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BROYDEN’S METHOD FOR NONLINEAR EIGENPROBLEMS

ELIAS JARLEBRING

Abstract. Broyden’s method is a general method commonly used for nonlinear systems of
equations, when very little information is available about the problem. We develop an approach
based on Broyden’s method for nonlinear eigenvalue problems. Our approach is designed for problems
where the evaluation of a matrix vector product is computationally expensive, essentially as expensive
as solving the corresponding linear system of equations. We show how the structure of the Jacobian
matrix can be incorporated into the algorithm to improve convergence. The algorithm exhibits local
superlinear convergence for simple eigenvalues, and we characterize the convergence. We show how
deflation can be integrated and combined such that the method can be used to compute several
eigenvalues. A specific problem in machine tool milling, coupled with a PDE is used to illustrate the
approach. The simulations are done in the julia programming language, and are provided as publicly
available module for reproducability.

1. Introduction. We here consider the nonlinear eigenvalue problem (NEP)
defined by

(1.1) M(λ)v = 0

where M : C → Cn×n is an analytic function of λ. This problem can equivalently be
written as a system of nonlinear equations

(1.2) F

([

v
λ

])

= 0

where

(1.3) F

([

v
λ

])

:=

[

M(λ)v
cHv − 1

]

under the assumption that c is not orthogonal to the eigenvector. The normalization
condition cHx = 1 is selected such that F is analytic and therefore complex differen-
tiable, which would not be the case if we were to select ‖v‖22 = vHv = 1 instead.

This class of NEPs has been studied for decades, as can be seen in summary
references [36, 32, 46] and the benchmark collection [2]. Several standard approaches
for NEPs of the type (1.1) are based on Newton’s method. The Newton approach
for NEPs was proposed already in 1950 [43], and later developed further in [34, 36].
The residual inverse iteration [33] is an implicit Newton method [24] and forms the
basis of the nonlinear Arnoldi method [45]. More recently, block variants of New-
ton’s method has been developed [27]. There is a summary of many methods [18] of
which many are Newton methods or can be interpreted as flavors of Newton’s method.
The QR-approach for banded matrices in [14] is based on Kublanovskaya’s approach
[28] which is also a Newton method applied to the (n, n)-element of the R-matrix in
the QR-factorization of M(λ). Two-sided Newton approaches and Jacobi-Davidson
approaches have been studied in [37]. Considerable convergence theory and specializa-
tion of the Newton type approaches can be found in the literature, e.g., convergence
theory [40, 41, 42] as well as inexact solves and preconditioning [39].

These Newton-approaches depend on explicit access to the matrix M(λ), in ways
which are not available. Most methods depend on direct access of M(λ) and/or that
the NEP can be expressed in an affine form

(1.4) M(λ) = M1f1(λ) + · · ·+Mmfm(λ)
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where f1, . . . , fm are analytic functions and m ≪ n. The availability of an affine
form typically means that when m is small, the projected problem V TM(λ)Wz = 0
can normally be solved in a computationally cheap way. The matrix M(λ) and an
affine form are not always available in applications. We illustrate this further in Sec-
tion 7 with a problem stemming from the analysis of time-periodic delay-differential
equations.

The approach presented here is based on Broyden’s method for nonlinear systems
of equations; see [7] and more recent summaries in [10, 1]. Broyden’s method is also
based on Newton’s method, but the Jacobian approximation is updated (typically
with a rank-one matrix) in order to avoid the computation of the Jacobian matrix.
An attractive feature of Broyden’s method is that only one function evaluation per
iteration is required. In the context of NEPs this implies that we do not need an
affine form and nor a direct accurate access to the Jacobian matrix.

In common for many structured iterative methods, application of a general pur-
pose approach to a specific problem leads to structures which can be exploited in
the algorithm. We derive in Section 3 a structure of Broyden method iterates when
applied to (1.2), which allows us to improve the approach. We show how this can be
integrated with a deflation technique (in Section 4). In this context we also show how
restarting can be carried out in a natural way. A local convergence is also character-
ized (in Section 5). We show how the convergence is related to Jordan structure in
the sense of [16, 19]. More precisely, we show how the convergence is given by the
Jordan chains defined as the existance of solutions to the equation

a
∑

i=0

M (i)(λ)

i!
va−i = 0

where v0 is a singular vector of M(λ).
We present numerical results of simulations for several problems in Section 6 and

Section 7 in order to illustrate the properties of the method and its competitiveness
for the time-perioidic time-delay system.

2. Background and basic algorithm. We briefly summarize the specific ver-
sion of Broyden’s method which will be the basis of our algorithm on. We use a
damped version of Broyden’s method, as described e.g., in [1, Section 7]. The deriva-
tion follows from the Newton-like update equation

(2.1) Jk∆xk = −F (xk)

where the next approximation is computed with a damped update equation

(2.2) xk+1 = xk + γk∆xk

The choice of the damping parameter γk will be tuned to our setting, essentially to
avoid taking too large steps (as we shall further describe in Remark 3.3). The next
matrix Jk+1 will satisfy (what is commonly called) the secant condition

(2.3) Jk+1(xk+1 − xk) = F (xk+1)− F (xk)

where Jk+1 is a rank-one modification of Jk. We will focus on updates of the form,

(2.4) Jk+1 = Jk +
1

‖∆xk‖2
zk+1∆xH .
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By combining (2.1), (2.3) and (2.4), it is clear that zk+1 can be directly computed
from

(2.5) zk+1 =
1

γk
(F (xk+1)− (1− γk)F (xk)).

In the literature on Broyden’s method (without damping), e.g., the original work [7],
the relation (2.4) with choice (2.5) is typically viewed as the minimization of the
update matrix Jk+1 − Jk with respect to the Frobenius norm and maintaining the
secant condition (2.3).

The equations (2.1), (2.2), (2.5) and (2.4) form an explicit algorithm where the
state consists of a vector xk and a matrix Jk, taking the role of a Jacobian matrix. This
algorithm is called Broyden’s good method. (Our algorithm can be modified to carry
out bad Broyden’s method. We focus on the good Broyden method, for simiplicity.)
An unfavorable aspect from a computational perspective is that the linear system in
(2.6) needs to solved in every step. There are several ways to avoid this. Instead
storing with the inverse of Jk we can store its inverse

Hk = J−1
k .

and state the algorithm in terms of Hk instead of Jk. We see immediately that (2.1)
becomes

(2.6) ∆xk = −HkF (xk)

Similarly, the update equation (2.4) can be reformulated in terms of Hk. More pre-
cisely, by applying the Sherman-Morrison-Woodbury formula [17, Section 2.1.4], we
obtain

Hk+1 = J−1
k+1 =

(

Jk +
1

‖∆xk‖2
zk+1∆xH

k

)−1

(2.7a)

= J−1
k −

J−1
k zk+1∆xH

k J−1
k

‖∆xk‖2 +∆xH
k J−1

k zk+1

(2.7b)

= Hk −
Hkzk+1∆xH

k Hk

‖∆xk‖2 +∆xH
k Hkzk+1

.(2.7c)

By using (2.5) and (2.3) we see that Hkzk+1 = 1
γ (HkF (xk+1) + (1− γ)∆xk) and the

following equivalent alternative relation for Hk+1

(2.8) Hk+1 = Hk −
(HkF (xk+1) + (1− γ)∆xk)∆xH

k Hk

∆xH
k (HkF (xk+1) + ∆xk)

Example 2.1. In order to illustrate the differences between the two versions of
Broyden’s method in terms of round-off error we carry out simulations on a small
example (for reproducability). We consider the quadratic eigenvalue problem

M(λ) = A0 +A1λ+A2λ
2

where A0, A1 and A2 were randomly generated. We carried out the simulation for
both H-version and J-version in single precision, as well as a simulation in sufficiently
high precision such that the result iteration can be treated as exact. The residual norm
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history is given in Figure 2.1. We see that the H-version follows the exact error history
(computed with high precision arithmetic) worse than the J-version. The algorithm
presented in the next section follows the trajectory even better (T -variant). Although
the differences between the methods are small in this example, it illustrates what can
be seen in longer simulations (in Section 6).
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Figure 2.1. Round-off error illustration.

3. Structure exploiting Broyden method.

3.1. Structure of the iterates. We now consider nonlinear systems of equa-
tions with a particular structure:

(3.1) F

(

λ,

[

v
u

])

=

[

M(λ) U(λ)
CH 0

] [

v
u

]

− b ∈ C
n+p+1

where CH ∈ C(p+1)×n, U(λ) ∈ Cn×p, v ∈ Cn and u ∈ Cp. We will also consistently
partition b as bT =

[

bT1 bT2
]

.

This structure includes the nonlinear equation formulation in (1.3) as the special
case p = 0 and b = en+1. We take this more general approach in order to incorporate
deflation in a natural way, as we will describe in Section 4. The Jacobian of this
problem can be derived explicitly,

(3.2) J

(

λ,

[

v
u

])

=

[

M(λ) U(λ) M ′(λ)v + U ′(λ)u
CH 0 0

]

∈ C
(n+p+1)×(n+p+1)

We first note that the structure of the Jacobian and the iterates are preserved in
Broyden’s method, when we denote

(3.3) xk =





vk
uk

λk



 .
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More precisely, if we initialize the Jacobian in Broyden’s method with the structure,
and label the blocks as

(3.4) J1 =

[

M1 W1

CH 0

]

∈ C
(n+p+1)×(n+p+1).

where W1 =
[

U1 f1
]

, then this structure is preserved in the sense of the following
theorem.

Theorem 3.1 (Structured iterates of Broyden’s method). Let (v1, u1, λ1) be such
that,

(3.5) CHv1 = b2

and J1 be set to (3.4). Suppose Broyden’s method initiated with (v1, u1, λ1) and J1
applied to (3.1) does not break down, and let (vk, uk, λk) and Jk, k = 2, . . . be the
iterates. Then, the structures (3.5) and (3.4) are preserved for all k, i.e., for k =
2, . . . , we have

(3.6) Jk =

[

Mk Wk

CH 0

]

and

(3.7) CHvk = b2.

Proof. The proof is by induction. We suppose (3.6) and (3.7) for a specifik k and
prove these two equations for k + 1. It is clear from (2.1) that ∆xk satisfies

[

Mk Wk

CH 0

]

∆xk =

[

M(λk)vk + U(λk)uk − b1
CHvk − b2

]

=

[

M(λk)vk + U(λk)uk − b1
0

]

such that CH∆vk = 0. Since vk+1 = vk + γ∆vk, we have

CHvk+1 = CH(vk + γ∆vk) = CHvk = b2.

which shows (3.7) for k + 1. Therefore, the vector zk+1 has the structure

zk+1 =
1

γ

([

M(λk+1)vk+1 + U(λk+1)− b1
CHvk+1 − b2

]

− (1− γk)

[

M(λk)vk + U(λk)− b1
CHvk − b2

])

=

1

γ

[

M(λk+1)vk+1 + U(λk+1)− b1 − (1 − γk)(M(λk)vk + U(λk)− b1)
0

]

The matrix Jk is updated according to (2.4). The last block row of the update in
(2.4) is zero, since the last block row of is zk+1 = 0. Therefore, we can define some
Jk+1 and Wk+1 such that (3.6) is satisfied for k + 1.

3.2. Structured Broyden. With the objective to improve Broyden’s method
for nonlinear systems of equations of the form (3.1), we now show how the structure
proven in Theorem 3.1 can be implicitly preserved. The J-version is straightforward
to modify to incorporate the structure, by consideration of the blocks of (2.1) in
Jk∆x = −F (xk) as follows. We multiply the first block row of equation (2.1) from
the left with CHM−1

k , i.e.,

(3.8) CHM−1
k

(

Mk∆vk +Wk

[

∆uk

∆λk

])

= −CHM−1
k rk,
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where the residual rk is defined as

(3.9) rk = M(λk)vk + U(λk)uk − b1.

By using that CH∆vk = CH(vk+1 − vk)/γk = (b1 − b1)/γk = 0 due Theorem 3.1, we
conclude from (3.8) that the following linear system for ∆uk and ∆λk is satisfied

(3.10) − CHM−1
k rk = (CHM−1

k Wk)

[

∆uk

∆λk

]

.

Subsequently, ∆vk is found from the first block row of (2.1), i.e.,

(3.11) ∆vk = −M−1
k

(

Wk

[

∆uk

∆λk

]

+ rk

)

Hence, the solution of the linear system in (2.1) can be replaced by first solving (3.10)
and then computing (3.11). This procedure can be implemented with p + 2 linear
solves.

At first sight, nothing is gained since we need even more linear solves than the
J-version. However, similar to the H-version, we can now formulate the algorithm by
representing an inverse. More precisely, instead of storing Mk we store,

Tk = M−1
k .

The reasoning with exploitation of the Jacobian in the J-version can be translated as
follows. Equation (3.10) can be replaced by computing

(3.12) Zk = TkWk

which allows us to compute the corresponding linear system in p+ 1 unknowns:

(3.13)

[

∆uk

∆λk

]

= −(CHZk)
−1(CHTkrk),

from which we can form

(3.14) ∆vk = −Zk

[

∆uk

∆λk

]

− Tkrk.

For notational convenience we now set IH :=
[

I 0
]

∈ Rn×(n+p+1). After updating
the iterates

vk+1 = vk + γ∆vk(3.15a)

uk+1 = uk + γ∆uk(3.15b)

λk+1 = λk + γ∆λk(3.15c)

we compute a new residual corresponding to rk+1 using (3.9) and define z̃k+1 as

(3.16) z̃k+1 = IT zk+1 =
1

γk
(rk+1 − (1− γk)rk).

By again applying the Sherman-Morrison-Woodbury formula, we see that we can
directly update Tk

Tk+1 = M−1
k+1 =

(

Mk +
1

‖∆xk‖2
IT zk+1∆xH

k I

)−1

= Tk −
1

‖∆xk‖2 +∆xH
k ITkI

T zk+1

TkI
T zk+1∆xH

k ITk
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which can be further simplified to not contain x-dependence,

(3.18) Tk+1 = Tk + Tkz̃k+1a
H
k+1

where aHk+1 := −∆vHk Tk/(‖∆vk‖
2 + ‖∆uk‖

2 + |∆λk|
2 +∆vHk Tkz̃k+1). We can subse-

quently update Wk with

(3.19) Wk+1 = Wk + z̃k+1b
H
k+1

where bHk+1 =
[

∆uH
k (∆λk)

H
]

/(‖∆v‖2 + ‖∆u‖2 + |∆λ|2). Finally, as a consequence
of the fact that Tk and Wk are updated with rank-one matrices, we can also compute
Zk+1 by a rank one update of Zk rather than using the definition (3.12). By combining
(3.18) and (3.19) we find that

(3.20) Zk+1 = Tk+1Wk+1 = Zk + Tkz̃k(a
H
k+1Wk + (1 + aHk+1z̃k+1)b

H
k+1).

We now note that the above equations form an algorithm, which does not contain
explicitly Jk, nor xk, and implicitly preserves the preserves the Jacobian structure
in Theorem 3.1. The algorithm is summarized in Algorithm 1. For implementation
details, such as how to update Tk, Wk and Zk by using only two vector operations,
we refer to the publicly available software, further described in Section 6. As a
consequence of the derivation, we have the following equivalence.

Theorem 3.2 (Equivalence Broyden methods). The J-version of Broyden’s
method applied to (3.1), i.e., the iteration defined by (2.1), (2.2) and (2.3) is equiv-
alent to the structured Broyden’s method, i.e., the iteration defined by (3.13), (3.14),
(3.15), (3.18), (3.19) and (3.20). Moreover, the states of the algorithms are related by
(3.3) and

(3.21) Jk =

[

T−1
k Wk

CH 0

]

.

Remark 3.3 (Selection of damping). The damping parameter is used to prevent
the algorithm from taking too big steps in a pre-asymptotic phase, which can otherwise
lead divergence or convergence to an (undesired) solution far away. In practice, we
observed that the λ-approximation in the beginning of the iteration often generated
new approximations far away from the true solution, Therefore, we capped the step by
selection

(3.22) γk = min(1, t/|∆xk|)

where τ is a threshold parameter.
This implies ‖xk+1 − xk‖ < t and in particular that |λk+1 − λk| ≤ t. This

choice was determined based on numerical simulations. Another option would be the
Armijo-steplength, as used, e.g., in the context of Newton’s method for NEPs in [27].
In contrast to (3.22), the standard implementation of Armijo step-steplength involves
function evaluations, and is not competitive in our situation. We note that there is
very little general conclusive theoretical analysis concerning how the damping para-
mater is best chosen in a Broyden setting, as e.g., pointed out in [1].

4. Deflation.

7



Algorithm 1 Structured Broyden’s method

Input: Starting values:
Vectors: v1 ∈ Cn, u1 ∈ Cp, λ1 ∈ C approximating solution to (3.1)
Matrices: CH ∈ C

(p+1)×n, T1 ∈ C
n×n and W1 ∈ C

n×(p+1) approximating (3.2)
Input must satisfy CHv1 = b2.

Output: vm, um, λm, Tm, Wm

1: Compute r1 according to (3.9)
2: Compute Z1 according to (3.12)
3: while k = 1, 2, . . . until convergence do

4: Compute ∆uk, ∆λk by solving the linear system (3.13) in p+ 1 variables
5: Compute ∆vk with (3.14)
6: Select the damping parameter γk, e.g., as in Remark 3.3
7: Update the iterates by computing vk+1, uk+1 and λk+1 with (3.15)
8: Compute rk+1 according to (3.9)
9: Compute z̃k+1 using rk and rk+1 and (3.16)

10: Compute Zk+1 with (3.20)
11: Compute Wk+1 with (3.19)
12: Compute Tk+1 with (3.18)
13: end while

4.1. A deflated NEP. Structured Broyden’s method can be directly applied to
(1.3) to compute an eigenpair of (1.1), as was illustrated in Example 2.1. In order
to provide the possibility to compute several eigenvalues in a robust way, we here
develop a deflation technique, which can be integrated with the structured Broyden’s
method. Our reasoning is inspired by the work on invariant pairs for NEPs in [27]
and deflation [11]. These works, in turn, are inspired by ideas for quadratic eigenvalue
problems [30, 31, 3].

The essential conclusion of our reasoning provided below is that we can define an
augmented NEP as

(4.1) G(λ) =

[

M(λ) U(λ)
XH 0

]

whose eigenvalues are essentially the same as the original NEP except for some eigen-
values which are removed. (We postpone the definition of X and the function U(λ)
until after the discussion of invariant pairs below.) Note that if we add an orthogo-
nalization constraint to G(λ)w = 0 as in (1.2) with a particular vector cH = [cH1 0],
we obtain a nonlinear system of with the structure of the previous section, i.e., (3.1).
Our construction is based on applying Algorithm 1 to this problem.

For the derivation of this approach we need the concepts of invariant pairs, or-
thogonalization conditions and augmented invariant pairs, which we briefly summa-
rize. See [27], [11] and [12] for a detailed characterization. Without loss of generality,
let M in (1.1) be decomposed as a sum of products of matrices and functions as in
(1.4). This decomposition always exists, although in computation it does not always
lead to efficient algorithms if m is large. We will only use this decomposition for the-
oretical purposes and not in the final algorithm. An invariant pair of (1.1) is defined
as a pair (X,S) ∈ C

n×p × C
p×p which satisfies

0 = M1Xf1(S) + · · ·+MmXfm(S),

8



where fi(S) ∈ Cm×m are matrix functions of fi, i = 1, . . . ,m. By computing a Schur
decomposition of S, it is possible to show that the eigenvalues of S are eigenvalues
of (1.1). For standard eigenvalue problems, we usually require that the columns of
X (which form a basis of an invariant subspace) are linearly independent. This is
done in order to prevent the same eigenspace to appear several times in the invariant
pair. In practice (still linear eigenvalue problems) this is usually achieved by imposing
that the columns of X are orthonormal. The concept of minimality formalizes this
reasoning. The minimality concept is slightly different in the nonlinear case, due to
the fact that several eigenvalues can have the same eigenvector (or correspondingly
for invariant subspaces). The generalization is not expressed terms of the column
span X , but instead of the column span of

(4.2)







X
...

XSℓ−1






.

If there exists ℓ ∈ N such that (4.2) has full column rank, then the pair is called min-
imal, and the smallest ℓ such that (4.2) has full column rank, is called the minimality
index of the pair (X,S). As pointed out in [12], for minimal invariant pairs ℓ = 1 is
generic.

The concept of invariant pairs was used in a natural way to construct a deflation
technique for (simplified) Newton method and a Jacobi-Davidson method in [12] and
[11]. The main idea is to compute invariant pairs one column at a time. Given an
invariant pair (X,S), vectors v, u and λ are computed such that the extended pair

(4.3) (X̂, Ŝ) =

(

[

X v
]

,

[

S u
λ

])

is also an invariant pair. In [11, Lemma 6.1.3] the minimality is guaranteed by im-
posing orthogonality to the columns of (4.2),

(4.4)







X
...

XSℓ−1







H 





X̂
...

X̂Ŝℓ−1






ep+1 = 0

In this way, we avoid reconvergence, i.e., if an eigenvalue is contained in S, the al-
gorithm will not find this eigenvalue again, unless it has multiplicity greater than
one.

The condition that the extended pair (4.3) is invariant, is equivalent to a more
explicit condition, shown in the following lemma.

Lemma 4.1 (Lemma 6.1.1 of [11]). Let (X,S) be an invariant pair of the non-
linear eigenvalue problem (1.1). Then, the extended pair (4.3) is an invariant pair if
and only if

(4.5) M(λ)v + U(λ)u = 0

where

(4.6) U(λ) =
1

2πi

∮

Γ

M(ξ)(ξI − Λ)−1(ξ − λ)−1 dξ.

9



If λ 6∈ λ(S) we have additionally (as formalized in [11, Lemma 6.2.2])

(4.7) U(λ) = M(λ)X(λI − S)−1.

In this work we will in practice extensively use (4.7) rather than the slightly more
general definition (4.6).

We now focus on the case ℓ = 1; see Remark 4.3 for discussion of general case.
By combining equation (4.5) and (4.4) we reach the nonlinear eigenvalue problem

corresponding to (4.1) where
[

vT uT
]T

is an eigenvector of the NEP G(λ), given by
(4.1).

This reasoning is formalized in the following theorem, which can be interpreted as
a complement to [12, Theorem 3.6] where we also stress that imposing orthogonality
is not restricting the set of minimal invariant pairs. We state the theorem in terms of
similarity transformations. The pair (X,S) is a minimal invariant pair, if and only if
(XZ,Z−1SZ) is a minimal invariant where Z ∈ Cp×p is invertible [11, Lemma 3.2.3].
We say that (X,S) and (XZ,Z−1SZ) are equivalent by similarity transformation.

Theorem 4.2 (Index one extensions). Suppose (X,S) is a minimal invariant
pair with index one. Then, all minimial invariant pairs with index one of the form
(4.3) are equivalent by similarity transformation to the minimal invariant pairs with
index one of the form (4.3) where v, u, λ are solutions to

(4.8)

[

M(λ) U(λ)
XH 0

] [

v
u

]

= 0,

and ‖v‖+ ‖u‖ 6= 0.
Proof. Let Z = R−1P be the similarity transformation, defined by the QR-

factorization of X = QR (where Q ∈ Cn×p and R ∈ Cp×p is invertible since the
columns of X are linearly independent) and the Schur factorization RSR−1 = PRPH .
From this transformation we see that (X,S) is equivalent by similarity transformation
to (XZ,Z−1SZ) where XZ is orthogonal and Z−1SZ upper triangular. By a change
of variable, the condition (4.8) is unmodified by the transformation. Hence, without
loss of generality we can assume that X is orthogonal and S upper triangular.

Suppose (X̂, Ŝ) is an augmented minimal invariant pair (with extensions that do
not necessarily satisfy (4.8)). With the similarity transformation

Z =

[

I −XHv
0 1

]

∈ C
(p+1)×(p+1)

we can, by using Lemma 4.1, verify that (4.8) is satisfied by selecting vectors corre-
sponding (v, u, λ) as (X̂Zep+1, [Ip 0]Z−1ŜZep+1, λ). The converse holds due to the
fact that a solution satisfying (4.8) forms a vector v which is orthogonal to X , and
non-zero since the extension would otherwise be non-minimal.

Remark 4.3 (Minimality index greater than one). The generalization of the
above reasoning to a higher minimality index can be seen as follows. The orthogonality
condition (4.4) with ℓ = 2 implies that v, u, λ must satisfy

(XH + λSHXH)v + SHXHXu = 0.

Unlike the case ℓ = 1, this expression depends on both u and λ. As pointed out in a
more general form in [12], the analogous NEP to (4.8) becomes

[

M(λ) U(λ)
XH + λSHXH SHXHX

] [

v
u

]

= 0.
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Unfortunately, when we include a normalization condition as in (1.2), this problem
does not lead to a nonlinear equation of the form (3.1) which we need for structured
Broyden method. It includes more blocks and more λ-dependence,

0 =





M(λ) U(λ)
CH

1 (λ) CH
2

cH1 0





[

v
u

]

− b ∈ C
n+p+1,

where CH
1 (λ) = XH + λSHXH and CH

2 = SHXHX. This prevents us from using
structured Broyden in the same way. We can however apply Broydens method (without
exploiting the same amount of structure), which we illustrate in the simulations in
Section 6. In this sense, our algorithm presented in the next section can in principle
be constructed with a higher minimality index, but we cannot use the same amount
of structure. In this paper we develop an efficient algorithm for ℓ = 1, and propose
to use the slower variant without structure exploitation for problems where eigenpairs
share eigenvectors. For most problems stemming from PDEs, ℓ = 1 is generic.

4.2. Structured Broyden with deflation. The previous section showed that
given an index one invariant pair, we can compute an extension of that invariant
pair by solving the NEP (4.1). All extensions are represented by this extended NEP
according to Theorem 4.2. Since (4.1) combined with the normalization condition
with cH = [cH1 0] leads to a nonlinear system of equation of the structure (3.1) and
we can use Algorithm 1 to solve it.

This structured extension of the invariant pair can be combined with Algorithm 1.
Algorithm 2 shows this combination, including handling of invariant pairs and starting
values. We now provide further details and justification of the algorithm, and show
how restarting can be incorporated.

Recall that our method is mainly intended for problems where the matrix vector
product M(λ)z is computationally expensive. At step 8 of Algorithm 1 we need to
compute the residual (3.9) which in our setting contains termsM(λ)v and U(λ)u; each
of these involving one matrix vector product with M(λ). When we use Algorithm 1
we can combine M with the formula for U in (4.7) and compute the residual (3.9)
directly by using only matrix vector product.

rk+1 = M(λk+1)vk+1 + U(λk+1)uk+1 = M(λk+1)(vk+1 +X(λk+1I − S)−1uk+1).

Our algorithm requires starting values for each extension of the invariant pair.
Although starting values are usually tuned to the applications, and this can also be
done in our case, we here propose a quite general application-independent procedure
to select starting values. We base the starting values on previously computed infor-
mation, which can be viewed as a restarting procedure. Starting values are required
for M1 = T−1

1 , W1, v1, u1 and λ1. If we are interested in eigenvalues close to a target
σ, we propose (Step 1) to use M1 ≈ M(σ) (or M1 = M(σ) if it can be computed
cheaply) and set λ1 = σ.

The eigenvector approximation (v1 ∈ Cn and u1 ∈ Cp) are computed following
an approximation of one step of the method called safeguarded iteration [32, Algo-
rithm 4] in Step 6. Eigenvector approximations in safeguarded iteration are extracted
by selecting the eigenvector corresponding to a small eigenvalue of the matrix M(λ).
We select v1 and u1 in this way but applied to the extended deflated NEP (4.1), by re-
placing the blocks of the matrix with approximations, M(λ1) ≈ M1 and U(λ1) ≈ U0,
where U0 is computed directly from (4.7) by using p matrix vector products.

11



We see by comparing (3.21) and (3.2) that W0 should be an approximation of
[U(λ0) M ′(λ0)v0 + U ′(λ0)u0]. The approximation of U(λ0) is chosen as the already
computed U0. The formula for U(λ) in (4.7) gives us directly that

(4.9) U ′(λ) = −M(λ)X(λI − S)−2 +M ′(λ)X(λI − S)−1.

In order to compute a starting value of the last column of W0 we use that the chain-
rule for differentiation applied to U(λ) implies

M ′(λ1)v1 +U ′(λ1)u1 = M ′(λ1)(v1 +X(λ1I − S)−1u1)−M(λ1)X(λ1I − S)−2u1 =

M ′(λ1)(v1 +X(λ1I − S)−1u1)− U(λ1)(λ1I − S)−1u1.

Unless the matrix vector action of the derivative M is explicitly available, the first
term can be approximated by central finite difference, and the second term by using
the already computed U1, i.e., U(λ1)(λ1I − S)−1u1 ≈ U1(λ1I − S)−1u1. This is done
in step 8.

In Step 11 we expand the invariant pair again if the problem exhibits symmetry.
It is straightforward to show that if M(λ) = M(λ) for all λ, then an eigenpair (v, λ)
implies that (v, λ) is an eigenpair which can be included in the invariant pair if λ 6∈ R.
The new complex conjugate pair (v, λ) is included by carrying out a Gram-Schmidt
orthogonalization against X , and storing the Gram-Schmidt coefficients in the new
column of S.

Algorithm 2 Deflated Broyden’s method

Input: Target σ and normalization vector c ∈ Cn\{0}
Output: A standard minimal invariant pair (X,S) ∈ Cn×p × Cp×p of (1.1)
1: Compute M1 ≈ M(σ) and T1 ≈ M(σ)−1

2: Set X =empty matrix and S =empty matrix
3: Set k = 1
4: while k < p do

5: Compute U1 ≈ U(σ) ∈ Cn×(k−1) where U is given by (4.7)
6: Compute the smallest (in modulus) eigenvalue of the matrix

[

M1 U1

XH 0

]

∈ C
(n+k−1)×(n+k−1)

and let
[

vT1 uT
1

]T
be the corresponding eigenvector normalized such that

cHv1 = 1.
7: Impose orthogonalization (3.1) on v1 by updating v1 and u1.
8: Compute f1 ≈ M ′(σ)v1−U1(σI−S)−1u1, e.g. with finite difference forM ′(σ)v1.

9: Run structured Broyden for NEPs (Algorithm 1) with C =
[

X c
]

starting
value (σ, v1, u1) and Jacobian approximation (T1,W1) = (T1, [U1 f1]). Save
output in (λ, v, u) and (TN , [UN fN ])

10: Expand invariant pair according to (4.3).
11: k = k + 1
12: If NEP has conjugate pair symmetry, expand also with conjugate eigenpair.
13: end while

12



5. Convergence theory. Due to its equivalence with Broyden’s method, the
convergence of our approach can be characterized with more general results. In par-
ticular, Broyden’s method has asymptotic local superlinear convergence in general
[15, 6]. However, the theory for superlinear convergence only holds under the as-
sumption that the Jacobian at the solution is invertible. If this is not satisfied you
can invoke theory for Broyden’s method of singular Jacobians [9], which implies (in
general) linear convergence with a convergence factor equal to the reciprocal golden
ratio. We characterize the singularity of the Jacobian of our particular problem.

The singularity of the Jacobian of many iterative methods for NEPs are directly
given from the multiplicity (or Jordan chain structure) of the solution to the NEP, cf.
[41, 26, 23, 42]. Our construction is equivalent to applying Broyden’s method to the
augmented NEP (4.1). Therefore, the Jacobian singularity of the augmented system
(3.1) can be characterized with the multiplicity of the augmented NEP (4.1). Since
the augmented problem is an artificially constructed NEP, we find it more insightful
to characterize the Jacobian singularity in terms of the eigenvalue multiplicity of the
original NEP (1.1).

We note that the Jacobian of (3.1) is given by

(5.1) J∗ =





M(λ) U(λ) M ′(λ)v + U ′(λ)u
XH

cH





and provide two convergence results. It turns out that the condition that the vector c
should not be orthogonal to the eigenvector generalizes to the condition that matrix

(5.2)

[

XH

cH

]

[

X v1
]

needs to be non-singular, which is needed in the following theorem which gives a
precise condition for the Jacobian to be singular.

Theorem 5.1 (Jacobian singularity). Suppose (X,S) is a minimal index one
invariant pair of (1.1), where X is orthogonal and S upper triangular. Suppose λ1, v1
is an eigenpair of (1.1) such that (5.2) is non-singular, and suppose M(λ1) has null
space of dimension one. Moreover, assume λ1 6∈ λ(S) and v1 6∈ Range(X). Then

(5.3)





v
u
λ



 =





(I −XXH)v1
(λ1I − S)XHv1

λ1





is a solution to (4.8). Moreover, the Jacobian (5.1) corresponding to this solution is
singular if and only if there exists a Jordan chain of length two, i.e., there exists a
vector v2 such that

(5.4) M(λ1)v2 +M ′(λ1)v1 = 0.

Proof. We verify (5.3) directly by inserting into (4.8) and using the formula for U
in (4.7) and that M(λ1)v1 = 0. In order to establish when the Jacobian is singular we
give necessary and sufficient conditions for the existence of non-trivial z1, z2, z3 such
that

(5.5)





M(λ) U(λ) M ′(λ)v + U ′(λ)u
XH

cH









z1
z2
z3



 = 0.
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By using the formula for U ′(λ1) in (4.9) and the formula for the solution vector (5.3),
the first block equation becomes

(5.6) M(λ1)(z1 +X(λI − S)−1z2 +X(λI − S)−1XHv1z3) +M ′(λ1)v1z3 = 0

We separate the rest of the proof into two cases.
• Suppose z3 = 0, such that (5.6) reduces to M(λ)(z1 +X(λI − S)−1)z2) = 0.
Since M(λ1) has a one-dimensional null space, we must have z1 + X(λI −

S)−1)z2 = βv1. By multiplication from left with
[

X c
]H

, combining this
with the last rows in (5.5) and using the assumption (5.2) we see that β = 0
and z2 = 0. Consequently, z1 = 0, such that z1, z2, z3 are identically zero
and do not form a non-trivial singular vector. Hence, any non-trivial singular
vector must satisfy z3 6= 0.

• If we assume that z3 6= 0, we can without loss of generality assume that
z3 = 1. Clearly (5.6) can only be zero if there exists a vector v2 such that
(5.4) is satisfied. Moreover, z1 and z2 must satisfy for some value β,

z1 +X(λI − S)−1z2 +X(λI − S)−1XHv1 = v2 + βv1

We obtain that
([

XH

cH

]

[

X v1
]

) [

(λI − S)−1z2
−β

]

=

[

XH

cH

]

(

−X(λI − S)−1XHv1 + v2
)

This linear system has a solution since (5.2) is invertible by assumption, and
directly gives us a singular vector from a vector v2 satisfying (5.4). It is
non-trivial since z3 = 1.

Example 5.2 (Double eigenvalue). The convergence properties for a singular
Jacobian matrix can be observed in practice, and we illustrate this with the NEP
presented in [25] (and also [23, 26]), The problem is a delay eigenvalue problem
M(λ) = −λI + A0 + A1e

−τλ constructed such that it has a double non-semisimple
eigenvalue at λ∗ = 3πi. The error history of Algorithm 2 with σ = 0 and M0 = M(σ)
is given in Figure 5.1. We clearly see that we have linear convergence the first time the
iteration converges to λ∗. The second time the iteration converges to λ∗ we have su-
perlinear convergence, consistent with the fact that the eigenvalue has multiplicity two
(and not three). Once one of the double eigenvalues has been deflated, the Jacobian
is singular, i.e., the convergence behaves as the convergence for simple eigenvalue.

We also observe (consistent with theory [9]) that the linear convergence has con-
vergence factor equal to the reciprocal golden ratio, i.e., approximmately 0.618.

6. Simulations for quadratic time-delay system. We provide results of sim-
ulations for various NEPs. Our implementation is in the Julia programming language
[4], version 0.6.2 using a quad-core, 16 GB RAM, Intel i7-4600U CPU with 2.10GHz1.

In order to show the properties of our approach we apply now apply the algorithm
to the following problem

M(λ) = −λ2I +A0 +A1e
−λ

where the matrices are the same as those in [13]. The simulations of this section are
intended to illustrate method properties, and we do not claim that this method is the
best method for this type of problem.

1The simulations are publicly available online: http://www.math.kth.se/~eliasj/src/broyden
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Figure 5.1. Convergence for the problem with a double eigenvalue at λ∗ = 3πi. We clearly ob-

serve linear convergence the first time the iteration converges to λ∗, and fast superlinear convergence

the second time it converges to λ∗.

We first illustrate the structure exploiation. In Figure 6.1 we see the conver-
gence of the discussed versions of Broyden’s method. Figure 6.1a and Figure 6.1b
show the same simulation but with different x-axis. The structure exploiting Broy-
den method (Algorithm 1) converges (slightly) faster in terms of iterations, although
they are equivalent in exact arithmetic. The structure exploiting Broyden method is
considerably faster than the other variants in terms of computation time.

The relevance of the damping is illustrated in Figure 6.3. No damping (or a very
large t) typically leads to faster convergence, but robustness is lost as the solution
can start diverging. The parameter t can be viewed as a trade-off parameter, between
robustness and convergence speed.

In order to illustrate the value of superlinear convergence, we compare the algo-
rithm residual inverse iteration as described in [33], which is a very well established
method. Residual inverse iteration is an implicit quasi-Newton method [24] and ex-
hibits linear convergence. We see in Figure 6.4 that our the proposed method is faster
in terms of iterations. In the residual inverse iteration we have pre-computed an
LU-factorization, in order speed up the computation of the linear solves.

In order to illustrate that a higher minimality index can allow you to compute
more than n eigenvalues, we adapted to idea described in Remark 4.3. A comparison
with ℓ = 2 can be seen in Figure 6.2 with n = 5. Minimality index ℓ = 2 provides the
possibility to compute 2n = 10 eigenvalues.

7. Simulations for time-periodic delay-differential equation. The follow-
ing problem is called time-periodic delay-differential equation. We consider a linear
(time-varying) delay-differential equation

(7.1) ẏ(t) = A(t)y(t) +B(t)y(t− τ)

where A(t), B(t) ∈ Cn×n are periodic functions with period τ . We briefly summarize a
stability characterization which leads to a NEP. See description of certain applications
[29] and references therein and a number of numerical methods [38] [21] [22] [20] [5]
for details. The observervation that (7.1) can be characterized with a NEP was also
used in [35]. We consider the ODE (without delay) associated with (7.1)

(7.2) ṗ(t) = C(t, λ)p(t),
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Figure 6.1. Comparison of structure exploiting and non-exploiting Broyden’s method.

where

C(t, λ) := A(t) +B(t)e−λτ − λI.

We define a NEP M(λ) by the action on a vector as

(7.3) M(λ)v = p(τ) − v

where p(τ) is the solution p(t) of (7.2) at t = τ with initial condition

p(0) = v.

The solutions of the NEP defined by (7.3), correspond to (λ, v) such that p(τ) =
v = p(0), i.e., the starting value and final vector of p are the same and p can be
viewed as a periodic function. From Floquet theory one can show that the stability
of (7.1) is determined from the right-most solution λ. The value µ = eτλ is called
the characteristic multiplier, which is greater than one for right-half plane solutions
to the NEP.

Note that the NEP given by (7.3), has an action defined by a solution to an ODE,
i.e., the action is compuationally expensive and it is of the type we consider in this
work.
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7.1. Benchmark problem. Time-periodic time-delay systems has been consid-
erably used in models and studied in for specific applications in the literature. Certain
vibrations in machine tool milling can be modeled with time-periodic time-delay sys-
tems, where dominant modes correspond to the undesirable machine tool chatter.
The delay in this case stems from the fact that the cut of the previous lap has an
influence on the current lap. The periodicity stems from the periodicity in the force,
and modeling of the cutting tooth which is periodic in time due to the rotation. We
consider a specific setup used as a benchmark in several papers. See [21] [22] [20] and
references therein. The equations of motion are second order but can be reformulated
into a first order time-periodic time-delay system

ẏ =

[

0 1

−ω2
0 −

apw(t)
m −2ζω0

]

y(t) +

[

0 0
apw(t)

m 0

]

y(t− τ)

By consideration of the projection of the application of the force (as described in [35]),
the time-periodic coefficient becomes

w(t) = H(t− τ/2)(sin2(φ(t))KR + cos(φ(t)) sin(φ(t))KT )

where H(t) is the heaviside function and φ(t) = 2πt/τ . We see that if the force mod-
eling is not considered, w(t) is constant the problem reduces to the (easier) standard
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Figure 6.4. Comparison with residual inverse iteration

time-delay system.

We carried out simulations with parameters ap = m = τ = ω0 = ζ = 1, and
solved the time-dependent ODE with Runge-Kutta 4 with N discretization points.
The convergence as a function of iteration is given in Figure 7.1b.

One of the most successful numerical approaches for this problem correspond
to discretizations of operator formulations, e.g., a spectral discretization of the mon-
odromy operator in [8] and [5]. In practice, this involves the solution of a large (linear)
eigenvalue problem. A comparison with the approach in [8] is shown in Figure 7.1a.
We clearly see that the discretization in [8] and our approach lead to algebraic con-
vergence, of similar order. That is, although a spectral discretization is used in [8],
the observed convergence with respect to ODE-discretization is not exponential, but
only algebraic. This is expected since the A(t) has a discontinuous derivative, and one
cannot in general expect exponential convergence for PDEs which have discontinuous
derivatives.

7.2. Benchmark problem with PDE coupling. In order to also take into
account vibrations in the workpiece in the milling, a model which couples a PDE
was presented in [35]. A discretization of the PDE leads to the following problem.
Let Dxx = 1

h tridiag(1,−2, 1) ∈ RN×N where h = 1/N . The identity operator in
the finite-element basis is denoted P−1 and pn = Pen. The time-periodic time-delay
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Figure 7.1. Simulation with benchmark problem in Section 7.1 for different time-discretizations

system is now given by

ẏ(t) =









I
1

−ǫPDxx −
apw(t)

A pNeTN −
apw(t)

A eN −dPDxx

−
apw(t)

m eTN −ω2
0 −

apw(t)
m −2ζω0









y(t)+









apw(t)
A pNeTN

apw(t)
A pN

apw(t)
m eTN

apw(t)
m









y(t− τ).

We carried out simulations for a discretization with N = 5000, i.e., n = 10002 on a
computer with 64 GB of RAM. The results are presented in Figure 7.2. The action
of the ODE was discretized with N = 15, whereas the the approximation of M(σ)
was computed with N = 7. The problem is stiff, and we therefore used an implicit
time-stepping scheme. The inverse of the identity was treated in a way that avoids
computing a full matrix. This problem is of such size that our implementation of the
approach of [8] was not applicable due to the high demand of memory resources.

8. Conclusions and outlook. Broyden’s method, a standard approach for non-
linear systems of equations, has here been developed to and turned into a useful
algorithnm for certain types of NEPs. Broyden’s method has been developed and
studied considerable in the literature. Several techniques seem to carry over directly,
such as limited memory versions [10, 44], or variations, such as the (so-called) bad
Broyden’s method [7] can be specialized completely analogous to our approach. In
order to maintain generality we have intentionally not pursued a detailed study of the
ODE-solver used in the specific application in Section 7.2. A more specialized result
using the structure of the matrices would probably lead to even further efficiency, but
would be beyond the scope of this paper about methods for NEPs rather than the
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Figure 7.2. PDE-coupling milling simulation

specific problem Section 7.2.
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[3] Wolf Jürgen Beyn and Vera Thümmler. Continuation of invariant subspaces for parameterized
quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl., 31(3):1361–1381, 2010.

[4] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh Approach
to Numerical Computing. SIAM Review, 59(1):65–98, 2017.

[5] D. Breda, S. Maset, and R. Vermiglio. Numerical computation of characteristic multipliers for
linear time periodic coefficients delay differential equations. In Proceedings of the Sixth

IFAC Workshop on Time-Delay Systems, L’Aquila, Italy, 2006.
[6] C. G. Broyden, J. E. Dennis, Jr., and J. J. Moré. On the local and superlinear convergence of
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