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On the (in)efficiency of MFG equilibria
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Abstract

Mean field games (MFG) are dynamic games with infinitely many infinitesimal agents.
In this context, we study the efficiency of Nash MFG equilibria: Namely, we compare the
social cost of a MFG equilibrium with the minimal cost a global planner can achieve. We
find a structure condition on the game under which there exists efficient MFG equilibria and,
in case this condition is not fulfilled, quantify how inefficient MFG equilibria are.

1 Introduction

Mean field games (MFG) study Nash equilibria in differential games with infinitely many in-
distinguishable agents. In this note, we investigate the classical question of the efficiency for
these Nash equilibria: we compare the social cost corresponding to a MFG equilibrium with the
optimal social cost obtained by a global planner.

To fix the ideas and describe the model we have in mind, we start with a finite horizon
differential game played by a large number of agents (say N). Agent i P t1, . . . , Nu controls her
dynamics: "

dXi
t “ αi

tdt `
?
2dBi

t , t P r0, T s,
Xi

0
“ xi

0

where T is the horizon, the pBiq are N independent Brownian motions and the pxi
0
q are N i.i.d.

random variables on R
d, independent of the pBiq, with law m0. The control pαiq is chosen by

agent i in order to minimize a cost of the form

J ipα1, . . . , αN q “ E

„
ˆ T

0

LpXi
t , α

i
t,m

N
Xt

q dt ` GpXi
T ,m

N
XT

q

,

where mN
Xt

“ 1

N

řN
j“1

δ
X

j
t

is the empirical measure of the players. We assume that dynamics

and costs have a special structure: agent i controls directly her own drift and her running cost
at time t depends on her position Xi

t , on her control αi
t and on the empirical measure of all

players mN
Xt

; her terminal cost depends on her position Xi
T at the terminal time T and on

the empirical measure mN
XT

at that time. Note that, under our assumptions, the agents have
symmetric dynamics and costs functions.

The social cost associated with the N agents is the average of the J i:

Jpα1, . . . , αN q :“ 1

N

Nÿ

i“1

J ipα1, . . . , αN q.
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Global planning. If there is a global planner, the cost to minimize is J , over the adapted
controls pα1, . . . , αN q. This minimum could be computed by standard tools (for instance, a
Hamilton-Jacobi equation in R

Nd). However, we are interested in the value of the minimum
when the number of agents is large. It is proved in [20], in a much more general context, that

lim
NÑ`8

inf
α1,...,αN

Jpα1, . . . , αN q “ C˚,

where C˚ is the cost associated with the McKean-Vlasov control problem:

C
˚ :“ inf

pm,αq

ˆ T

0

ˆ

Rd

Lpx, αpt, xq,mptqqmpt, xq dxdt `
ˆ

Rd

Gpx,mpT qqmpT, xqdx

and where the infimum is taken over the pairs pm,αq such that

Btm ´ ∆m ` divpmαq “ 0, mp0, xq “ m0pxq.

The quantity C˚ is our first main object of investigation. We interpret it as the social cost
associated with a global planner.

Following [24] (see also [3, 4] and Lemma 2.2 below), and under suitable conditions stated
below, the above problem for C˚ has a minimum pm̂, α̂q and there exists a map û such that pû, m̂q
solves the forward-backward system

$
’’’’&
’’’’%

´Btû ´ ∆û ` Hpx,Dû, m̂ptqq “
ˆ

Rd

δL

δm
py, α̂pt, yq, x, m̂ptqqm̂pt, yqdy in p0, T q ˆ R

d

Btm̂ ´ ∆m̂ ´ divpm̂DpHpx,Dûpt, xq, m̂ptqqq “ 0 in p0, T q ˆ R
d

m̂p0, xq “ m0pxq, ûpT, xq “ δ pG
δm

pm̂pT q, xq in R
d

(1.1)

where Hpx, p,mq “ supαPRd ´α ¨ p ´ Lpx, α,mq is the convex conjugate of L and where we have
denoted by

α̂pt, xq “ ´DpHpx,Dûpt, xq, m̂ptqq

the optimal feedback control of the global planner. The map pG is defined by

pGpmq :“
ˆ

Rd

Gpx,mqmpdxq (1.2)

while δL{δm and δĜ{δm are the derivatives of the maps m Ñ Lpx, α,mq and m Ñ Ĝpmq,
respectively, with respect to the measure variable m (see Section 2).

Decentralized setting. When there is no cooperation between the agents, one expects them to
play a Nash equilibrium. The characterization of Nash equilibria (in memory strategy) is known
in this setting [5, 18] and related to the Folk’s Theorem (any feasible and individually rational
payoff can be achieved as a Nash equilibrium). However, when the number N of agents is large
and the agents are indistinguishable, it is not reasonable to ask all the agents to observe each
other: the notion of memory strategy (or even of global feedback strategy) does not seem to
make much sense. One would expect the agent to act instead by taking into account their own
position and the distribution of the position of other agents: this is precisely what mean field
games formalize.

Mean field games. Mean field games (MFG) model differential games with infinitely many
indistinguishable players. They were introduced by Lasry and Lions [22, 23, 24]. At the same
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period, Huang, Caines and Malhamé discussed the same concept under the terminology of “Nash
certainty equivalence principle" [13, 15]. The MFG system associated with the above control
problem reads, in terms of PDEs,

$
&
%

´Btu ´ ∆u ` Hpx,Du,mptqq “ 0 in p0, T q ˆ R
d

Btm ´ ∆m ´ divpmDpHpx,Du,mptqqq “ 0 in p0, T q ˆ R
d

mp0, xq “ m0pxq, upT, xq “ Gpx,mpT qq in R
d.

(1.3)

In the above system, u “ upt, xq is the value function of a typical player while m “ mpt, xq
describes the evolving probability density of all agents. Note that the drift ´DpHpx,Dupt, xqq
in the equation for m corresponds to the optimal feedback of the agent. Heuristically, the pair
pu,mq describes a Nash equilibrium in the infinite population problem.

The social cost associated with a MFG equilibrium pu,mq, which is the averaged cost of each
player, can be defined as:

Cpu,mq :“
ˆ T

0

ˆ

Rd

Lpx, α˚pt, xq,mptqqmpt, xq dxdt `
ˆ

Rd

Gpx,mpT qqmpT, xqdx,

where α˚pt, xq “ ´DpHpx, upt, xqq is the optimal feedback in the MFG. The quantity Cpu,mq is
the second main object of investigation of this paper.

Comparison between the two problems. The difference between the two problems—the cen-
tralized optimal control of McKean-Vlasov dynamics and the MFG equililbria—has been often
discussed in the literature: see, for instance, [3, 9, 8, 10, 14]. So far the attention has focussed
on the difference in structure between the two systems of equations (namely, for our problem,
(1.1) and (1.3)). Note that, in our specific setting, there is no real difference between (1.1) and
(1.3): so one could expect that the two problems are very close in terms of social cost.

Comparison between C˚ and Cpu,mq. In this paper, we plan to compare the social costs C˚

and Cpu,mq. Obviously one has C˚ ď Cpu,mq. We want to understand a little better the case of
equality and the size of the difference Cpu,mq ´ C˚.

This question has been often addressed in the classical game theory: a characterization
of efficiency can be found for instance in [12], which also proved that, generically, the Nash
equilibria are not efficient. The problem became very popular under the name of “price of
anarchy", introduced in [19] for noncooperative games in which agents share a common resource.
We also refer for instance to [16, 17, 25, 26] and the references therein, in the framework of selfish
routing games and congestion games. Related to our setting with infinitely many players, the
recent paper [21] discusses the price of anarchy for static games with a large number of players.

This large literature is in sharp contrast with the literature on differential games, where
efficiency has seldom been investigated, and only recently: [2] estimates the price of anarchy in
some scalar linear-quadratic (LQ) differential games; Directly related to our work, [1] addresses
the question of the inefficiency of MFG Nash equilibria by numerical simulations. This question
is also discussed in [11], in the settings of LQ MFG and of MFG on finite Markov chains.

Main results. The main topic of our paper is the estimate of the difference between C˚ and
Cpu,mq—in our set-up, the ratio C˚{Cpu,mq, generally used for the price of anarchy, does not
seem to make much sense. To simplify a little the estimates, we work in the periodic setting
(and therefore in the torus T

d “ R
d{Td) instead of Rd: We expect the similar results to hold for

other boundary conditions, but the proof should be more technical.
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Our starting point is the obvious remark that the MFG system (1.3) describing pu,mq and
the system of necessary conditions (1.1) characterizing the minimum for C˚ are very close, and,
in fact, are (almost) identical if

ˆ

Td

δL

δm
py, α̂pt, yq, x, m̂ptqqm̂pt, yqdy “ 0 and

ˆ

Td

δG

δm
py,mpT q, xqmpT, dyq “ 0.

It turns out that, if a MFG equilibrium pu,mq is efficient, i.e., if Cpu,mq “ C˚, then the above
equalities must hold (Proposition 3.1).

When the above equalities do not hold, one may wonder how far MFG equilibria are from
efficiency. This is precisely the aim of our main results (Theorem 4.1 and Theorem 5.1) which
give lower and upper bounds for the difference between C˚ and Cpu,mq. The lower bound, stated
in Theorem 4.1, reads, for any ε ą 0:

Cpu,mq ´ C˚ ě C´1

ε

´ˆ T´ε

ε

ˆ

Td

„
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx


2

dydt
¯2

` C´1

´ˆ

Td

„
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx


2

dy
¯4

,

where α˚pt, xq “ ´DpHpx,Dupt, xq,mptqq. The constants C ě 1 depends on the regularity of
the data and Cε ě 1 depends also on ε. The presence of ε is technical and is related with the
constraints at time t “ 0 (where mp0q “ m0) and t “ T (where upT, xq “ Gpx,mpT qq).

We are only able to obtain an upper bound for Cpu,mq ´ C˚ under additional assumptions:
First we assume that H has a separate form: H “ H0px, pq ´ F px,mq; Second, we suppose that
Ĝ (defined by (1.2)) and F̂ (defined in a similar way) are convex (in which case the solution of
the MFG system (1.1) is unique, see [24]). Then, in Theorem 5.1, we show the upper bound:

Cpu,mq ´ C
˚ ď C

´ˆ T

0

ˆ

Td

„
ˆ

Td

δF

δm
px, y,mptqqmpt, xqdx

2
dydt

`
ˆ

Td

„
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx

2
dy
¯1{2

,

where the constant C depends on the regularity of H, F and m0. As δL{δm “ δF {δm in the
separate case, this lower bound is close to the upper bound given above (with a different exponent,
though). We can conclude that, in this setting, the size of the quantity

››´
Td

δF
δm

py,m, ¨qmpdyq
››
L2

and
››´

Td
δG
δm

py,m, ¨qmpdyq
››
L2 along the MFG equilibrium pu,mq controls the difference Cpu,mq´

C˚.

Examples. To fix the ideas, we assume that the MFG system is separated: H “ H0px, pq ´
F px,mq and has zero terminal condition: G ” 0. We explain in Section 6 through several
examples, that our estimates roughly imply that MFG Nash equilibria are in general inefficient,
at least unless the coupling has a very specific structure.

On the positive side, we prove the existence of MFG systems which are globally efficient,
i.e., such that, for any initial condition pt0,m0q there exists a MFG equilibrium pu,mq starting
from pt0,m0q with Cpu,mq “ C˚: More precisely, we show in Theorem 3.4 that a MFG system is
globally efficient if and only if

ˆ

Td

δF

δm
py,m, xqmpdxq “ 0, @px,mq P T

d ˆ PpTdq,
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or, equivalently, if and only if one can write the coupling function F in the form

F px,mq “ Fpmq ` δF

δm
pm,xq,

for some map F “ Fpmq. Moreover, one can check (Example 6.1) that such a coupling function
F genuinely depends on m unless F is affine. However, the above structure on F is seldom
encountered in practice, and in general there exist (many) initial conditions for which there is
no efficient MFG equilibria.

This is the case for instance if F “ F pmq does not depend on x or if F derives from a
potential. In these two cases, the MFG system is globally efficient if and only if F is constant
(Examples 6.2 and 6.3). Moreover, our bounds can be simplified in this setting: When F does
not depend on x, the lower bound for a MFG equilibrium can be rewritten in term of the Holder
constant of the map t Ñ F pmptqq:

Cpu,mq ´ C˚ ě C´1

ε

"
sup
t1‰t2

|F pmpt2qq ´ F pmpt1qq|
pt2 ´ t1q1{2

*
4

,

where the supremum is taken over t1, t2 P rε, T ´εs. When F is potential (and thus, as explained
in Example 6.3, F vanishes and thus is convex), the two inequalities can directly be expressed
in function of F :

C´1

ε

ˆ
ˆ T´ε

ε

ˆ

Td

rF py,mptqqs2 dydt
˙2

ď Cpu,mq ´ C˚ ď C

ˆ
ˆ T

0

ˆ

Td

rF py,mptqqs2 dydt
˙1{2

.

In the same way, one can show (Example 6.4) that the MFG equilibria associated with a cou-

pling function of the form F px,mq “
ˆ

Td

φpx, yqmpdyq , for some smooth map φ : Td ˆT
d Ñ R,

cannot be globally efficient unless φ does not depend on y (and therefore F does not depend on
m).

Extension and limits. Although we won’t make it explicit, one can check that our results
generalize to other MFG systems (for instance with local coupling functions or to ergodic MFG
systems). However we leave several questions unanswered. First we do not know if the upper
bound also holds without our additional assumption. Our technique of proof does not seem
to give much result in full generality or requires very restrictive assumptions (see Remark 5.1).
Second, our lower bound seems difficult to generalize to problems with more complex dynamics
or for problems with bounded controls: Indeed our approach strongly relies on the fact that the
minimization problem for C˚ has regular solutions, and this requires some assumptions. Finally
let us strongly underline that our estimates have little to do with the universal estimates obtained
in the context of the “price of anarchy": Our bounds heavily depend on the regularity of the
data and only show how the difference Cpu,mq ´ C˚ is small or large in function of the specific
quantities

››´
Td

δF
δm

py,m, ¨qmpdyq
››
L2and

››´
Td

δG
δm

py,m, ¨qmpdyq
››
L2 .

The paper is organized as follows: In Section 2 we explain our main notations, state our
standing assumptions and characterize the minimizers for C˚ in terms of equation (1.1). Section
3 states necessary conditions and sufficient conditions for a MFG equilibrium to be efficient. In
Section 4 and 5, we quantify how far a MFG equilibrium is from efficiency: Section 5 gives a
lower bound and Section 5 an upper bound. We conclude by Section 6 with the discussion on
several examples.
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2 Assumptions and preliminary results

2.1 Notations and assumptions

Throughout the paper we work with maps which are all periodic in space, or, in other words, on
the d´dimensional torus T

d :“ R
d{Zd: this simplifying assumption allows us to ignore problems

related to boundary issues or growth conditions of the data. We denote by PpTdq the set of
Borel probability measures on T

d, endowed with the Monge-Kantorovitch distance d1:

d1pm,m1q “ sup
φ

ˆ

Td

φpm ´ m1q,

where the supremum is taken over all 1´Lipschitz continuous maps φ : Td Ñ R.
We will use the notion of derivative of a map U : PpTdq Ñ R as introduced in [6]. We say

that U is C1 if there exists a continuous map δU
δm

: Td ˆ PpTdq Ñ R such that

Upm1q ´ Upmq “
ˆ

1

0

ˆ

Td

δU

δm
px, p1 ´ tqm ` tm1qpm1 ´ mqpdxqdt @m,m1 P PpTdq.

The above relation defines the map δU
δm

only up to a constant. We always use the normalization
convention

ˆ

Td

δU

δm
px,mqdmpxq “ 0 @m P PpTdq. (2.4)

If u : Td ˆ r0, T s Ñ R is a sufficiently smooth map, we denote by Dupx, tq and ∆upx, tq its
spatial gradient and spatial Laplacian and by Btupx, tq its partial derivative with respect to the
time variable.

Assumptions. The following assumptions are in force throughout the paper.

• The Lagrangian L “ Lpx, α,mq : Td ˆ R
d ˆ PpTdq Ñ R is of class C2 with respect to all

variables and satisfies
C´1Id ď D2

ppLpx, α,mq ď CId. (2.5)

We also suppose that

ˇ̌
ˇ̌ δL
δm

px, p,m, yq
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ δ

2L

δm2
px, p,m, y, zq

ˇ̌
ˇ̌ ď Cp1 ` |p|2q, (2.6)

ˇ̌
ˇ̌Dα

δL

δm
px, p,m, yq

ˇ̌
ˇ̌ ď Cp1 ` |p|q,

ˇ̌
D2

αLpx, p,mq
ˇ̌

ď C. (2.7)

We define the convex conjugate H of L as

Lpx, p,mq “ sup
αPRd

t´p ¨ α ´ Lpx, α,mqu,

and we assume that H is of class C2 as well. Note that H also satisfies:

C´1Id ď D2

ppHpx, p,mq ď CId. (2.8)
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• The coupling function G : Td ˆ PpTdq Ñ R is globally Lipschitz continuous with space
derivatives Bxi

G : Td ˆ PpTdq Ñ R also Lipschitz continuous. We also assume that the
map G is C2 with respect to m and that its derivatives δG

δm
: Td ˆ PpTdq ˆ T

d Ñ R and
δ2G
δm2 : Td ˆ PpTdq ˆ T

d ˆ T
d Ñ R are Lipschitz continuous.

We will say below that a constant depends on the regularity of the data if it depends on the
horizon T , dimension d, on the C2 regularity of H, on the constant C in (2.8), on the bound on
G and on the modulus of Lipschitz continuity of δG{δm and of δ2G{δm2.

It will be convenient to set

Ĝpmq :“
ˆ

Td

Gpx,mqmpdxq, @m P PpTdq. (2.9)

Let us compute, for later use, δ pG{δm:

Lemma 2.1. We have

δ pG
δm

pm, yq “
ˆ

Td

δG

δm
px,m, yqmpdxq ` Gpy,mq ´

ˆ

Td

Gpx,mqmpdxq. (2.10)

Proof. For m1 P PpTdq, we have

lim
sÑ0`

1

s
ppGpp1 ´ sqm ` sm1q ´ pGpmqq

“ lim
sÑ0`

1

s

"
ˆ

Td

Gpx, pp1 ´ sqm ` sm1qppp1 ´ sqm ` sm1qpdxq ´
ˆ

Td

Gpx,mqmpdxq
*

“ lim
sÑ0`

ˆ

Td

1

s

 
Gpx, pp1 ´ sqm ` sm1q ´ Gpx,mq

(
mpdxq `

ˆ

Td

Gpx,mqpm1 ´ mqpdxq

“
ˆ

TdˆTd

δG

δm
px,m, yqpm1 ´ mqpdyqmpdxq `

ˆ

Td

Gpx,mqpm1 ´ mqpdxq.

This implies the claim in view of Convention (2.4).

2.2 An optimality condition

We now investigate optimality conditions for the problem, written in an unformal way as

min
pm,wq

ˆ T

t0

ˆ

Td

Lpx, w
m

pt, xq,mptqqmpt, xqdxdt ` ĜpmpT qq.

under the constraint

Btm ´ ∆m ` divpwq “ 0 in pt0, T q ˆ T
d, mpt0q “ m0 in T

d.

We recall how to give a rigorous meaning to the following expression. We denote by Ept0q the
set of time-dependent Borel measures pmptq, wptqq P PpTdq ˆ MpTd,Rdq such that t Ñ mptq is
continuous,

ˆ T

t0

|wptq|dt ă 8,

7



and equation
Btm ´ ∆m ` divpwq “ 0 in rt0, T s ˆ T

d, mpt0q “ m0

holds in the sense of distribution. We also denote by E2pt0q the subset of pmptq, wptqq P Ept0q
such that wptq is absolutely continuous with respect to mptq with a density dwptq

dmptq satisfying

ˆ

Td

ˆ T

t0

ˇ̌
ˇ̌ dwptq
dmptq pxq

ˇ̌
ˇ̌
2

mpdx, tqdt ă 8.

Then we define J on Ept0q by

Jpm,wq :“

$
’’’’&
’’’’%

ˆ T

t0

ˆ

Td

L

ˆ
x,

dwptq
dmptqpxq,mptq

˙
mpdx, tqdt ` ĜpmpT qq

if pm,wq P E2pt0q,

`8 otherwise.

We now explain that minimizers of the functional J correspond to solutions of the MFG system.
This remark was first pointed out in [24] and frequently used since then in different contexts.

Lemma 2.2. Under our standing assumptions, the above problem has at least one solution.
Moreover, for any solution pm̂, ŵq, there exists û such that the pair pû, m̂q is a classical solution
to
$
’’’’’’&
’’’’’’%

´Btû ´ ∆û ` Hpx,Dû, m̂ptqq “
ˆ

Rd

δL

δm
py, α̂pt, yq, x, m̂ptqqm̂pt, yqdy in p0, T q ˆ T

d

Btm̂ ´ ∆m̂ ´ divpm̂DpHpx,Dûpt, xq, m̂ptqqq “ 0 in p0, T q ˆ T
d

m̂p0, xq “ m0pxq, ûpT, xq “ δ pG
δm

pm̂pT q, xq in T
d

α̂pt, xq “ DpHpx,Dûpt, xq, m̂ptqq in p0, T q ˆ T
d,

(2.11)

where Hpx, p,mq “ supαPRdp´α ¨ p ´ Lpx, α,mqq and

ŵpt, xq “ ´m̂pt, xqDpHpx,Dûpt, xq, m̂ptqq. (2.12)

As it has been often pointed out (see [3, 9, 8, 10, 14] for instance), the above system does
not correspond to a mean field game in general because of the extra term on the right-hand side
of the Hamilton-Jacobi equation.

The proof of Lemma 2.11 is standard and has been described in [4] when H “ H0px, pq ´
F px,mq has a separate form. We only explain the main changes.

Proof. The existence of a solution can be established exactly as in [4]. Let now pm̂, ŵq be a
minimum of J . For any pm,wq P E and λ P p0, 1q, we set mλ :“ p1 ´ λqm̂ ` λm, wλ :“
p1 ´ λqŵ ` λw. We have by minimality of pm̂, ŵq:

ˆ T

0

ˆ

Td

Lpx, wλ

mλ

,mλqmλ ` ĜpmλpT qq ě
ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
, m̂qm̂ ` Ĝpm̂pT qq. (2.13)

By the convexity condition of L “ Lpx, α,mq in (2.5), the map ps, zq Ñ Lpx, s{z,mqs on
p0,`8q ˆ R

d is convex for any fixed x,m. So we have

ˆ T

0

ˆ

Td

Lpx, wλ

mλ

,mλqmλ ď p1 ´ λq
ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
,mλqm̂ ` λ

ˆ T

0

ˆ

Td

Lpx, w
m
,mλqm.

8



So we can rewrite (2.13) as:

λ

ˆ
ˆ T

0

ˆ

Td

Lpx, w
m
,mλqm ´

ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
,mλqm̂

˙

ě
ˆ T

0

ˆ

Td

Lpx, wλ

mλ

,mλqmλ ´
ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
,mλqm̂

ě ´
ˆ
ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
,mλqm̂ ´

ˆ T

0

ˆ

Td

Lpx, ŵ
m̂
, m̂qm̂

˙
´ pĜpmλpT qq ´ Ĝpm̂pT qqq.

Thus dividing by λ ą 0 and letting λ Ñ 0` we find, thanks to the regularity of L and Ĝ:

ˆ T

0

ˆ

Td

Lpx, wpt, xq
mpt, xq , m̂ptqqm̂pt, xqdxdt ´

ˆ T

0

ˆ

Td

Lpx, ŵpt, xq
m̂pt, xq , m̂ptqqm̂pt, xqdxdt

ě ´
ˆ T

0

ˆ

Td

ˆ

Td

δL

δm
px, ŵpt, xq

m̂pt, xq , y, m̂qm̂pt, xqpmpt, yq ´ m̂pt, yqqdxdydt

´
ˆ

Td

δĜ

δm
pm̂pT q, yqpmpT, yq ´ m̂pT, yqqdy.

This means that the pair pm̂, ŵq is optimal for the (local) functional

J pm,wq :“
ˆ T

0

ˆ

Td

Lpx, wpt, xq
mpt, xq , m̂ptqqmpt, xqdxdt

`
ˆ T

0

ˆ

Td

ˆ

Td

δL

δm
px, ŵpt, xq

m̂pt, xq , y, m̂ptqqm̂pt, xqmpt, yqdxdydt

`
ˆ

Td

δĜ

δm
pm̂pT q, yqmpT, yqdy.

We can then conclude exactly as in [4] that there exists û such that pû, m̂q is a classical solution
to the MFG system (2.11) and that ŵ “ ´m̂DpHpx,Dû, m̂ptqq.

3 Efficiency of MFG equilibria

Let pt0,m0q P r0, T s ˆ PpTdq be an initial distribution and pu,mq be the solution of the MFG
system $

&
%

´Btu ´ ∆u ` Hpx,Du,mptqq “ 0 in pt0, T q ˆ T
d

Btm ´ ∆m ´ divpmDpHpx,Du,mptqqq “ 0 in pt0, T q ˆ T
d

mpt0, xq “ m0pxq, upT, xq “ Gpx,mpT qq in T
d.

(3.14)

The social cost associated with the equilibrium pu,mq is defined by

Cpu,mq “
ˆ T

t0

ˆ

Td

tLpx, α˚pt, xqq ` F px,mptqqumpt, xq dxdt `
ˆ

Td

Gpx,mpT qqmpT, xqdx,

where α˚pt, xq :“ ´DpHpx,Dupt, xqq and Lpx, α,mq “ suppPRdp´α ¨ p ´ Hpx, p,mqq.
We want to compare Cpu,mq with the social cost obtained by a global planner, which is

defined as

C
˚ :“ inf

pm,αq

ˆ T

t0

ˆ

Td

tLpx, αpt, xq,mptqqu mpt, xq dxdt `
ˆ

Td

Gpx,mpT qqmpT, xqdx, (3.15)
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where the infimum is taken over the pairs pm,αq such that

Btm ´ ∆m ` divpmαq “ 0, in pt0, T q ˆ T
d, mpt0, xq “ m0pxq in T

d. (3.16)

Although C˚ depends on the initial position pt0,m0q, we will omit to write this dependence
explicitly to simplify the expressions.

We say that an equilibrium pu,mq, solution of the MFG system (3.14), is efficient if

Cpu,mq “ C
˚.

We say that the MFG system (3.14) is globally efficient if, for any initial position pt0,m0q P
r0, T s ˆ PpTdq, there exists an efficient MFG equilibrium with initial position pt0,m0q.

3.1 A necessary condition for efficiency

Proposition 3.1. Let pu,mq be a MFG equilibrium, i.e., a solution to (3.14). If pu,mq is
efficient, then, for any pt, xq P r0, T s ˆ T

d,

ˆ

Td

δL

δm
py, α˚pt, yq, x,mptqqmpt, yqdy “ 0 and

ˆ

Td

δG

δm
pt,mpT q, xqmpT, yqdy “ 0,

where α˚pt, xq :“ ´DpHpx,Dupt, xq,mptqq.

Proof. Assume that equality Cpu,mq “ C˚ holds. Then the pair pm,α˚q is a minimizer for C˚.
By the characterization of minimizers in Lemma 2.2, there exists v such that the pair pv,mq
solves system (2.11) with, by (2.12),

α˚pt, xq “ ´DpHpx,Dupt, xq,mptqq “ ´DpHpx,Dvpt, xq,mptqq @pt, xq P rt0, T s ˆ T
d.

By injectivity of DpH with respect to the second variable (coming from the strict convexity of
H with respect to p), we get Du “ Dv. This implies that there is a constant cptq such that
upt, xq “ vpt, xq ` cptq. By the equations satisfied by u and v we have therefore, for any pt, xq,

´ c1ptq “
ˆ

Rd

δL

δm
py, α˚pt, yq, x,mptqqmpt, yqdy. (3.17)

We integrate the above equality against mptq:

´c1ptq “
ˆ

Td

ˆ

Rd

δL

δm
py, α˚pt, yq, x,mptqqmpt, yqmpt, xqdydx.

As the double integral vanishes because of Convention (2.4), we get c1ptq “ 0, and therefore,
coming back to (3.17),

ˆ

Rd

δL

δm
py, α˚pt, yq, x,mptqqmpt, yqdy “ 0 @pt, xq P r0, T s ˆ T

d.

Equality upT, xq “ vpT, xq ` cpT q also implies by Lemma 2.1 that

Gpx,mpT qq “ δ pG
δm

pmpT q, xq ` cpT q

“
ˆ

Td

δG

δm
py,mpT q, xqmpT, yqdy ` Gpx,mpT qq ´

ˆ

Td

Gpy,mpT qqmpT, yqdy ` cpT q.

10



Integrating with respect to mpT, xqdx and using Convention (2.4), we obtain:

0 “ ´
ˆ

Td

Gpy,mpT qqmpT, yqdy ` cpT q,

and therefore
ˆ

Td

δG

δm
py,mpT q, xqmpT, yqdy “ 0 @x P T

d.

3.2 Characterization of the global efficiency

Let us recall that we say that the MFG system (3.14) is globally efficient if, for any initial position
pt0,m0q P r0, T s ˆPpTdq, there exists an efficient MFG equilibrium with initial position pt0,m0q.
In order to proceed and characterize global efficiency, we need to work in a special case: we
assume that H has the separate form

Hpx, p,mq “ H0px, pq ´ F px,mq @px, p,mq P T
d ˆ R

d ˆ PpTdq. (3.18)

Then L is also in a separate form:

Lpx, α,mq “ L0px, αq ` F px,mq,

where L0px, αq “ supp α ¨ p ´ H0px, pq is the convex conjugate of H0 with respect to the last
variable. In this case, the MFG system (3.14) becomes:

$
&
%

´Btu ´ ∆u ` H0px,Duq ´ F px,mptqq “ 0 in pt0, T q ˆ T
d

Btm ´ ∆m ´ divpmDpHpx,Duqq “ 0 in pt0, T q ˆ T
d

mpt0, xq “ m0pxq, upT, xq “ Gpx,mpT qq in T
d.

(3.19)

Note also that δL{δm reduces to

δL

δm
py, α, x,mq “ δF

δm
py, x,mq,

where the right-hand side is independent of α. In this case, Proposition 3.1 states that, if the
MFG equilibrium pu,mq is efficient, then, for any pt, xq P rt0, T s ˆ T

d,

ˆ

Td

δF

δm
py, x,mptqqmpt, yqdy “ 0 and

ˆ

Td

δG

δm
py, x,mpT qqmpT, yqdy “ 0.

The following statement is a kind of converse.

Proposition 3.2. Assume that H is of separate form (i.e., (3.18) holds) and that, for any
px,mq P T

d ˆ PpTdq,
ˆ

Td

δF

δm
py,m, xqmpdyq “ 0 and

ˆ

Td

δG

δm
py,m, xqmpdyq “ 0. (3.20)

Then, the MFG system is globally efficient: for any initial condition pt0,m0q P r0, T s ˆ PpTdq,
there exists a solution pu,mq to the MFG system (3.19) such that

Cpu,mq “ C
˚.

11



Proof. Without loss of generality, we can assume that m0 has a smooth and positive density.
Otherwise we can proceed by approximation. Let pm̂, α̂q be the minimum of (3.15) and û be such
that pû, m̂q solves (2.11) (recall Lemma 2.2). By assumption (3.20) and the structure condition
(3.18), pû, m̂q solves

$
’’&
’’%

´Btû ´ ∆û ` H0px,Dûq ´ F px, m̂ptqq “ 0 in pt0, T q ˆ R
d

Btm̂ ´ ∆m̂ ´ divpm̂DpHpx,Dûpt, xqqq “ 0 in pt0, T q ˆ R
d

m̂pt0, xq “ m0pxq, ûpT, xq “ δ pG
δm

pm̂pT q, xq in R
d.

As, by Lemma 2.1,

δ pG
δm

pm,xq “ Gpx,mq ´
ˆ

Td

Gpy,mqmpdyq

we see that upt, xq “ ûpt, xq `
´

Td Gpy,mpT qqmpdyq solves the MFG system (3.19). Moreover,
by the definition of u, û and m̂,

Cpu, m̂q “ Cpû, m̂q “ C˚.

Let us now point out an equivalent form of (3.20):

Proposition 3.3. The map F satisfies (3.20) if and only if there exists a C2 function F :

PpTdq Ñ R such that

F px,mq “ Fpmq ` δF

δm
pm,xq @px,mq P T

d ˆ PpTdq. (3.21)

In this case, one can take F “ F̂ , where F̂ is given by

F̂pmq :“
ˆ

Td

F px,mqmpdxq @m P PpTdq.

Proof. If (3.20) holds, then it is obvious by (2.10) that F is of the form (3.21) with F “ F̂ .
Conversely, if F is of the form (3.21), then

δF

δm
px,m, yq “ δF

δm
pm, yq ` δ2F

δm2
pm,x, yq “ δ2F

δm2
pm, y, xq ` δF

δm
pm,xq,

because, according to [6, Lemma 2.2.4],

δ2F

δm2
pm,x, yq “ δ2F

δm2
pm, y, xq ´ δF

δm
pm, yq ` δF

δm
pm,xq.

We can then conclude that
ˆ

Td

δF

δm
px,m, yqmpdxq “

ˆ

Td

δ2F

δm2
pm, y, xqmpdxq `

ˆ

Td

δF

δm
pm,xqmpdxq “ 0,

by Convention (2.4).

To summarize, we have obtained the following characterization of global efficiency:
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Theorem 3.4. Assume that H is of separate form (i.e., (3.18) holds). Then the MFG system
is globally efficient if and only if

ˆ

Td

δF

δm
py,m, xqmpdxq “ 0,

ˆ

Td

δG

δm
py,m, xqmpdxq “ 0, @px,mq P T

d ˆ PpTdq,

which is also equivalent to the existence of C2 maps F : PpTdq Ñ R and G : PpTdq Ñ R such
that

F px,mq “ Fpmq ` δF

δm
pm,xq, Gpx,mq “ Gpmq ` δG

δm
pm,xq @px,mq P T

d ˆ PpTdq.

Surprisingly, this condition depends only on the coupling terms F and G, but not on the
Hamiltonian H0.

Proof. We have seen in Propositions 3.2 and 3.3 that the existence of F for which (3.21) holds
is sufficient for the global efficiency. Conversely, if the MFG system is globally efficient, then,
for any initial condition pt0,m0q P r0, T s ˆ PpTdq, where m0 has a smooth density, there exists
a MFG equilibrium pu,mq such that

ˆ

Td

δF

δm
py, x,mptqqmpt, yqdy “ 0 and

ˆ

Td

δG

δm
py, x,mpT qqmpT, yqdy “ 0.

In particular, for t “ t0, we obtain

ˆ

Td

δF

δm
py, x,m0qm0pyqdy “ 0.

Choosing t0 arbitrarily close to T , mpT q becomes closer and closer to m0 (because m0 has a
smooth density), we obtain:

ˆ

Td

δG

δm
py, x,m0qm0pyqdy “ 0.

We conclude by approximation and using Proposition 3.3 again.

4 Lower bound on C ´ C˚

Theorem 4.1. Under our standing assumptions, let pu,mq be a solution to the MFG system
(3.14) starting from pt0,m0q P r0, T s ˆ PpTdq. Then we have the lower bound: for any ε ą 0,

Cpu,mq ´ C
˚ ě C´1

ε

´ˆ T´ε

t0`ε

ˆ

Td

„
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx

2
dydt

¯2

(4.22)

` C´1

´ˆ

Td

„
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx

2
dy
¯
4

,

where α˚pt, xq “ ´DpHpx,Dupt, xq,mptqq and where the constants C ě 1 depends on the regu-
larity of H, G and on m0 and where Cε ě 1 depends also on ε.

Remark 4.1. The presence of ε is related to the constraints mpt0q “ m0 and upT q “ Gpx,mpT qq:
they prevent the choice of arbitrary test functions in the proof. For instance, if G ” 0, one can
replace T ´ ε by T in the integral.
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Proof of Theorem 5.1. As the equation for m is uniformly parabolic, for ε ą 0 there exists a
constant Cε such that m has a C2 density which is bounded below by C´1

ε on rt0 `ε{2, T s. With
a given pµ, βq smooth solution to

Btµ ´ ∆µ ` divpβq “ 0 in pt0, T q ˆ T
d, µpt0, xq “ 0 in T

d, (4.23)

with β “ µ “ 0 on rt0, t0 ` ε{2s, we set τε :“ 1{p2Cε}µ}8q and, for h P r0, τεs, pmh, αhq :“
pm ` hµ, pmα˚ ` hβq{pm ` hµqq where α˚pt, xq :“ ´DpHpx,Dupt, xq,mptqq. Note that the
pair pmh, αhq satisfies mhptq P PpTdq for any t and the constraint (3.16) for any h P r0, τεs (in
particular mhpt0q “ m0 because µpt0q “ 0). Moreover, h Ñ pmh, αhq is smooth because µ “ 0

on rt0, t0 ` ε{2s and m is bounded below by a positive constant on rε{2, T s.
Next we define the map φ : r0, τεs Ñ R by

φphq :“
ˆ T

t0

ˆ

Td

L px, αhpt, xq,mhptqqmhpt, xqdxdt `
ˆ

Td

Gpx,mhpT qqmhpT, xqdx.

We have

φ1phq “
ˆ T

t0

ˆ

Td

L px, αhpt, xq,mhptqqµpt, xqdxdt

`
ˆ T

t0

ˆ

Td

DαLpx, αhpt, xq,mhptqq ¨ pβpt, xq ´ αhpt, xqµpt, xqq dxdt

`
ˆ T

t0

ˆ

Td

ˆ

Td

δL

δm
px, αhpt, xq, y,mhptqqµpt, yqmhpt, xqdydxdt

`
ˆ

Td

"
Gpx,mhpT qqµpT, xq `

ˆ

Td

δG

δm
px,mhpT q, yqµpT, yqmhpT, xqdy

*
dx.

Recalling the definition of α˚ and the fact that

L px, α˚pt, xq,mptqq “ ´Hpx,Dupt, xq,mptqq ` DpHpx,Dupt, xq,mptqq ¨ Dupt, xq
“ ´Btupt, xq ´ ∆upt, xq ´ α˚pt, xq ¨ Dupt, xq,

and that
DαLpx, α˚pt, xq,mptqq “ ´Dupt, xq,

we obtain

φ1p0q “
ˆ T

t0

ˆ

Td

p´Btupt, xq ´ ∆upt, xq ´ α˚pt, xq ¨ Dupt, xqqµpt, xqdxdt

`
ˆ T

t0

ˆ

Td

´Dupt, xq ¨ pβpt, xq ´ α˚pt, xqµpt, xqq dxdt

`
ˆ T

t0

ˆ

Td

ˆ

Td

δL

δm
px, α˚pt, xq,mptq, yqµpt, yqmpt, xqdydxdt

`
ˆ

Td

"
Gpx,mpT qqµpT, xq `

ˆ

Td

δG

δm
px,mpT q, yqµpT, yqmpT, xqdy

*
dx

“
ˆ T

t0

ˆ

Td

ˆ

Td

δL

δm
px, α˚pt, xq,mptq, yqµpt, yqmpt, xqdydxdt

`
ˆ

Td

ˆ

Td

δG

δm
px,mpT q, yqµpT, yqmpT, xqdydx,

(4.24)
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where we used the equation satisfied by the pair pµ, βq and the fact that upT, ¨q “ Gp¨,mpT qq for
the last equality. Let us also note for later use that

φ2phq “
ˆ T

t0

ˆ

Td

D2

αL px, αh,mhq pβ ´ µαhq ¨ p β

mh

´ µαh

mh

qdxdt

`2

ˆ T

t0

ˆ

Td

ˆ

Td

Dα
δL

δm
px, αh,mh, yq ¨ pβ ´ αhµqpt, xqµpt, yqdxdydt

`
ˆ T

t0

ˆ

Td

ˆ

Td

δ2L

δm2
px, αh,mh, y, zqµpy, tqµpz, tqmhpt, xqdxdydt

`2

ˆ T

t0

ˆ

Td

ˆ

Td

δL

δm
px, αhpt, xq,mhptq, yqµpt, yqµpt, xqdydxdt

`2

ˆ

Td

ˆ

Td

δG

δm2
px,mhpT q, yqµpx, T qµpy, T qdxdy

`
ˆ

Td

ˆ

Td

δ2G

δm2
px,mhpT q, y, zqµpx, T qµpy, T qmhpt, xqdxdy.

(4.25)

Recall that, for any h P r0, τεs, the pair pmh, αhq satisfies mhptq P PpTdq for all t P rt0, T s and
the constraint (3.16). Therefore

φphq ě C˚ @h P r0, τεs.

As

φphq ď φp0q ` hφ1p0q ` h2

2
}φ2}8 “ Cpu,mq ` hφ1p0q ` h2

2
}φ2}8,

we obtain,

Cpu,mq ´ C˚ ě ´hφ1p0q ´ h2

2
}φ2}8 @h P r0, τεs. (4.26)

We now apply the above computations to two particular cases, one to get the lower bound
involving F and the other one for the lower bound involving G. For ε P p0, pT ´ t0q{2q, let us
set:

µpt, yq :“ ´γptqmpt, yq
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx, (4.27)

where

γptq :“

$
’’&
’’%

1 if t P rt0 ` ε, T ´ εs
0 if t P rt0, t0 ` ε{2s
2pt ´ ε{2q{ε if t P rt0 ` ε{2, t0 ` εs
pT ´ tq{ε if t P rT ´ ε, T s

By Convention (2.4), we have
´

Td µpt, yqdy “ 0, so that we can find a continuous map β “ βpt, xq
such that (4.23) holds. Note that µ is uniformly bounded by a constant C1 in L8 independently
of ε and therefore we can choose τε “ 1{pC0C1q. Let us define φ as above. Then φ is of class
C1,1 with }φ2}8 ď C2, where C2 depends only on ε and on the regularity of H and F and C0.

By (4.24) and the definition of µ in (4.27) we have

φ1p0q “ ´
ˆ T

t0

γptq
ˆ

Td

„
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx


2

mpt, yqdydt

ď ´
ˆ T´ε

t0`ε

ˆ

Td

„
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx

2
mpt, yqdydt.
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Thus, applying (4.26) with h “ mintτε,´φ1p0q{}φ2}8u, we obtain our first lower bound:

C ´ C˚ ě C´1

ε

ˆ T´ε

t0`ε

ˆ

Td

„
ˆ

Td

δL

δm
px, α˚pt, xq, y,mptqqmpt, xqdx


2

mpt, yqdydt,

for some constant Cε depending on the data, on m0 and on ε.

In order to obtain the lower bound involving G, we choose

µpt, yq :“ ´γptqmpT, yq
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx, (4.28)

where

γptq :“
"

0 if t P rt0, T ´ εs
pt ´ pT ´ εqq{ε if t P rT ´ ε, T s

where ε P p0, T {2q is small. Note that we can choose the lower bound Cε such that m ě C´1
ε on

rT {2, T s independent of ε. Hence the constant τε :“ 1{p2Cε}µ}8q does not depend on ε either,
and we call it τ0.

As before we can find a continuous map β “ βpt, xq such that (4.23) holds. As }γ1}8 ď T {ε,
we have }β}8 ď C{ε where C depends on the regularity of G only. Moreover µ is bounded in
L8 and, therefore, }αh}8 ď C{ε.

Let φ be associated to pµ, βq as above. Then, by (4.25) and our growth assumptions (2.6),
(2.7), we have }φ2}8 ď C{ε2. On the other hand, from the choice of µ and (4.24),

φ1p0q “
ˆ T

T´ε

γptq
ˆ

Td

ˆ

Td

δL

δm
px, α˚pt, xq,mptq, yqµpt, yqmpt, xqdydxdt

`
ˆ

Td

ˆ

Td

γpT q δG
δm

px,mpT q, yqµpT, yqmpT, xqdydx,

ď Cε ´ κ,

with

κ :“
ˆ

Td

„
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx

2
mpT, yqdy.

We now use (4.26) to obtain

Cpu,mq ´ C
˚ ě pκ ´ Cεqh ´ C

2ε2
h2 @h P r0, τ0s.

Choosing ε “ cκ (for some constant c ą 0 small enough) and h “ mintτ0, C´1κ3u (for some
large constant C with the same dependence as above), we get our second lower bound:

Cpu,mq ´ C
˚ ě C´1κ4.

Putting together our two lower bounds on C ´ C˚, we finally obtain Inequality (4.22).

5 Upper bounds on C ´ C˚.

In order to obtain an upper bound for C ´ C˚, we come back to the case where H is separated,
i.e., satisfies (3.18). Let us recall that, in this case, the MFG system becomes (3.19). Recall the
notation

F̂pmq :“
ˆ

Td

F px,mqmpdxq, Ĝpmq :“
ˆ

Td

Gpx,mqmpdxq, @m P PpTdq.
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Theorem 5.1. Under our standing assumptions, assume that the initial condition m0 has a
smooth and positive density. Assume in addition that the maps F̂ and Ĝ are convex on PpTdq.
Let pu,mq be a solution to the MFG system (3.19) starting from pt0,m0q. Then we also have the
upper bound:

Cpu,mq ´ C
˚ ď C

´ˆ T

t0

ˆ

Td

„
ˆ

Td

δF

δm
px, y,mptqqmpt, xqdx

2
dydt (5.29)

`
ˆ

Td

„
ˆ

Td

δG

δm
px,mpT q, yqmpT, xqdx

2
dy
¯
1{2

,

where the constants C ě 1 depends on the regularity of H0, F , G and on m0.

Remark 5.1. The result can actually be generalized to MFG systems with non separated Hamil-
tonian. However, in this case, the convexity condition has to be stated on the map

pm,wq Ñ
ˆ

Td

Lpx,w{m,mqdm.

However, as this later condition seems very restrictive, we have chosen to state the result for
separated Hamiltonians.

Proof of Theorem 5.1. We compute as usual (see [24])

d

dt

ˆ

Td

pu ´ ûqpm ´ m̂q.

We have, since mp0q “ m̂p0q “ m0,

0 “
ˆ T

t0

ˆ

Td

mpH0px,Dûq ´ H0px,Duq ´ DpH0px,Duq ¨ pDû ´ Duqdxdt

`
ˆ T

t0

ˆ

Td

m̂pH0px,Duq ´ H0px,Dûq ´ DpH0px,Dûq ¨ pDu ´ Dûqdxdt

`
ˆ T

t0

ˆ

Td

˜
F px,mptqq ´ δ pF

δm
pm̂ptq, xq

¸
pmpt, xq ´ m̂pt, xqqdxdt

`
ˆ

Td

˜
Gpx,mpT qq ´ δ pG

δm
pm̂pT q, xq

¸
pmpT, xq ´ m̂pT, xqqdx.

Using the uniform convexity of H0, we find:

C´1

ˆ T

t0

ˆ

Td

pmpt, xq ` m̂pt, xqq|Du ´ Dû|2dxdt

ď ´
ˆ T

t0

ˆ

Td

˜
F px,mptqq ´ δ pF

δm
pm̂ptq, xq

¸
pmpt, xq ´ m̂pt, xqqdxdt

´
ˆ

Td

˜
Gpx,mpT qq ´ δ pG

δm
pm̂pT q, xq

¸
pmpT, xq ´ m̂pT, xqqdx,

(5.30)

where C depends on a lower bound of D2
ppH0 in (2.8). By (2.10) and using the fact that mptq
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and m̂ptq are probability measures, we have

C´1

ˆ T

t0

ˆ

Td

pmpt, xq ` m̂pt, xqq|Du ´ Dû|2dxdt

ď ´
ˆ T

t0

ˆ

Td

˜
δ pF
δm

pmptq, xq ´
ˆ

Td

δF

δm
py,mptq, xqmpt, yqdy ´ δ pF

δm
pm̂ptq, xq

¸
pmpt, xq ´ m̂pt, xqqdxdt

´
ˆ

Td

˜
δ pG
δm

pmpT q, xq ´
ˆ

Td

δG

δm
py,mpT q, xqmpT, yqdy ´ δ pF

δm
pm̂pT q, xq

¸
pmpT, xq ´ m̂pT, xqqdx.

As F̂ and Ĝ are convex, and thus δ pF
δm

pm̂, xq and δ pG
δm

pm̂, xq are monotone, we obtain:

C´1

ˆ T

t0

ˆ

Td

pmpt, xq ` m̂pt, xqq|Dupt, xq ´ Dûpt, xq|2dxdt

ď
ˆ T

t0

ˆ

TdˆTd

δF

δm
py,mptq, xqmpt, yqpmpt, xq ´ m̂pt, xqqdydxdt

`
ˆ

TdˆTd

δG

δm
py,mpT q, xqmpT, yqpmpT, xq ´ m̂pT, xqqdydx

ď Cκ sup
tPr0,T s

}m̂ptq ´ mptq}L2pTdq

where

κ :“
˜
ˆ

Td

ˆ T

t0

„
ˆ

Td

δF

δm
py,mptq, xqmpt, yqdy


2

dt `
„
ˆ

Td

δG

δm
py,mpT q, xqmpT, yqdy


2

dx

¸
1{2

.

The map µpt, xq :“ m̂pt, xq ´ mpt, xq solves

Btµ ´ ∆µ ´ divpµDpH0px,Duqq “ divpm̂pDpH0px,Dûq ´ DpH0px,Duqqq

with initial condition µp0, ¨q “ 0. So, following [7, Lemma 7.6], we have, for any t P r0, T s,

}µpt, ¨q}L2pTdq ď C

ˆ
ˆ T

t0

ˆ

Td

m̂2ps, xq|DpH0px,Dûps, xqq ´ DpH0px,Dups, xqq|2dxds
˙1{2

ď C

ˆ
ˆ T

t0

ˆ

Td

pm̂ps, xq ` mps, xqq|Dpû ´ uqps, xq|2dxds
˙1{2

,

because m̂ is bounded in L8 by a constant which depends on the regularity of the data and of
m0. Combining the last set of inequalities, we find

}m̂ ´ m}L2pr0,T sˆTdq ` }Dpû ´ uq}L2pr0,T s,L2

mptq`m̂ptq
pTdqq ď Cκ.

We are now in position to compare Cpu,mq and C˚:

Cpu,mq “ C
˚ `
ˆ T

t0

ˆ

Td

tLpx,´DpH0px,Dûqq ` F px, m̂ptqqu pm ´ m̂qdxdt

`
ˆ T

t0

ˆ

Td

tLpx,´DpH0px,Duqq ´ Lpx,´DpH0px,Dûqq ` F px,mptqq ´ F px, m̂ptqqumdxdt

ď Cp}m ´ m̂}L2pr0,T sˆTdq ` }Dpû ´ uq}L2pr0,T s,L2

mptq
pTdqqq ď Cκ.

This proves the result.
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6 Examples

Throughout this part, we assume to fix the ideas that H “ H0px, pq ´F px,mq is separated (i.e.,
satisfies (3.18)). To simplify the expressions, we also suppose that t0 “ 0 and G “ 0. Let us
recall that condition (3.20) characterizes the fact that the MFG system is globally efficient: for
any initial distribution m0, there exists an efficient MFG equilibrium, i.e., a solution pu,mq to
(3.14) such that Cpu,mq “ C˚. Our first example shows that there are MFG systems which are
globally efficient. However, the other examples show that this is seldom case for many standard
classes of coupling functions.

Example 6.1. Let us recall that given a C2 map F : PpTdq Ñ R and defining the coupling
function F by

F px,mq :“ Fpmq ` δF

δm
pm,xq @px,mq P T

d ˆ PpTdq,

the MFG system (3.19) is globally efficient (Theorem 3.4). We now prove that, if F is not affine
in m, then F genuinely depends on m: indeed, if F does not depend on m, there exists a map
f : Td Ñ R with

Fpmq ` δF

δm
pm,xq “ fpxq.

Integrating against m and using Convention (2.4), this implies that

Fpmq “
ˆ

Td

fpxqmpdxq,

which is affine in m.
For instance, let φ : Td ˆ T

d Ñ R be a non vanishing map and set F as

Fpmq “
ˆ

TdˆTd

φpx, yqmpdxqmpdyq.

Then the coupling

F px,mq “ Fpmq ` δF

δm
pm,xq

“
ˆ

Td

φpx, yqmpdyq `
ˆ

Td

φpz, xqmpdzq ´
ˆ

TdˆTd

φpz, yqmpdzqmpdyq

satisfies (3.20) and depends on m as soon as φ “ φpx, yq genuinely depends on x and y.

Example 6.2. Let us now suppose that F “ F pmq does not depend on x. Then
ˆ

Td

δF

δm
pm, yqmpdxq “ δF

δm
pm, yq. (6.31)

Hence the associated MFG system if globally efficient (i.e., (3.20) holds) if only if δF
δm

pm,xq
vanishes identically, in which case F is constant.

Moreover, if pu,mq is a MFG equilibrium, then we have, by (6.31) and the fact that Btm is
uniformly bounded by the regularity of the data,

|F pmpt2qq ´ F pmpt1qq| “
ˇ̌
ˇ̌
ˆ t2

t1

ˆ

Td

ˆ
ˆ

Td

δF

δm
pmptq, yqmpt, xqdy

˙
Btmpt, yqdydt

ˇ̌
ˇ̌

ď Cpt2 ´ t1q1{2

˜
ˆ T

0

ˆ

Td

„
ˆ

Td

δF

δm
px,mptq, yqmpt, xqdx


2

dydt

¸
1{2

,
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so that our bound from below can be rewritten in term of the modulus of Holder continuity of
F along the trajectory m: for any ε P p0, T {2q,

Cpu,mq ´ C
˚ ě C´1

ε

"
sup
t1‰t2

|F pmpt2qq ´ F pmpt1qq|
pt2 ´ t1q1{2

*4

.

where the supremum is taken over t1, t2 P rε, T ´ εs.

Example 6.3. We now assume that F derives from a potential: There exists a C1 map Φ :

PpTdq Ñ R such that F “ δΦ{δm. Note that, in this setting, we have

F̂pmq “
ˆ

Td

δΦ

δm
pm,xqmpdxq “ 0 @m P PpTdq.

In particular, F̂ is convex. Then, by Lemma 2.1,

ˆ

Td

δF

δm
px,m, yqmpdxq “ ´F py,mq @py,mq P T

d ˆ PpTdq.

This implies that the MFG system associated with F if globally efficient if and only if F vanishes
identically.

Moreover, if pu,mq is a MFG equilibrium,

ˆ T

0

ˆ

Td

„
ˆ

Td

δF

δm
px,mptq, yqmpt, xqdx


2

dydt “
ˆ T

0

ˆ

Td

rF py,mptqqs2 dydt.

So our estimates simply read:

C´1

ε

ˆ
ˆ T´ε

ε

ˆ

Td

rF py,mptqqs2 dydt
˙2

ď Cpu,mq ´ C
˚ ď C

ˆ
ˆ T

0

ˆ

Td

rF py,mptqqs2 dydt
˙1{2

.

Example 6.4. Finally we suppose that F is of the form F px,mq “
ˆ

Td

φpx, yqmpdyq for some

smooth map φ : Td ˆ T
d Ñ R. Then

δF

δm
px,m, yq “ φpx, yq ´

ˆ

Td

φpx, zqmpdzq, so that

ˆ

Td

δF

δm
px,m, yqmpdxq “

ˆ

Td

ˆ
φpx, yq ´

ˆ

Td

φpx, zqmpdzq
˙
mpdxq.

Hence the MFG system associated with F is globally efficient if and only if

ˆ

Td

φpx, yqmpdxq “
ˆ

TdˆTd

φpx, zqmpdzqmpdxq @py,mq P T
d ˆ PpTdq,

which implies (by choosing m to be a Dirac mass), that φ does not depend on y. In other words,
F does not depend on m.
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