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Abstract. We present a performance analysis appropriate for comparing algorithms using different
numerical discretizations. By taking into account the total time-to-solution, numerical accuracy
with respect to an error norm, and the computation rate, a cost-benefit analysis can be performed to
determine which algorithm and discretization are particularly suited for an application. This work
extends the performance spectrum model in [16] for interpretation of hardware and algorithmic
tradeoffs in numerical PDE simulation. As a proof-of-concept, popular finite element software
packages are used to illustrate this analysis for Poisson’s equation.

1. Introduction

Computational scientists help bridge the gap between theory and application by translating
mathematical techniques into robust software. One of the most popular approaches undertaken is
the development of sophisticated finite element packages like FEniCS/Dolfin [4,30], deal.II [3,9],
Firedrake [35], LibMesh [25], and MOOSE [21] which provide application scientists the necessary
scientific tools to quickly address their specific needs. Alternatively, stand alone finite element com-
putational frameworks built on top of parallel linear algebra libraries like PETSc [7, 8] may need
to be developed to address specific technical problems such as enforcing maximum principles in
subsurface flow and transport modeling [14,15,31] or modeling atmospheric and other geophysical
phenomena [13,32], all of which could require field-scale or even global-scale resolutions. As scien-
tific problems grow increasingly complex, the software and algorithms used must be fast, scalable,
and efficient across a wide range of hardware architectures and scientific applications, and new
algorithms and numerical discretizations may need to be introduced. The ever increasing capacity
and sophistication of processors, memory systems, and interconnects bring into question not only
the performance of these new techniques, but their feasibility for large-scale problems. Specifically,
how scalable is the software in both the algorithmic and parallel sense? Difficult problems require
highly accurate numerical solutions, so it is desirable to take into consideration the solution ac-
curacy along with both hardware utilization and algorithmic scalability. This paper is concerned
with benchmarking the performance of various scientific software using analytic techniques.

1.1. Overview of scaling analyses. The most basic parallel scaling analysis, known as
strong-scaling, looks at the marginal efficiency of each additional processor working on a given
problem [5, 18, 26]. A series of experiments is run using a fixed problem size but varying the
number of processors used. It is typical to plot the number of processors P against the speedup,
defined as the time on one processor divided by the time on P processors. Perfect speedup would
result in a curve of unit positive slope. Because application scientists often have reason to solve a
problem at a given resolution and spatial extent, strong-scaling is often of most interest: They may
want to solve their problems in as little wall-clock time as possible, or, when running on shared
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resources, to complete a set of simulations in reasonable time without using too many CPU hours
of their allocation (running in a strong-scaling “sweet spot” for their problem and machine). A
simple strong-scaling analysis may, however, make it difficult to disentangle sources of inefficiency
(serial sections, communication, latency, algorithmic problems, etc.).

In some cases, application scientists may be interested in exploring a problem at a range of
resolutions or spatial extents. This leads naturally to weak-scaling [18, 22, 26] scenarios: Instead
of fixing the global problem size, they fix the portion of the problem on each processor and scale
the entire problem size linearly with the number of processors. It is typical to plot the number
of processors P against the efficiency, defined as the time on one processor over the time on P
processors. Perfect efficiency would result in a flat curve at unity. This analysis shows the marginal
efficiency of adding another subproblem, rather than just a processor, and separates communication
overhead and algorithmic inefficiency from the problem of serial sections.

It is difficult to see, from either strong- or weak-scaling diagrams, how a given machine or
algorithm will handle a variety of workloads. For example, is there is a minimum solution time
where solver operations are swamped by latency? Is there a problem size where algorithmic pieces
with suboptimal scaling start to dominate? We can examine these questions by running a series of
problem sizes at fixed parallelism, called static-scaling [12,16]. It is typical to plot the computation
rate, in number of degrees-of-freedom (DoF) per time, against the time. Perfect scaling would
result in a flat curve. Tailing off at small times is generally due to latency effects, and the curve
will terminate at the smallest turnaround time for the machine. Decay at large times indicates
suboptimal algorithmic performance or suboptimal memory access patterns and cache misses for
larger problems. Thus we can see both strong- and weak-scaling effects on the same graph. It is
also harder to game the result, since runtime is reported directly and extra work is directly visible.
Static-scaling is a useful analytic technique for understanding the performance and scalability of
PDE solvers across different hardware architectures and software implementations.

From the standpoint of scientific computing, a significant drawback of all of the above types of
analyses is that they treat all computation equally and do not consider the theoretical convergence
rate of the particular numerical discretization. The floating-point operations (FLOPs) done in the
service of a quadratically convergent method, for instance, should be considered more valuable
than those done for a linear method if both are in the basin of convergence. These analyses do
not depend at all on numerical accuracy so the actual convergence behavior is typically measured
empirically using the Method of Manufactured Solutions (MMS). If all equations are created equal,
say for methods with roughly similar convergence behavior, then static-scaling is viable. However,
it is insufficient when comparing methods with very different approximation properties. Any com-
parative study between different finite element methods or numerical discretization should factor
accuracy into the scaling analyses.

1.2. Main contribution. The aim of this paper is to present an alternative performance
spectrum model which takes into account time-to-solution, accuracy of the numerical solution, and
size of the problem hence the Time-Accuracy-Size (TAS) spectrum analysis. These are the three
metrics of most importance when a comparative study involving different finite element or any
numerical methods is needed. Not every DoF has an equal contribution to the discretization’s level
of accuracy, so the DoF per time metric alone would be neither a fair nor accurate way of assessing
the quality of a particular software’s implementation of the finite element method. An outline of
the salient features of this paper are listed below:

• We provide a modification to the static-scaling analysis incorporating numerical accuracy.
• We present the TAS spectrum and discuss how to analyze its diagrams.
• Popular software packages, such as FEniCS/Dolfin, deal.II, Firedrake, and PETSc, are

compared using the Poisson problem.
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• Different single-field finite element discretizations, such as the Galerkin and Discontinuous
Galerkin methods, are also compared.
• The analysis is extended to larger-scale computations, i.e. over 1K MPI processes.

The rest of the paper is organized as follows. In Section 2, we present the framework of the
Time-Accuracy-Size (TAS) spectrum model and outline how to interpret the diagrams. In Section 3,
we provide a theoretical derivation of the TAS spectrum and provide example convergence plots
one may expect to see. In Section 4, we describe in detail how the finite element experiments are
setup. In Section 5, we demonstrate various ways the TAS spectrum is useful by running various
test cases. Conclusions and possible extensions of this work are outlined in Section 6.

2. TAS Spectrum

In order to incorporate accuracy into our performance analysis, we must first have an idea of
convergence, or alternatively the numerical accuracy of a solution. In this paper, we will measure
solution accuracy using the L2 norm of the error err,

err = ‖uh − u‖L2
, (1)

where uh is the finite element solution, u is the exact solution, and h is some measure of our
resolution such as the longest edge in any mesh element. Convergence means that our error shrinks
as we increase our resolution, so that limh→0 err = 0. In fact, we expect most discretization
methods to have a relation of the form

err ≤ Chα, (2)

where C is some constant and α is called the convergence rate of the method. This relation can
be verified by plotting the logarithm of the resolution h against the negative logarithm of the error
err, which we call the digits of accuracy (DoA),

DoA = − log10 err. (3)

This should produce a line with slope −α, and is typically called a mesh convergence diagram [11,
26]. If we use the number of unknowns N (or DoF) instead of the resolution h, the slope of the
line will be modified. For most schemes N = Dh−d, where d is the spatial dimension and D is
a constant, so that the slope would become α/d. In our development, we will use this form of
convergence diagram and call log10N the digits of size (DoS). Much as weak-scaling explains the
behavior of algorithm on a range of problem sizes, the mesh-convergence diagram explains the
behavior of a discretization.

In order to incorporate accuracy information, we will imitate the static-scaling analysis by
examining the rate of accuracy production. We will introduce a measure called efficacy, defined
to be error multiplied by time. Smaller efficacy is desirable, as this means either smaller error or
smaller time. We introduce the digits of efficacy (DoE) as the logarithm of error multiplied by
time. As shown in Section 3, this rate has a linear dependence on problem size, and slope d − α.
Our accuracy scaling analysis plots digits of efficacy against time. This analysis will be able to
compare not only different parallel algorithms and algebraic solvers, but also discretizations, as
demonstrated in Section 5.

We now present the Time-Accuracy-Size (TAS) spectrum. In Figure 1, we show the relation
of our new efficacy analysis to the existing mesh convergence and static scaling plots. As outlined
in [16], static-scaling measures the degrees of freedom solved per second for a given parallelism.
That is,

Static-scaling measures

(
size/time

time

)
(4)
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Figure 1. Pictorial description of the Time-Accuracy-Size (TAS) spectrum.

We assume that the problems are of linear complexity, i.e. the time is in O(N), so optimal scaling is
indicated by a horizontal line as the problem size is increased. A higher computation rate indicates
that the algorithm matches the hardware well, but tells us little about how accurate the solution is.
Measures of the accuracy as a function of problem size, however, are basic to numerical analysis,
and usually referred to as mesh convergence,

Mesh-convergence measures

(
1/error

size

)
(5)
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Figure 2. Interpretation of both the DoE and true DoF per second metrics of a
particular algorithm. DoE is often an indicator of how accurate an algorithm is for
a given amount of time, whereas true DoF per time is often an indicator of how fast
an algorithm processes each DoF when each DoF is scaled by how much accuracy
it contributes.

where we use the inverse of error since we usually measure the negative logarithm of the error.
Multiplying equations (4) and (5) together, we arrive at rate for accuracy production,

Accuracy rate measures

(
1/error

size

)
×
(

size/time

time

)
=

1/(error× time)

time
, (6)

which is exactly our efficacy measure. An alternate derivation would be to scale the DoF count
used in the typical static-scaling analysis by the mesh convergence ratio, which we call true static-
scaling. This produces the same measure, but slightly different scaling when logarithms are applied.
Looking at equations (4), (5), and (6) give us the TAS spectrum, as visually depicted in Figure 1.
This figure illustrates how the new efficacy analysis can be applied to the existing mesh convergence
and static scaling plots.

2.1. Interpreting the TAS spectrum. The complete TAS spectrum could potentially have
three or four different diagrams that provide a wealth of performance information. We now show
the recommended order of interpretation of these diagrams as well as provide some guidelines on
how to synthesize the data into an understandable framework.

(1) Mesh convergence: This diagram not only shows whether the actual L2 convergence
matches the predicted α, but how much accuracy is attained for a given size. Any tail-
ing off that occurs in the line plots could potentially be an issue of solver tolerance or
implementation errors. Such tail-offs will drastically affect both accuracy rate diagrams,
so this diagram could be an early warning sign for unexpected behavior in those plots.
Furthermore, the mesh convergence ratio (i.e., the DoA over DoS) can also be an early
predictor as to which discretizations or implementations will have better accuracy rates.

(2) Static-scaling: This particular scaling analysis is particularly useful for examining both
strong-scaling and weak-scaling limits of parallel finite element simulations across vari-
ous hardware architectures and software/solver implementations. Optimal scaling would
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Figure 3. Example static-scaling diagram and a description of the behavioral char-
acteristics. This diagram is able to characterize both strong-scaling and weak-scaling
effects across a variety of problem sizes.

produce a horizontal line or a “sweet spot” assuming that the algorithm is of O(N) com-
plexity. Any tailing off in these static-scaling plots will have a direct affect on the accuracy
rate plots.

(3) DoE: This metric gives the simplest interpretation of numerical accuracy and computa-
tional cost. A high DoE is most desired, and if straight lines are observed in both the
mesh convergence and static-scaling diagrams, the lines in this diagram should exhibit
some predicted slope which will be discussed in the next section. Note that the size of
the problem is not explicitly taken into account in these diagrams; these diagrams simply
provide an easy visual on the ordering of the software implementation or finite element
discretization.

(4) True static-scaling: Optionally, the ordering shown in the DoE diagrams can be further
verified through the true static-scaling plots. The information provided by this analysis
simply tells us how fast the algorithm is being computed assuming that all DoF are given
equal weighting. Figure 2 provides a simple guideline on how to simultaneously interpret
both the DoE and true static-scaling diagrams. Note that the true static-scaling diagrams
will not always produce a horizontal line, as the DoF is now scaled by the DoA over DoS
ratio.

3. Theoretical Analysis

Unlike the mesh convergence and static-scaling analyses, the accuracy rate diagrams, which
consist of the DoE and the true DoF per time metrics, measure the accuracy achieved by a particular
method in a given amount of time. In this Section, we will discuss the theoretical underpinning of
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Figure 4. Example DoE diagrams for 2D and 3D problems assuming C = 10,
W = 0.1 and that h-sizes range from 1/10 to 1/5120. Both α and d have a drastic
effect on the slope of these lines.

these two diagrams and examine the behavior of the line plots. The DoE is written as:

DoE = − log10(err × T ). (7)

Recall that err ≤ Chα is the L2 norm of the error with a theoretical convergence rate α, which can
be obtained directly using MMS, and T is the time:

T = Wh−d, (8)

where d is the spatial dimension, h denotes the representative element length, and C and W are
constants. Then for a given run, the digits of efficacy would be given by

DoE = − log10

(
ChαWh−d

)
(9)

= − log10

(
CWhα−d

)
(10)

= (d− α) log10(h)− log10(CW ). (11)

Since C and W are constants, the slopes of the DoE lines are only affected by α and d. However,
because of strong-scaling and weak-scaling limits, it is possible that the time T may not always be
of linear complexity thus the slope may not actually be d−α. Let us consider a simple static-scaling
example shown in Figure 3. It can be seen here that the DoF per time (or N/T ) ratios indicate
at what points both strong-scaling and weak-scaling/memory effects start to dominate for a given
MPI parallelism. If C = 10, W = 0.1, and h-sizes ranging from 1/10 to 1/5120, we can see from
Figure 4 what type of slopes we could expect to see in the DoE diagrams assuming the same T from
Figure 3. It can be seen that methods with higher order rates of convergence are preferable as h is
refined. For this particular example’s chosen parameters, it can also be seen that the strong-scaling
effects skew a few of the data points at the beginning but the weak-scaling effects are nearly unseen.
Such effects may not aways be negligible in these DoE diagrams but could be carefully noted from
static-scaling.

In true static-scaling, the DoF per time metric needs to be scaled by the mesh convergence
ratio DoA/DoS. Before we get into the analysis of this scaling plot, we list a few key assumptions
that must be made in order for this to work:

(1) Problem size DoF or N = Dh−d where D is a constant.
(2) All computations are of linear complexity i.e., O(N).
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(b) h-size range: 10−2 to 10−4
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(c) h-size range: 10−3 to 10−5
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(d) h-size range: 10−5 to 10−7
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(e) h-size range: 10−7 to 10−9
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Figure 5. True DoF per time rates in comparison to the original DoF per time
rate for various h-sizes and α. Let d = 2, C = 10, D = 4, and the optimal
DoF/T = 4× 105.

(3) Any tailing off from O(N) occurs due to hardware related issues like latency from strong-
scaling effects, memory bandwidth contention, or cache misses.

(4) The problem size N or DoF must be greater than 1.
(5) L2 error norm err < 1.0.
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Any violations to the last two assumptions would require that a different logarithm rule be used
or for the numbers to be scaled so that neither DoA nor DoS are zero. The behavior of the true
static-scaling line plot is given by:(

DoA

DoS

)
×
(
N

T

)
=

(
− log10(Chα)

log10(Dh−d)

)
×
(
Dh−d

Wh−d

)
(12)

=
− log10(C)− log10(hα)

log10(D) + log10(h−d)
×
(
D

W

)
(13)

=
−α log10(h)− log10(C)

−d log10(h) + log10(D)
×
(
D

W

)
. (14)

The variables α, d, C, and D will significantly impact the qualitative behavior of the true static-
scaling diagrams. As h approaches zero, the N/T ratio will slowly asymptote to a new N/T ratio
scaled by the factor α/d. Consider the following true-static scaling diagrams in Figure 5 when
d = 2, C = 10, D = 4, and a variety of h-sizes are examined. It can be seen here that for larger
h-sizes or coarser meshes, the DoF/T lines are drastically skewed, and the optimal scaling regions
are no longer horizontal. The relative ordering of the line plots in both accuracy rate diagrams
depend significantly on the constants C, D, and W .

4. Experimental Setup

In this paper, we only consider the Poisson equation,

−∇2u = f, u ∈ Ω (15)

u = u0, u ∈ ΓD (16)

where Ω denotes the computational domain in Rd, ΓD denotes its boundary, u is the scalar solution
field, and u0 are the prescribed Dirichlet boundary values.

The finite element discretizations considered are the Continuous Galerkin (CG) and Discon-
tinuous Galerkin (DG) methods. Various levels of both h- and p-refinement for the CG and DG
methods are considered across different software implementations. We do not consider other viable
approaches such as the Hybridizable Discontinuous Galerkin (HDG) method [19,24] or mixed for-
mulations [17, 36] but these will be addressed in future work. To this end, let us define E as an
element belonging to a mesh E(Ω). The relevant finite-dimensional function space for simplices is

Uh :=
{
uh ∈ L2(Ω) : uh

∣∣
E
∈ Pp(E) ∀ E ∈ E(Ω)

}
, (17)

and for tensor product cells is

Uh :=
{
uh ∈ L2(Ω) : uh

∣∣
E
∈ Qp(E) ∀ E ∈ E(Ω)

}
. (18)

Here Pp(E) denotes the space of polynomials in d variables of degree less than or equal to p over
the element E, and Qp(E) is the space of d-dimensional tensor products of polynomials of degree
less than or equal to p. The general form of the weak formulation for equation (15) can be written
as follows: Find uh ∈ Uh such that

B (vh;uh) = L (vh) ∀ vh ∈ Uh (19)

where B and L denote the bilinear and linear forms, respectively.
9



4.1. Finite element discretizations. For the CG discretization, the solution uh is continu-
ous at element boundaries, so that Uh is actually a subspace of H1, and the test functions satisfy
vh = u0 on ΓD. To present the DG formulation employed in the paper, we introduce some notation.
The boundary of a cell Ei is denoted by ∂Ei. The interior face between Ei and Ej is denoted by
Γij . That is,

Γij = ∂Ei ∩ ∂Ej (20)

The set of all points on the interior faces is denoted by Γint. Mathematically,

Γint =

E(Ω)⋃
i,j

Γij (21)

For an interior face, we denote the subdomains shared by this face by E+ and E−. The outward
normals on this face for these cells are, respectively, denoted by n̂+ and n̂−. Employing Brezzi’s
notation [6], the average and jump operators on an interior face are defined as follows{

c
}

:=
c+ + c−

2
and

[[
c
]]

:= c+n̂+ + c−n̂− (22)

where

c+ = c|∂E+ and c− = c|∂E− (23)

Let ΓD denote the set of all boundary faces. For a face e ∈ ΓD, we then define {c} = c|e, and
[[c]] = c|en̂e. One of the most popular DG formulations is the Symmetric Interior Penalty method,
which for equation (19) is written

B(vh;uh) :=
∑

E∈E(Ω)

∫
E
∇vh · ∇uh −

∑
e∈Γint∪ΓD

∫
e
{vh} ·

[[
uh
]]
−

∑
e∈Γint∪ΓD

∫
e
{uh} ·

[[
vh
]]

+ σ
∑
e∈Γint

∫
e

|e|
|E|
[[
vh
]]
·
[[
uh
]]

+ γ
∑
e∈ΓD

∫
e

|e|
|E|

vhuh (24)

L(vh) :=
∑

E∈E(Ω)

∫
E
vhf −

∑
e∈ΓD

∫
e
u0∇vh · n̂e + γ

∑
e∈ΓD

∫
e

|e|
|E|

vhu0 (25)

where n̂e denotes the outward normal on an exterior face, |e| is the measure of a face in the given
triangulation, |E| is the measure of a cell in the given triangulation, and the penalty terms α and
γ are written as:

σ =
(p+ 1)(p+ d)

2d
(26)

γ = 2α (27)

as described in [39].

4.2. Software and solver implementation. In the next section, four different test prob-
lems are considered to demonstrate the unique capabilities of the TAS spectrum analysis. For
the first three problems, the following sophisticated finite element software packages are exam-
ined: the C++ implementation of the FEniCS/Dolfin Project (Docker tag: 2017.1.0.r1), the the
Python implementation of the Firedrake Project (SHA1: v0.13.0-1773-gc4b38f13), and the C++
implementation of the deal.II library (Docker tag: v8.5.1-gcc-mpi-fulldepscandi-debugrelease). All
three packages use various versions of PETSc for the solution of linear and nonlinear systems. The
last problem utilizes the development version of PETSc (SHA1: v3.8.3-1636-gbcc3281268) and its
native finite element framework. The FEniCS/Dolfin/Firedrake software calculate the L2 error

10



Figure 6. The structured and unstructured grids considered in this paper.

norms by projecting the analytical solution u onto a function space 3 degrees order higher than the
finite element solution uh, whereas both deal.II and PETSc do the integral directly and use the
same function space for both u and uh.

The test problems will be tested on the various meshes depicted in Figure 6. The FEniCS/Dolfin
and deal.II libraries use custom meshing, while Firedrake uses PETSc to manage unstructured
meshes [27–29], and the hexahedral meshes are generated using the algorithms described in [10,
23, 33]. All timings will simply measure the finite element assembly and solve steps but not the
mesh generation or any other preprocessing steps.

The first three test problems presented in this paper will be solved using the conjugate gra-
dient method with HYPRE’s algebraic multigrid solver, BoomerAMG [20], and have a relative
convergence criterion of 10−7. The last problem will also consider two other multigrid solvers—the
PETSc-native GAMG preconditioner [1,2] and Trilinos’ Multi-Level (ML) solver [37]—but have a
relative convergence criterion of 10−9.

The first three tests are conducted on a single 3.5 GHz Quad-core Intel Core i5-7600 processor
with 64 GB of 2400 MHz DDR4 memory. The two (2D) problems are run in serial whereas the
third (3D) problem is run across 4 MPI processes. The last problem is conducted on the Cori Cray
XC40 system at the National Energy Research Scientific Computing Center (NERSC), and utilizes
32 Intel Xeon E5-2698v3 (“Haswell”) nodes for a total of 1024 MPI processes.

5. Computational Results
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Figure 7. Test #1: Mesh convergence and static-scaling comparing various finite
element software packages on structured and unstructured 2D grids.

5.1. Test #1: Software implementation and mesh types. First, we examine how the
first-order CG discretization performs on both structured and unstructured grids as implemented

Table 1. Comparison of CG1 across packages

DoF DoS
FEniCS - triangles Firedrake - triangles Firedrake - quads deal.II - quads
DoA DoA/DoS DoA DoA/DoS DoA DoA/DoS DoA DoA/DoS

Structured
121 2.08 1.11 0.52 1.08 0.50 1.32 0.63 1.71 0.82
441 2.64 1.66 0.61 1.65 0.61 1.91 0.72 2.31 0.87
1681 3.23 2.25 0.68 2.24 0.68 2.50 0.78 2.92 0.90
6561 3.82 2.84 0.73 2.84 0.73 3.10 0.81 3.52 0.92
25921 4.41 3.41 0.77 3.44 0.77 3.71 0.84 4.12 0.93
103041 5.01 4.04 0.79 4.04 0.79 4.31 0.86 4.72 0.94

Unstructured
142 2.15 1.27 0.59 1.27 0.59 1.30 0.63 1.63 0.76
525 2.72 1.84 0.68 1.84 0.68 1.89 0.72 2.23 0.82
2017 3.30 2.44 0.74 2.44 0.74 2.49 0.77 2.83 0.86
7905 3.90 3.04 0.78 3.04 0.78 3.09 0.81 3.43 0.88
31297 4.50 3.64 0.81 3.64 0.81 3.69 0.84 4.03 0.90
124545 5.10 4.24 0.83 4.24 0.83 4.29 0.86 4.64 0.91
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Figure 8. Test #1: Accuracy rates comparing various finite element software pack-
ages on structured and unstructured 2D grids.

in the three different software packages. Consider the following analytical solution on a unit square,

u(x, y) = sin(2πx) sin(2πy). (28)

The 2D initial coarse grids shown in Figure 6 and are refined up to 5 times. Information concerning
the DoS and DoA for these problems can be found in Table 1. It should be noted that while the
Firedrake library is capable of handling both triangular and quadrilateral elements, the FEniCS and
deal.II libraries are only capable of handling, respectively, triangular and quadrilateral elements.

Figure 7 contain the mesh convergence and static-scaling diagrams. From the mesh-convergence
diagrams, we see that the unit slope matches our prediction α

d = 1 for a second order method in
two dimensions. The static-scaling diagrams indicate that that FEniCS/Dolfin and Firedrake have
very similar performances and outperform deal.II on large problems. However, as the problem size
decreases (approaching the strong-scaling limit) the overhead in Firedrake becomes apparent. Note
that deal.II and Firedrake’s quadrilateral meshes give slightly more accurate solutions so we now
examine the two accuracy rate metrics in Figure 8. The DoE plots indicate that the quadrilateral
meshes are in fact the more accurate methods, especially for the structured grids. The true static-
scaling plots indicate that while the deal.II results may be the most accurate, they are not the
fastest in terms of processing the DoFs. The TAS spectrum analysis suggests that quadrilateral
meshes not only offer more accuracy but are also faster so long as the software is implemented
efficiently.
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Figure 9. Test #2: Mesh convergence and static-scaling on structured grids com-
paring 2D CG and DG when the h-size is the same.

5.2. Test #2: CG vs DG with same h-size. Next, we examine the behavior of different
finite element discretizations for a given refinement, or h size. Three levels of p-refinement are

Table 2. Comparison of 2D structured grid (same h) CG and DG in FEniCS

h-size
CG1 CG2 CG3

DoA DoS DoA/DoS DoA DoS DoA/DoS DoA DoS DoA/DoS
1/10 1.04 2.08 0.50 2.31 2.64 0.88 3.37 2.98 1.13
1/20 1.55 2.64 0.59 3.23 3.23 1.00 4.56 3.57 1.28
1/40 2.11 3.23 0.65 4.15 3.82 1.09 5.76 4.17 1.38
1/80 2.70 3.82 0.71 5.06 4.41 1.15 6.96 4.76 1.46
1/160 3.30 4.41 0.75 5.96 5.01 1.19 7.82 5.36 1.45

h-size
DG1 DG2 DG3

DoA DoS DoA/DoS DoA DoS DoA/DoS DoA DoS DoA/DoS
1/10 1.15 2.78 0.41 2.59 3.08 0.84 3.54 3.30 1.07
1/20 1.68 3.38 0.50 3.70 3.68 1.01 4.67 3.90 1.20
1/40 2.26 3.98 0.57 4.76 4.28 1.11 5.86 4.51 1.30
1/80 2.85 4.58 0.62 5.72 4.89 1.17 7.07 5.11 1.38
1/160 3.45 5.19 0.66 6.65 5.49 1.21 7.67 5.71 1.34
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Figure 10. Test #2: Accuracy rates on structured grids comparing 2D CG and
DG when the h-size is the same.

considered on a unit square domain with the following analytical solution,

u(x, y) = sin(2πx2) sin(2πy2). (29)

We consider only the CG and SIP DG discretizations, with the value of the penalty chosen based
on the formula derived in [39]. Both FEniCS/Dolfin and deal.II are used for this case, starting
with the structured meshes on the left of Figure 6 as the initial meshes and using four levels of

Table 3. Comparison of 2D structured grid (same h) CG and DG in deal.II

h-size
CG1 CG2 CG3

DoA DoS DoA/DoS DoA DoS DoA/DoS DoA DoS DoA/DoS
1/10 1.45 2.08 0.70 2.65 2.64 1.00 3.50 2.98 1.17
1/20 2.05 2.64 0.88 3.53 3.23 1.10 4.71 3.57 1.32
1/40 2.65 3.23 0.82 4.43 3.82 1.16 5.91 4.17 1.42
1/80 3.26 3.82 0.85 5.33 4.41 1.21 7.12 4.76 1.49
1/160 3.86 4.41 0.87 6.24 5.01 1.24 8.32 5.36 1.55

h-size
DG1 DG2 DG3

DoA DoS DoA/DoS DoA DoS DoA/DoS DoA DoS DoA/DoS
1/10 1.55 2.60 0.59 2.75 2.95 0.93 3.88 3.20 1.21
1/20 2.08 3.20 0.65 3.69 3.56 1.04 5.00 3.81 1.31
1/40 2.66 3.81 0.70 4.61 4.16 1.11 6.17 4.41 1.40
1/80 3.26 4.41 0.74 5.52 4.76 1.16 7.37 5.01 1.47
1/160 3.86 5.01 0.77 6.42 5.36 1.20 8.57 5.61 1.53
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Table 4. Comparison of 3D structured grid with tetrahedron elements (same DoF)
CG and DG in Firedrake

CG1 CG2
h-size DoA DoS DoA/DoS h-size DoA DoS DoA/DoS
1/30 1.96 4.47 0.43 1/15 3.03 4.47 0.68
1/38 2.15 4.77 0.45 1/19 3.35 4.77 0.70
1/48 2.35 5.07 0.46 1/24 3.67 5.07 0.72
1/62 2.57 5.40 0.48 1/31 4.01 5.40 0.74
1/78 2.77 5.69 0.49 1/39 4.31 5.69 0.76
1/100 2.98 6.01 0.50 1/50 4.63 6.01 0.77
1/124 3.17 6.29 0.50 1/62 4.92 6.29 0.78
1/158 3.38 6.60 0.51 1/79 5.23 6.60 0.79

DG1 DG2
h-size DoA DoS DoA/DoS h-size DoA DoS DoA/DoS
1/11 1.36 4.50 0.30 1/8 2.39 4.49 0.53
1/14 1.55 4.82 0.32 1/10 2.72 4.78 0.57
1/17 1.70 5.07 0.34 1/13 3.10 5.12 0.61
1/22 1.91 5.41 0.35 1/16 3.39 5.39 0.63
1/27 2.09 5.67 0.37 1/20 3.71 5.68 0.65
1/35 2.31 6.01 0.38 1/26 4.06 6.02 0.67
1/43 2.48 6.28 0.40 1/32 4.34 6.29 0.69
1/55 2.69 6.60 0.41 1/41 4.67 6.62 0.71

refinement. The DoS and DoA for the FEniCS/Dolfin and deal.II discretizations can be found in
Tables 2 and 3, respectively. From the mesh-convergence diagrams in Figure 9, we see that second
order methods have unit slope, the third order methods have slope 3

2 , and fourth order methods
have slope 2, as predicted. It is interesting to note that FEniCS’s fourth order methods experience
a dropoff in convergence when the DoA goes past 7.0, which arises due to the relative convergence
criterion of 10−7.

In the static-scaling diagrams in Figure 9, we see that the high order methods show greater fall
off as problem size increases. Since the number of solver iterates remains roughly constant, this
is due to AMG solver complexity rising at a slightly nonlinear rate. Moreover, the CG methods
perform at a strictly higher rate than their DG counterparts, and within the CG and DG classes,
lower order methods are operating faster than high order, with the exception of CG2. When we
introduce the notion of accuracy into Figure 10, however, this traditional analysis is upended. Now,
within CG or DG, each order produces accuracy faster than the order below as seen from the scaled
error diagrams. From the true static-scaling diagrams, it can be seen that the CG methods are
slightly more efficient. For example, DG3 may be one of the most accurate methods for smaller
h-sizes but is clearly the slowest at processing its DoFs if all DoFs are given equal treatment.

5.3. Test #3: CG vs DG with same DoF count. It can be seen from the previous test
that each discretization has a different DoF count for a given mesh, making it somewhat difficult
to draw any comparisons. This can be especially true for 3D problems where the problem size
proliferates even more for every step of mesh refinement. In this third test, each finite element
discretization will have roughly the same DoF count by adjusting the h-size. Using Firedrake,
the CG and DG discretizations with up to 2 different levels of p-refinement are considered for the
following analytical solution on a unit cube,

u(x, y, z) = sin(2πx) sin(2πy) sin(2πz). (30)

Both tetrahedral and hexahedral elements from Figure 6 are used and Tables 4 and 5 depict the
h-sizes needed in order for all the discretizations to have roughly the same DoS. From Figure 11,
we see that second order methods have slope 2

3 , since now d = 3, and the third order methods have
unit slope, as predicted. Looking at the static scaling, we see that since all problems have an
equal number of DoF and the low order methods have a faster computation rate, they will finish
first, but this time DG1 outperforms CG1 for tetrahedrons. We have almost no fall off as the
problem size increases and small degradation from every method as we approach the strong-scaling
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Figure 11. Test #3: Mesh convergence and static-scaling on structured grids com-
paring CG and DG when the DoF is the same.

limit. When we look at the DoE plots in Figure 12, the higher order methods again dominate the
lower order. The true static-scaling plots confirm that CG2 for tetrahedrons is actually the best
since it has both the highest DoE and true DoF/s metrics.

5.4. Test #4: Different parallel solvers. Finally, what happens if we extend the TAS spec-
trum analysis to a larger-scale computing environment? Do different parallel solvers/preconditioning
strategies affect the performance results? Let us now consider PETSc’s native finite element library
for the CG1 and CG2 methods built on top of the DMPlex data structure. Three different multi-
grid libraries are analyzed for a series of structured hexahedron meshes, and the h-sizes are once
again chosen so that the CG1 and CG2 have equal DoF counts. Let us now consider the following
analytical solution on a unit cube domain:

u(x, y, z) = 5 sin(6πx) sin(7πy) sin(8πz). (31)

Three different parallel multigrid solvers are employed: PETSc’s GAMG, HYPRE’s BoomerAMG,
and Trilinos’ ML. Problem sizes ranging from 2,048,383 to 133,432,831 DoFs are examined across
32 Haswell nodes (for a total of 1024 MPI processes). It should be noted that in the PETSc finite
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Figure 12. Test #3: Accuracy rates on structured grids comparing 3D CG and
DG when the DoF the same.

Table 5. Comparison of 3D structured grid with hexahedron elements (same DoF)
CG and DG in Firedrake

CG1 CG2
h-size DoA DoS DoA/DoS h-size DoA DoS DoA/DoS
1/30 2.28 4.47 0.51 1/15 3.58 4.47 0.80
1/38 2.49 4.77 0.52 1/19 3.89 4.77 0.82
1/48 2.69 5.07 0.53 1/24 4.20 5.07 0.83
1/62 2.91 5.40 0.54 1/31 4.53 5.40 0.84
1/78 3.11 5.69 0.55 1/39 4.84 5.69 0.85
1/100 3.33 6.01 0.55 1/50 5.16 6.01 0.86
1/124 3.51 6.29 0.56 1/62 5.44 6.29 0.86
1/158 3.72 6.60 0.56 1/79 5.75 6.60 0.87

DG1 DG2
h-size DoA DoS DoA/DoS h-size DoA DoS DoA/DoS
1/16 1.75 4.52 0.39 1/11 2.75 4.56 0.60
1/20 1.94 4.81 0.40 1/13 2.99 4.77 0.63
1/25 2.13 5.10 0.42 1/17 3.37 5.12 0.66
1/32 2.34 5.42 0.43 1/21 3.68 5.40 0.68
1/39 2.51 5.68 0.44 1/26 4.00 5.68 0.70
1/50 2.72 6.00 0.45 1/33 4.35 5.99 0.73
1/63 2.92 6.30 0.46 1/42 4.71 6.30 0.75
1/79 3.12 6.60 0.47 1/53 5.05 6.60 0.77

element implementation, Dirichlet boundary conditions are removed from the system of equations
so only the interior nodes are treated as unknowns for our scaling analyses.
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Figure 13. Test #4: A complete TAS spectrum analysis of different parallel multi-
grid solvers across 1024 MPI processes.

Table 6 contains the DoA and DoS information for CG1 and CG2. As seen from the FEn-
iCS/Dolfin, Firedrake, and deal.II libraries, the higher order methods have larger DoA/DoS ratios.
The complete TAS spectrum is shown in Figure 13. First, we verify from the mesh convergence
diagram that the solutions obtained from each solver for a range of h-sizes have the expected α/d
slopes. Second, the static-scaling diagram shows how the results for each finite element discretiza-
tion are heavily influenced by the solver. Although the ML solver experiences the most significant
strong-scaling effects, it has the highest peak DoF per second rate for both CG1 and CG2. Another
observation that can be made from this diagram is that the GAMG solver has the flattest line,

Table 6. Comparison of 3D structured grid (same h) CG and DG in PETSc’s
native finite element framework

CG1 CG2
h-size DoA DoS DoA/DoS h-size DoA DoS DoA/DoS
1/128 1.75 6.31 0.28 1/64 3.18 6.31 0.50
1/160 1.94 6.60 0.29 1/80 3.47 6.60 0.53
1/200 2.14 6.90 0.31 1/100 3.76 6.90 0.55
1/256 2.35 7.22 0.33 1/128 4.08 7.22 0.57
1/320 2.54 7.51 0.34 1/160 4.38 7.51 0.58
1/400 2.74 7.80 0.35 1/200 4.67 7.80 0.60
1/512 2.95 8.13 0.36 1/256 4.99 8.13 0.62
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indicating the best scalability in the strong scaling limit, but it is the least efficient in terms of
processing its DoF. Of course, the data could change if one were to optimize the solver parameters
for this problem. It can be also be seen that CG1 has the higher DoF per second rates, but the DoE
diagram indicates that CG2 is actually more efficient. The lines in this diagram are not completely
straight due to the strong-scaling effects previously noted. Lastly, it can be seen that both CG1
and CG2 are grouped closely together in the true static-scaling diagrams, suggesting that both dis-
cretizations are processing the scaled DoFs at an equal pace. Overall, the TAS spectrum analysis
tells us that CG2 is the more efficient algorithm to use under the PETSc DMPlex framework, and
the choice of solver would depend on problem size.

6. Conclusion

By incorporating a measure of accuracy, or convergence of the numerical method, into perfor-
mance analysis metrics, we are able to make meaningful performance comparisons between different
finite element methods for which the worth of an individual FLOP differs due to different approxi-
mation properties of the algorithm—whether because of differences in discretizations, convergence
rates, or any any other reason. For example, we saw that for the 3D Poisson problem with smooth
coefficients, the DG1 method may have the highest computation rate in terms of DoF per time but
have low DoE and true DoF per time metrics once DoA is taken into consideration. Simultaneously
looking at the DoE and true DoF per time diagrams can further the understanding of how fast and
accurate a particular method is.

6.1. Extensions of this work. The Time-Accuracy-Size (TAS) spectrum analysis opens the
door to a variety of possible performance analyses. The most logical extension of this work would
be to to analyze different and more complicated PDEs, but there still exist some important issues
that were not covered in this paper. We now briefly highlight some of these important areas of
future research:

• Arithmetic intensity: A logical extension of the TAS spectrum performance analysis would
be to incorporate the Arithmetic Intensity (AI), used in the performance spectrum [16]
and roofline performance model [40]. The AI of an algorithm or software is a measure that
aids in estimating how efficiently the hardware resources and capabilities can be utilized.
The limiting factor of performance for many PDE solvers is the memory bandwidth, so
having a high AI increases the possibility of reusing more data in cache and lowers memory
bandwidth demands. It can be measured in a number of ways, such as through the Intel
SDE/VTune libraries or through hardware counters like cache misses.
• Numerical discretization: This paper has solely focused on the finite element method

using CG and DG discretization, so it would be a worthy research endeavor to investigate
other types of elements like hybrid or mixed elements. Furthermore, this type of analysis
is easily extendible to other numerical methods like the finite difference, finite volume,
spectral element, and boundary integral methods.
• Accuracy measures: The accuracy rate metrics were based on the L2 error norm, but

other measures of accuracy or convergence, like the H1 error seminorm, can be used. The
accuracy of different numerical methodologies may sometimes require more than just the
standard L2 error norm. For example, one can validate and verify the performance of
finite element methods for porous media flow models using the mechanics-based solution
verification measures described in [38].
• Solver strategies: Only the multigrid solvers HYPRE, GAMG, and ML have been used

for the experiments in this paper but there are various other solver and preconditioning
strategies one can use which may drastically alter the comparisons between the CG and
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DG methods. A thorough analysis and survey of all the appropriate solver and precon-
ditioning combinations may be warranted for any concrete conclusions to be made about
these finite element methods. There are also different ways of enforcing constraints or
conservation laws, solving nonlinear systems with hybrid and composed iterations, and
handling coefficient jumps in different ways. For this, we may also want to incorporate
statistics of the iteration involved [34].
• Large-scale simulations: The computational experiments performed in the previous section

are relatively small, but they can easily scale up so that up to 100K or more MPI processes
may be needed. Furthermore, even if smaller scale comparisons were to be made such as
the ones shown in this paper, the choice of hardware architecture could play an important
role in the scaling analyses. Intel systems were used to convey some important performance
comparisons, but such comparisons may be very different on systems provided by IBM,
AMD, or even NVIDIA.
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