xo ,
(4.3)

I(to, xo) being the maximal interval where a solution to the Cauchy problem above is defined. The
map r defined by

r(t, x) =


ro
(
X(0; t, x)

)
exp

(
−
∫ t

0

div u
(
τ,X(τ ; t, x)

)
dτ

)
x∈X(t; 0,Ω)

0 x∈X(t; [0, t[ , ∂Ω)

(4.4)

is a RE–solution to (4.1). Moreover, r : [0, T ]→ (L∞ ∩BV)(Ω;R) is L1–continuous.

Proof. We first regularise the initial datum, using [4, Theorem 1], see also [21, Formula (1.8) and
Theorem 1.17]: for h ∈ N \ {0}, there exists a sequence r̃h ∈ C∞(Ω;R) such that

lim
h→+∞

‖r̃h − ro‖L1(Ω;R) = 0, ‖r̃h‖L∞(Ω;R) ≤ ‖ro‖L∞(Ω;R) and lim
h→∞

TV (r̃h) = TV (ro).

Let Φh ∈ C3
c(RN ; [0, 1]) be such that Φh(ξ) = 1 for all ξ ∈ ∂Ω, Φh(x) = 0 for all x ∈ Ω with

B(x, 1/h) ⊆ Ω and ‖∇Φh‖L∞(Ω;RN ) ≤ 2h. Let

rho (x) =
(
1− Φh(x)

)
r̃h(x) for all x ∈ Ω, (4.5)

8



so that rho ∈ C3(Ω;R). By construction, limh→+∞

∥∥∥rho − ro∥∥∥
L1(Ω;R)

= 0. Moreover, rho (ξ) = 0 for

all ξ ∈ ∂Ω and h ∈ N \ {0}, and the following uniform bounds hold∥∥∥rho∥∥∥
L∞(Ω;R)

≤ ‖ro‖L∞(Ω;R), (4.6)

TV (rho ) ≤ O(1) ‖ro‖L∞(Ω;R) + TV (ro). (4.7)

Using the sequence rho , define the corresponding sequence rh according to (4.4). Obviously, each
rh is a strong solution to (4.1). By [27, Proposition 6.2], each rh is also a RE–solution to (4.1)

Let r be defined as in (4.4). It is clear that rh converges to r in L1. Since Definition 4.2 is
stable under L1 convergence, see [26, 27], we obtain that r is a RE–solution to (4.1).

The continuity in time of r follows from the continuity in time of rh and the fact that r is the
uniform limit of rh. �

The following Lemma extends to the case of the IBVP the results in [13, Lemma 5.1, Corol-
lary 5.2 and Lemma 5.3]. Note that, due to the presence of the boundary, this extension needs
some care, see Remark 4.5.

Lemma 4.4. Let (Ω) and (u) hold. Assume ro ∈ (L∞∩BV)(Ω;R). Then, the solution r to (4.1)
is such that r ∈ C0,1(I; L1(Ω;R)) and for all t, s ∈ I,∥∥r(t)∥∥

L1(Ω;R)
≤ ‖ro‖L1(Ω;R) (4.8)∥∥r(t)∥∥

L∞(Ω;R)
≤ ‖ro‖L∞(Ω;R) e

‖div u‖L1([0,t];L∞(Ω;R)) (4.9)

TV
(
r(t)

)
≤ exp

(∫ t

0

∥∥∇u (τ)
∥∥
L∞(Ω;RN×N )

dτ

)(
O(1) ‖ro‖L∞(Ω;R) (4.10)

+ TV (ro) + ‖ro‖L1(Ω;R)

∫ t

0

∥∥∇ div u(τ)
∥∥
L∞(Ω;RN )

dτ

)
,

∥∥r(t)− r(s)∥∥
L1(Ω;R)

≤ TV
(
r
(
max{t, s}

))
|t− s| . (4.11)

If also r̃o ∈ (L∞ ∩BV)(Ω;R) and r̃ is the corresponding solution to (4.1), for all t ∈ I,∥∥r(t)− r̃(t)∥∥
L1(Ω;R)

≤ ‖ro − r̃o‖L1(Ω;R) . (4.12)

Proof. The proofs of (4.8) and (4.9) directly follow from (4.4). In particular, to get (4.8),
exploit the change of variable y = X(0; t, x), so that x = X(t; 0, y), see [13, § 5.1]. Note that if
x ∈ X(t; 0,Ω) then y ∈ X

(
0; t,X(t; 0,Ω)

)
⊆ Ω. Denote the Jacobian of this change of variable by

J(t, y) = det
(
∇yX(t; 0, y)

)
. Then J solves

dJ(t, y)

dt
= div u

(
t,X(t; 0, y)

)
J(t, y) with J(0, y) = 1.

Hence, J(t, y)= exp
(∫ t

0
div u

(
τ,X(τ ; 0, y)

)
dτ
)

, which implies J(t, y) > 0 for t ∈ [0, T ] and y ∈ Ω.

To prove (4.10), regularise the initial datum ro as in the proof of Lemma 4.3: rho ∈ C3(Ω;R)
converges to ro in L1(Ω;R), rho (ξ) = 0 for all ξ ∈ ∂Ω and (4.6)–(4.7) hold.

Using the sequence rho , define according to (4.4) the corresponding sequence rh of solutions
to (4.1). Observe that rh(t) ∈ C1(Ω;R) for every t ∈ [0, T ]. Proceed similarly to the proof of [13,
Lemma 5.4]: differentiate the solution to (4.3) with respect to the initial point, that is

∇xX(τ ; t, x) = Id +

∫ τ

t

∇xu
(
t,X(s; t, x)

)
∇xX(s; t, x) ds ,

∥∥∇xX(τ ; t, x)
∥∥ ≤ 1 +

∫ t

τ

∥∥∥∇xu (t,X(s; t, x)
)∥∥∥∥∥∇xX(s; t, x)

∥∥ds ,
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since τ ∈ [0, t], so that, applying Gronwall Lemma,

∥∥∇xX(τ ; t, x)
∥∥ ≤ exp

(∫ t

τ

∥∥∇xu(s)
∥∥
L∞(Ω;RN×N )

ds

)
.

By (4.4) and the properties of rho , the gradient of rh(t) is well defined (and continuous) on Ω: in
particular,

∇rh(t, x) = exp

(∫ t

0

−div u
(
τ,X(τ ; t, x)

)
dτ

)(
∇rho

(
X(0; t, x)

)
∇xX(0; t, x)

−rho
(
X(0; t, x)

) ∫ t

0

∇div u
(
τ,X(τ ; t, x)

)
∇xX(τ ; t, x) dτ

)
.

Hence, for every t ∈ I, using again the change of variable described at the beginning of the proof,

∥∥∇rh(t)
∥∥
L1(Ω;RN )

≤ exp

(∫ t

0

∥∥∇u (τ)
∥∥
L∞(Ω;RN×N )

dτ

)

×

(∫
Ω

∣∣∣∇rho (x)
∣∣∣dx+

∥∥∥rho∥∥∥
L1(Ω;R)

∫ t

0

∥∥∇ div u(τ)
∥∥
L∞(Ω;RN )

dτ

)
.

(4.13)

Let r be defined as in (4.4): clearly, rh → r in L1(Ω;R). Due to the lower semicontinuity of
the total variation, to (4.13) and to the hypotheses on the approximation rho , for t ∈ I we get

TV
(
r(t)

)
≤ lim

h
TV

(
rh(t)

)
= lim

h

∥∥∇rh(t)
∥∥
L1(Ω;RN )

≤ exp

(∫ t

0

∥∥∇u (τ)
∥∥
L∞(Ω;RN×N )

dτ

)

×

(
lim
h

TV (rho ) + lim
h

∥∥∥rho∥∥∥
L1(Ω;R)

∫ t

0

∥∥∇div u(τ)
∥∥
L∞(Ω;RN )

dτ

)

≤ exp

(∫ t

0

∥∥∇u (τ)
∥∥
L∞(Ω;RN×N )

dτ

)

×

(
O(1)‖ro‖L∞(Ω;R) + TV (ro) + ‖ro‖L1(Ω;R)

∫ t

0

∥∥∇ div u(τ)
∥∥
L∞(Ω;RN )

dτ

)
,

concluding the proof of (4.10). The proof of the L1–Lipschitz continuity in time is done analo-
gously, leading to (4.11).

Finally, (4.12) follows from (4.8), due to the linearity of (4.1). �

Remark 4.5. We underline that the total variation estimate just obtained differs from that
presented in [13, Lemma 5.3], where the transport equation ∂tr+ div

(
r u(t, x)

)
= 0 is studied not

on a bounded domain Ω, but on all RN . Indeed, compare (4.10) and [13, Formula (5.12)]: it is
immediate to see that, in the case of a divergence free vector field u, the L∞–norm of the initial
datum is still present in our case, while it is not in [13, Formula (5.12)]. This is actually due to
the presence of the boundary.

Consider the following example to see the importance of the term ‖ro‖L∞(Ω;R) in (4.10). Let

Ω = B(0, 1) ⊂ RN , u(t, x) = −x and ro(x) = 2 for every x ∈ Ω. Then, the solution to (4.3) is
X(t; to, xo) = xo e

to−t. Since div u = −N , the solution to (4.1) is:

r(t, x) =

{
2 eN t for x ∈ B(0, e−t)

0 elsewhere.
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Therefore, for every t ∈ R+, the total variation of r(t) has contribution only from the jump between
2 eN t and 0, multiplied by the (N − 1) dimensional measure of the boundary ∂B(0, e−t), that is

TV
(
r(t)

)
= 2 eN t 2πN/2 (e−t)N−1

Γ(N/2)
= 2

πN/2

Γ(N/2)
et,

Γ being the gamma function. Coherently, applying (4.10) we get

TV
(
r(t)

)
≤ etO(1) ‖ro‖L∞(Ω;R) = 2O(1) et ,

which confirms the necessity of the term ‖ro‖L∞(Ω;R) in the right hand side of (4.10).

We now provide a stability estimate of use below.

Lemma 4.6. Let (Ω) hold. Let u and ũ satisfy (u). Assume ro ∈ (L∞ ∩BV)(Ω;R). Call r and
r̃ the solutions to (4.1) obtained with u and ũ, respectively. Then, for all t ∈ I,∥∥r(t)− r̃(t)∥∥

L1(Ω;R)

≤ eκ(t)

∫ t

0

∥∥(u− ũ)(s)
∥∥
L∞(Ω;RN )

ds
[
O(1) ‖ro‖L∞(Ω;R) + TV (ro) + ‖ro‖L1(Ω;R) κ1(t)

]
(4.14)

+ ‖ro‖L1(Ω;R)

∫ t

0

∥∥div (u− ũ)(s)
∥∥
L∞(Ω;R)

ds ,

where

κ(t) =

∫ t

0

max
{∥∥∇u(s)

∥∥
L∞(Ω;RN×N )

,
∥∥∇ũ(s)

∥∥
L∞(Ω;RN×N )

}
ds ,

κ1(t) =

∫ t

0

max
{∥∥∇ div u(s)

∥∥
L∞(Ω;RN )

,
∥∥∇ div ũ(s)

∥∥
L∞(Ω;RN )

}
ds .

Proof. Regularise the initial datum ro as in the proof of Lemma 4.3: for any h ∈ N \ {0} we have
that rho ∈ C3(Ω;R) converges to ro in L1(Ω;R), rho (ξ) = 0 for all ξ ∈ ∂Ω and (4.6)–(4.7) hold.

For ϑ ∈ [0, 1], set
uϑ(t, x) = ϑu(t, x) + (1− ϑ) ũ(t, x).

Call rhϑ the solution to (4.1) corresponding to the vector field uϑ above and to the initial datum
rho . Consider the map Xϑ associated to uϑ, as in (4.3). We have that rhϑ(t) ∈ C1(Ω;R) for every
t ∈ I and it satisfies (4.4), that now reads as follow:

rhϑ(t, x) =


rho
(
Xϑ(0; t, x)

)
exp

[
−
∫ t

0

div uϑ
(
τ,Xϑ(τ ; t, x)

)
dτ

]
if x ∈ Xϑ(t; 0,Ω)

0 elsewhere.

(4.15)

Derive the analog of (4.3) with respect to ϑ and recall that Xϑ(t; t, x) = x for all ϑ: ∂t∂ϑXϑ(τ ; t, x) = u(τ,Xϑ(τ ; t, x))− ũ(τ,Xϑ(τ ; t, x)) +∇uϑ(τ,Xϑ(τ ; t, x)) ∂ϑXϑ(τ ; t, x)

∂ϑXϑ(t; t, x) = 0 .

The solution to this problem is given by

∂ϑXϑ(τ ; t, x) =

∫ τ

t

exp

(∫ τ

s

∇uϑ(σ,Xϑ(σ; t, x)) dσ

)(
u
(
s,Xϑ(s; t, x)

)
− ũ

(
s,Xϑ(s; t, x)

))
ds

=

∫ t

τ

exp

(∫ s

τ

−∇uϑ(σ,Xϑ(σ; t, x)) dσ

)
(ũ− u)

(
s,Xϑ(s; t, x)

)
ds . (4.16)
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Derive now the non zero expression in the right hand side of (4.15) with respect to ϑ:

∂ϑr
h
ϑ(t, x)

= exp

(∫ t

0

−div uϑ
(
τ,Xϑ(τ ; t, x)

)
dτ

)

×

{
∇rho

(
Xϑ(0; t, x)

)
∂ϑXϑ(0; t, x) + rho

(
Xϑ(0; t, x)

) ∫ t

0

div (ũ− u)
(
τ,Xϑ(τ ; t, x)

)
dτ

−rho
(
Xϑ(0; t, x)

) ∫ t

0

∇ div uϑ
(
τ,Xϑ(τ ; t, x)

)
· ∂ϑXϑ(τ ; t, x) dτ

}

= exp

(∫ t

0

−div uϑ
(
τ,Xϑ(τ ; t, x)

)
dτ

)

×

{
∇rho

(
Xϑ(0; t, x)

) ∫ t

0

exp

(∫ s

0

−∇uϑ(σ,Xϑ(σ; t, x)) dσ

)
(ũ− u)

(
s,Xϑ(s; t, x)

)
ds

+ rho
(
Xϑ(0; t, x)

) ∫ t

0

div (ũ− u)
(
τ,Xϑ(τ ; t, x)

)
dτ

− rho
(
Xϑ(0; t, x)

) ∫ t

0

∇div uϑ
(
τ,Xϑ(τ ; t, x)

)
×

[∫ t

τ

exp

(∫ s

τ

−∇uϑ(σ,Xϑ(σ; t, x)) dσ

)
(ũ− u)

(
s,Xϑ(s; t, x)

)
ds

]
dτ

}
,

where we used (4.16). Call rh and r̃h the solutions to (4.1) corresponding to velocities u and ũ
respectively, and initial datum rho : in other words, rh = rhϑ=1, while r̃h = rhϑ=0. Compute∥∥∥rh(t)− r̃h(t)

∥∥∥
L1(Ω;R)

≤
∫

Ω

∣∣∣∣∣
∫ 1

0

∂ϑr
h
ϑ(t, x) dϑ

∣∣∣∣∣dx ≤
∫ 1

0

∫
Xϑ(t;0,Ω)

∣∣∣∂ϑrhϑ(t, x)
∣∣∣ dx dϑ . (4.17)

In particular, introduce the change of variable for Xϑ analogous to that presented at the beginning
of the proof of Lemma 4.4, set Y = Xϑ

(
0; t,Xϑ(t; 0,Ω)

)
and compute∫

Xϑ(t;0,Ω)

∣∣∣∂ϑrhϑ(t, x)
∣∣∣dx

≤
∫
Y

∣∣∣∣∣∇rho (y)

∫ t

0

exp

(∫ s

0

−∇uϑ
(
σ,Xϑ(σ; 0, y)

)
dσ

)
(ũ− u)

(
s,Xϑ(s; 0, y)

)
ds

∣∣∣∣∣dy
+

∫
Y

∣∣∣∣∣rho (y)

∫ t

0

div (ũ− u)
(
τ,Xϑ(τ ; 0, y)

)
dτ

∣∣∣∣∣dy
+

∫
Y

∣∣∣∣∣rho (y)

∫ t

0

∇ div uϑ
(
τ,Xϑ(τ ; 0, y)

)
×
∫ t

τ

exp

(∫ s

τ

−∇uϑ
(
σ,Xϑ(σ; 0, y)

)
dσ

)
(ũ− u)

(
s,Xϑ(s; 0, y)

)
dsdτ

∣∣∣∣∣dy
≤
(∫

Ω

∣∣∣∇rho (y)
∣∣∣ dy) exp

(∫ t

0

∥∥∇uϑ(s)
∥∥
L∞(Ω;RN×N )

ds

) ∫ t

0

∥∥(u− ũ)(s)
∥∥
L∞(Ω;RN )

ds

+
∥∥∥rho∥∥∥

L1(Ω;R)

∫ t

0

∥∥div (u− ũ)(s)
∥∥
L∞(Ω;R)

ds

+
∥∥∥rho∥∥∥

L∞(Ω;R)

∫ t

0

∥∥∇div uϑ(s)
∥∥
L1(Ω;RN )

ds
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× exp

(∫ t

0

∥∥∇uϑ(s)
∥∥
L∞(Ω;RN×N )

ds

) ∫ t

0

∥∥(u− ũ)(s)
∥∥
L∞(Ω;RN )

ds .

Therefore, inserting the latter result above in (4.17) yields∥∥∥rh(t)− r̃h(t)
∥∥∥
L1(Ω;R)

(4.18)

≤ exp

(∫ t

0

max
{∥∥∇u(s)

∥∥
L∞(Ω;RN×N )

,
∥∥∇ũ(s)

∥∥
L∞(Ω;RN×N )

}
ds

)∫ t

0

∥∥(u− ũ)(s)
∥∥
L∞(Ω;RN )

ds

×

[∫
Ω

∣∣∣∇rho (y)
∣∣∣dy +

∥∥∥rho∥∥∥
L∞(Ω;R)

∫ t

0

max
{∥∥∇ div u(s)

∥∥
L1(Ω;RN )

,
∥∥∇div ũ(s)

∥∥
L1(Ω;RN )

}
ds

]

+
∥∥∥rho∥∥∥

L1(Ω;R)

∫ t

0

∥∥div (u− ũ)(s)
∥∥
L∞(Ω;R)

ds . (4.19)

We now let h tend to +∞. We know that rho converges to ro in L1(Ω;R), so that rhϑ, solution
to (4.1) with velocity uϑ and initial datum rho , converges to a function rϑ in L1 which is solution
to (4.1) with velocity uϑ and initial datum ro. Call r = rϑ=1 and r̃ = rϑ=0: they are solutions
to (4.1) with velocities u and ũ respectively, and initial datum ro. It is clear that rh → r and
r̃h → r̃ in L1. Therefore, the inequality (4.18)–(4.19) in the limit h→ +∞ reads∥∥r(t)− r̃(t)∥∥

L1(Ω;R)

≤ exp

(∫ t

0

max
{∥∥∇u(s)

∥∥
L∞(Ω;RN×N )

,
∥∥∇ũ(s)

∥∥
L∞(Ω;RN×N )

}
ds

)∫ t

0

∥∥(u− ũ)(s)
∥∥
L∞(Ω;RN )

ds

×

[
O(1) ‖ro‖L∞(Ω;R) + TV (ro)

+‖ro‖L∞(Ω;R)

∫ t

0

max
{∥∥∇ div u(s)

∥∥
L1(Ω;RN )

,
∥∥∇div ũ(s)

∥∥
L1(Ω;RN )

}
ds

]

+ ‖ro‖L1(Ω;R)

∫ t

0

∥∥div (u− ũ)(s)
∥∥
L∞(Ω;R)

ds ,

where we used the fact that

∫
Ω

∣∣∣∇rho (y)
∣∣∣ dy = TV (rho ) and (4.7). �

Proof of Theorem 2.2. The proof relies on a fixed point argument and consists of several steps.

Fix R = max
{
‖ρo‖L1(Ω;Rn), ‖ρo‖L∞(Ω;Rn), TV (ρo)

}
. Given a map F(t) ∈ C0(I;R+), whose

precise choice is given in the sequel, the following functional space is of use below:

XR =

r ∈ C0(I; L1(Ω;Rn)) :

‖r‖L∞(I;L1(Ω;Rn)) ≤ R and∥∥r(t)∥∥
L∞(Ω;Rn)

< +∞ for all t ∈ I

TV
(
r(t)

)
≤ F(t) for all t ∈ I

 (4.20)

with the distance d(ρ1, ρ2) = ‖ρ1 − ρ2‖L∞(I;L1(Ω;Rn)), so that XR is a complete metric space.

Throughout, we denote by C a positive constant that depends on the assumptions (Ω), (V),
(J), on R and on n. The constant C does not depend on time. For the sake of simplicity, introduce
the notation Σt = [0, t]× Ω× Rm.

Reduction to a Fixed Point Problem. Define the map

T : XR → XR
r → ρ

(4.21)
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where ρ ≡ (ρ1, . . . , ρn) solves
∂tρ

i + div

[
ρi V i

(
t, x,

(
J ir(t)

)
(x)
)]

= 0 (t, x)∈ I × Ω i = 1, . . . , n

ρ(t, ξ) = 0 (t, ξ)∈ I × ∂Ω

ρ(0, x) = ρo(x) x∈Ω.

(4.22)

A map ρ ∈ XR solves (1.1) in the sense of Definition 2.1 if and only if ρ is a fixed point for T .

T is Well Defined. Given r ∈ XR, by (V) and (J), for i = 1, . . . , n each map

ui(t, x) = V i
(
t, x,

(
J ir(t)

)
(x)

)
(4.23)

satisfies (u). The solution ρ to (4.22) is well defined, unique and belongs to C0(I; L1(Ω;Rn)).
With the notation introduced above, by (4.8) in Lemma 4.4, for all t ∈ I,∥∥ρ(t)

∥∥
L1(Ω;Rn)

≤ ‖ρo‖L1(Ω;Rn) (4.24)

and, by (V), (J) and (4.9),∥∥∥ρi(t)∥∥∥
L∞(Ω;R)

≤
∥∥∥ρio∥∥∥

L∞(Ω;R)
exp

[
t
∥∥∥div V i

∥∥∥
L∞(Σt;R)

+tK
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥r(t)∥∥
L1(Ω;Rn)

]
≤
∥∥∥ρio∥∥∥

L∞(Ω;R)
exp

(
tV (1 +KR)

)
≤
∥∥∥ρio∥∥∥

L∞(Ω;R)
eC t for i = 1, . . . , n, so that∥∥ρ(t)

∥∥
L∞(Ω;Rn)

≤ ‖ρo‖L∞(Ω;Rn) e
C t . (4.25)

Applying (4.10) in Lemma 4.4, with the help of (V) and (J), for all t ∈ I and all i = 1, . . . , n,

TV
(
ρi(t)

)
≤ exp

(∫ t

0

∥∥∥∇ui (τ)
∥∥∥
L∞(Ω;RN×N )

dτ

)
(4.26)

×

(
O(1)

∥∥∥ρio∥∥∥
L∞(Ω;R)

+ TV (ρio) +
∥∥∥ρio∥∥∥

L1(Ω;R)

∫ t

0

∥∥∥∇ div ui(τ)
∥∥∥
L∞(Ω;RN )

dτ

)

≤ exp

(
t
∥∥∥∇V i∥∥∥

L∞(Σt;RN×N )
+ tK

∥∥∥∇wV i∥∥∥
L∞(Σt;RN×m)

∥∥r(t)∥∥
L1(Ω;Rn)

)
×

[
O(1)

∥∥∥ρio∥∥∥
L∞(Ω;R)

+ TV (ρio) + t
∥∥∥ρio∥∥∥

L1(Ω;R)

(∥∥∥∇x div V i
∥∥∥
L∞(Σt;RN )

+K

(∥∥∥∇w div V i
∥∥∥
L∞(Σt;Rm)

+
∥∥∥∇x∇wV i∥∥∥

L∞(Σt;RN×m×N )

)∥∥r(t)∥∥
L1(Ω;Rn)

+K2
∥∥∥∇2

wwV
i
∥∥∥
L∞(Σt;RN×m×m)

∥∥r(t)∥∥2

L1(Ω;Rn)

+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)
K
(∥∥r(t)∥∥

L1(Ω;Rn)

) ∥∥r(t)∥∥
L1(Ω;Rn)

)
≤
(
C t+ C

∥∥∥ρio∥∥∥
L∞(Ω;R)

+ TV (ρio)

)
eCt , (4.27)

so that
TV

(
ρ(t)

)
≤
(
C t+ C ‖ρo‖L∞(Ω;Rn) + TV (ρo)

)
eCt . (4.28)
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The map T is thus well defined, setting in (4.20)

F(t) =
(
C t+ C ‖ρo‖L∞(Ω;Rn) + TV (ρo)

)
eCt . (4.29)

T is a Contraction. For any r1, r2 ∈ XR, denote for j = 1, 2, ρj = T (rj) and, correspondingly,
uij as in (4.23) for i = 1, . . . , n. Compute, thanks to (V) and (J),∥∥∥∇uij(t)∥∥∥

L∞(Ω;RN×N )
≤
∥∥∥∇xV i∥∥∥

L∞(Σt;RN×N )
+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇xJ irj(t)∥∥∥
L∞(Ω;Rm×N )

≤ V
(

1 +K
∥∥rj(t)∥∥L1(Ω;Rn)

)
≤ V (1 +KR)

≤ C

and ∥∥∥∇ div uij(t)
∥∥∥
L∞(Ω;RN )

≤
∥∥∥∇x div V i

∥∥∥
L∞(Σt;RN )

+

(∥∥∥∇w div V i
∥∥∥
L∞(Σt;Rm)

+
∥∥∥∇x∇wV i∥∥∥

L∞(Σt;RN×m×N )

)∥∥∥∇xJ irj(t)∥∥∥
L∞(Ω;Rm×N )

+
∥∥∥∇2

wV
i
∥∥∥
L∞(Σt;RN×m×m)

∥∥∥∇xJ irj(t)∥∥∥2

L∞(Ω;Rm×N )

+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇2
xJ irj(t)

∥∥∥
L∞(Ω;Rm×N×N )

≤ V
(

1 +K
∥∥rj(t)∥∥L1(Ω;Rn)

+K2
∥∥rj(t)∥∥2

L1(Ω;Rn)
+K

(∥∥rj(t)∥∥L1(Ω;Rn)

) ∥∥rj(t)∥∥L1(Ω;Rn)

)
≤ V

(
1 +KR+K2R2 +K(R) R

)
≤ C .

Furthermore, still using assumption (J), we have that, for all t ∈ I,∥∥∥(ui2 − ui1)(t)
∥∥∥
L∞(Ω;RN )

≤
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥J ir2(t)− J ir1(t)
∥∥∥
L∞(Ω;Rm)

≤ VK
∥∥r2(t)− r1(t)

∥∥
L1(Ω;Rn)

≤ C
∥∥r2(t)− r1(t)

∥∥
L1(Ω;Rn)

.∥∥∥div (ui2 − ui1)(t)
∥∥∥
L∞(Ω;R)

≤
∥∥∥∇w div V i

∥∥∥
L∞(Σt;Rm)

∥∥∥J ir2(t)− J ir1(t)
∥∥∥
L∞(Ω;Rm)

+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇xJ ir2(t)−∇xJ ir1(t)
∥∥∥
L∞(Ω;Rm×N )

≤ V
(
K +K

(∥∥r1(t)
∥∥
L1(Ω;Rn)

))∥∥r2(t)− r1(t)
∥∥
L1(Ω;Rn)

≤ C
∥∥r2(t)− r1(t)

∥∥
L1(Ω;Rn)

.

Therefore, for all t ∈ I, by Lemma 4.6, with obvious notation we have∥∥∥ρi2(t)− ρi1(t)
∥∥∥
L1(Ω;R)

≤ eκ(t)

∫ t

0

∥∥∥(ui2 − ui1)(s)
∥∥∥
L∞(Ω;RN )

ds

[
O(1)

∥∥∥ρio∥∥∥
L∞(Ω;R)

+ TV (ρio) + κ1(t)
∥∥∥ρio∥∥∥

L1(Ω;R)

]
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+
∥∥∥ρio∥∥∥

L1(Ω;R)

∫ t

0

∥∥∥div (ui2 − ui1)(s)
∥∥∥
L∞(Ω;R)

ds

≤ C t

[
eC t

(
O(1) ‖ρo‖L∞(Ω;Rn) + TV (ρo) + C t

)
+ C

]
‖r2 − r1‖L∞([0,t];L1(Ω;Rn))

≤ C t

[
eC t

(
C ‖ρo‖L∞(Ω;Rn) + TV (ρo) + C t

)
+ C

]
‖r2 − r1‖L∞([0,t];L1(Ω;Rn)) ,

We obtain that T is a contraction when restricted to the time interval [0, T1], with T1 such that

C T1

[
eC T1

(
C ‖ρo‖L∞(Ω;Rn) + TV (ρo) + C T1

)
+ C

]
=

1

2
. (4.30)

Existence of a solution on [0, T1]. By the steps above, there exists a fixed point ρ1 ∈ XR
for the map T defined in (4.21), restricted to functions defined on the time interval [0, T1]. By
construction, ρ1 solves (1.1) on the time interval [0, T1].

Existence of a solution on I. We consider two cases: I = R+ and I = [0, T ], for a fixed
positive T . If, in the second case, T1 ≥ sup I, the statement obviously holds. Otherwise, if
T1 < sup I, we extend ρ1 to I by iterating the procedure above.

Assume that the solution exists up to the time Tk−1 < sup I. Thanks to the bounds (4.25)
and (4.27), define recursively Tk so that

C (Tk − Tk−1)

[(
2C ‖ρo‖L∞(Ω;Rn) + TV (ρo) + C Tk−1

)
eC Tk

+C (Tk − Tk−1) eC (Tk−Tk−1) + C
]

=
1

2
.

(4.31)

Indeed, the above procedure ensures that there exists a fixed point for the map T defined in (4.21),
restricted to functions defined on the time interval [Tk−1, Tk]. If, in the case of the time interval
I = [0, T ], Tk ≥ sup I, the statement is proved. Otherwise, if we assume that the sequence (Tk)
remains less than sup I, it is in particular bounded. Hence, the left hand side of the relation above
tends to 0, while the right hand side is 1/2 > 0. Therefore, the sequence (Tk) is unbounded,
ensuring that, for k large, Tk is greater than sup I, thus the solution to (1.1) is defined on all I.

Bounds on the solution. The L1–bound follows immediately by the construction of the solu-
tion. By (4.25) we have∥∥∥ρi(t)∥∥∥

L∞(Ω;R)
≤
∥∥∥ρio∥∥∥

L∞(Ω;R)
exp

(
tV
(

1 +K
∥∥ρ(t)

∥∥
L1(Ω;Rn)

))
whence

∥∥ρ(t)
∥∥
L∞(Ω;Rn)

≤ ‖ρo‖L∞(Ω;Rn) exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))
.

Moreover, by (4.26)–(4.27)

TV
(
ρi(t)

)
≤ exp

(
tV
(

1 +K
∥∥ρ(t)

∥∥
L1(Ω;Rn)

))
×

(
O(1)

∥∥∥ρio∥∥∥
L∞(Ω;R)

+ TV
(
ρio

)
+ t
∥∥∥ρio∥∥∥

L1(Ω;R)
V

×
(

1+K
∥∥ρ(t)

∥∥
L1(Ω;Rn)

+K2
∥∥ρ(t)

∥∥2

L1(Ω;Rn)
+K

(∥∥ρ(t)
∥∥
L1(Ω;Rn)

)∥∥ρ(t)
∥∥
L1(Ω;Rn)

))
.

TV
(
ρ(t)

)
≤ exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))
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×

(
O(1)n ‖ρo‖L∞(Ω;Rn) + TV (ρo) + n t ‖ρo‖L1(Ω;Rn) V

×
(

1 +K ‖ρo‖L1(Ω;Rn) +K2‖ρo‖2L1(Ω;Rn) +K
(
‖ρo‖L1(Ω;Rn)

)
‖ρo‖L1(Ω;Rn)

))
,

concluding the proof of (2).

Lipschitz dependence on time. Apply (4.11) in Lemma 4.4 and the total variation estimate
obtained in the previous step: for any t, s ∈ I∥∥ρ(t)− ρ(s)

∥∥
L1(Ω;Rn)

≤ TV
(
ρ
(
max{t, s}

))
|t− s|.

Lipschitz dependence on the initial datum. Assume that I = [0, t], so that lim
k→+∞

Tk = t,

where Tk is defined recursively through (4.31), which can be rewritten as follows:

C (Tk − Tk−1)
[(

(2C + 1)R+ C Tk−1

)
eC Tk + C (Tk − Tk−1) eC (Tk−Tk−1) + C

]
=

1

2
, (4.32)

the constant C depending on the assumptions (Ω), (V), (J) and on R, which is now defined as

R = max
{
‖ρo‖L1(Ω;Rn), ‖ρ̃o‖L1(Ω;Rn), ‖ρo‖L∞(Ω;Rn), ‖ρ̃o‖L∞(Ω;Rn), TV (ρo), TV (ρ̃o)

}
.

To make evident the dependence of T on the initial datum, introduce the space

YR =
{
ρo ∈ (L∞ ∩BV)(Ω;Rn) : ‖ρo‖L1(Ω;Rn) ≤ R, ‖ρo‖L∞(Ω;Rn) ≤ R, TV (ρo) ≤ R

}
and slightly modify the map T to

T : XR × YR → XR
r, ρo → ρ

where ρ solves (4.22). The map T is a contraction in r ∈ XR, Lipschitz continuous in ρo ∈ YR,
when restricted to functions defined on each time interval [Tk, Tk+1]. In particular,∥∥T (r, ρ(Tk))− T (r̃, ρ̃(Tk))

∥∥
L∞([Tk,Tk+1];L1(Ω;Rn))

≤ 1

2
‖r − r̃‖L∞([Tk,Tk+1];L1(Ω;Rn)) +

∥∥ρ(Tk)− ρ̃(Tk)
∥∥
L1(Ω;Rn)

by (4.32) and (4.12). Hence,
∥∥ρ(Tk)− ρ̃(Tk)

∥∥
L1(Ω;Rn)

≤ 2
∥∥ρ(Tk−1)− ρ̃(Tk−1)

∥∥
L1(Ω;Rn)

, which

recursively yields
∥∥ρ(Tk)− ρ̃(Tk)

∥∥
L1(Ω;Rn)

≤ 2k ‖ρo − ρ̃o‖L1(Ω;Rn). The term in square brackets in

the left hand side of (4.32) is uniformly bounded in k by a positive constant, say, At. Therefore,

Tk ≥
1

2At C
+Tk−1 which recursively yields Tk ≥ k/(2At C) and k ≤ 2At C Tk < 2At C t, so that

∥∥ρ(t)− ρ̃(t)
∥∥
L1(Ω;Rn)

= lim
k→+∞

∥∥ρ(Tk)− ρ̃(Tk)
∥∥
L1(Ω;Rn)

≤ 22At C t ‖ρo − ρ̃o‖L1(Ω;Rn)

completing the proof of (4).
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Stability estimate. We aim to apply (4.14) in Lemma 4.6. Exploit the definition ui(t, x) =

V i
(
t, x,

(
J iρ(t)

)
(x)
)

and compute, thanks to (V) and (J):∥∥∥∇ui(t)∥∥∥
L∞(Ω;RN×N )

≤
∥∥∥∇xV i∥∥∥

L∞(Σt;RN×N )
+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇xJ iρ(t)
∥∥∥
L∞(Ω;Rm×N )

≤ V
(

1 +K
∥∥ρ(t)

∥∥
L1(Ω;Rn)

)
≤ V

(
1 +K ‖ρo‖L1(Ω;Rn)

)
and ∥∥∥∇div ui(t)

∥∥∥
L∞(Ω;RN )

≤
∥∥∥∇x div V i

∥∥∥
L∞(Σt;RN )

+

(∥∥∥∇w div V i
∥∥∥
L∞(Σt;Rm)

+
∥∥∥∇x∇wV i∥∥∥

L∞(Σt;RN×m×N )

)∥∥∥∇xJ iρ(t)
∥∥∥
L∞(Ω;Rm×N )

+
∥∥∥∇2

wV
i
∥∥∥
L∞(Σt;RN×m×m)

∥∥∥∇xJ iρ(t)
∥∥∥2

L∞(Ω;Rm×N )

+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇2
xJ iρ(t)

∥∥∥
L∞(Ω;Rm×N×N )

≤ V
(

1 +K
∥∥ρ(t)

∥∥
L1(Ω;Rn)

+K2
∥∥ρ(t)

∥∥2

L1(Ω;Rn)
+K

(∥∥ρ(t)
∥∥
L1(Ω;Rn)

) ∥∥ρ(t)
∥∥
L1(Ω;Rn)

)
≤ V

(
1 +

∥∥ρ(t)
∥∥
L1(Ω;Rn)

(
K +K2 ‖ρo‖L1(Ω;Rn) +K

(
‖ρo‖L1(Ω;Rn)

)))
,

and the same estimates hold for each ũi, defined by ũi(t, x) = Ṽ i
(
t, x,

(
J iρ̃(t)

)
(x)
)

.

Moreover, still by (V) and (J),∥∥∥(ui − ũi)(t)
∥∥∥
L∞(Ω;RN )

= ess sup
x∈Ω

∣∣∣∣∣V i
(
t, x,

(
J iρ(t)

)
(x)

)
− Ṽ i

(
t, x,

(
J iρ̃(t)

)
(x)

)∣∣∣∣∣
≤ ess sup

x∈Ω

∣∣∣∣∣V i
(
t, x,

(
J iρ(t)

)
(x)

)
− V i

(
t, x,

(
J iρ̃(t)

)
(x)

)∣∣∣∣∣
+ ess sup

x∈Ω

∣∣∣∣∣V i
(
t, x,

(
J iρ̃(t)

)
(x)

)
− Ṽ i

(
t, x,

(
J iρ̃(t)

)
(x)

)∣∣∣∣∣
≤
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥J iρ(t)− J iρ̃(t)
∥∥∥
L∞(Ω;Rm)

+
∥∥∥(V i − Ṽ i)(t)

∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN )

≤ VK
∥∥(ρ− ρ̃) (t)

∥∥
L1(Ω;Rn)

+
∥∥∥(V i − Ṽ i)(t)

∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN )

and ∥∥∥div (ui − ũi)(t)
∥∥∥
L∞(Ω;R)

≤ ess sup
x∈Ω

∣∣∣∣∣∣div

(
V i
(
t, x,

(
J iρ(t)

)
(x)

)
− Ṽ i

(
t, x,

(
J iρ̃(t)

)
(x)

))∣∣∣∣∣∣
+ ess sup

x∈Ω

∣∣∣∣∣∇wV i
(
t, x,

(
J iρ(t)

)
(x)

)
· ∇
(
J iρ(t)

)
(x)
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−∇wṼ i
(
t, x,

(
J iρ̃(t)

)
(x)

)
· ∇
(
J iρ̃(t)

)
(x)

∣∣∣∣∣
≤
∥∥∥∇w div V i

∥∥∥
L∞(Σt;Rm)

∥∥∥J iρ(t)− J iρ̃(t)
∥∥∥
L∞(Ω;Rm)

+

∥∥∥∥div
(
V i − Ṽ i

)
(t)

∥∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));R)

+
∥∥∥∇wV i∥∥∥

L∞(Σt;RN×m)

∥∥∥∇J iρ(t)−∇J iρ̃(t)
∥∥∥
L∞(Ω;Rm×N )

+
∥∥∥∇wV i(t)−∇wṼ i(t)∥∥∥

L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN×m)

∥∥∥∇J iρ̃(t)
∥∥∥
L∞(Ω;Rm×N )

≤ VK
∥∥(ρ− ρ̃) (t)

∥∥
L1(Ω;Rn)

+

∥∥∥∥div
(
V i − Ṽ i

)
(t)

∥∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));R)

+ V K
(
‖ρo‖L1(Ω;Rn)

)∥∥(ρ− ρ̃) (t)
∥∥
L1(Ω;Rn)

+K ‖ρo‖L1(Ω,Rn)

∥∥∥∥∇w (V i − Ṽ i) (t)

∥∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN×m)

.

Therefore, for all t ∈ I, by (4.14) in Lemma 4.6, we have∥∥∥ρi(t)− ρ̃i(t)∥∥∥
L1(Ω,R)

≤ exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))[
O(1)‖ρo‖L∞(Ω;Rn) + TV (ρo)

+ tV ‖ρo‖L1(Ω;Rn)

(
1 + ‖ρo‖L1(Ω;Rn)

(
K +K

(
‖ρo‖L1(Ω;Rn)

)
+K2 ‖ρo‖L1(Ω;Rn)

))]

×

(
VK

∫ t

0

∥∥ρ(s)− ρ̃(s)
∥∥
L1(Ω;Rn)

ds+

∫ t

0

∥∥∥(V i − Ṽ i)(s)
∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN )

ds

)

+ ‖ρo‖L1(Ω;Rn) V
(
K +K

(
‖ρo‖L1(Ω;Rn)

))∫ t

0

∥∥ρ(s)− ρ̃(s)
∥∥
L1(Ω;Rn)

ds

+ ‖ρo‖L1(Ω;Rn)

∫ t

0

∥∥∥∥div
(
V i − Ṽ i

)
(s)

∥∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));R)

ds

+K ‖ρo‖2L1(Ω;Rn)

∫ t

0

∥∥∥∥∇w (V i − Ṽ i) (s)

∥∥∥∥
L∞(Ω×B(0,K‖ρo‖L1(Ω;Rn));RN×m)

ds

≤ b(t)

∫ t

o

∥∥ρ(s)− ρ̃(s)
∥∥
L1(Ω;Rn)

ds+ c(t)

∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥
C1(Ω×B(0,K‖ρo‖L1(Ω;Rn));RnN )

ds ,

where we denote

a(t) = exp

(
tV
(

1 +K ‖ρo‖L1(Ω;Rn)

))[
O(1)‖ρo‖L∞(Ω;Rn) + TV (ρo)

+ tV ‖ρo‖L1(Ω;Rn)

(
1 + ‖ρo‖L1(Ω;Rn)

(
K +K

(
‖ρo‖L1(Ω;Rn)

)
+K2 ‖ρo‖L1(Ω;Rn)

))]

b(t) = VK a(t) + ‖ρo‖L1(Ω;Rn) V
(
K +K

(
‖ρo‖L1(Ω;Rn)

))
c(t) = a(t) + ‖ρo‖L1(Ω;Rn)

(
1 +K ‖ρo‖L1(Ω;Rn)

)
.
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Applying Gronwall Lemma to the resulting inequality

∥∥ρ(t)− ρ̃(t)
∥∥
L1(Ω,Rn)

≤ b(t)

∫ t

o

∥∥ρ(s)− ρ̃(s)
∥∥
L1(Ω;Rn)

ds

+ c(t)

∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥
C1(Ω×B(0,K‖ρo‖L1(Ω;Rn));RnN )

ds

yields

∥∥ρ(t)− ρ̃(t)
∥∥
L1(Ω;Rn)

≤ c(t)

∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥
C1(Ω×B(0,K‖ρo‖L1(Ω;R) );RnN )

ds

+ b(t) e
∫ t
0
b(s)ds

∫ t

0

c(s) e−
∫ s
0
b(τ)dτ ds .

Since e−
∫ t
0
b(τ)dτ + b(t)

∫ t
0
e−

∫ s
0
b(τ)dτ ds ≤ b(t)

b(0) we get

∥∥ρ(t)− ρ̃(t)
∥∥
L1(Ω;Rn)

≤ c(t) b(t)
b(0)

et b(t)
∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥
C1(Ω×B(0,K‖ρo‖L1(Ω;Rn));RnN )

ds (4.33)

completing the proof. �

5 Proofs Related to Section 3

Lemma 5.1. Let Ω and η satisfy (Ω) and (η), with rΩ ≤ `η/4. Then, the function z defined
in (3.2) satisfies:

(z.1) There exists a c ∈ ]0, 1[, depending only on Ω and on η, such that z(Ω) ⊆ [c, 1].

(z.2) z ∈ C2(Ω;R) and ∇z(x) =
∫

Ω
∇η(x− y) dy, ∇2z(x) =

∫
Ω
∇2η(x− y) dy.

(z.3) For all x ∈ Ω such that B(x, `η) ⊆ Ω, z(x) = 1.

Proof. Consider first (z.1). For all x ∈ Ω such that B(x, `η/2) ⊆ Ω, we have

z(x) =

∫
Ω

η(x− y) dy ≥
∫
B(x,`η/2)

η(x− y) dy ≥
∫
B(x,rΩ)

η(x− y) dy =

∫
B(0,rΩ)

η(−y) dy .

If on the other hand B(x, `η/2) is not contained in Ω, then there exists a ξ ∈ B(x, `η/2) ∩ ∂Ω.
Call xξ a point such that ξ ∈ ∂B(xξ, rΩ) and B(xξ, rΩ) ⊆ Ω, which exists by the interior sphere
condition, ensured by (η). Then, for all y ∈ B(xξ, rΩ), we have

‖y − x‖ ≤
∥∥y − xξ∥∥+

∥∥xξ − ξ∥∥+ ‖ξ − x‖ ≤ 2 rΩ +
1

2
`η ≤ `η

showing that B(xξ, rΩ) ⊆ B(x, `η), so that B(xξ − x, rΩ) ⊆ B(0, `η) and

z(x) =

∫
Ω

η(x− y) dy ≥
∫
B(xξ,rΩ)

η(x− y) dy =

∫
B(xξ−x,rΩ)

η(−y) dy .

In both cases, applying Weiestraß Theorem to the continuous map α→
∫
B(α,rΩ)

η(−y) dy, for all

x ∈ Ω we obtain

z(x) ≥ inf
α : B(α,rΩ)⊆B(0,`η)

∫
B(α,rΩ)

η(−y) dy

= inf
α∈B(0,`η−rΩ)

∫
B(α,rΩ)

η(−y) dy = min
α∈B(0,`η−rΩ)

∫
B(α,rΩ)

η(−y) dy .
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Define now c = minα∈B(0,`η−rΩ)

∫
B(α,rΩ)

η(−y) dy: note that this quantity is strictly positive and

strictly less than 1 by (η). The proof of (z.1) is completed.
The proof of (z.2) follows noting that z = χ

Ω
∗ η, applying the usual properties of the convo-

lution: ∇z = ∇(χ
Ω
∗ η) = χ

Ω
∗ ∇z and a similar computation yields ∇2z.

The property (z.3) is immediate. �

Proof of Lemma 3.1. The C2 regularity follows from the standard properties of the convolution
product and from Lemma 5.1. The lower and upper bounds on ρ ∗

Ω
η are immediate. For the

latter one, for instance, (ρ ∗
Ω
η)(x) ≤ 1

z(x)

(
ess supB(x,`η)∩Ω ρ

) ∫
Ω
η(x−y) dy = ess supB(x,`η)∩Ω ρ,

completing the proof. �

Proof of Lemma 3.2. With reference to the notation in Section 2, set N = 2, n = 1, m = 3.
Call i, respectively j, a unit vector directed along the x1, respectively x2, axis. Define

V (t, x,A) = v(A1)

(
w(x)− β A2 i+A3 j√

1 +A2
2 +A3

2

)
with J (ρ) =


ρ ∗

Ω
η1

∂1(ρ ∗
Ω
η2)

∂2(ρ ∗
Ω
η2)

 .
Clearly, V ∈ C2(Ω × R3;R2). The C2 boundedness of V follows from that of v, from that of w,
from that of the map (A2, A3)→ A2 i+A3 j√

1+A2
2+A3

2
and from the compactness of Ω. Hence, (V) holds.

Concerning (J), the C2 regularity follows from (η), from Lemma 5.1 and from the assumption
η2 ∈ C3. To prove (J.1), with the notation in Lemma 5.1, consider the different components of J
separately. Recall that z = χ

Ω
∗η and write the first component of J ρ as ρ ∗

Ω
η1 =

(
(ρχ

Ω
)∗η

)
/z:

‖ρ ∗
Ω
η1‖L∞(Ω;R) ≤

‖η1‖L∞(R2;R)

c
‖ρ‖L1(Ω;R)

∇(ρ ∗
Ω
η1) =

1

z

(
(ρχ

Ω
) ∗ ∇η1

)
−
χ

Ω
∗ ∇η1

z2

(
(ρχ

Ω
) ∗ η1

)
∥∥∇(ρ ∗

Ω
η1)
∥∥
L∞(Ω;R2)

≤

(
‖∇η1‖L∞(R2;R2)

c
+
‖∇η1‖L1(R2;R2) ‖η1‖L∞(R2;R)

c2

)
‖ρ‖L1(Ω;R)

∇2(ρ ∗
Ω
η1) =

1

z

(
(ρχ

Ω
) ∗ ∇2η1

)
− 2

χ
Ω
∗ ∇η1

z2

(
(ρχ

Ω
) ∗ ∇η1

)

−
(

(ρχ
Ω

) ∗ η1

)χΩ
∗ ∇2η1

z2
− 2

z3

(
χ

Ω
∗ ∇η1

)
⊗
(
χ

Ω
∗ ∇η1

)
∥∥∥∇2(ρ ∗

Ω
η1)
∥∥∥
L∞(Ω;R2×2)

≤

∥∥∇2η1

∥∥
L∞(R2;R2×2)

c
+
‖∇η1‖L1(R2;R2) ‖∇η1‖L∞(R2;R2)

c2

+
‖η1‖L∞(R2;R)

c2

∥∥∥∇2η1

∥∥∥
L1(R2;R2×2)

+
2‖∇η1‖2L1(R2;R2)

c


‖ρ‖L1(Ω;R).

The estimates of ∂j(ρ ∗Ωη2) and ∇∂j(ρ ∗Ωη2), for j = 1, 2, are entirely analogous. We only check

∇2∂j(ρ ∗Ωη2) =
1

z

(
(ρχ

Ω
) ∗ ∇2∂jη2

)
−
χ

Ω
∗ ∂jη2

z2

(
(ρχ

Ω
) ∗ ∇2η2

)
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− 2
χ

Ω
∗ ∇η2

z2

(
(ρχ

Ω
) ∗ ∇∂jη2

)
− 2

χ
Ω
∗ ∇∂jη2

z2

(
(ρχ

Ω
) ∗ ∇η2

)
+

4

z3

(
χ

Ω
∗ ∇η2

)(
χ

Ω
∗ ∂jη2

)(
(ρχ

Ω
) ∗ ∇η2

)

−
χ

Ω
∗ ∇2η2

z2

(
(ρχ

Ω
) ∗ ∂jη2

)
+

2

z3

(
χ

Ω
∗ ∇2η2

)(
χ

Ω
∗ ∂jη2

)(
(ρχ

Ω
) ∗ η2

)
−
χ

Ω
∗ ∇2∂jη2

z2

(
(ρχ

Ω
) ∗ η2

)
+

2

z3

(
χ

Ω
∗ ∇η2

)
⊗
(
χ

Ω
∗ ∇η2

)(
(ρχ

Ω
) ∗ ∂jη2

)
− 6

χ
Ω
∗ ∂jη2

z4

(
χ

Ω
∗ ∇η2

)
⊗
(
χ

Ω
∗ ∇η2

)(
(ρχ

Ω
) ∗ η2

)
+

4

z3

(
χ

Ω
∗ ∇η2

)(
χ

Ω
∗ ∇∂jη2

)(
(ρχ

Ω
) ∗ η2

)
∥∥∥∇2∂j(ρ ∗Ωη2)

∥∥∥
L∞(Ω;R2×2)

≤

∥∥∇2∂jη2

∥∥
L∞(R2;R2×2)

c
+

∥∥∂jη2

∥∥
L1(R2;R)

∥∥∇2η2

∥∥
L∞(R2;R2×2)

c2

+ 2
‖∇η2‖L1(R2;R2)

∥∥∇∂jη2

∥∥
L∞(R2;R2)

c2
+ 2

∥∥∇∂jη2

∥∥
L1(R2;R2)

‖∇η2‖L∞(R2;R2)

c2

+ 4
‖∇η2‖L1(R2;R2)

∥∥∂jη2

∥∥
L1(R2;R)

‖∇η2‖L∞(R2;R2)

c3
+

∥∥∇2η2

∥∥
L1(R2;R2×2)

∥∥∂jη2

∥∥
L∞(R2;R)

c2

+ 2

∥∥∇2η2

∥∥
L1(R2;R2×2)

∥∥∂jη2

∥∥
L1(R2;R)

‖η2‖L∞(R2;R)

c3
+

∥∥∇2∂jη2

∥∥
L1(R2;R2×2)

‖η2‖L∞(R2;R)

c2

+ 2
‖∇η2‖2L1(R2;R2)

∥∥∂jη2

∥∥
L∞(R2;R)

c3
+ 6

∥∥∂jη2

∥∥
L1(R2;R)

∥∥∇2η2

∥∥2

L1(R2;R2)
‖η2‖L∞(R2;R)

c4

+4
‖∇η2‖L1(R2;R2)

∥∥∇∂jη2

∥∥
L1(R2;R2)

‖η2‖L∞(R2;R)

c3

 ‖ρ‖L1(Ω;R).

Finally, (J.2) is now immediate thanks to the linearity of J . �

Proof of Lemma 3.3. Note that (3.5) fits into (1.1) setting N = 2, n = 2, m = 10 and

V 1(t, x,A) = v1(A1)

(
w1(x)− β11(A3i+A4j)√

1+A3
2+A4

2
− β12(A5i+A6j)√

1+A5
2+A6

2

)
,

V 2(t, x,A) = v2(A2)

(
w2(x)− β21(A7i+A8j)√

1+A7
2+A8

2
− β22(A9i+A10j)√

1+A9
2+A10

2

)
,

J (ρ)1 = (ρ1 + ρ2) ∗
Ω
η11

1 , J (ρ)3,4 = ∇x(ρ1 ∗Ωη
11
2 ) , J (ρ)5,6 = ∇x(ρ1 ∗Ωη

12
2 ) ,

J (ρ)2 = (ρ1 + ρ2) ∗
Ω
η22

1 , J (ρ)7,8 = ∇x(ρ1 ∗Ωη
21
2 ) , J (ρ)9,10 = ∇x(ρ1 ∗Ωη

22
2 ) ,

(5.1)

where ∇x = [∂1 ∂2]. The same computations as in the proof of Lemma 3.2 show that (V)
and (J) hold, completing the proof. �
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