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Abstract. We consider the following question on the relationship between the asymptotic behaviours of asyn-5
chronous dynamics of Boolean networks and their regulatory structures: does the presence of a6
cyclic attractor imply the existence of a local negative circuit in the regulatory graph? When the7
number of model components n verifies n ≥ 6, the answer is known to be negative. We show that8
the question can be translated into a Boolean satisfiability problem on n · 2n variables. A Boolean9
formula expressing the absence of local negative circuits and a necessary condition for the existence10
of cyclic attractors is found unsatisfiable for n ≤ 5. In other words, for Boolean networks with up11
to 5 components, the presence of a cyclic attractor requires the existence of a local negative circuit.12
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1. Introduction. Boolean networks are used to model the dynamics resulting from the16

interactions between n regulatory components that can assume only two values, 0 and 1,17

and are therefore naturally described as maps from {0, 1}n to itself. Any such map uniquely18

identifies an asynchronous dynamics, which requires at most one component to change at each19

step. A regulatory graph defined by a Boolean network is a graph with one node for each20

regulatory component, and directed, signed edges that represent regulatory interactions. A21

regulation from a component to another might be observable only at certain states. Therefore,22

for each state of the system, a local regulatory graph is defined by considering only the23

regulations that can be observed at that state.24

Since the explicit construction and analysis of asynchronous dynamics is generally imprac-25

tical, the capability of regulatory structures to inform about the network dynamics has been26

often investigated. In particular, relationships have been established between the presence27

of circuits in regulatory graphs and the asymptotic asynchronous behaviours of Boolean net-28

works. In absence of regulatory circuits, the dynamics always reaches a unique fixed point [13],29

whereas local positive circuits are required for multistationarity [5, 9] and negative circuits30

for oscillations [5, 7]. Here we consider the following question (for studies addressing related31

issues, see for example [5, 7, 8, 10, 12]):32

Question 1.1. Does the presence of a cyclic attractor imply the existence of a negative33

circuit in a local regulatory graph?34

A counterexample for the multilevel case, i.e., where the discrete variables can take their35

values in a broader range than {0, 1}, was presented by Richard [7]. Recently, a number of36
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counterexamples have been identified for the Boolean setting. Ruet [12] exhibited a procedure37

to create counterexamples in the Boolean case, for every n ≥ 7, n being the number of38

variables; these are maps admitting an antipodal attractive cycle and no local negative circuits39

in the regulatory graph. Tonello [17] and Fauré and Kaji [3] identified different Boolean40

versions of Richard’s discrete example, that provide counterexamples to Question 1.1 for41

n = 6. A map with an antipodal attractive cycle and no local regulatory circuits also exists42

for n = 6 (we present such a map in Appendix A).43

Question 1.1 remains open for n ≤ 5. Even for such a small number of components,44

the range of possible dynamical behaviours is vast, and connections between the network45

regulatory structure and its associated dynamics are not immediate. However, answers to46

problems such as the one described in Question 1.1 clarify general rules and can provide47

guidance, for instance, to gene network modellers seeking to capture a certain dynamical48

behaviour.49

In this work, we describe how Question 1.1 can be translated into a Boolean satisfiability50

problem (SAT). To this end, for a fixed number n of regulatory components, we consider n ·2n51

Boolean variables, representing the values taken by the n components of the Boolean map on52

the 2n states in {0, 1}n. We then describe how the features referred to in Question 1.1 can be53

encoded as Boolean expressions on the n · 2n variables. More precisely, we define a Boolean54

formula that encodes both the absence of local negative circuits and a necessary condition55

for the presence of a cyclic attractor. In addition, we reduce the search space by exploiting56

symmetries of regulatory networks, so that, for small n, the problem can be analysed by a57

satisfiability solver in a few hours. The solver finds the formula unsatisfiable for n ≤ 5, and58

provides further examples for n = 6.59

The relevant definitions and background are introduced in section 2, whereas section 3 is60

dedicated to recasting Question 1.1 as a Boolean satisfiability problem. We discuss our results61

in section 4.62

2. Background. In this section, we fix some notations and introduce the main definitions.63

We denote by B the set {0, 1}, and consider n ∈ N. The elements of Bn are also called states.64

The state x ∈ Bn with xi = 0, i = 1, . . . , n will be denoted 0. Given x ∈ Bn and a set of indices65

I ⊆ {1, . . . , n}, we denote by x̄I the state that satisfies x̄Ii = 1− xi for i ∈ I, and x̄Ii = xi for66

i /∈ I. If I = {i} for some i, we simply write x̄i for x̄{i}. Given two states x, y ∈ Bn, d(x, y)67

denotes the Hamming distance between x and y. We call n-dimensional hypercube graph the68

directed graph on Bn with an edge from x ∈ Bn to y ∈ Bn whenever d(x, y) = 1.69

A Boolean network is defined by a map f : Bn → Bn. The dynamical system defined by f70

is also referred to as the synchronous dynamics. The asynchronous state transition graph or71

asynchronous dynamics ADf defined by f is a graph on Bn with an edge from x ∈ Bn to x̄i72

for all i ∈ {1, . . . , n} such that fi(x) 6= xi. We write (x, y) for the edge (transition) from x to73

y.74

A non-empty subset D ⊆ Bn is trap domain for ADf if, for every edge (x, y), x ∈ D75

implies y ∈ D. The minimal trap domains with respect to the inclusion are called attractors76

for the dynamics of the network. Attractors that consist of a single state are called fixed points77

or stable states; the other attractors are referred to as cyclic attractors.78

Boolean networks are used to model the interactions between regulatory components. The79
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interactions are derived from a Boolean map f as follows. For each state x ∈ Bn, we define80

the local regulatory graph Gf (x) of f at x ∈ Bn as a labelled directed graph with {1, . . . , n} as81

set of nodes. The graph Gf (x) contains an edge from node j to node i, also called interaction82

between j and i, when fi(x̄
j) 6= fi(x); the edge is represented as j → i and is labelled with83

s = (x̄jj − xj) · (fi(x̄j) − fi(x)). The label s is also called the sign of the interaction, and84

accounts for the regulatory effect of j upon i at the state x.85

The global regulatory graph Gf of f is the multi-directed labelled graph on {1, . . . , n} that86

contains an edge j → i of sign s if there exists a state for which the local regulatory graph87

contains an interaction j → i of sign s. In the global regulatory graph parallel edges are88

permitted to account for different regulatory effects that can be observed at different states.89

The sign of a path i1 → i2 → · · · → ik in a regulatory graph is defined as the product90

of the signs of its edges. A circuit in a regulatory graph is a path i1 → i2 → · · · → ik with91

i1 = ik and such that the indices i1, . . . , ik−1 are all distinct. We recall a useful result which92

can be found in [8, Remark 1] and [11, Lemma 5.2].93

Lemma 2.1. Let C be a circuit of Gf (x) with set of vertices I. If the cardinality of {i ∈94

I| fi(x) 6= xi} is even (resp., odd), then C is a positive (resp. negative) circuit.95

2.1. Regulatory circuits and asymptotic behaviours. Following R. Thomas early con-96

jectures [16], asymptotic properties of the asynchronous state transition graph have been97

connected to the existence and the signs of regulatory circuits.98

Shih and Dong [13] established that, if no local regulatory circuit exists, then the map99

admits a unique fixed point. The result was extended to the multilevel setting by Richard [6].100

The presence of multiple attractors was shown to require the existence of a local positive101

circuit [9]. The existence of a cyclic attractor requires instead the (global) regulatory graph to102

include a negative circuit. This was proved in [5] for the case of an attractive cycle (a cycle in103

the asynchronous dynamics that is an attractor), and in the general case of a cyclic attractor104

in [7].105

Cyclic attractors are compatible, however, with the absence of local negative circuits. This106

was first shown in [7] in the multilevel case. Boolean networks with a cyclic attractor and no107

local negative circuits were presented in [12], with a method to create maps with antipodal108

attractive cycles and no local negative circuits, for n ≥ 7. Tonello [17] and Fauré and Kaji [3]109

exhibited maps with cyclic attractors and no local negative circuits, for n = 6. Maps with110

antipodal attractive cycles and no local negative circuits also exist for n = 6; a procedure that111

extends the one in [12] is presented, for completeness, in Appendix A.112

In this work we consider Question 1.1 in the remaining cases (n ≤ 5). We show that the113

problem can be approached as a Boolean satisfiability problem, and find that all maps from114

Bn to itself with a cyclic attractor define a local negative circuit.115

2.2. Automorphisms of the n-hypercube. In this section we present some relationships116

between Boolean networks and symmetries of the hypercube; these will be used to trans-117

late Question 1.1 into a Boolean expression (see subsection 3.3).118

We first introduce some additional notations. Given I ⊆ {1, . . . , n}, ψI denotes the map119

defined by ψI(x) = x̄I for all x ∈ Bn. We call Sn the group of permutations of {1, . . . , n};120

Sn acts on Bn by permuting the coordinates: for σ ∈ Sn, σ(x) = (xσ−1(1), . . . , xσ−1(n)). We121
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4 E. TONELLO, E. FARCOT, AND C. CHAOUIYA

consider here the maps of the form U = ψI ◦ σ for some I ⊆ {1, . . . , n} and some σ ∈ Sn.122

These are all the automorphisms of the n-hypercube (see for instance [14, 12]).123

Given the maps U = ψI ◦ σ and f : Bn → Bn, we write fU = U ◦ f ◦ U−1. The124

following proposition relates the asynchronous state transition graphs and regulatory graphs125

of f and fU , asserting that they have the same structures. In addition, albeit the signs of126

the interactions of the regulatory graphs can differ, the signs of the regulatory circuits are the127

same. An example illustrating this property is given in Figure 1.128

Proposition 2.2. Consider the maps U = ψI ◦ σ and f : Bn → Bn.129

(i) The state transition graphs ADf and ADfU are isomorphic.130

(ii) For each x ∈ Bn, the graphs Gf (x) and GfU (U(x)), seen as unlabelled directed graphs,131

are isomorphic. In addition, corresponding circuits have the same signs.132

Proof. (i) We have that (x, x̄i) is in ADf if and only if (U(x), U(x̄i) = U(x)
σ(i)

) is in133

ADfU , so that the graph isomorphism is given by U . This follows from the observation that134

(2.1) fUσ(i)(U(x)) = σ(f(x))
I

σ(i) = f(x)
σ−1(I)

i ,135

and U(x)σ(i) = σ(x)
I

σ(i) = x
σ−1(I)
i , and therefore fUσ(i)(U(x)) 6= U(x)σ(i) if and only if fi(x) 6=136

xi.137

(ii) The graph GfU (U(x)) contains an interaction σ(j) → σ(i) if and only if fU verifies138

fUσ(i)(U(x)
σ(j)

) 6= fUσ(i)(U(x)). Since U(x)
σ(j)

= U(x̄j), as a consequence of (2.1) we have that139

fUσ(i)(U(x)
σ(j)

) = f(x̄j)
σ−1(I)

i , hence the graph GfU (U(x)) contains the interaction σ(j)→ σ(i)140

if and only if fi(x̄
j) 6= fi(x), i.e. if and only if j → i is an interaction in Gf (x).141

Given a circuit C in Gf (x) with support on L ⊆ {1, . . . , n}, σ(L) is therefore the support of142

a circuit CU in GfU (U(x)). In addition, from point (i), we have that the sets {i ∈ L|fi(x) 6= xi}143

and {i ∈ σ(L)|fUi (U(x)) 6= U(x)i} have the same cardinality. We conclude by observing144

that, by Lemma 2.1, the circuit C is positive (resp. negative) if and only if the cardinality145

of {i ∈ L|fi(x) 6= xi} is even (resp. odd), hence if and only if the cardinality of {i ∈146

σ(L)|fUi (U(x)) 6= U(x)i} is even (resp. odd), if and only if CU is positive (resp. negative).147

It follows from the proposition that a property relating the asymptotic behaviour of the148

asynchronous dynamics and the regulatory circuits holds for a map if and only if it holds for149

any of its conjugated maps under symmetry. We will use this fact when writing Question 1.1150

as a Boolean satisfiability problem in the next section.151

3. Recasting Question 1.1 as a Boolean satisfiability problem. For each n, Question 1.1152

requires that we determine (or exclude the existence of) a map f from Bn = {0, 1}n to itself.153

We therefore consider as variables of the problem n · 2n Boolean variables that we denote as154

(3.1) f1(x), . . . , fn(x), x ∈ Bn.155

We first describe how the absence of negative circuits in the local regulatory graph Gf (x) can156

be translated into a set of expressions on the variables (3.1).157
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Figure 1: The graphs in (a) and (b) represent the asynchronous state transition graphs and
the regulatory graphs of the maps f : (x1, x2) 7→ (x2, x1(1 − x2)) and g : (x1, x2) 7→ ((1 −
x1)(1−x2), 1−x1) respectively. Standard arrows j → i denote interactions with positive sign,
and arrows with a vertical tip j a i represent negative interactions. The asynchronous state
transition graphs have the same “shape”: the map in (b) can be obtained from the map in (a)
by swapping the two components, and changing 0 with 1 for the second component. In other
words, g = U ◦f ◦U−1, with U = ψI ◦σ, ψI : (x1, x2) 7→ (x1, 1−x2) and σ : (x1, x2) 7→ (x2, x1).
The regulatory graphs of the two maps also have the same edges. The positive interactions
on the left correspond to negative interactions on the right; however, the sign of the loop is
negative in both regulatory graphs, and the sign of the circuit involving the two components
is positive in both graphs.

3.1. Imposing the absence of local negative circuits. To express the sign condition on158

the circuits, we consider each local graph as a complete graph on the nodes {1, . . . , n}. Then,159

we consider every possible circuit on this graph, and we impose that each circuit has a non-160

negative sign. For small values of n, this requirement leads to a satisfiability problem that is161

computationally manageable. The number of elementary circuits of length k in a complete162

graph on n nodes is given by
(
n
k

)
(k − 1)!. Hence we have to consider, for instance, 89 circuits163

for n = 5, and 415 circuits for n = 6. Let Cn denote the set of all possible circuits on the164

complete graph on {1, . . . , n}.165

Given a state x ∈ Bn, if an interaction exists in Gf (x) from j to i, then its sign is given166

by the difference fi(x1, . . . , xj−1, 1, xj+1, . . . , xn)− fi(x1, . . . , xj−1, 0, xj+1, . . . , xn). We define167

l0x(j, i) = fi(x1, . . . , xj−1, 0, xj+1, . . . , xn), l1x(j, i) = fi(x1, . . . , xj−1, 1, xj+1, . . . , xn).168

The following Boolean expression asserts that the interaction from j to i is positive:169

Px(j, i) = l1x(j, i) ∧ ¬l0x(j, i),170

and the following Boolean expression asserts that the interaction is negative:171

N x(j, i) = ¬l1x(j, i) ∧ l0x(j, i).172

We can now write a formula expressing that, given a state x, a circuit c is negative in173

Gf (x), that is to say, the circuit c contains an odd number of negative interactions, the174

remaining interactions being positive. We write m for the length of the circuit, and c− and c+175

for the interactions in c with negative or positive sign, respectively. We obtain the following176
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formula:177

(3.2) Φx
c =

∨
1≤k≤m, k odd,
c=c−∪c+, #c−=k

 ∧
j→i in c−

N x(j, i) ∧
∧

j→i in c+

Px(j, i)

 .178

The absence of local negative circuits in the regulatory graph is therefore specified by the179

formula180

(3.3)

∧
x∈Bn,c∈Cn

¬Φx
c =

∧
x∈Bn,c∈Cn

¬

 ∨
1≤k≤m, k odd,
c=c−∪c+, #c−=k

 ∧
j→i in c−

N x(j, i) ∧
∧

j→i in c+

Px(j, i)


 ,181

which we can write in CNF form as182

∧
x∈Bn

c∈Cn

¬Φx
c =

∧
x∈Bn

c∈Cn

∧
1≤k≤m, k odd,
c=c−∪c+, #c−=k

 ∨
j→i in c−

l1x(j, i) ∨ ¬l0x(j, i) ∨
∨

j→i in c+

¬l1x(j, i) ∨ l0x(j, i)

 .183

3.2. A simpler question: absence of fixed points. Before considering Question 1.1 in184

its generality, we describe how a special case of the question can be easily translated into a185

Boolean satisfiability problem. The question is the following:186

Question 3.1. Does the absence of fixed points imply the existence of a local negative187

circuit in the regulatory graph?188

The absence of local negative circuits being formulated as in subsection 3.1, we now need to189

formulate the absence of fixed points. To express that a state x ∈ Bn is not a fixed point for190

f we can write the following formula:191

(3.4) Fx =
∨

1≤i≤n
xi=0

fi(x) ∨
∨

1≤i≤n
xi=1

¬fi(x).192

The formula expressing the absence of fixed points for f can be written as:193

(3.5)
∧
x∈Bn

Fx =
∧
x∈Bn

 ∨
1≤i≤n
xi=0

fi(x) ∨
∨

1≤i≤n
xi=1

¬fi(x)

 .194

Since the state 0 is not fixed, there exists an index i such that fi(0) = 1. Consider a195

permutation σ ∈ Sn that sends i to 1. The map g = σ ◦f ◦σ−1 satisfies g1(0) = 1; in addition,196

by Proposition 2.2, g and f have local circuits with the same signs. We can therefore assume197

that the first coordinate of f(0) is 1. The formula corresponding to Question 3.1 is therefore:198

(3.6) Q2 =

( ∧
x∈Bn

Fx
)
∧

 ∧
x∈Bn,c∈Cn

¬Φx
c

 ∧ f1(0).199
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The unsatisfiability of this problem is thus determined, for n = 5, in minutes, by the satisfi-200

ability solvers we considered (see subsection 3.4). The solvers also identify other examples of201

maps with no fixed points and no local negative circuits in the regulatory graph, for n = 6.202

The existence of a cyclic attractor is less straightforward to express; we describe our approach203

in the next section.204

3.3. A necessary condition for the existence of a cyclic attractor. In this section we205

consider Question 1.1 in its generality. We need therefore to assert that the asynchronous206

state transition graph of f admits a cyclic attractor. The approach is based on the following207

observation.208

Proposition 3.2. The asynchronous state transition graph ADf of a map f : Bn → Bn209

admits a cyclic attractor if and only if there exists a state x ∈ Bn such that, for any y ∈ Bn,210

if there is a path in ADf from x to y, then y is not a fixed point.211

Proof. If ADf admits a cyclic attractor, then the conclusion is true for any state x in the212

cyclic attractor.213

Conversely, suppose that x is a state with the described property, and call R the set214

of points reachable from x in the asynchronous state transition graph. Then the minimal215

trap domain contained in R does not contain any fixed point, hence it must contain a cyclic216

attractor for ADf .217

Proposition 3.2 translates the existence of a cyclic attractor into a condition on the paths218

in the asynchronous state transition graph. It is, however, computationally problematic to219

impose that, if ADf contains a path of any length from x to y, then y is not a fixed point.220

We therefore consider the following condition instead.221

Condition 3.3. There exists a state x ∈ Bn such that, for each y ∈ Bn, if there is an acyclic222

path in ADf from x to y of length at most k, then y is not a fixed point.223

It is clear from Proposition 3.2 that, for each k ≥ 0, Condition 3.3 is a necessary condition224

for the existence of a cyclic attractor. Our strategy is therefore to impose the absence of local225

negative circuits, as well as Condition 3.3 for increasing values of k, until we find that the226

problem is unsatisfiable.227

In order to express Condition 3.3, we need to encode the existence of a given path in the228

asynchronous state transition graph. Given a pair of states (x, y) such that d(x, y) = 1, if229

xj 6= yj we can require that the edge (x, y) is in ADf by imposing230

(3.7) fj(x) if yj = 1, else ¬fj(x).231

Given a sequence of states π = (x0, x1, . . . , xk) such that d(xi, xi+1) = 1, i = 0, . . . , k − 1, we232

can require that the sequence defines a path in ADf by imposing k constraints of the form233

in (3.7):234

(3.8) Θπ =
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =0

¬fj(xi) ∧
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =1

fj(x
i).235
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n
absence of absence of local

k Condition 3.3
fixed points negative circuits

2 4 16 2 4
3 8 136 4 39
4 16 1,536 6 1,036
5 32 23,328 11 2,595,405

Table 1: Number of clauses generated by the constraints used to answer Question 3.1 and
Question 1.1. k is the path length considered for Condition 3.3, and is the minimum path
length such that, in a Boolean model with n variables, (3.10) is unsatisfiable, i.e. if all paths
from state 0 of length at most k do not reach a fixed point, there must exist a local negative
circuit.

Given a state x ∈ Bn, let P k(x) denote the set of acyclic paths in the n-dimensional236

hypercube graph that start from x and have length less or equal to k. If π is a path in ADf ,237

we write t(π) for the last node of the path. We express Condition 3.3 for a state x ∈ Bn,238

using (3.4), as follows:239

(3.9)
∧

π∈Pk(x)

(
Θπ ⇒ F t(π)

)
=

∧
π∈Pk(x)

¬Θπ ∨ F t(π).240

Condition 3.3 requires the existence of a state x ∈ Bn that verifies (3.9). Suppose that241

a map f satisfies (3.9) for some x ∈ Bn, and that its local regulatory graphs do not admit242

any negative circuit. Consider j such that fj(x) 6= xj , and consider a permutation σ ∈ Sn243

that swaps j and 1. Define I = {i ∈ {1, . . . , n}|σ(x)i 6= 0}. Then, by Proposition 2.2,244

the map fU with U = ψI ◦ σ satisfies (3.9) for x = 0, and its local regulatory graphs do245

not admit any negative circuit. In addition, f1(0) = 1. We have therefore that, to exclude246

the existence of maps with cyclic attractors and no local negative circuits, it is sufficient to247

consider expression (3.9) for x = 0, and assume f1(0) = 1. By combining (3.9) with (3.3), we248

have, for fixed k, the Boolean formula249

(3.10) Q1 =

 ∧
π∈Pk(0)

¬Θπ ∨ F t(π)
 ∧

 ∧
x∈Bn,c∈Cn

¬Φx
c

 ∧ f1(0),250

which we can use to answer Question 1.1. Notice that Q1 is a generalisation of (3.6), where251

fewer points are required to be non-fixed. Using (3.9) and (3.8), (3.10) is easily written in252

CNF form.253

3.4. Results. We created CNF files in DIMACS CNF format, a standard input format254

accepted by most SAT solvers. The files start with a line that begins with p cnf followed255

by the number of variables and the number of clauses. One line for each clause then fol-256

lows. Each clause is expressed by listing the indices of the variables involved in the clause257

separated by spaces, using negative numbers for negated variables. A zero is added at the258

This manuscript is for review purposes only.



LOCAL NEGATIVE CIRCUITS AND CYCLIC ATTRACTORS IN BOOLEAN NETWORKS WITH AT MOST
FIVE COMPONENTS 9

01 11

00 10

1 2

(a)

011 111

001 101

010 110

000 100

1 2

3

(b)

Figure 2: Example showing that Condition 3.3 is compatible with the absence of local negative
circuits for n = 2 with k = 1, and for n = 3 with k = 3. (a) The asynchronous state transition
graph and the regulatory graph for the map f(x1, x2) = (1, x1). The path of length 2 leaving
the origin reaches a fixed point, and the regulatory graph does not admit any local circuit.
(b) The asynchronous state transition graph and the (global) regulatory graph for the map
f(x1, x2, x3) = (1− x2x3, x3, x1x2x3− x1x2− x1x3− x2x3 + x1 + x2 + x3). The path of length
4 leaving the origin reaches a fixed point; none of the negative circuits admitted by regulatory
graph are local.

end of each clause line. The files were created with a Python script (source code available at259

github.com/etonello/regulatory-network-sat).260

Using the satisfiability solver Lingeling [1], we found that, if k is set to 2, 4, 6, 11 respec-261

tively, for n = 2, 3, 4, 5, the problem described by (3.10) is unsatisfiable. This means that, for262

n ≤ 5, all maps that admit a cyclic attractor must have a local negative circuit.263

The lengths k = 2, 4, 6, 11 are the minimum lengths that lead to the unsatisfiability of the264

formula in (3.10). In other words, there exists at least one map in dimension 2 (respectively265

3, 4 and 5) such that the paths of length at most 1 (respectively 3, 5 and 10) do not reach266

a fixed point, and the associated regulatory graph does not admit a local negative circuit.267

Examples of such maps are given in Figure 2, for n = 2 and n = 3. Figure 3 illustrates instead268

the idea of the result obtained for n = 2 and n = 3, for two special cases of asynchronous269

state transition graphs admitting a unique path leaving the origin: since this path reaches270

3 (respectively 5) different states, the regulatory graph must admit a local negative circuit,271

somewhere in the state space.272

The CNF file for n = 5 and k = 11 on the 160 variables consists of about 2.6 million273

clauses (the number of clauses for each constraint is given in Table 1). The satisfiability solver274

Lingeling [1] was used to determine the unsatisfiability and to generate a proof, expressed in275

the standard DRAT notation [19]. For n = 5 and k = 11, the file for the proof is about 1GB276

in size, and was verified using the SAT checking tool chain GRAT [4]. The CNF file and the277

proof of unsatisfiability generated for n = 5, k = 11 are available as Supplementary Materials.278

4. Conclusion. In this work we have considered the question of whether a regulatory279

network whose asynchronous state transition graph contains a cyclic attractor must admit a280

local negative circuit. For n ≥ 6, only the existence of a negative circuit in the global regulatory281

structure is guaranteed [7]. We have written the question as a Boolean satisfiability problem,282

This manuscript is for review purposes only.
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Figure 3: (a) The asynchronous state transition graph and the regulatory graph for the map
f(x1, x2) = (1− x2, x1 + x2 − x1x2). The paths leaving the origin do not reach a fixed point
in 2 steps, hence a local negative circuit must exist in the regulatory graph. The unique
attractor for the asynchronous state transition graph is a fixed point. (b) The asynchronous
state transition graph and the (global) regulatory graph for the map f(x1, x2, x3) = (1 −
x3, x1, x1x2x3 − x1x3 − x2x3 + x2 + x3). No local negative circuit of dimension 1 or 2 exists;
however, since the only path leaving the origin has length 5, the regulatory graph must admit
a local negative circuit involving all three variables. The unique attractor for the asynchronous
state transition graph is a fixed point.

and SAT solvers found the problem unsatisfiable for n ≤ 5. Behaviours of gene regulatory283

networks have been previously investigated using SAT (see, for instance [15, 2, 18]). Here284

we demonstrated that Boolean satisfiability problems can be utilised not only to examine the285

behaviour of a given network, but also to explore the existence of maps with desired properties,286

specifically, properties of the associated regulatory structure.287

We actually verified that, in absence of local negative circuits, Condition 3.3, that is288

implied by the existence of a cyclic attractor, cannot be satisfied, for k sufficiently large.289

Condition 3.3 requires that, for at least one state in the state space, paths of lengths at most290

k leaving that state cannot reach a fixed point. We found that Condition 3.3 with k = 2, 4, 6, 11291

is sufficient for the existence of a local negative circuit in the regulatory graph, for dimensions292

n = 2, 3, 4, 5, respectively. The absence of local negative circuits is instead compatible with293

Condition 3.3 for k ≤ 1, 3, 5 and 10, in dimensions n = 2, 3, 4, 5, respectively.294

It is natural to ask whether a relation can be established between the values identified295

for k via the satisfiability problems and specific properties of the n-hypercube. Such an296

understanding could help in clarifying the change in behaviours between n = 5 and n = 6.297

These points remain open for further research.298

Appendix A. Boolean networks with antipodal attractive cycles. In the following, we299

write ej for the state such that eji = 0 for i 6= j, and ejj = 1. The following definition can be300

found in [11, 12].301

Definition A.1. A cycle is called antipodal attractive cycle if it is obtained from the cycle302

(A.1) (0, e1, e1 + e2, . . . , e1 + · · ·+ en, e2 + · · ·+ en, . . . , en,0)303

This manuscript is for review purposes only.
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by application of a map ψI ◦ σ, with I ⊆ {1, . . . , n} and σ ∈ Sn.304

We describe here a procedure for constructing maps with an antipodal attractive cycle and305

no local negative circuits for n ≥ 6, thus extending the method described in [12] to the case306

n = 6.307

The idea of the construction is the following. The regulatory graph of the map consisting308

of the antipodal attractive cycle C, and all other states fixed, admits many local negative309

circuits. These circuits belong to graphs Gf (x) with x ∈ C, since the regulatory graph at fixed310

points cannot admit a negative circuit (Lemma 2.1). By carefully modifying the map around311

the antipodal cycle, one can eliminate the local negative circuits, while maintaining the other312

states fixed.313

We start by setting the notation for the states in the antipodal cycle. We set314

ai =
i−1∑
k=1

ei,315

316

an+i = ai,317

for i = 1, . . . , n. Observe that ai+1 = ai + ei, and that the antipodal cycle is defined by318

(a1 = 0, a2, . . . , an, an+1, . . . , a2n, a1). We extend the notation for the ei by setting ei+kn = ei319

for i ∈ {1, . . . , n}, k ∈ Z. Then, we define320

bi = ai + ei+1,

ci = ai + ei+1 + ei+2 = bi + ei+2,

di = ai + ei+1 + ei+3 = bi + ei+3,

321

for i = 1, . . . , 2n. Set ai+2kn = ai for i = {1, . . . , 2n} and k ∈ Z, and similarly for the states322

bi, ci and di. We define the map f as follows:323

f(ai) = ai+1,

f(bi) = ai+2,

f(ci) = ai+4,

f(di) = ai+4,

324

for i = 1, . . . , 2n, while all other states are fixed.325

The map f is well defined, and the asynchronous dynamics it defines admits an antipodal326

attractive cycle, whereas its regulatory graph admits no local negative circuits. The proof is327

similar to the one presented in [12], and is omitted. The map obtained for n = 6 is represented328

in Figure 4.329

Acknowledgements. E. Tonello thanks P. Capriotti for helpful discussions.330
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Figure 4: Dynamics for a regulatory network with an antipodal attractive cycle and admitting
no local negative circuits, for n = 6. The fixed points are omitted. The synchronous dynamics
coincides for the states in the same box, and is represented with bold arrows. The additional
edges are asynchronous.
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