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Abstract

In this paper, we present a generalisation of the Multilevel Monte Carlo (MLMC) method
to a setting where the level parameter is a continuous variable. This Continuous Level
Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt
the model hierarchy to each sample. In addition, it can be made unbiased with respect
to the expected value of the true quantity of interest provided the quantity of interest
converges sufficiently fast. The practical implementation of the CLMC estimator is based on
interpolating actual evaluations of the quantity of interest at a finite number of resolutions.
As our new level parameter, we use the logarithm of a goal-oriented finite element error
estimator for the accuracy of the quantity of interest. We prove the unbiasedness, as well as a
complexity theorem that shows the same rate of complexity for CLMC as for MLMC. Finally,
we provide some numerical evidence to support our theoretical results, by successfully testing
CLMC on a standard PDE test problem. The numerical experiments demonstrate clear gains
for sample-wise adaptive refinement strategies over uniform refinements.

1 Introduction

No matter whether epistemic or aleatoric, known unknown or unknown unknown, uncertainty
plays a fundamental role in any real life situation. Its quantification is becoming an object of
interest for ever more complex problems, where accurate solutions require huge computational
costs. A lot of methods have been proposed in the last decade that aim to reduce this cost with-
out affecting the accuracy. Among others, multilevel techniques conquered the scene arising in
a multitude of algorithms, all following the pioneering work on multilevel Monte Carlo (MLMC)
by Giles [9] and the earlier paper by Heinrich [13] (see also [8, 4] and references therein). In
general, multilevel techniques aim to accelerate inference by exploiting a hierarchy of models
with different levels of accuracy. By combining estimates from all the models in a telescoping
sum, the computational cost is shifted towards the bottom (cheap and inaccurate) end of the
hierarchy, while maintaining the accuracy of the top (expensive and high resolution) end.

Since the initial work on MLMC, several techniques have been employed to exploit model
structures even further with considerable savings in computational cost. An important step
forward was the introduction of adaptive multilevel Monte Carlo (AMLMC) [14], where error
estimates and adaptive refinement strategies are exploited to increase the accuracy only where
needed (see also [8, 7, 15] in the context of PDEs). In contrast to the majority of the literature
on MLMC, which is based on uniform refinements, AMLMC is able to deal with problems with
very localised sample-dependent noise or quantities of interest, avoiding excessive computational
cost by refining the models only where necessary and, in general, differently for each sample.

A second important step forward was the introduction of an MLMC estimator that is un-
biased with respect to the real quantity of interest [18] (see also [16, 21]). In most problems of
consideration, the quantity of interest is a functional of the solution of an inaccessible, infinite-
dimensional model. In such cases, standard MLMC is only able to provide an estimator that is
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unbiased with respect to an approximation of the real quantity of interest. Having an unbiased
estimator for the real quantity of interest is often of great practical interest, especially if the
estimator is used for further predictions. Furthermore, the bias error is typically harder to
estimate than the sampling error, making it easier to avoid unnecessary computational effort
with an unbiased estimator.

In this paper, we present a generalisation of MLMC to a continuous framework that we
denote continuous level Monte Carlo (CLMC), where the underlying hierarchical structure is
considered to be continuous rather than a finite sequence of discrete instances. The level pa-
rameter ` is assumed to be a real number rather than an integer, giving access to standard
tools from Calculus, such as the integral or the derivative with respect to the level. Although
this might sound just like a conceptual generalisation, we will interestingly see how the contin-
uous framework also allows deeper understanding and different perspectives. As a first fact, it
highlights a link with tools from probability theory, since the continuous sequence of approxi-
mations can now be interpreted as a continuous stochastic process over the level of resolution.
In this framework, the classic telescoping sum of MLMC straightforwardly becomes a simplified
version of Dynkin’s formula [17], or more simply the Fundamental Theorem of Calculus. As
allowed in Dynkin’s formula, the finest level L of resolution can be chosen as a stopping time
random variable, which stops the refining procedure differently for each sample according to
some probability distribution over L. We will see that there is a simple probability distribution
over L corresponding to the optimal decaying sequence of the number of samples in MLMC and
the choice of this distribution is not very sensitive to an accurate estimation of the convergence
rates and of the cost per sample.

The main result of the paper is a continuous version of the complexity theorem for MLMC.
This provides two main contributions:

• it introduces a CLMC estimator that, under standard assumptions, satisfies the same
computational cost rate as the one in MLMC;

• it proves that the CLMC estimator can potentially be unbiased, but the unbiased version
has finite computational cost exclusively when the variance decays faster than the cost
per sample grows.

Among potential applications, the continuous level framework finds his practical utility for
sample-dependent hierarchical refinements: when the refinement levels depend on samples in-
stead of being fixed, it is more natural to think of them in a continuous fashion, as the resolution
of a particular model can fall anywhere on the real line. This is a typical situation in AMLMC.
Indeed, the resolution level is usually interpreted as the logarithm of the error of the numerical
model, therefore intrinsically continuous. Moreover, the error is sample-dependent, hence each
sample will hit its own sequence of level refinements. As AMLMC involves taking sample aver-
ages of quantities of interests at some prescribed levels, approximations have to be made that
may lead to slight inefficiencies especially when the improvement in the approximation error in
each adaptation step varies strongly (see [15]).

Here, we develop practical CLMC algorithms that are easy to implement and do not require
any such approximation. As we can arbitrarily choose the nature of the quantity of interest
between the actual evaluations, to obtain a quantity of interest function that is continuous
over the levels we simply interpolate the calculated values, whence we can work out a practical
formula. Note that the practical formula can also be implemented for the unbiased version
of the CLMC estimator. Finally, we provide some numerical experiments showing the CLMC
algorithm in action for a standard two-dimensional model problem where the adaptivity and
the sample-dependent hierarchies are shown to leading to significant computational savings.

The structure of the paper is as follows. In Section 2, we give a short background of Monte
Carlo and MLMC; we present the main CLMC idea; we introduce the CLMC estimator and
show the unbiasedness property; we state the CLMC complexity theorem; we provide a corollary
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showing when the estimator that provides the optimal cost is unbiased with respect to the real
quantity of interest. In Section 3, we propose a practical CLMC algorithm for sample-based
adaptive hierarchical refinement; we discuss the special case of uniform refinement and the
similarities with MLMC and show the link between the distribution of the finest level and the
sequence of number of samples; we finish the section with some proposals for other possible
implementations and approaches. Finally, Section 4 introduces the PDE model problem and
the adaptive finite element hierarchy for them, as well as presenting and discussing the numerical
experiments. We finish the paper with some conclusions and ideas for future work in Section 5.
The detailed proof of the complexity theorem, as well as some details about the goal-oriented
error estimator are delegated to the appendices.

2 Continuous level Monte Carlo

2.1 Background: Monte Carlo and Multilevel Monte Carlo

Suppose one is interested in estimating the expected value E[Q] of some (inaccessible) quantity of
interestQ, for simplicity assumed to be scalar. In uncertainty quantification (UQ),Q is typically
a functional of the solution of some random partial differential equation (PDE), where the
randomness can lie anywhere, e.g. within the coefficients, the source, the boundary conditions
or the shape of the domain.

In general, the solution of a PDE can not be calculated exactly and it has to be approximated
numerically, up to some desirable resolution level L. Let us call QL such an approximation and
assume that QL → Q almost surely (a.s.) for L→ +∞. Then, for any desired tolerance ε > 0,
there exists a fine enough resolution L, such that |E[Q−QL]| ≤ ε, and we can focus on finding
good algorithms to estimate E[QL] to the same accuracy. There are two main issues here.

1. If the underlying probability distribution is continuous and high-dimensional, which is
common in UQ applications, it can be extremely expensive to approximate the expected
value with standard quadrature methods.

2. If the resolution L required to compute the PDE solution with sufficient accuracy is high,
then computing just one sample of QL will be expensive and the number of samples that
can be computed on level L in a reasonable time is limited.

A standard remedy for Issue 1 is the use of Monte Carlo (MC) methods [19]. Indeed, the rate
of converge of MC estimators is independent of the dimension of the integral and it is extremely

easy to implement: given N independent samples
(
Q

(k)
L

)N
k=1

of QL, distributed according to the
underlying probability distribution, the expected value can be estimated as

E[QL] ≈ 1

N

N∑
k=1

Q
(k)
L . (1)

Whilst the right-hand-side in (1) is an unbiased estimator of E[QL], unfortunately it con-
verges very slow, especially when L is large, since O(ε−2) samples are required to reduce the
sampling error to a given accuracy ε, i.e. |E[Q−QL]| ≤ ε. As every sample requires an expensive
PDE solve, the computational cost quickly becomes infeasible for small ε.

An acceleration technique suggested for (1) is the multilevel Monte Carlo (MLMC) method
[13, 9]. It exploits a hierarchy of approximations Q0, Q1, . . . , QL of Q at different resolutions,
starting with a coarse and cheap approximation Q0, and going up to the fine and expensive
approximation QL. In contrast to the standard MC estimator in (1), which directly estimates
E[QL] by sampling QL, MLMC combines samples from the sequence of approximations (Q`)

L
`=0
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to produce an overall cheaper estimator. To this purpose, the approximations are combined
into the telescoping sum

E[QL −Q0] =
L∑
`=1

E[Q` −Q`−1], (2)

and then each term in the sum on the right-hand-side is estimated with Monte Carlo:

E[Q` −Q`−1] ≈
1

N`

N∑̀
k=1

(
Q

(k)
` −Q

(k)
`−1

)
. (3)

To obtain an estimator for E[QL] it suffices to add a Monte Carlo estimator for E[Q0].

Crucially, the consecutive approximations Q
(k)
`−1 and Q

(k)
` in the difference Q

(k)
` −Q

(k)
`−1 come

from the same sample k. This means that they are strongly positively correlated, and the
variance of the difference is heavily reduced:

V[Q` −Q`−1] = V[Q`−1] + V[Q`]− 2Cov(Q`−1, Q`)� V[Q`−1] + V[Q`]. (4)

As Q` → Q a.s. for ` → +∞, we also have Q` − Q`−1 → 0, so that the covariance, and in
turn the variance reduction, increases as ` → +∞. As a consequence, the required number of
samples N` at level ` can be chosen to decrease monotonically with increasing `, so that only
very few expensive samples on level L are needed. The majority of samples and therefore the
computational cost will be shifted to the coarser levels.

This reduction in computational complexity can be quantified rigorously, at least asymp-
totically as the tolerance ε → 0. The complexity theorems in [9, 4] show that the overall
computational cost for the MLMC algorithm can be up to a factor O(ε2) smaller than the cost
of the MC estimator in (1). We will return to this and give more details in Section 2.4.

2.2 Continuous Level Monte Carlo: the main idea

In this section, we introduce the continuous level Monte Carlo (CLMC) idea. As we have seen
above, MLMC exploits a discrete sequence of approximations (Q`)

L
`=0 of Q. We now extend

this to a continuous family of approximations (Q(`))`≥0 of Q. In other words, (Q(`))`≥0 is a
stochastic process of approximations over the continuous level of resolution `.

Let L be assumed to be a random variable with finite expectation denoting the (random)
finest level of resolution, independent from the stochastic process (Q(`))`≥0. Also, let Lmax ∈
[0,∞] be a deterministic constant that we introduce for reasons that will become clearer later.
We can write down the following formula:

E[Q(L ∧ Lmax)−Q(0)] = E
[∫ L∧Lmax

0

dQ(`)

d`
d`

]
. (5)

For the formula in (5) to be well-posed, we need to assume that Q ∈W 1,1(0, Lmax) as a function
of `, where W 1,1(0, Lmax) is a Sobolev space containing functions over ` ∈ (0, Lmax) such that
the functions and their weak first derivatives have finite L1 norm. Note that for simplicity we
are choosing 0 as coarsest level, but this can of course be generalised.

If we assume L to be a deterministic variable, the expectation in (5) can be pulled inside
the integral and the derivative, so that equation (5) reduces to the Fundamental Theorem of
Calculus, which guarantees the identity. However, more generally, equation (5) can be recovered
as a particular case of Dynkin’s Formula [17], where L is interpreted as a finite stopping time.
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2.3 The CLMC estimator

Let us assume L to be a random variable independent of the whole stochastic process (Q(`))`≥0.
We can then define the continuous level Monte Carlo (CLMC) estimator

Q̂CLMC
Lmax

:=
1

N

N∑
k=1

∫ Lmax

0

1

P(L ≥ `)

(
dQ

d`

)(k)

(`)1[0,L(k)](`) d`, (6)

where the superscript (k) denotes the k-th realisation of the respective random variable and N
is the total number of samples. For simplicity of presentation, the estimator Q̂CLMC

Lmax
is defined

as an estimator for E[Q(Lmax)−Q(0)], as we see in Proposition 2.1. As in standard MLMC, it
suffices to add an unbiased estimator for E[Q(0)] to obtain an estimator for E[Q(Lmax)].

A reader familiar with the MLMC literature might be puzzled by the estimator in (6), where
we use the same number of samples N for each level `. However, note that, for each sample k,
the integrand in (6) will only be non-zero up to the random realisation L(k) of L, and therefore
in practice we do not need to evaluate Q(`) beyond level L(k).

We are now ready to show that the CLMC estimator is unbiased.

Proposition 2.1. The CLMC estimator (6) is an unbiased estimator for E[Q(Lmax)−Q(0)],
i.e.

E[Q̂CLMC
Lmax

] = E[Q(Lmax)−Q(0)] .

Proof. By exploiting the independence of L from (Q(`))`≥0, we have

E
[
Q̂CLMC
Lmax

]
= E

[
1

N

N∑
k=1

∫ Lmax

0

1

P(L ≥ `)

(
dQ(`)

d`

)(k)

1[0,L(k)](`) d`

]

=

∫ Lmax

0

1

P(L ≥ `)
E
[

dQ(`)

d`

]
E
[
1[0,L](`)

]
d`

=

∫ Lmax

0

1

P(L ≥ `)
E
[

dQ

d`
(`)

]
P(L ≥ `) d`

=

∫ Lmax

0
E
[

dQ(`)

d`

]
d`

= E[Q(Lmax)−Q(0)].

In particular, this implies the following important corollary.

Corollary 2.2. If Lmax = +∞, then

E[Q̂CLMC
∞ ] = E[Q−Q(0)].

Corollary 2.2 shows that there is a version of the estimator (6) that is unbiased with respect
to the expectation of the difference of the real quantity of interest Q and Q(0), and one can see
the connection with the unbiased MLMC estimator introduced in [18].

In the next subsection, we will prove a complexity theorem for the CLMC estimator (6). We
will pick L to be distributed as an exponential random variable to facilitate calculations and
mimic the exponential decay in the assumptions on the convergence of the quantity of interest.
Also, we will provide sufficient and necessary conditions for the Theorem to hold in the case
Lmax = +∞, i.e. when the CLMC estimator is unbiased with respect to Q−Q(0). A practical
algorithm will then be described in Section 3.

5



2.4 Complexity theorem

The fundamental theoretical result about the MLMC method is the complexity theorem, firstly
proved in [9] and generalised in [4]. In this section, we state an analogous complexity theorem
for the CLMC estimator (6). A full proof is given in Appendix A.

First, let us define the mean-squared-error (MSE) of the CLMC estimator Q̂CLMC
Lmax

in (6) by

MSE := E
[(
Q̂CLMC
Lmax

− E[Q−Q(0)]
)2]

(7)

and denote by CCLMC
Lmax

its expected computational cost. Then, we have the following result.

Theorem 2.3 (Complexity Theorem). Suppose Q is a quantity of interest and Q ∈ W 1,1(0,
∞) is a corresponding family of numerical approximations. Furthermore, suppose that there are
positive constants α, β ≤ 2α, γ, c1, c2, c3 such that, for any ` > 0, we have:

(i)
∣∣∣E [dQ(`)

d`

]∣∣∣ ≤ c1e−α` , (ii) V
[
dQ(`)
d`

]
≤ c2e−β` ,

(iii) C(`) ≤ c3eγ` , where C(`) is the cost to compute one sample of Q(`).

Furthermore, suppose that L ∼ Exponential(r) with

r ∈ [min(β, γ), max(β, γ)].

Then, for any ε ∈ (0, e−1), there exist Lmax ∈ [0,+∞), N ∈ N and C > 0 such that

MSE ≤ ε2 and CCLMC
Lmax

≤ C ε−2−max(0, γ−β
α

)(log ε)δr,β+δr,γ (8)

with δ denoting the Kronecker delta.

Note that the predicted computational cost in Theorem 2.3 is the same as in MLMC (asymp-
totically).

Corollary 2.4. Suppose that the assumptions of Theorem 2.3 hold and that Lmax = +∞, i.e.
let us consider the unbiased CLMC estimator Q̂CLMC

∞ .

(a) If β > γ, then for any ε ∈ (0, e−1) and for any r ∈ (γ, β), there exists an N ∈ N and
C > 0 such that

MSE ≤ ε2 and CCLMC
∞ ≤ Cε−2 .

(b) If β ≤ γ and, in addition, there exist positive constants η ∈ [β, γ], c′2 and c′3 such that

c′2e
−η` ≤ V

[
dQ(`)

d`

]
and c′3e

η` ≤ C(`) ,

then MSE × CCLMC
∞ = +∞, for all r > 0 and N ∈ N, i.e. the unbiased estimator has

infinite MSE or infinite cost.

Corollary 2.4 provides sufficient and necessary conditions for the CLMC estimator with
Lmax = +∞ (which is unbiased with respect to Q−Q(0)) to have a finite expected complexity
cost. Intuitively, since Lmax = +∞, the finest level at which computations are needed is
maxNk=1 L

(k), which tends to infinity as N grows. Therefore, the estimator (6) will have finite
expected cost only if the actual variance reduction rate is bigger than the actual cost growth
rate. The rates β and γ in Theorem 2.3 are only upper bounds. By analogy, we believe this
constraint also applies to the unbiased estimator introduced by Rhee & Glynn [18]. However,
the paper [18] is mainly concerned with timestepping methods for SDEs, where the condition
γ < β is usually satisfied.
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Note that, if Lmax = +∞, even in the case β > γ, there is a non-zero probability that the
finest level L(k) for some sample (k) is drawn larger than the maximal refinement achievable
on the particular machine that is used, but we can exactly quantify the probability for this to
happen. Indeed, if L̄ is the maximum refinement level achievable by the machine, the probability
that at least one sample is greater or equal than L̄ is given by

NP(L ≥ L̄) = N exp(−rL̄).

We will see that for problems of interests this probability is very small. In the rare event that
L(k) > L̄ for some sample k, one could simply approximate Q(k)(`) = Q(k)(L̄) for ` ∈ [L̄, L(k)].
If L̄ is sufficiently large, this would introduce a negligible bias error to any practical values of ε.

3 Practical implementation

In the previous section, we have seen that it is possible to extend multilevel Monte Carlo to a
continuous framework, where the approximations of the quantity of interest are functions over
a continuous family of resolutions. This point of view comes natural when the level parameter
is not associated with some fixed hierarchy of approximations, but with an adaptively chosen
hierarchy for each sample, e.g. in the context of adaptive finite element approximations of a
PDE with random coefficients where the level parameter ` is related to the accuracy of the
approximation (see Section 4).

However, it still remains to show how this can be implemented in practice and how the
practical implementation differs from MLMC. There are many possible ways to implement the
estimator in (6). Let us first focus in some sense on the simplest one. We will comment on
other approaches at the end of this section.

3.1 Sample-dependent level hierarchies and piecewise linear interpolation

Let us assume that we have estimates of the parameters α, β, γ in Theorem 2.3. In practice,
these can be obtained (on the fly) from sample averages and sample variances of Q(`) and
dQ(`)/d`, as in standard MLMC. Then, given a desired tolerance ε > 0, Theorem 2.3 provides
suitable choices for the number of samples N and for the rate r of the exponential distribution
of L to achieve the optimal complexity in (8).

For any sample k, suppose that (Q
(k)
j )j≥1 denotes a countable sequence of approximations

of Q(k) at levels (`
(k)
j )j≥1. Then, to define a continuous family Q(k)(`) of Q(k), we use linear

interpolation such that(
dQ

d`

)(k)

(`) :=
Q

(k)
j −Q

(k)
j−1

`
(k)
j − `

(k)
j−1

for ` ∈ (`
(k)
j−1, `

(k)
j ) .

Also, for each sample k, let us define the index J (k) corresponding to the first value of `
(k)
j that

is bigger than L(k) ∧ Lmax, that is

J (k) := min{j ≥ 1 : `
(k)
j − (L(k) ∧ Lmax) ≥ 0}.

Hence, we can write down the CLMC estimator (6) as

Q̂CLMC
Lmax

=
1

N

N∑
k=1

∫ L(k)∧Lmax

0

1

P (L ≥ `)

(
dQ

d`

)(k)

(`) d`

=
1

N

N∑
k=1

J(k)∑
j=1

w
(k)
j

(
Q

(k)
j −Q

(k)
j−1

)
, (9)
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where we define
˜̀(k)
j := `

(k)
j ∧ (L(k) ∧ Lmax) , (10)

and the integrals in the weights w
(k)
j can be computed explicitly as

w
(k)
j :=

1

`
(k)
j − `

(k)
j−1

∫ ˜̀(k)
j

`
(k)
j−1

1

P (L ≥ `)
d` =

exp
(
r ˜̀(k)
j

)
− exp

(
r`

(k)
j−1
)

r
(
`
(k)
j − `

(k)
j−1
) , (11)

for all j = 1, . . . , J (k) . Algorithm 1 provides the key instructions to implement the CLMC
estimator in (9).

Algorithm 1: CLMC algorithm – Key steps

Input : ε: tolerance;
r: exponential rate;
N : total number of samples;
Lmax: maximum reachable level - potentially infinite if γ < β.

Output: Q̂CLMC
Lmax

: CLMC estimator.

1: Initialise Q̂← 0;

2: for k = 1, 2, . . . , N do
3: Sample L(k) ∼ Exponential(r);

4: Evaluate and store quantity of interests Q← (Q
(k)
j )J

(k)

j=1 at levels `← (`
(k)
j )J

(k)

j=1 ;
5: Calculate array w of weights in (11);
6: Update Q̂CLMC

Lmax
← Q̂CLMC

Lmax
+ wT ∗ diff(Q), where diff(Q) is the array of the

differences between consecutive elements of Q;
7: end for

8: Set Q̂CLMC
Lmax

← Q̂CLMC
Lmax

/N .

Note that it is easy to work out an unbiased estimator for the variance of Q̂CLMC
Lmax

in (9),
which is needed to estimate the total number of samples N . Let us define

Y (k) :=

J(k)∑
j=1

w
(k)
j

(
Q

(k)
j −Q

(k)
j−1

)
.

Then (9) simply reduces to a standard Monte Carlo estimator with i.i.d. samples Y (k) and we
can estimate

V
[
Q̂CLMC
Lmax

]
≈ 1

N(N − 1)

N∑
k=1

(Y (k)
)2
−

(
1

N

N∑
i=1

Y (i)

)2
 .

3.2 Uniform refinements as a special case

It is interesting to see what happens in the case of uniform refinements, where all samples Q(k),

for k = 1, . . . , N , are evaluated at the same deterministic points `
(k)
j = `j , for j ≥ 1, and then

interpolated. Without loss of generality, we assume that `j = j, as in standard MLMC.
In this case, the set of possible levels reduces to integers. Therefore, although a continuous

probability distribution for L is still a valid choice, it is more natural to pick a discrete distri-
bution over the levels, where P(L ≥ j) is constant over the interval (j − 1, j). In that case, the
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practical CLMC estimator in (9) reduces to

Q̂CLMC
Lmax

=
1

N

N∑
k=1

J(k)∑
j=1

1

P(L ≥ j)

(
Q

(k)
j −Q

(k)
j−1

)
.

A natural choice would be a geometric distribution on L.
To see the relationship with the standard MLMC estimator more clearly, let us define

N(`) := NP(L ≥ `) .

Then, (N(`))`≥0 ⊂ [0,∞) corresponds to a continuous density of samples, analogous to the
sequence of sample sizes at discrete levels in MLMC. Moreover, the probability that L is at
least ` corresponds to the normalised density of samples that gets at least to level `. Therefore,
by plugging this relation in the equation above, we get

Q̂CLMC
Lmax

=
N∑
k=1

J(k)∑
j=1

1

N(`)

(
Q

(k)
j −Q

(k)
j−1

)
,

which exactly corresponds to the Rhee & Glynn estimator in [18].

3.3 Other Implementations

3.3.1 Polynomial regression

Although the practical implementation discussed in Subsection 3.1 is a natural, practical imple-
mentation of the CLMC estimator, it is not the only possibility. One could think of exploiting
the underlying continuous level structure in order to predict the global trend of the function
Q(`), thereby denoising the point-wise evaluations coming from the random samples. More

concretely, imagine that each sample k provides evaluations (Q
(k)
j )J

(k)

j=1 respectively at levels

(`
(k)
j )J

(k)

j=1 . Instead of defining the function Q(k)(`) as the linear interpolant between the given

points as in Subsection 3.1, one could define Q(k)(`) to be a particular polynomial interpolant or
regression function. The resulting continuous function may not exactly interpolate the points
but rather catch the global trend, avoiding to overfit sample-dependent noisy oscillations.

In general, for each sample k, define the polynomials(
dQ

d`

)(k)

(`) :=

np−1∑
i=0

a
(k)
ij `

i for ` ∈ [`
(k)
j−1, `

(k)
j ) ,

where the coefficient (a
(k)
ij )

np−1
i=0 come from some np-order polynomial regression procedure, for

j = 1, . . . , J (k). As in standard MLMC, one needs to make sure that the consecutive increments
cancel properly; therefore, the fit procedure must be such that the polynomials Q(k)(`) coincide

at the interval extremes (`
(k)
j )J

(k)−1
j=2 , i.e. Q(k)(`) is a continuous function.

As in Subsection 3.1, it can be shown that the resulting CLMC estimator is given by

Q̂CLMC
Lmax

=
1

N

N∑
k=1

J(k)∑
j=1

np−1∑
i=0

a
(k)
ij

i∑
m=0

(−1)m
im

rm+1

((
˜̀(k)
j

)i−m
er

˜̀(k)
j −

(
`
(k)
j−1
)i−m

er`
(k)
j−1

)
, (12)

where ˜̀(k)
j is defined as in (10). Note that, when the the regression polynomial is a simple

piecewise linear interpolation polynomial, the CLMC estimator (12) reduces to (9).
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3.3.2 Quadrature and higher-order differences

It is also possible to derive alternative practical methods from the fundamental CLMC equation
in (5), by using alternative approximations of the integral and the derivative. In order to simplify
the presentation, let us assume L to be constant.

Standard MLMC can be interpreted as an estimator for the right hand side of (5) that uses a
backward rectangular quadrature rule on a uniform mesh1 with the derivative approximated by
a backward finite difference. This choice of quadrature rule and finite difference approximation
is special, because it is in fact exact for this simple case. However, in general one could also pick
other schemes, perhaps exploiting more points and therefore catching more global information,
at the price of introducing a correction term for both of the extremes of the interval [0, L] that
will also need to be estimated (this will be made clearer in the example below). In particular,
it is possible to come up with finite difference schemes which provide better variance reduction
than the standard differences in MLMC.

Here, we just give a single example to make the basic idea clearer. For sake of notation, we
will denote the approximation terms with the level as subscript rather than as argument.

MLMC exploits the following approximation of the derivative:

dQ(`)

d`
≈ Q` −Q`−h

h
, (13)

for some h > 0. Another possible derivative approximation scheme is given by the five-point
stencil formula:

dQ(`)

d`
≈ Q`−2h − 8Q`−h + 8Q`+h −Q`+2h

12h
. (14)

Let us call
v := lim

`→∞
V[Q`] , c := lim

`→∞
Cov

(
Q`, Q`+h

)
.

Then, in the limit `→∞, with the derivative approximation in (13) we have

V
[

dQ(`)

d`

]
≈ V

[
Q` −Q`−h

h

]
→ 2

h2
(v − c) ,

whereas with the derivative approximation in (14) we have

V
[

dQ(`)

d`

]
≈ V

[
Q`−2h − 8Q`−h + 8Q`+h −Q`+2h

12h

]
→ 130

144h2
(v − c) .

This shows that, for ` big enough, the five-point stencil formula provides more than double the
variance reduction with respect to the scheme used by MLMC.

In general, it can be shown that since the coefficients of any finite difference derivative ap-
proximation have to sum up to 0, the variance of the related estimator can always be asymptoti-
cally written as some constant times v−c. This guarantees that, for any of these approximation
schemes, the variance decreases to 0 as the covariance increases.

A practical formula for the five-point stencil CLMC method can be written as

E[Q(L)] = E[Q2h] +
1

12

M−1∑
i=2

E[Q(i−2)h − 8Q(i−1)h + 8Q(i+1)h −Q(i+2)h] + E[∆0] + E[∆L] ,

where h = L/M , for some M ∈ N, and ∆0 and ∆L are the correction terms at Level 0 and L,
respectively. They can be written as

∆0 =
1

12
(−Q0 + 7Qh − 5Q2h −Q3h) ,

∆L =
1

12
(Q(M−2)h − 7Q(M−1)h + 5QMh +Q(M+1)h) .

1For any integrable function on (0, L), this is defined as
∫ L
0
f(`) d` ≈ h

M−1∑
i=0

f(ih), where h = L/M and M ∈ N.
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Note that, by using again the asymptotic argument given before, we have V[∆L]→ 76
144(v−c) for

L → ∞, which guarantees variance reduction also for the correction term ∆L. The correction
term ∆0 consists only of coarse approximations and is therefore cheap to compute even if many
samples are needed. Note, however, that it corresponds to a finite difference approximation of
a derivative at ` = 0 and thus its variance is typically significantly smaller than V[Q0].

4 Application to Adaptive Multilevel Monte Carlo

The development of the continuous level framework was motivated by the challenge of integrat-
ing sample-wise adaptive finite element solutions within a hierarchical framework. For a given
sample, there are significant computational gains to be realised by using goal-oriented (towards
the quantity of interest) schemes, particularly when the random field or quantity of interest
is localised. The exciting conceptual idea here is in contrast to other adaptive multilevel MC
methods [7, 15] we do not use the refinement steps or some pre-defined error tolerances as the
levels, but instead use a continuous measure of error in the quantity of interest as our level.
This naturally fits within our CLMC framework.

4.1 Subsurface Flow Problem & Constructing Pathwise Adaptive Solutions

We consider a toy-model describing steady state, single phase, incompressible flow in a perme-
able medium (e.g. rock), given by the linear, scalar elliptic partial differential equation

−∇ · k(x)∇u(x) = f(x) ∀x ∈ D ⊂ Rd, (15)

subject to suitable boundary conditions. Physically u(x) is the fluid pressure, f(x) the fluid
source term and k(x) the scalar permeability field. In practical applications (e.g. in oil reservoir
simulation), the permeability field k(x) or the source term f(x) are not known everywhere,
therefore a typical approach is to model each as a random field. Let the sample space be
denoted by Ω, then the random permeability and source field k(x, ω) and f(x, ω) belong to
D × Ω with a certain distribution (inferred from data). Therefore the solution to (15), the
unknown pressure field, is also a random field i.e. u(x, ω) ∈ D × Ω. For simplicity, we shall
restrict ourselves to homogeneous Dirichlet conditions u(ω, ·) ≡ 0 on the domain boundary ∂D.

For a fixed ω ∈ Ω we can recast (15) as a standard variational problem, i.e. find u(x, ω) ∈
V := H1

0 (D) = {v ∈ H1(D) : v = 0 on ∂D}, such that∫
D
k(x, ω)∇u · ∇v dx︸ ︷︷ ︸

=: a(ω;u,v)

=

∫
D
f(x, ω)v dx︸ ︷︷ ︸
=:b(ω;v)

, ∀v ∈ V . (16)

Here, D is assumed to be a bounded Lipschitz domain and V = H1
0 (D) is the usual Sobolev

space of weakly differentiable functions on D. Then, a(ω; ·, ·) is a symmetric, bounded and
positive-definite bilinear form on V ×V , and as such defines an inner product and a norm on V ,
the so-called energy norm ‖u‖a :=

√
a(u, u). If f is sufficiently smooth, then the functional

b(ω; ·) is bounded on V .
To approximate the pressure solution u(x, ω), we construct a (sample-wise adapted) finite

element (FE) space Vh(ω) ⊂ V of piecewise linear Lagrange polynomials on a grid Th(ω) that
vanish on the boundary of D. The FE solution uh(x, ω) ∈ Vh(ω) satisfies

a(ω;uh, vh) = b(ω; vh) , ∀vh ∈ Vh(ω), (17)

resulting in a (large) linear system of equations of dimension Mh(ω) := dim(Vh(ω)). From
this, we are interested in approximating statistics (e.g. the expected value) of a quantity of
interest Q, defined to be (for simplicity) a linear functional of uh(x, ω).
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As motivated at the beginning of this section, we are going to build our approximate solu-
tions, sample-by-sample using adaptive finite element methods. But instead of using the number
of refinement steps as the level parameter and applying MLMC, we will use a sample-wise error
estimate as the level parameter and apply our new CLMC framework.

For any ω ∈ Ω, starting with an initial grid T (0)(ω), chosen to be the same for each sample,
we use an h-adaptive refinement strategy to construct a sequence of grids T (k)(ω) for k =
0, . . . ,K. In our case, the adaptive procedure is driven by a local, goal-orientated error indicator

e
(k)
τ (ω), for each τ ∈ T (k)(ω). This gives the relative contribution from each element to the error

in the quantity of interest Q(u(ω)), so that

|Q(u(ω))−Q(u(k)(ω))| ≤ e(k)(ω) =

 ∑
τ∈T (k)(ω)

e(k)τ (ω)

1/2

. (18)

In addition to solving (17) (the so-called primal problem), goal-oriented error estimators
typically also require an approximate FE solution wh(ω,x) of the dual problem

a(ω; vh, wh) = Q(vh) ∀vh ∈ Vh. (19)

There are many different choices of goal-oriented error estimators, see for example [11]. For

one particular choice, described in detail in [11], the error estimator e
(k)
τ (ω) in each element

τ ∈ T (k) is computed by bounding the product of the energy norms of the errors in the primal
and dual FE solutions uh(ω,x) and wh(ω,x) of (17) and (19), respectively. Up to a sample-
dependent constant, these bounds are simply the sum of the element residuals and of the
jumps/discontinuities in inter-element fluxes for each of the two problems. Full details can be
found in [11], but we will also provide some more details in Appendix B.

The FE grid T (k+1)(ω) is generated by refining the θ(k) percent of elements of T (k)(ω)
that contribute most to the error in Q as defined by (18). This is typically followed by some
additional refinements that ensure that the FE space V (k+1)(ω) is conforming, i.e. that there
are no hanging nodes in T (k+1)(ω). In our numerical experiments below, we increase θ(k) as k
increases and use a so-called red/green refinement strategy that ensures conformity.

Finally, we now define our sample-wise continuous level at refinement step k to be

`k(ω) = − log

(
e(k)(ω)

e(0)(ω)

)
(20)

The level gives a sample-wise measure of the error in Qk(ω), the quantity of interest computed on
T (k+1)(ω), relative to the error on the coarsest grid. We note that with this choice, computations
on T (0) are naturally providing values Q0(ω) at level `0(ω) = 0. However, the main reason for
defining the error in this way is due to the explicit error estimator that are being used being
only known up to an unknown constant (dependent on ω).

4.2 Numerical Experiments

All the numerical experiments are calculated using the high performance FE library DUNE [2]
and its discretisation module dune-pdelab. Simulations are carried out on a computer consist-
ing of four, 8-core Intel Xeon E5-4627v2 Ivybridge processors, each running at 1.2 GHz, giving
a total of 32 available cores. The solutions for each sample are computed on a single processor
and independent samples are equally distributed across all available cores. Individual solutions
of the forward and dual problems are obtained using the sparse direct solver UMFPACK [5]. Each
adaptive step uses the red/green refinement strategy, as implemented in dune-grid [1], refining
θ(k) percent of elements from T (k) to T (k+1).
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In our numerical test, we consider D := [0, 1]2. The coarse grid T (0) for all samples is
taken as a uniform 32 × 32 triangular mesh on D. In our test we consider (15) with random
permeability field k and random source term f . The permeability field k(x, ω) is characterised
by a log-normal random field, where log k(x, ω) has a mean of zero and a two-point exponential
covariance function

C(x,y) := exp (−3 ‖x− y‖1) x,y ∈ D, (21)

with ‖ ·‖p denoting the `p-norm in R2. The field is parameterised with a (truncated) Karhunen-
Loève (KL) expansion

k(x, ω) = exp

(
R∑
i=1

√
µiφi(x)ξi

)
. (22)

where {µi}i∈N are the eigenvalues, {φi(x)}i∈N the corresponding L2-normalised eigenfunctions
of the covariance operator with kernel function C(x,y) and ξi ∼ N (0, 1). For more details on
how this expansion is constructed see for example [4]. In the calculations which follow we take
R = 36. For the random source term, we take

f(x, ω) = 1000 a exp
(
−20‖x− yf‖22

)
(23)

where a and the components of yf are all sampled from U(0, 1).
As the quantity of interest, we consider the average pressure near yQ := [0.25, 0.25]T , defined

by the linear functional

Q(u) := C1

∫
D

exp

(
−
‖x− yQ‖22

λQ

)
u(x, ω)dx, (24)

with λQ = 0.0005 and C1 =
(∫
D exp(−‖x− yQ‖22/λQ)dx

)−1 ≈ 0.00157.
We now test our CLMC algorithm (Algorithm 1) by comparing uniform refinements and

adaptive refinements with a variable θ(k) (percentage of elements refined per step). In particular,
we choose

θ(k) = min(100%, δkθ0) (25)

as the percentage of elements refined in T (k), with θ0 = 1% and δ = 3. We note that this choice
is heuristic, motivated by a series of test runs. For the problem at hand, the idea of starting
with small θ(0) and increasing the percentage with the number of adaptive steps makes sense.
Initially the error in Q is dominate by the fact that the grid is not well adapted to the particular
random sample ω ∈ Ω. This includes the random field, the location of the localised source and
the quantity of interest itself. Once the adaptive strategy has focused in on all those localised
regions, the error in Q is governed by the global lack of singularity in the coefficient [3, 20] and
thus distributed fairly uniformly across the whole domain. So from that point onwards, refining
all elements uniformly leads to the most effective error reduction.

Before running a complete simulation we first consider a single sample ω ∈ Ω. Figure 1 shows
the random permeability field k(x, ω), pressure solution uh(x, ω), and the influence function
wh(x, ω) (i.e. the solution of the dual problem (19)) for this sample after 6 adaptive steps.
Snapshots of the grids, built using the goal-oriented error estimator, are shown in Figure 2 at
steps 0, 2, 4 and 6. Visually, we see that the adaptive scheme is working correctly, refining near
yQ = [0.25, 0.25]T , the point around which the pressure is averaged in the functional Q in (24),
whilst also adapting around the localised source. At the latter levels the refinement also starts
to pick up local variations in the permeability field in regions that influence the pressure at the
point of interest.

For the uniform and adaptive strategy, we first run an initial batch of 6400 samples up to
Lmax = 5, in order to estimate the parameters β and γ. In a real simulation, it would not
be necessary to estimate these parameters accurately and so significantly fewer samples could
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Figure 1: Permeability field k, pressure solution uh and influence function wh on the finest
adaptive grid (k = 6) for a particular realisation ω ∈ Ω.

Figure 2: Sequence of adaptive grids built using goal-oriented error estimator for random ω ∈ Ω,
level is defined by `k given by (20).

be used. With uniform refinements, our estimates are βu = 2.28 and γu = 1.0, whereas for
adaptive refinements we get βa = 2.22 and γa = 0.78. Note that, in both cases, β > γ, therefore
by taking Lmax = +∞ in the CLMC setting we obtain unbiased estimators with respect to
E[Q − Q(0)]. In these initial runs we can already see the expected computational gains of
adaptive grid refinement. We note that the rates β for V[dQ/d`] are much the same in each
case, whilst γ, the rate of growth of the expected cost per sample, is clearly smaller for the
adaptive strategy. Figure 3 gives a plot of the continuous level `, representing the estimate of
the relative finite element error, against the natural log of the cost for all samples, which shows
the better rate for the adaptive scheme.

We then run the CLMC algorithm with a maximum of N = 106 samples for each case. The
exponential parameter rate r is taken to be the same for each case, so that any computational
gains can be attributed to the adaptive strategy, rather than a difference in r. The value is
chosen so that r = 1

2(ru + ra) = 1
4(βu + γu + βa + γa) = 1.57, and we consider the unbiased

estimator with Lmax = +∞.
The numerical results show that the CLMC algorithm is working as expected. In Figure 4

(left), we observe as expected that the natural logarithm of E[dQ/d`] decreases linearly with `,
i.e. α ≈ 1, in both the uniform and the adaptive case, since ` is defined as the natural logarithm
of an estimate of the relative bias error. Figure 4 (middle) shows the variance reduction for both
uniform and adaptive refinement strategies. Both decay very similarly across the levels with
rates of around β = 2. Finally, Figure 4 (right) shows the actual cost to compute the estimate
for different choices of N . The cost (in seconds) is plotted against the root mean square error,
which is equal to the sampling error, since the estimator is unbiased. As proved in Theorem 2.3,
since β > γ for both strategies, we observe parallel straight lines with rate of ≈ 2. Due to the
reduced computational cost on the finer levels, the adaptive strategy wins over the uniform one
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of E[dQ/d`] and V[dQ/d`] against ` respectively. Right: Total cost of uniform and adaptive
algorithm (in seconds) against estimated sampling error (= root mean square error due to
unbiasedness).

across a range of tolerances. Especially for coarser tolerances the gains are significant and the
sample-adaptive level hierarchy consistently reduces the cost by a factor of 4.

The actual gains that are possible with the new CLMC estimator and with sample-adaptive
level hierarchies are very problem dependent. They also depend strongly on the error estimator
and on the adaptive refinement strategy. The estimator and the strategy employed here are
by no means optimal. It is known that the employed error estimator is not necessarily very
effective in the context of strong coefficient variations. Finally, the gains also depend on the cost
of the linear solver. For a fair comparison, we used a sparse direct solver, which outperforms
iterative solvers for the problem sizes encountered in our 2D model problem. However, further
experiments in three space dimensions will require iterative solvers and robust preconditioners
that can cope both with the strong coefficient variations and with the locally refined finite
element meshes. The cost and the memory requirements of sparse direct solvers grow too
rapidly in 3D. Nevertheless, we expect the gains in 3D to be even more significant.
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5 Conclusions & Further Work

In this paper, we introduce Continuous Level Monte Carlo (CLMC), a generalisation of MLMC
to a continuous framework where the level is a continuous variable rather than an integer. We
propose a practical estimator and prove a Complexity Theorem, showing the same order of
convergence as in MLMC. Furthermore, we provide a version of the estimator that is unbiased
with respect to the true quantity of interest and extend the Complexity Theorem to this case,
giving sufficient and necessary conditions for the unbiased estimator to have finite cost. We ap-
ply CLMC to adaptive refinement schemes, where the continuous framework is particularly well
suited in order to capture sample-based level hierarchies. We demonstrate clear computational
gains when adaptive refinement strategies are adopted rather than uniform ones.

The introduction of CLMC opens the door to several new research directions. We outline a
few ideas for further work:

Extension of Multi-Index Monte Carlo (MIMC) [12]. MIMC is an extension of MLMC to
multi-dimensional level parameters and higher-order differences. In the same way, as CLMC
generalises MLMC by replacing the sum with an integral and the difference with a derivative in
the case of a scalar level parameter, one could generalise MIMC by employing multi-dimensional
integrals of partial derivatives. Indeed, consider (Q(`))` to be a sequence of approximation
functions of Q, where ` = (`1, . . . `m) is a m-dimensional vector of non-negative levels. To
explain the idea, let us restrict our description to m = 2 and consider a 2-dimensional positive
random variable L = (L1, L2). Assuming sufficient regularity, we can write

E
[
Q(L)−Q(0)

]
= E

[∫ L1

0

∫ L2

0

∂2Q(`)

∂`1∂`2
d`

]
+

2∑
j=1

E
[∫ Lj

0

∂Q(`)

∂`j
d`j

]
. (26)

Note that (26) is a two-dimensional extension of the formula in (5). It is outside the scope of this
paper, but we argue that different choices for the probability distribution of the vector of finest
levels L (with potentially correlated components) correspond to different choices of the grid of
levels in MIMC. A natural choice would be again to pick independent Li ∼ Exponential(ri), for
i = 1, . . . ,m, with ri > 0. Classically, in MIMC, L is a fixed integer vector chosen to control the
bias error, while the optimal strategy for the choice of samples avoids computation of samples
for levels with `1/L1 + `2/L2 > 1. Here, the bias can again be completely eliminated (provided
the variance decays fast enough w.r.t. the growth in cost), and the optimal strategy is a direct
consequence of the choice of the exponential distributions for L1 and L2, making the probability
that both `1 and `2 are simultaneously large practically zero.

Extension of Multilevel Monte Carlo Markov Chain (MLMCMC) [6]. Multilevel techniques
have been successfully applied to sampling algorithms like MCMC, drastically reducing their
complexity cost. The extension of MLMCMC to Continuous Level MCMC is object of future
work, potentially leading to an estimator that is unbiased with respect to the real quantity of
interest, under the real target probability distribution. Such an unbiased estimator would be of
great interest: unlike forward problems, where the bias can arise only from the approximation
of the quantity of interest, inverse problems have the additional issue of an approximation of the
target probability distribution. Unbiasedness guarantees that the estimator is in fact estimating
the correct unknown, without expensive extra computational cost to estimate the bias error.
In addition, continuous level adaptive refinement strategies will significantly help to slim down
MCMC’s computational cost, allowing to solve even more complex problems.
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A Proof of the Complexity results

A.1 Proof of Theorem 2.3

Proof. First, we want to bound the MSE by ε2. By the bias-variance decomposition, this can
be achieved by bounding both the squared bias and variance by ε2/2.

By using assumption (i) and recalling that L ∼ Exponential(L), the bias term is bounded
by ∣∣∣∣∣E [Q̂CLMC

Lmax
− (Q−Q(0))

] ∣∣∣∣∣ =

∣∣∣∣∣E
[∫ L

L∧Lmax

1

P(L ≥ `)
dQ(`)

d`
d`

] ∣∣∣∣∣
≤ E

[∫ L

L∧Lmax

1

P(L ≥ `)

∣∣∣∣∣E
[

dQ(`)

d`

] ∣∣∣∣∣ d`
]

≤ c1E
[∫ L

L∧Lmax

1

P(L ≥ `)
e−α` d`

]

=

{
c1
r−αE

[
e(r−α)L − e(r−α)L∧Lmax

]
if r 6= α

c1E[L− L ∧ Lmax] if r = α
(27)

=
c1
α
e−αLmax , (28)

where we can explicitly compute the expected values in (27) using the distribution of L.
As we want to bound the squared bias by ε2/2, this is equivalent to bounding the bias by

ε/
√

2, which can be achieved by setting

Lmax ≥

⌈
1

α
log

√
2c1rε

−1

α

⌉
. (29)

Then, let us provide an upper bound for the variance of the CLMC estimator (6). By the
law of total variance, we have

V[Q̂CLMC
Lmax

] = E
[
V[Q̂CLMC

Lmax
|L]
]

+ V
[
E[Q̂CLMC

Lmax
|L]
]
. (30)

Let us start by bounding the first term on the right-hand-side of (30). We will use Cauchy-
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Schwarz inequality on the covariance, followed by assumption (ii). We have

E
[
V[Q̂CLMC

Lmax
|L]
]

= E
[
Cov

(
Q̂CLMC
Lmax

, Q̂CLMC
Lmax

∣∣L)]
=

1

N
E

[∫
[0,L∧Lmax]2

1

P(L ≥ `)
1

P(L ≥ `′)
Cov

(
dQ(`)

d`
,
dQ(`′)

d`′

)
d`d`′

]

=
1

N
E

[∫
[0,L∧Lmax]2

1

P(L ≥ `)
1

P(L ≥ `′)
V
[

dQ(`)

d`

] 1
2

V
[

dQ(`′)

d`′

] 1
2

d`d`′

]

=
1

N
E

(∫ L∧Lmax

0

1

P(L ≥ `)
V
[

dQ(`)

d`

] 1
2

d`

)2


≤ 1

N
c22E

[(∫ L∧Lmax

0

1

P(L ≥ `)
e−

β
2
` d`

)2
]

=


1
N

4c22
(2r−β)2E

[(
e(r−

β
2
)L∧Lmax − 1

)2]
if r 6= β/2

1
N c

2
2E[(L ∧ Lmax)2] if r = β/2

≤


1
N

4c22
(r−β)(2r−β)2

(
(2r − β)e(r−β)Lmax − β

)
if r 6= β/2, β

1
N

4c22
β2 (βLmax + 1) if r = β

1
N

8c22
β2 if r = β/2 .

On the other hand, the second term on the right-hand-side of (30) can be bounded as

V
[
E[Q̂CLMC

Lmax
|L]
]

=
1

N
V
[∫ L∧Lmax

0

1

P(L ≥ `)
E
[

dQ(`)

d`

]
d`

]
≤ 1

N
c21V

[∫ L∧Lmax

0

1

P(L ≥ `)
e−α` d`

]

=

{
1
N

c21
(r−α)2V

[
e(r−α)L∧Lmax − 1

]
if r 6= α

1
N c

2
1V [L ∧ Lmax] if r = α

≤

{
1
N

c21
(r−α)2E

[
e2(r−α)L∧Lmax

]
if r 6= α

1
N c

2
1V [L] if r = α

=


1
N

c21
(r−2α)(r−α)2

(
2(r − α)e(r−2α)Lmax − r

)
if r 6= α, 2α

1
N

2c21
α Lmax if r = 2α

1
N
c21
α2 if r = α .

In both cases in the last step, we have again used our knowledge of the distribution of L.
Note that asymptotically the bound for the first term on the right-hand-side of (30) always

dominates the bound of the second, since we have assumed that β ≤ 2α. Hence, adding together
the two bounds and using (29), as well as the fact that ε < e−1, we obtain the following
asymptotic bound on the total variance:

V[Q̂CLMC
Lmax

] ≤ C ′

N


ε
β−r
α if r > β

log ε if r = β

1 if r < β ,
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for some constant C ′ > 0 that is independent of N and ε. Thus, to guarantee V[Q̂CLMC
Lmax

] ≤ ε2/2
it suffices to choose

N ≥ 2C ′ε−2−max(0, r−β
α

)(log ε)δr,β , (31)

where δ denotes the Kronecker delta.
Finally, we can bound the expected overall cost:

CCLMC
Lmax

= NE
[∫ L∧Lmax

0
C(`) d`

]
= N

∫ Lmax

0
C(`)P(L ≥ `) d`

≤ Nc3
∫ Lmax

0
eγ` P(L ≥ `) d`

=

{
N c3

γ−r
(
e(γ−r)Lmax − 1

)
if r 6= γ

Nc3γLmax if r = γ .
(32)

Hence, using (31) the overall cost can be bounded as

CCLMC
Lmax

≤ C ε−2−max(0, r−β
α

)−max(0, γ−r
α

)(log ε)δr,β+δr,γ , (33)

for some constant C > 0, which is again independent of ε. This completes the proof since we
had assumed that r ∈ [min(β, γ),max(β, γ)] and so max(0, r−βα ) + max(0, γ−rα ) = max(0, γ−βα ).

A.2 Proof of Corollary 2.4

Proof. To prove (a), suppose Lmax = +∞. Then, the bias in (28) is zero due to Corollary 2.2,
so that the MSE is equivalent to the variance of the CLMC estimator. Since r < β it follows as
in the proof of Theorem 2.3 in Section A.1, that

V
[
Q̂CLMC
∞

]
≤ C ′

N
,

for some constant C ′ > 0. Analogously, since r > γ, the expected overall cost can be bounded
by

CCLMC
∞ ≤ C ′′N ,

for some constant C ′′ > 0. Therefore, we can bound the MSE with ε2 by taking N ≥ C ′ε−2

and the overall computational cost is CCLMC
∞ = O

(
ε−2
)
.

To prove (b), suppose that the additional assumptions in part (b) of Corollary 2.4 hold.
Then, by tracking back the steps in the proof of Theorem 2.3 in Section A.1, it can be seen
fairly easily that for β ≤ η ≤ γ we have

E
[
V[Q̂CLMC

∞ |L]
]
≥


1
N

4c′22
η(η−r) if r < η, r 6= η/2

1
N

8c′22
η2

if r = η/2

+∞ if r ≥ η ,

and CCLMC
∞ ≥

{
N

c′3
r−η if r > η

+∞ if r ≤ η .

We see that MSE× CCLMC
∞ = +∞ for all choices of r.
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B Goal-Oriented Error Estimators

We use a classical goal-oriented error estimator to drive the sample-wise adaptive scheme in
our numerical experiments. The following description is taken from [11]. Let ω ∈ Ω be fixed,
and recall that u ∈ V denotes the solution of (16) whilst uh ∈ Vh ⊂ V is its finite element
approximation on a grid Th. The error in a quantity of interest (defined by a linear functional2)
is given by

Q(εh) = Q(u− uh) = Q(u)−Q(uh). (34)

This functional can be interpreted as the ‘source’ of the finite element discretisation error in
the quantity of interest, and is a bounded linear functional on the dual space V ′. The key idea
of goal-oriented, a posteriori error estimators is to relate Q(εh) to the solution residual ruh, i.e
we seek a function w ∈ V ′′ such that Q(εh) = w(ruh). Since V is a reflexive Hilbert Space, there
exists a w ∈ V such that Q(εh) = ruh(w). The function w, termed the influence function, is the
solution of the dual problem

a(v, w) = Q(v) ∀v ∈ V. (35)

This dual solution can be approximate using the same finite element approximation as uh, i.e.
find wh ∈ Vh ⊂ V s.t

a(vh, wh) = Q(vh) ∀vh ∈ Vh .

Using the Galerkin orthogonality of u and uh, we can bound Q(εh) as follows:

|Q(εh)| = |Q(u− uh)| = |a(u− uh, w)| = |a(u− uh, w)|+ |a(u− uh, wh)|

= |a(u− uh, w − wh)| ≤
∑

τ∈Th
‖u− uh‖a,τ‖w − wh‖a,τ . (36)

In the last step, we have used the Cauchy-Schwarz inequality elementwise. Hence, the product
of energy norms ‖u− uh‖a,τ‖w−wh‖a,τ provides an estimate for the element-wise contribution
to the error in Q(uh). It is now used to define an appropriate adaptivity scheme.

To estimate the error of the solutions of the primal and dual problem in the energy norm on
each element τ , we use explicit error estimators. We only show the main ideas for estimating
‖u− uh‖a,τ using one of the most basic estimators. The bound for ‖w − wh‖a,τ can be derived
analogously. On each element τ , using integration by parts, the FE error can be represented as

a(εh, v)|τ =

∫
τ
fv dx−

∫
τ
∇uh · k(x)∇v dx

=

∫
τ
Ruv dx +

∫
∂τ
Juv ds ∀v ∈ V , (37)

where the residual error on the element is define by

Ru(x) = ∇ · k(x)∇uh(x) + f(x) ∀x ∈ τ, (38)

and where Ju defines, for all x ∈ ∂τ (except at the vertices), the jump of the flux in uh across
the element boundary by

Ju(x) =

{
k(x)

[
nτ (x) · ∇uh|τ + nτ ′(x)(x) · ∇uh|τ ′(x)

]
, ∀x 6∈ ∂D ,

nτ (x) · k(x)∇uh|τ , ∀x ∈ ∂D ,
(39)

where nτ is the outward unit normal to the element boundary ∂τ at x and τ ′(x) is the neighbour-
ing element of τ at x. For simplicity, we assume that the boundary conditions are homogeneous
Dirichlet conditions on all of ∂D.

2Similar error estimators can also be obtained for nonlinear functionals by first linearising about εh.
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Using again Galerkin orthogonality, we can introduce the global FE interpolant Ihv in (37),
and thus using classical interpolation theory find that

a(εh, v)|τ ≤ ‖Ru‖L2(τ)‖v − Ihv‖L2(τ) + ‖Ju‖L2(∂τ)‖v − Ihv‖L2(∂τ)

≤ c1
(
hτ‖Ru‖L2(τ) +

√
hτ‖Ju‖L2(∂τ)

)
︸ ︷︷ ︸

=: ητ (uh)

‖v‖a,ωτ ,

where ωτ denotes the subdomain of elements sharing a common edge with τ , and where c1 is
problem dependent constant independent of the mesh size hτ . Substituting v = εh and summing
over all elements, we can see that (up to a constant factor c2 depending on the geometry) this
leads to the explicit global energy error estimator

‖εh‖a ≤ c1c2
(∑

τ∈Th
η2τ (uh)

)1/2
(40)

for the primal solution on Th.
The local error contribution ητ (wh) to the dual solution wh on τ in the energy norm can

be estimated analogously, and it can be shown that together with (36) this leads to the goal-
oriented error estimator

|Q(εh)| ≤ c3
∑

τ∈T (k)
ητ (uh)ητ (wh) , (41)

which is again explicit up to the unknown constant c3. Although the exact constants in all the
described estimators are not known, the relative error with respect to a coarsest reference mesh
can still be used to drive a goal-oriented mesh adaptivity procedure, as described in Section 4.1.

More sophisticated error estimators exist, including estimators where the constants are
known or can be computed explicitly (see e.g. [11] for more details), but in our numerical
experiments we used the estimator described above.
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