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Abstract. When waves propagate through a strongly scattering medium the energy is transferred to the incoher-
ent wave part by scattering. The wave intensity then forms a random speckle pattern seemingly without much useful
information. However, a number of recent physical experiments show how one can extract useful information from
this speckle pattern. Here we present the mathematical analysis that explains the quite stunning performance of such
a scheme for speckle imaging. Our analysis identifies a scaling regime where the scheme works well. This regime
is the white-noise paraxial regime, which leads to the Itô-Schrödinger model for the wave amplitude. The results
presented in this paper conform with the sophisticated physical intuition that has motivated these schemes, but give
a more detailed characterization of the performance. The analysis gives a description of (i) the information that can
be extracted and with what resolution (ii) the statistical stability or signal-to-noise ratio with which the information
can be extracted.
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1. Introduction. In many contexts of wave propagation the medium is complex and
vary on multiple scales. This is the case for instance for the turbulent atmosphere, the fluc-
tuating ocean, the complex earth’s crust, and biological tissue. Due to small-scale scattering
the coherent or mean part of the wave can completely vanish, all energy is transferred to the
incoherent part, and the intensity of the transmitted wave then has the form of a speckle pat-
tern. In such situations imaging techniques based on using the coherent wave field indeed
fail. However, in the statistics of the complex speckle pattern there may be hidden useful
information.

A physical experiment showing how the speckle pattern can be exploited for imaging
through a complex medium is presented in [13] in the context of optics. A time-harmonic
point source transmits a wave which travels through a complex medium. The transmitted
intensity is recorded by a camera. It has the form of a speckle pattern because of scattering.
The autocorrelation of this speckle pattern is typically a sharply peaked function with the
peak radius being of the order of the correlation radius of the speckle pattern. Moreover, this
autocorrelation function is statistically stable (i.e., it does not depend on the realization of the
speckle pattern, but only on its statistics) if the averaging (when computing the autocorrela-
tion) takes place over many independent speckle spots, that is, if the camera is large compared
to the speckle size. Consider next another time-harmonic point source in the neighborhood
of the first point source. It generates another speckle pattern on the camera. However, by
the memory effect [5], this speckle pattern is essentially a shifted version of the first speckle
pattern, if the two source points are not too far from each other. Assume finally that we have
a spatially incoherent extended source, then only relatively small interference takes place
between the different speckle patterns, and the camera image is simply the superposition
of the different speckle patterns generated by the points in the source support. Within the
memory effect these speckle patterns are shifted versions of approximately the same speckle
pattern. Then in fact the speckle pattern associated with the incoherent extended source is
the convolution of the source pattern with the speckle pattern generated by one point source.
The autocorrelation function of the speckle pattern is then the autocorrelation function of the
speckle pattern generated by one point source convolved with the autocorrelation function
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of the source pattern. Since the autocorrelation function of the speckle pattern generated by
one point source is sharply peaked, this gives more or less the autocorrelation function of the
source pattern. As a result, this can be used to unravel the source pattern via a phase retrieval
step. The paper [13] elegantly presents this imaging scheme and physical results that show
that this process works very well.

The physical experiment that more directly motivates the analysis and modeling in this
paper is the one presented in [1]. Here, the set-up slightly differs from the one above. A
time-harmonic laser beam propagates through a scattering medium and illuminates an ob-
ject placed behind the medium. This object is fluorescent and reemits light at a different
frequency. The fluorescent light propagates through the random and the total intensity is
collected by a bucket detector. We remark that measuring the total, or spatially integrated,
intensity, gives a robust scheme. This is because the total intensity emitted by the fluorescent
object does not change during propagation through the medium which is assumed to be loss-
less. A sequence of measurements is generated by varying the incident angle for the probing
incoming beam. Based on these measurements the authors in [1, 2, 11] find that it is possible
to estimate the shape of the (2D) fluorescent object.

We remark that the physical phenomena behind the two experiments in [1] and [13] are
analogous. In both experiments the memory effect and rapid decorrelation of the speckle
pattern are exploited so that the autocorrelation of the observations essentially becomes the
autocorrelation of the object to be imaged. Forming the autocorrelation is very efficient in
mitigating the effects of the random medium. The experiments in [1] and [13] are however
different in that in [13] a “one shot” image is taken while the approach in [1] requires scanning
over incident angle.

The principle of speckle imaging is related to and can be seen as a further generaliza-
tion of techniques associated with refocusing problems [3, 16, 18, 21, 22]. In the refocusing
problem, phase conjugation or time reversal of waves lead to a sharp focusing at the original
source point and this mechanism is the same as the one giving a stable sharp empirical covari-
ance function for the speckle pattern in the above experiments in the situation with one point
source only. The experiment we model in this paper moreover bears similarities with ghost
imaging where also a bucket detector is used [6, 15, 20]. It is different from ghost imaging in
that the covariance of the bucket measurements themselves are computed, for different inci-
dent angles, rather than with respect to the measurements of a reference multi-element sensor
array that does not see the object.

The concept of refocusing and speckle imaging has recently received a lot of attention in
the physical literature and many experiments have been carried in the vein described above,
see for instance also [13, 14, 17, 23] and the review in [18]. Here we present a novel math-
ematical analysis that gives quantitative answers to questions about the performance of such
schemes based on modeling of the propagation phenomenon from first principles.

Associated with the physical experiments described above there are indeed several funda-
mental and important questions to answer from the mathematical viewpoint: (i) under which
scaling regime can we expect the above procedure to work well; (ii) what is the resolution
we can expect in the computed image, that is, what is the degree of blurring in the image;
(iii) what is the signal-to-noise ratio or relative amount of noise in the image. Below we
will give precise mathematical answer to these questions when we consider propagation in
the so called paraxial scintillation regime corresponding to high-frequency waves, long prop-
agation distances, and a beam radius larger than the correlation radius of the medium. In
particular regarding question (i) we remark that it is important for the scheme that we have
a strong memory effect. That is a source shift should give essentially only a shift in the gen-
erated speckle pattern. Regarding question (ii) we find that the fundamental resolution limit



3

of the procedure is limited by the characteristic speckle size. Moreover, regarding question
(iii) we find that a good signal-to-noise ratio essentially requires sampling over a broad cone
of incident angles for the incoming beam. These results are derived in Section 5.3 and we
summarize them in Section 6 giving a quantitative characterization of the performance of the
method.

The outline of the paper is as follows. In Section 2 we describe the experiment that
we want to model and which is motivated by the physical experiment in [1]. The quantity
measured in the experiment is the total wave intensity transmitted or reflected by the object
to be imaged as a function of source angle. The empirical covariance function (as a function
of the source angle) of these measurements is described in Section 3. In order to be able
to analyze this quantity of interest we must specify the regime of propagation and how the
speckle statistics can be described in this context. The main scaling configuration that we
consider is the paraxial or beam propagation regime described in Section 4. In particular
we model the fine-scale medium fluctuations as a random field. We give the Itô-Schrödinger
equation in Section 4.1 which was derived from the wave equation in [7]. This is a forward
or Markov approximation that describes how wave energy is transferred from the coherent
to the incoherent part as the wave propagates through the scattering medium. Scattering
produces a term in the Itô-Schrödinger equation that involves a Brownian field whose lateral
statistics is inherited from the statistics of the random medium. It is furthermore important
to note that the intensity is a quadratic quantity of the field and its covariance is, therefore, a
fourth-order moment of the field, that we need to characterize. Based on the Itô-Schrödinger
equation we can use Itô’s calculus to identify transport equations for all the moments of
the wave field, in particular the fourth-order moments. We can readily solve the equations
for the first-order and second moments, giving the mean and the covariance of the wave
field, but in the general paraxial regime we cannot solve the fourth-order moment equation
explicitly. However, in the paraxial scintillation regime, corresponding to the physical context
of scintillation that we want to capture, we can in fact do so explicitly [10]. The scintillation
regime corresponds to a secondary scaling limit associated with a beam whose radius is larger
than the correlation radius of the medium. We describe this regime and the associated fourth-
order moment characterization in Section 5. The fourth-order moment results presented in
Section 5.2 are new and capture the source configuration of interest with a varying incident
angle for the probing field. Then in Section 5.3 we derive the result that describes how the
object can be imaged from the measured total intensity covariance over incident angle. In
Section 6 we then summarize the main result. In particular we show how our mathematical
results can be given a physical interpretation. We also discuss how a strong memory effect,
which indeed is important for the procedure to work well, can be interpreted in terms of the
shower curtain effect. Finally we present concluding remarks in Section 7.

2. Physical configurations enabling speckle imaging. In this section we describe the
physical configuration which is motivated by the experiment in [1]. We consider and study
the following experiment (see Figure 2.1):
1) A mask (for instance, a double slit) is placed behind a scattering medium.
2) A laser beam with incident angle θ is shined on the scattering medium, whose transmitted
light produces a speckle pattern that illuminates the mask.
3) The total light Eθ transmitted through the mask (and through a second scattering medium
or not) is collected and measured by a bucket detector. The experiment is repeated for the
same medium, mask, and source, but with different incident angles θ. Our goal is to show that
the covariance function (in θ) of the measured transmitted light intensity Eθ is related to the
shape of the mask, moreover, how the mask can be recovered from the empirical covariance
function of the measurements.
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FIG. 2.1. The experimental imaging set-up. The source is time-harmonic. A mask is placed behind a scattering
medium. The total intensity of the light that goes through the mask is collected by a bucket detector (it may go through
a second scattering medium or not, as this does not affect the total transmitted intensity). For each incident angle θ
the total transmitted intensity is measured.

FIG. 2.2. The second experimental imaging set-up [1]. The source is time-harmonic. The object is fluorescent
and located behind a scattering medium. It reemits light at a frequency that is different from the one of the source.
For each incident angle θ the total fluorescent light is measured.

As indicated above, this experiment has some resemblance with other speckle intensity
correlation imaging methods [6, 13, 14, 15, 17, 20]. More precisely it is equivalent to (and
motivated by) a recent experiment reported in [1] (see Figure 2.2):
1) A fluorescent object is placed behind a scattering medium.
2) A laser beam with incident angle θ is shined on the scattering medium, whose transmitted
light produces a speckle pattern that illuminates the object.
3) The fluorescent light emitted by the object is transmitted through the same scattering
medium and the total amount Eθ of transmitted fluorescence is collected using a band-pass
filter (whose central frequency is the fluorescent frequency, which is different from the one
of the incoming laser beam) and measured by a bucket detector.
The experiment is repeated for the same medium, object, and source, but with different in-
cident angles θ. In practice, the change in the incident angle can be achieved by rotating
mirrors as described in [1] or by spatial light modulators. Mathematically, the expression
of the transmitted fluorescence is equal to the expression of the transmitted intensity in the
previous experiment. In [1] the speckle memory effect [5] is invoked to identify the relation
between the covariance function of the transmitted fluorescence and the fluorescent object
profile. Here we will carry out a detailed analysis to clarify under which circumstances one
can indeed image the object and which resolution one can anticipate. The analysis is based
on recent results on fourth-order moments for the random paraxial wave equation [10].

3. The measured intensity. The spatial variable is denoted by (x, z) ∈ Rd × R. The
source is time-harmonic and has the form of an extended beam going along an axis that makes
an angle θ ∈ Rd, such that |θ| ≤ 1 and (θ,

√
1− |θ|2) is the unit-vector that determines the
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direction of the beam axis. Its frequency is ω and its wavenumber ko = ω/co, with co the
background velocity:

Eθ(x, 0) = f(x) exp(ikoθ · x). (3.1)

At some point we will take the limit of a plane wave f(x) = 1 but we will carry out the
analysis with a general beam. The time-harmonic field in the plane of the mask is denoted
by Eθ(x, L+ L0), where L is the thickness of the scattering medium and L0 is the distance
from the scattering medium to the mask. The mask is characterized by a compactly supported
non-negative valued function U(x), the mask indicator function. The intensity measured by
the detector is

Eθ =

∫
Rd

|Eθ(x, L+ L0)|2U(x)dx. (3.2)

The covariance function of Eθ is our main quantity of interest. We will see that it allows us
to reconstruct U(x).

In the second experiment of [1], the object is characterized by a compactly supported
non-negative valued function U(x), the object’s fluorescence response, and the total fluores-
cence emitted by the object and measured by the detector is also equal to (3.2).

4. The white-noise paraxial model. The model for the time-harmonic field at the out-
put plane of the scattering medium is

Eθ(x, L) =

∫
Rd

ĝ
(
(x, L), (x′, 0)

)
Eθ(x′, 0)dx′, (4.1)

where Eθ(x, 0) is the incident field (3.1) and ĝ is the fundamental solution of the white-
noise paraxial wave equation which we describe in the next subsections. There should be an
additional factor exp(ikoL) in (4.1) but it does not play any role as we only record intensities.

The model for the time-harmonic field at the plane of the mask is

Eθ(x, L+ L0) =

∫
Rd

ĝ0

(
(x, L+ L0), (x′, L)

)
Eθ(x′, L)dx′, (4.2)

where Eθ(x, L) is the field (4.1) and ĝ0 is the fundamental solution of the homogeneous
paraxial wave equation (4.11).

4.1. The random paraxial wave equation. We consider the time-harmonic form of the
scalar wave equation

(∂2
z + ∆)E + k2

o

(
1 + µ(x, z)

)
E = 0, (4.3)

where ∆ is the transverse Laplacian (ie the Laplacian in x). Here µ is a zero-mean, stationary,
d+1-dimensional random process with mixing properties in the z-direction. The white-noise
paraxial regime is a regime in which the typical wavelength is much smaller than the initial
field radius and the correlation radius of the medium, which are themselves much smaller
than the propagation distance. In the special high-frequency regime

ko →
ko
δ4
, µ(x, z)→ δ3µ

( x
δ2
,
z

δ2

)
, (4.4)

the rescaled function φ̂δ defined by

Eδ(x, z) = exp
(
i
koz

δ4

)
φ̂δ
( x
δ2
, z
)

(4.5)
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satisfies

δ4∂2
z φ̂

δ +

(
2iko∂zφ̂

δ + ∆φ̂δ +
k2
o

δ
µ
(
x,

z

δ2

)
φ̂δ
)

= 0. (4.6)

The ansatz (4.5) corresponds to a plane wave with a slowly varying envelope. In the regime
δ � 1, it has been shown in [7] that the forward-scattering approximation and the white-
noise approximation are valid, which means that the second-order derivative in z in (4.6)
can be neglected and the random potential 1

δµ
(
x, zδ2

)
can be replaced by a white noise in z.

The mathematical statement is that the function φ̂δ(x, z) as δ → 0 converges weakly to the
solution φ̂(x, z) of the Itô-Schrödinger equation

2ikodzφ̂(x, z) + ∆φ̂(x, z)dz + k2
oφ̂(x, z) ◦ dB(x, z) = 0, (4.7)

where B(x, z) is a Brownian field, that is a Gaussian process with mean zero and covariance
function

E
[
B(x, z)B(x′, z′)

]
= γo(x− x′)

(
z ∧ z′

)
, (4.8)

with

γo(x) =

∫ ∞
−∞

E[µ(0, 0)µ(x, z)]dz. (4.9)

Here the ◦ stands for the Stratonovich stochastic integral.

4.2. The fundamental solution. The fundamental solution is defined as the solution of
the Itô-Schrödinger equation in (x, z):

2ikodz ĝ + ∆ĝdz + k2
o ĝ ◦ dB(x, z) = 0, (4.10)

starting from ĝ
(
(x, z = z0), (x′, z0)

)
= δ(x− x′). In a homogeneous medium (B ≡ 0) the

fundamental solution is (for z > z0)

ĝ0

(
(x, z), (x′, z0)

)
=
( ko

2iπ(z − z0)

)d/2
exp

(
i
ko|x− x′|2

2(z − z0)

)
. (4.11)

In a random medium, the first two moments of the random fundamental solution have the
following expressions.

PROPOSITION 4.1. The first order-moment of the random fundamental solution exhibits
damping (for z > z0):

E
[
ĝ
(
(x, z), (x′, z0)

)]
= ĝ0

(
(x, z), (x′, z0)

)
exp

(
− γo(0)k2

o(z − z0)

8

)
, (4.12)

where γo is given by (4.9).
The second order-moment of the random fundamental solution exhibits spatial decorre-

lation:

E
[
ĝ
(
(x1, z), (x

′, z0)
)
ĝ
(
(x2, z), (x′, z0)

)]
= ĝ0

(
(x1, z), (x

′, z0)
)
ĝ0

(
(x2, z), (x′, z0)

)
× exp

(
− γ2(x1 − x2)k2

o(z − z0)

4

)
, (4.13)
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where

γ2(x) =

∫ 1

0

γo(0)− γo(xs)ds. (4.14)

These are classical results (see [12, Chapter 20] and [8]) once the the random paraxial
equation has been proved to be correct, as is the case here.

The result on the first-order moment (Eq. (4.12)) allows us to identify the scattering
mean free path (the critical propagation distance through the random medium beyond which
the coherent or mean field vanishes):

`sca =
8

γo(0)k2
o

, (4.15)

It shows that any coherent wave imaging method cannot give good images if the propagation
distance is larger than the scattering mean free path because the coherent wave components
are then exponentially damped. This is the situation we have in mind in this paper.

The result on the second-order moment (Eq. (4.13)) shows that, in the strongly scattering
regime z − z0 � `sca, when γo can be expanded as

γo(x) = γo(0)− 1

2
γ̄2|x|2 + o(|x|2), (4.16)

then the correlation radius of the field is

Xc(z − z0) =

√
12√

γ̄2ko
√
z − z0

.

As seen in this formula, when the propagation distance z − z0 becomes very large, then the
correlation radius becomes of the order of the wavelength. This is the limit of validity of our
results, because when this happens, the random paraxial approximation is not valid anymore.
Therefore the paraxial distance `par such that koXc(`par) = 1 can be defined by

`par =
12

γ̄2
. (4.17)

In this paper we consider only propagation distances smaller than `par.
REMARK 4.1. If the autocovariance function of the medium fluctuations ν is of the form

E[ν(x, z)ν(x′, z′)] = σ2
medCmed(|x−x′|/`med, |z−z′|/`med), where `med is the correlation

radius of the medium and σ2
med is the relative standard deviation of its fluctuations, then

`sca ≈
λ2
o

σ2
med`med

, `par ≈
`med

σ2
.

In our scaling regime λo � `med so that `sca � `par.

4.3. The mean intensity. In our paper the first quantity of interest is the mean intensity

E[Eθ] =

∫
E
[
|Eθ(x, L+ L0)|2

]
U(x)dx. (4.18)

The mean Wigner transform is defined by

Wθ(x, ξ, z) :=

∫
Rd

exp
(
− iξ · q

)
E
[
Eθ
(
x+

q

2
, z
)
Eθ
(
x− q

2
, z
)]

dq, (4.19)



8

that is, it the angularly-resolved mean wave energy density, and it satisfies the closed system

∂Wθ

∂z
+

1

ko
ξ · ∇xWθ =

k2
o

4(2π)d

∫
Rd

γ̂0(k)
[
Wθ(ξ − k)−Wθ(ξ)

]
dk, (4.20)

starting from:

Wθ(x, ξ, 0) =

∫
Rd

exp
(
i(koθ · q − ξ · q)

)
f
(
x+

q

2

)
f
(
x− q

2

)
dq.

By taking a Fourier transform in x and an inverse Fourier transform in ξ of Eq. (4.20), we
obtain a transport equation that can be solved and we find the following integral representation
for Wθ:

Wθ(x, ξ, L+ L0) =
1

(2π)d

∫
Rd

exp
(
iζ ·

(
x− ξL+ L0

ko

)
− iξ · q

)
Ŵθ(ζ, q, 0)

× exp
(k2

o

4

∫ L

0

γo
(
q + ζ

z

ko

)
− γo(0)dz

)
dζdq, (4.21)

where Ŵθ(ζ, q, 0) is defined in terms of the initial field f as:

Ŵθ(ζ, q, 0) =

∫
Rd

exp
(
i(koθ · q − ζ · x)

)
f
(
x+

q

2

)
f
(
x− q

2

)
dx

=
1

(2π)d
eikoθ·q

∫
Rd

eik·q f̂
(
k +

ζ

2

)
f̂
(
k − ζ

2

)
dk. (4.22)

The mean intensity that illuminates the mask is therefore

E
[
Eθ(x, L+ L0)|2

]
=

1

(2π)d

∫
Rd

eiζ·xŴθ

(
ζ,−ζL+ L0

ko
, 0
)

× exp
(k2

o

4

∫ L

0

γo(−ζ
z + L0

ko
)− γo(0)dz

)
dζ, (4.23)

and the mean transmitted intensity is

E
[
Eθ] =

1

(2π)d

∫
Rd

Û(ζ)Ŵθ

(
ζ,−ζL+ L0

ko
, 0
)

× exp
(k2

o

4

∫ L

0

γo(−ζ
z + L0

ko
)− γo(0)dz

)
dζ. (4.24)

4.4. The intensity covariance function. In our paper the main quantity of interest is
the intensity covariance function

Cov(Eθ, Eθ′) =

∫∫
E
[
|Eθ(x, L+ L0)|2|Eθ′(x′, L+ L0)|2

]
U(x)U(x′)dxdx′

− E[Eθ]E[Eθ′ ]. (4.25)

We can write

E
[
|Eθ(x, L+ L0)|2|Eθ(x′, L+ L0)|2

]
=Mθθ′(x,x′,x,x′, L+ L0), (4.26)
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where the fourth-order momentMθθ′(x1,x2,y1,y2, z) is the solution of

∂Mθθ′

∂z
=

i

2ko

(
∆x1

+ ∆x2
−∆y1

−∆y2

)
Mθθ′ +

k2
o

4
U
(
x1,x2,y1,y2, z

)
M, (4.27)

Mθθ′(x1,x2,y1,y2, z = 0) = f(x1)f(y1)f(x2)f(y2)

× exp
(
ikoθ · (x1 − y1) + ikoθ

′ · (x2 − y2)
)
, (4.28)

where the generalized potential U is zero if z 6∈ [0, L] and

U
(
x1,x2,y1,y2, z

)
=

2∑
j,l=1

γo(xj − yl)− γo(x1 − x2)− γo(y1 − y2)− 2γo(0) , (4.29)

if z ∈ [0, L].
We parameterize the four points x1,x2,y1,y2 in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2

2
, (4.30)

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2

2
. (4.31)

We denote by µθθ′ the fourth-order moment in these new variables:

µθθ′(q1, q2, r1, r2, z) :=Mθθ′(x1,x2,y1,y2, z), (4.32)

with x1,x2,y1,y2 given by (4.30-4.31) in terms of q1, q2, r1, r2. The Fourier transform (in
q1, q2, r1, and r2) of the fourth-order moment is defined by:

µ̂θθ′(ξ1, ξ2, ζ1, ζ2, z) =

∫∫
µθθ′(q1, q2, r1, r2, z)

× exp
(
− iq1 · ξ1 − iq2 · ξ2 − ir1 · ζ1 − ir2 · ζ2

)
dq1dq2dr1dr2. (4.33)

It satisfies

∂µ̂θθ′

∂z
+

i

ko

(
ξ1 · ζ1 + ξ2 · ζ2

)
µ̂θθ′

=
k2
o

4(2π)d
1[0,L](z)

∫
Rd

γ̂0(k)
[
µ̂θθ′(ξ1 − k, ξ2 − k, ζ1, ζ2)

+ µ̂θθ′(ξ1 − k, ξ2, ζ1, ζ2 − k) + µ̂θθ′(ξ1 + k, ξ2 − k, ζ1, ζ2)

+ µ̂θθ′(ξ1 + k, ξ2, ζ1, ζ2 − k)− 2µ̂θθ′(ξ1, ξ2, ζ1, ζ2)

− µ̂θθ′(ξ1, ξ2 − k, ζ1, ζ2 − k)− µ̂θθ′(ξ1, ξ2 + k, ζ1, ζ2 − k)
]
dk, (4.34)

starting from

µ̂θθ′(ξ1, ξ2, ζ1, ζ2, z = 0) = f̂
(ξ1 + ξ2 + ζ1 + ζ2

2
− koθ

)
f̂
(ξ1 + ξ2 − ζ1 − ζ2

2
− koθ

)
× f̂

(ξ1 − ξ2 + ζ1 − ζ2

2
− koθ′

)
f̂
(ξ1 − ξ2 − ζ1 + ζ2

2
− koθ′

)
. (4.35)

The second moment of the intensity can be expressed in terms of µ̂ as

E
[
EθEθ′

]
=

1

(2π)4d

∫∫
µ̂θθ′(ξ1, ξ2, ζ1, ζ2, L+ L0)

× Û(ζ2 + ζ1)Û(ζ2 − ζ1)dξ1dξ2dζ1dζ2. (4.36)



10

No closed-form expression of the fourth-order moment of the field or of the second-order
moment of the intensity is available, but it is possible to get explicit expressions in the scin-
tillation regime, which corresponds to the case where the correlation radius of the medium is
smaller than the incident field radius.

5. The scintillation regime. The scintillation regime is valid if the (transverse) corre-
lation radius of the Brownian field (ie the transverse correlation radius of the medium fluc-
tuations) is smaller than the incident field radius. We moreover assume that the standard
deviation of the Brownian field is small and that the propagation distance is large. If the
correlation radius of the medium is our reference length, this means that in this regime the
covariance function γεo is of the form:

γεo(x) = εγo(x), (5.1)

the incident field radius is of order 1/ε and the angle is small, i.e. of order one, so that the
incident field is of the form

Eεθ(x, 0) = f(εx) exp(ikoθ · x), (5.2)

the mask is small, i.e. its radius is of order one, so that the mask indicator function is of the
form

Uε(x) = U(x), (5.3)

and the propagation distance is of order of 1/ε :

Lε =
L

ε
, Lε0 =

L0

ε
. (5.4)

Here ε is a small dimensionless parameter and we will study the limit ε → 0. Note that this
problem was analyzed in [10] when θ = 0 and f has a Gaussian profile. The forthcoming
proposition 5.1 is an extension of this original result.

5.1. The fourth-order moments. Let us denote the rescaled function

µ̃εθθ′(ξ1, ξ2, ζ1, ζ2, z) := µ̂θθ′

(
ξ1, ξ2, ζ1, ζ2,

z

ε

)
exp

( iz
koε

(ξ2 · ζ2 + ξ1 · ζ1)
)
. (5.5)

Our goal is to study the asymptotic behavior of µ̃εθθ′ as ε→ 0. We have the following result,
which shows that µ̃εθθ′ exhibits a multi-scale behavior as ε → 0, with some components
evolving at the scale ε and some components evolving at the order one scale. The proof is
similar to the one of Proposition 1 in [10], but with a general incident field profile instead of
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a Gaussian one.
PROPOSITION 5.1. If γo ∈ L1(Rd) and γo(0) <∞, then the function µ̃εθθ′(ξ1, ξ2, ζ1, ζ2, z)

for z ≥ L can be expanded as

µ̃εθθ′(ξ1, ξ2, ζ1, ζ2, z) =
K(L)

ε4d
f̂
(ξ1 + ξ2 + ζ1 + ζ2

2ε
− koθ

)
f̂
(ξ1 + ξ2 − ζ1 − ζ2

2ε
− koθ

)
×f̂
(ξ1 − ξ2 + ζ1 − ζ2

2ε
− koθ′

)
f̂
(ξ1 − ξ2 − ζ1 + ζ2

2ε
− koθ′

)
+
K(L)

ε3d
f̂
(ξ1 − ξ2 + ζ1 − ζ2

2ε
− koθ′

)
f̂
(ξ1 − ξ2 − ζ1 + ζ2

2ε
− koθ′

)
×f̂1

(ζ2 + ζ1

ε

)
A
(ξ2 + ξ1

2
,
ζ2 + ζ1

ε
, L
)

+
K(L)

ε3d
f̂
(ξ1 + ξ2 + ζ1 + ζ2

2ε
− koθ

)
f̂
(ξ1 + ξ2 − ζ1 − ζ2

2ε
− koθ

)
×f̂1

(ζ2 − ζ1

ε

)
A
(ξ2 − ξ1

2
,
ζ2 − ζ1

ε
, L
)

+
K(L)

ε3d
f̂
(ξ1 − ζ2 + ζ1 − ξ2

2ε
− koθ′

)
f̂
(ξ1 − ζ2 − ζ1 + ξ2

2ε
− koθ

)
×f̂1

(ξ2 + ζ1

ε
− ko(θ′ − θ)

)
A
(ζ2 + ξ1

2
,
ξ2 + ζ1

ε
, L
)

+
K(L)

ε3d
f̂
(ξ1 + ξ2 + ζ1 + ζ2

2ε
− koθ

)
f̂
(ξ1 − ξ2 − ζ1 + ζ2

2ε
− koθ′

)
×f̂1

(ξ2 − ζ1

ε
− ko(θ′ − θ)

)
A
(ζ2 − ξ1

2
,
ξ2 − ζ1

ε
, L
)

+
K(L)

ε2d
f̂1

(ζ2 + ζ1

ε

)
f̂1

(ζ2 − ζ1

ε

)
×A
(ξ2 + ξ1

2
,
ζ2 + ζ1

ε
, L
)
A
(ξ2 − ξ1

2
,
ζ2 − ζ1

ε
, L
)

+
K(L)

ε2d
f̂1

(ξ2 + ζ1

ε
+ ko(θ

′ − θ)
)
f̂1

(ξ2 − ζ1

ε
+ ko(θ

′ − θ)
)

×A
(ζ2 + ξ1

2
,
ξ2 + ζ1

ε
, L
)
A
(ζ2 − ξ1

2
,
ξ2 − ζ1

ε
, L
)

+Rε(ξ1, ξ2, ζ1, ζ2, L), (5.6)

where the functions K and A are defined by

K(z) := exp
(
− k2

o

2
γo(0)z

)
, (5.7)

A(ξ, ζ, z) :=
1

(2π)d

∫ [
exp

(k2
o

4

∫ z

0

γo
(
x+

ζ

ko
z′
)
dz′
)
− 1
]

× exp
(
− iξ · x

)
dx, (5.8)

the function f̂1 is

f̂1(ζ) =

∫
Rd

f̂
(
k +

ζ

2

)
f̂
(
k − ζ

2

)
dk, (5.9)

and the function Rε satisfies

‖Rε(·, ·, ·, ·, L)‖L1(Rd×Rd×Rd×Rd)
ε→0−→ 0.

Note that all terms in the expansion (except the remainder Rε) have L1-norms of order one
when ε→ 0.
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5.2. The intensity covariance function. In the scintillation regime, we find from (4.24)
that the mean intensity is

E
[
Eθ] =

1

(2π)2d

∫
Rd

f̂1(ζ) exp
(k2

o

4

∫ L

0

γo(−ζ
z + L0

ko
)− γo(0)dz

)
dζ Û(0), (5.10)

which is independent of θ. We get from (4.36), (5.5), and Proposition 5.1 that the covariance
function is of the form

Cov(Eθ, Eθ′)

=
1

(2π)5d

∫∫ ∣∣∣ ∫
Rd

f̂1

(
ζ + ko(θ

′ − θ)
)

exp
(k2

o

4

∫ L

0

γo(x− ζ
z + L0

ko
)dz
)

dζ
∣∣∣2

× e−ix·ξ|Û(ξ)|2dξdx exp
(
− k2

oγo(0)L

2

)
− 1

(2π)4d

∣∣∣ ∫
Rd

f̂1

(
ζ
)
dζ
∣∣∣2|Û(0)|2 exp

(
− k2

oγo(0)L

2

)
, (5.11)

which is a function of θ′ − θ only. Accordingly, we denote

C(θ) := Cov(E0, Eθ) = Cov(Eθ′ , Eθ′+θ). (5.12)

If we assume that the source is a plane wave, so that f(x) = 1 and f̂1(ζ) = (2π)2dδ(ζ), then
we get

E
[
Eθ] = Û(0) =

∫
Rd

U(x)dx, (5.13)

and

C(θ) =
1

(2π)d

∫∫
exp

(k2
o

2

∫ L

0

γo
(
x+ θ(z + L0)

)
dz
)
e−ix·ξ|Û(ξ)|2dξdx

× exp
(
− k2

oγo(0)L

2

)
− |Û(0)|2 exp

(
− k2

oγo(0)L

2

)
. (5.14)

In fact, Eqs. (5.13) and (5.14) hold not only for plane waves, but for any illumination with
uniform intensity because f̂1(ζ) = (2π)2dδ(ζ) if and only if |f(x)| = 1 for all x.

The expression (5.14) of the intensity covariance function C(θ) is valid whatever the
value of L/`sca. In the strongly scattering regime, ie when the thickness of the scattering
medium is larger than the scattering mean free path L/`sca � 1, and if the function γo can
be expanded as (4.16), then the intensity covariance function C(θ) is

C(θ) =
1

(πk2
o γ̄2L)d/2

∫
Rd

|Û(ξ)|2 exp
(
iξ · θ(

L

2
+ L0)

)
× exp

(
− |ξ|2

k2
o γ̄2L

− k2
o γ̄2L

3

48
|θ|2

)
dξ. (5.15)

We introduce `0 the distance from the center of the scattering medium to the mask:

`0 = L0 +
L

2
. (5.16)
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It is shown in [9, Proposition 6.3] that

ρL :=
2√
k2
o γ̄2L

(5.17)

is the correlation radius of the speckle pattern transmitted at z = L. In other words, the mask
is illuminated by a speckle pattern with speckle radius ρL. We therefore anticipate that the
resolution of the image cannot be better than ρL, and in fact it will turn out to be given by this
length.

Using (5.16) and (5.17) we can rewrite (5.15) as

C(θ) =
ρdL

(4π)d/2

∫
Rd

|Û(ξ)|2 exp
(
iξ · θ`0

)
exp

(
− ρ2

L|ξ|2

4
− L2

12ρ2
L

|θ|2
)

dξ. (5.18)

This shows that the intensity covariance C(θ) has the form of a peak centered at θ = 0 whose
amplitude is

C(0) = Var(Eθ) =
ρdL

(4π)d/2

∫
Rd

|Û(ξ)|2 exp
(
− ρ2

L|ξ|2

4

)
dξ. (5.19)

The width ∆θL of this peak is determined by the Gaussian in θ and also by the Fourier
transform in ξ in (5.18). If the radius of the mask is of the order of RU , then its Fourier
transform is of radius of the order of 1/RU and therefore the width of the covariance function
is of the order of

∆θL =

√
R2
U + ρ2

L

`0
. (5.20)

5.3. Extraction of the mask indicator function. If we measure Eθ for a quasi-continuum
of θ in the domain Θ, then we can extract the empirical intensity covariance function

Cemp(θ) = 〈Eθ′Eθ′+θ〉θ′ − 〈Eθ′〉2θ′ , (5.21)

where 〈·〉θ′ stands for an average in θ′:

〈F (θ′)〉θ′ =
1

|Θ|

∫
Θ

F (θ′)dθ′.

Note that the term 〈Eθ′Eθ′+θ〉θ′ has the form of an intensity autocorrelation. Self-averaging
(i.e. the fact that the empirical average is equal to the statistical expectation) is ensured
provided the average in θ′ is carried out over a domain Θ that is large enough, ie a domain
whose diameter DΘ is larger than ∆θL so that many speckle spots in θ are integrated. Then
we have

Cemp(θ) = C(θ), (5.22)

where C(θ) is the statistical intensity covariance function introduced in (5.12). The self-
averaging is efficient if the peak in the second moment of the intensity 〈Eθ′Eθ′+θ〉θ′ emerges
from the background and its fluctuations. The background is the square mean intensity
E[Eθ]2 = |Û(0)|2, and its fluctuations are of order |Û(0)|2/

√
M where M is the number

of speckle spots recorded in the domain Θ, which is of the order of (DΘ/∆θL)d. The am-
plitude of the main peak is the mean square intensity E[E2

θ ] = Var(Eθ) + |Û(0)|2, with
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Var(Eθ) ' [ρ2
L/(R

2
U + ρ2

L)]d/2|Û(0)|2 by (5.19). Therefore the main peak can be extracted
if Var(Eθ)� |Û(0)|2/

√
M , or equivalently, ρ2

L/(R
2
U + ρ2

L)� ∆θL/DΘ, that is to say, if

DΘ �
(R2

U + ρ2
L)3/2

ρ2
L`0

. (5.23)

This condition means that we cannot image masks that are too large. If the mask is large
then there are many speckle spots (with radius ρL) within the support of the mask indicator
function and the peak in the transmitted covariance function relative to the background, that
is Var(Eθ)/|Û(0)|2 ' [ρ2

L/(R
2
U + ρ2

L)]d/2, becomes small; moreover, the width of the trans-
mitted covariance function, that is ∆θL in Eq. (5.20), becomes large, so the fluctuations of
the background becomes large. Thus, with a large mask the averaging in Eq. (5.21) becomes
less efficient and the signal-to-noise ratio becomes low.

From (5.18), we find that the Fourier transform of C(θ), which is the power spectral
density of the stationary random process Eθ by Bochner’s theorem, which is nonnegative,
moreover, is of the form

Ĉ(ψ) :=

∫
Rd

C(θ)eiψ·θdθ

=
(12)d/2ρdL

Ld

∫
Rd

|Û(ξ)|2 exp
(
− ρ2

L|ξ|2

4

)
exp

(
− 3ρ2

L`
2
0

L2

∣∣ξ − ψ
`0

∣∣2)dξ. (5.24)

If we introduce

RL :=

√
3`0ρL
L

, (5.25)

then the observed power spectral density can be written as

Ĉ
(
`0k
)

=
(12)d/2ρdL

Ld

∫
Rd

|Û(ξ)|2 exp
(
− ρ2

L|ξ|2

4

)
exp

(
−R2

L|ξ − k|2
)
dξ. (5.26)

If we know the thickness of the scattering medium L and the distance `0, then this shows
that we can extract |Û(ξ)| for spatial wavevectors ξ with modulus smaller than 2/ρL, and on
a grid of wavevectors with grid step 1/RL. Indeed the damping by the exponential

exp
(
− ρ2

L|ξ|2

4

)
,

limits the resolution to the scale of the speckle pattern, the scale ρL, while the convolution by
the exponential

exp
(
−R2

L|ξ|2
)
,

limits the maximum radius of the object that can be imaged to RL due to the finite range of
the memory effect. If we do not know these distances, then we can still extract |Û(ξ)| on a
grid that is known up to multiplicative factor. As a consequence, we will be able to get the
shape of the mask, but up to a dilation. However, a very interesting point is that one can get
an image of the mask whatever its range.

If the mask is close to the scattering medium L0 = 0, or even embedded in it, then we
can hardly get any image at all as 1/RL = 2/(

√
3ρL). If the mask is far from the scattering

medium (far in the sense that the distance L0 from the scattering medium to the mask is
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larger than the thickness L of the scattering medium), then the grid of wavevectors is rich (it
contains (2RL/ρL)d ' (2

√
3L0/L)d wavevectors) and we can get detailed information on

|Û(ξ)| for |ξ| smaller than 2/ρL.
Finally, since we know the phase of U(x) (it is a non-negative function so the phase is

zero), it is possible to apply a phase-retrieval algorithm to extract the profile of U(x) from
the modulus of its Fourier transform, for instance using a Gerchberg-Saxon-type iterative
algorithm [4]. The resolution of the extraction will be of the order of ρL. In other words, we
can image the mask with a resolution of the order of ρL. The mask should not be too large so
as to satisfy (5.23): R3

U � DΘρ
2
L`0.

6. Summary of the main results. We summarize the steps taken to get the image of the
mask. First recall the configuration in Figure 2.1. A time-harmonic source emits a probing
quasi plane-wave coming from the left and hits a mask after propagating through the medium.
Then the total transmitted intensity is measured, that is

Eθ =

∫
Rd

|Eθ(x, L+ L0)|2U(x)dx, (6.1)

for Eθ(x, L+ L0) the probing time-harmonic field at the mask and θ the incident angle. On
the one hand, we form the empirical intensity covariance function Cemp(θ) by evaluating the
autocorrelation in (5.21). On the other hand, we model the complex or random section as a
random medium. The statistical intensity covariance function is then of the form

Cov(Eθ, Eθ′) =

∫∫
E
[
|Eθ(x, L+ L0)|2|Eθ′(x′, L+ L0)|2

]
U(x)U(x′)dxdx′

− E[Eθ]E[Eθ′ ]. (6.2)

We moreover consider a propagation regime corresponding to paraxial waves, that is, we
assume that the wavelength associated with the probing frequency is small compared to the
correlation radius of the medium, which in turn is small compared to the thickness of the ran-
dom section. Furthermore, we consider the scintillation regime associated with the paraxial
wave equation corresponding to an incoming quasi plane-wave. Then the statistical covari-
ance function for incident angles θ,θ′ is

Cov(Eθ, Eθ′) =
1

(2π)d

∫∫
exp

(k2
o

2

∫ L

0

γo
(
x+ (θ′ − θ)(z + L0)

)
dz
)
e−ix·ξ|Û(ξ)|2dξdx

× exp
(
− k2

oγo(0)L

2

)
− |Û(0)|2 exp

(
− k2

oγo(0)L

2

)
. (6.3)

Here, L is the thickness of the random section, L0 is the distance from the random section
to the hidden mask, ko = ω/co is the wavenumber for co the background speed, γo is the
lateral covariance function of the medium fluctuations (the medium covariance function in-
tegrated with respect to the range coordinate, see Eq. (4.9)) and U is the mask with Fourier
transform Û .

It turns out that the statistical intensity covariance function depends only the angle dif-
ference θ′− θ, and the mean intensity is constant. This means that we can view Eθ as a wide
sense stationary field in θ and we can denote

C(θ) = Cov(E0, Eθ) = Cov(Eθ′ , Eθ′+θ).
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Several questions then need to be answered: (i) how close is the empirical covariance
function Cemp(θ) to the statistical covariance function C(θ); (ii) how can we unravel the
shape of the mask U from the empirical covariance and with what resolution?

We can answer these questions when the medium fluctuations are smooth so that γo
also is smooth, moreover, when the random section is relatively thick so that k2

oγo(0)L �
1. Albeit, corresponding to stronger assumptions, this context allows us to get explicit and
simple answers to the above questions. Note first that the thickness of the random section L
is large compared to the scattering mean free path, so that the coherent field, corresponding to
the second term in the right-hand side of Eq. (6.3), can be ignored as it is vanishingly small.
We then find that the statistical intensity covariance function C(θ) becomes

C(θ) =
ρdL

(4π)d/2

∫
Rd

|Û(ξ)|2 exp
(
iξ · θ`0

)
exp

(
− ρ2

L|ξ|2

4
− L2

12ρ2
L

|θ|2
)

dξ, (6.4)

where ρL is the correlation radius of the speckle pattern at depth z = L:

ρL :=
2√
k2
o γ̄2L

, (6.5)

and γ̄2 is defined in Eq. (4.16) and is a measure of the strength of the medium fluctuations.
We can write this as

C(θ) =
(

(U ? U) ∗ SρL/√2

)
(θ`o) exp

(
− L2

12ρ2
L

|θ|2
)
, (6.6)

where Sσ is the Gaussian density with mean zero and standard deviation σ, the symbol ∗
denotes the convolution operation, and the symbol ? denotes the autocorrelation operation:

f ∗ g(θ) =

∫
f(θ′)g(θ − θ′)dθ′, f ? f(θ) =

∫
f(θ′)f(θ + θ′)dθ′.

Note that the convolution with the Gaussian gives a smoothing of the data on the resolution
scale ρL while the damping by the last exponential term means that the size of the mask
cannot be too large because the memory effect is then not valid. Explicitly this last condition
means that we must have

RU < ρL

(
1 + 2

L0

L

)
, (6.7)

for RU the radius of the mask. We see, therefore, that for the scheme to work well we need
the distance from the random section to the mask to be large relative to the thickness of the
random section. Consequently, with the thickness of the random section being fixed, it is
better that the random section is located closer to the source. Then the scale of the mask that
can be imaged within the memory angular aperture is larger. This is indeed a type of shower
curtain effect [12].

We remark moreover that according to the physical arguments discussed in [1, 13] we
should have for the recorded total intensity as a function of incident angle

Eθ ' (U ∗ S) (θ),

up to a dilation and scaling, where the speckle pattern S is common for the different probing
angles θ due to the memory effect. We then get for the empirical intensity autocorrelation
function

E ? E = (U ∗ S) ? (U ∗ S) = (U ? U) ∗ (S ? S) ' (U ? U) ∗ E (S ? S) ,
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where, in the last approximation, we mean that the relative fluctuations in the autocorrelation
of the speckle pattern S is small because its correlation radius is small. We see that this
conforms with the result in Eq. (6.6) for SρL/2 replaced by E (S ? S).

The question (i) posed above still remains. To what extent will the empirical covariance
function of the total intensity, that is the covariance estimated from real data, be a good
approximation for C(θ) ? In the regime of deep probing we obtain the empirical covariance
function via averaging over angles as in Eq. (5.21). For statistical stability we need that
this averaging takes place over many speckle spots and for this we need the condition in Eq.
(5.23) to be fulfilled, which means that the size of the mask cannot be too large for statistical
stability. In [1] it was numerically checked that the signal-to-noise ratio is proportional to the
square root of the number of speckle spots included in the scanned range. Such a behavior
regarding the signal-to-noise ratio was also observed empirically in [19]. We remark also that
in [1] the authors found it experimentally convenient, in view of long scan times, to make a
number of non-overlapping scans and average their covariances rather than taking one large
scan.

Finally, in order to recover U from an estimate of U ? U one can apply a phase retrieval
algorithm as discussed in Section 5.3. Note moreover that in view of Eq. (6.6) we find that
if `0 is known we can estimate the shape of the mask while if this parameter is unknown we
can estimate the shape only up to a dilation.

7. Conclusions. We have considered imaging of a mask hidden behind a scattering
medium via forming the covariance function of the total transmitted intensity with respect
to the incident angle of the probing beam. This procedure serves to stabilize the effect of the
random medium. The physical picture is that, due to the memory effect, the speckle pattern
illuminating the mask is approximately the same one, but it is shifted for different incident
angles, within the memory range. The empirical covariance function is then essentially the
autocorrelation of the mask convolved with the autocorrelation of this approximately invari-
ant speckle pattern. The autocorrelation function of this speckle pattern is a sharply peaked
statistically stable function because its correlation radius is small.

Our mathematical analysis gives a more general description of the empirical covariance
function than the one just described based on physical arguments. We obtain a corrected
expression for the intensity covariance function and explicit expressions for the resolution and
the signal-to-noise ratio. We explain how they relate to the configurational parameters and
we clarify the role of the memory effect. We remark that, in the appropriate limit, explicitly
articulated here, the above description based on physical arguments gives the correct picture.

We show that the resolution or blurring scale associated with the convolution by the
autocorrelation of the speckle pattern is the correlation radius of the speckle pattern. We give
an explicit condition regarding the sampling over incident angle for the empirical covariance
function to be statistically stable and have a high signal-to-noise ratio; this condition means
that the mask cannot be too large. The size of the mask that can be imaged is also limited by
the memory effect. We give an explicit bound on the size of the mask so that one stays within
the memory effect of the configuration.

As a result, the empirical intensity covariance function over incident angle is a (blurred)
version of the autocorrelation of the mask. The mask itself can then be estimated via a
phase retrieval algorithm. We do not consider this step here, however, this step has been
implemented in the various physical experiments regarding speckle imaging.

We remark that the same analysis applies when a mask is wedged in between two random
sections and the total transmitted intensity is measured. This is because the total transmitted
intensity is measured and the medium is lossless, so that the random section after the mask
plays no role in either case.
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Recall also that our analytic expression for the covariance function of the transmitted
intensity in Eq. (6.1) is more general than the standard one derived from physical arguments
which corresponds to the description in Eq. (6.6). Thus, the more general expression, based
on weaker assumptions, could potentially form the basis for an iterative image enhancement
procedure when one is not deep into the scintillation regime. Moreover, the more general
expression gives insight about for which experimental configuration the conventional speckle
imaging procedure works well, respectively not so well.

Finally, recall that we have considered the scintillation regime in which the incoming
beam radius is large relative to the correlation radius of the scattering medium. In the spot-
dancing regime the incoming beam radius is small relative to the correlation radius of the
scattering medium, and the analysis shows that the beam is essentially subjected to a ran-
dom displacement [9], but does not form a speckle pattern which is the basis for the speckle
imaging approach. Thus the proposed approach for imaging does not work well in the spot-
dancing regime.
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