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Abstract

Maximum-a-posteriori (MAP) estimation is the main Bayesian estimation methodology
in imaging sciences, where high dimensionality is often addressed by using Bayesian mod-
els that are log-concave and whose posterior mode can be computed efficiently by convex
optimisation. However, despite its success and wide adoption, MAP estimation is not the-
oretically well understood yet. In particular, the prevalent view in the community is that
MAP estimation is not proper Bayesian estimation in the sense of Bayesian decision the-
ory because it does not minimise a meaningful expected loss function (unlike the minimum
mean squared error (MMSE) estimator that minimises the mean squared loss). This paper
addresses this theoretical gap by presenting a general decision-theoretic derivation of MAP
estimation in Bayesian models that are log-concave. A main novelty is that our analysis is
based on differential geometry, and proceeds as follows. First, we use the underlying convex
geometry of the Bayesian model to induce a Riemannian geometry on the parameter space.
We then use differential geometry to identify the so-called natural or canonical loss function
to perform Bayesian point estimation in that Riemannian manifold. For log-concave mod-
els, this canonical loss coincides with the Bregman divergence associated with the negative
log posterior density. Following on from this, we show that the MAP estimator is the only
Bayesian estimator that minimises the expected canonical loss, and that the posterior mean
or MMSE estimator minimises the dual canonical loss. We then study the question of MAP
and MSSE estimation performance in high dimensions. Precisely, we establish a universal
bound on the expected canonical error as a function of image dimension, providing new in-
sights the good empirical performance observed in convex problems. Together, these results
provide a new understanding of MAP and MMSE estimation in log-concave settings, and of
the multiple beneficial roles that convex geometry plays in imaging problems. Finally, we
illustrate this new theory by analysing the regularisation-by-denoising Bayesian models, a
class of state-of-the-art imaging models where priors are defined implicitly through image
denoising algorithms, and an image denoising model with a wavelet shrinkage prior.

1 Introduction

We consider the estimation of an unknown image x ∈ Rn from some data y, related to x by a
statistical model with likelihood p(y|x). Adopting a Bayesian statistical approach, we postulate
a prior distribution p(x) modelling the prior knowledge available, and base our inferences on the
posterior distribution [32]

p(x|y) =
p(y|x)p(x)∫

Rn p(y|x)p(x)dx
,

which models our knowledge about x after observing y. In this paper we focus on the case where
p(x|y) belongs to the class of log-concave distribution, i.e.,

p(x|y) =
exp{−φ(x)}∫

Rn exp{−φ(s)}ds
, (1)
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for some proper convex function φ : Rn → (−∞,∞] [9], and where we note that for notation
convenience we do not write explicitly the dependence of φ on y.

Log-concave models (1) are ubiquitous in modern imaging sciences. For instance, many
imaging methods to solve linear imaging inverse problems involving additive Gaussian noise
use models of the form φ(x) = ‖y − Ax‖2/2σ2 + ψ(Bx) + 1S(x) for some linear operators A
and B, convex regulariser ψ, and convex set S (see [1, 6, 5] for examples related to image
deblurring, inpainting, compressive sensing, super-resolution, and tomographic reconstruction,
with total-variation and wavelet priors). Similar log-concave Bayesian models can be considered
for problems involving other observation noise models, such as Poisson noise [26], and for phase
retrieval problems [11]. Log-concave models (1) are also used extensively in other areas of data
science such as machine learning [41].

Because drawing conclusions directly from p(x|y) is difficult, Bayesian imaging methods de-
liver summaries of p(x|y) - namely Bayes point estimators - that summarise p(x|y) optimally in
a single value x̂. This estimated value is optimal the following decision-theoretic sense [38]:

Definition 1.1. Let L : Rn×Rn → R+
0 be a loss function that quantifies the difference between

two points in Rn. A Bayes estimator associated with L is any estimator that minimises the
posterior expected loss, i.e.,

x̂L = argmin
u∈Rn

Ex|y[L(u, x)].

Recall that the posterior expectation Ex|y[L(u, x)] ,
∫
Rn L(u, x)p(x|y)dx. Sensible loss func-

tions L usually verify the following three desiderata [38]:

• L(u, x) ≥ 0, ∀u, x ∈ Rn ,

• L(u, x) = 0 ⇐⇒ u = x ,

• L strictly convex w.r.t. its first argument (to guarantee estimator uniqueness).

Estimator uniqueness is important because it implies admissibility (i.e., Bayesian estimator x̂L
is not dominated by any other estimator) [38]. Observe that L is not necessarily symmetric;
that is, L(u, x) 6= L(x, u). We do not enforce symmetry because the arguments of L have clearly
different roles in the decision problem.

In a purely theoretical Bayesian exercise, L should be chosen based on specific aspects of
the problem and application considered. This is particularly important in imaging problems
that are ill-posed or ill-conditioned, as the choice of L can significantly impact estimation re-
sults. However, specifying a bespoke loss function for high dimensional problems is not easy.
Consequently, most methods in the imaging literature use default losses and estimators.

In particular, Bayesian imaging methods have traditionally used the minimum mean squared
error (MMSE) estimator, given by the posterior mean x̂MMSE =

∫
Rn p(x|y)xdx. This estimator is

widely regarded as a gold standard in the field, in part because of its good empirical performance
and favourable theoretical properties, and also perhaps in part because of cultural heritage.
From Bayesian decision theory, MMSE estimation is optimal with respect to the entire class
of Euclidean or Mahalanobis squared distances, given by quadratic loss functions of the form
L(u, x) = (u − x)>Q(u − x) with Q ∈ Sn++ (i.e., the set of n × n positive definite matrices),
which includes the popular mean square loss L(u, x) = ‖u − x‖22 when Q = In [38]. This gives
x̂MMSE a straightforward geometric interpretation. Moreover, MSE estimation is optimal w.r.t.
a more general class of functions [7] that provides a second order approximation to any strongly
convex loss function; hence x̂MMSE can act as a universal proxy for other Bayesian estimators
in this sense.
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Unfortunately, calculating x̂MMSE in high dimensional models can be very difficult because
it requires solving integrals that are often too computationally expensive. This has stimulated
much research on the topic, from fast Monte Carlo simulation methods to efficient approxi-
mations with deterministic algorithms [37, 25]. But with ever increasingly large problems and
datasets, many imaging methods have focused on alternatives to MMSE estimation.

In particular, modern methods rely strongly on maximum-a-posteriori (MAP) estimation

x̂MAP = argmax
x∈Rn

p(x|y),

= argmin
x∈Rn

φ(x),

whose calculation is a convex problem that can often be solved very efficiently, even in very
high dimensions (e.g., n > 106), by using proximal convex optimisation techniques [19, 13,
21, 27]. Modern non-statistical imaging methods also predominately solve problems by convex
optimisation, and their solutions are often equivalent to performing MAP estimation for some
implicit Bayesian model. The precise sense in which these solutions are equivalent to MAP
estimators is an interesting discussion topic that is beyond the scope of this paper.

Following a decade of intensive activity, there is now abundant evidence that MAP estimation
delivers accurate results for a wide range of imaging problems. However, from a theoretical
viewpoint MAP estimation is not well understood. Currently the predominant view is that
MAP estimation is not formal Bayesian estimation in the decision-theoretic sense postulated
by Definition 1.1 because it does not generally minimise a known expected loss. The prevailing
interpretation is that MAP estimation is in fact an approximation arising from the degenerate
loss Lε(u, x) = 1‖x−u‖<ε with ε→ 0 [38] (this derivation holds for all log-concave models, but is
not generally true [8]). However, this asymptotic derivation does not lead to a proper Bayesian
estimator. More importantly, the resulting loss is very difficult to motivate for inference problems
in continuous domains such as Rn, and does not help explain the good empirical performance
reported in the literature.

Furthermore, most other theoretical results for MAP estimation only hold for very spe-
cific models, or have been derived by adopting analyses that are extrinsic to the Bayesian
decision theory framework (e.g. by analysing MAP estimation as constrained or regularised
least-squares regression, see for example [18, 17]). As a trivial example of results that only hold
for specific models, when p(x|y) is symmetric we have x̂MAP = x̂MMSE, and thus MAP esti-
mation inherits the favourable properties of MMSE estimation. This result has been partially
extended to some denoising models of the form p(x|y) ∝ exp{‖y − x‖2/2σ2 + λh(x)} in [28],
where it is shown that MAP estimation coincides with MMSE estimation with a different model
p̃(x|y) ∝ exp{−‖y − x‖2/2σ2 − λ̃h̃(x)} involving a different prior distribution. It follows that
for these models MAP estimation is decision-theoretic Bayesian estimation w.r.t. the weighted
loss L(u, x) = ‖u − x‖ exp{λ̃h̃(x) − λh(x)}. This is of course a post-hoc loss, but the result is
interesting in that it highlights that a single estimator may have a plurality of origins. More im-
portantly, it raises the question if MAP estimation is merely a computational proxy for MMSE
estimation, which unlike x̂MAP has an appealing theoretical underpinning. This question was
recently answered in Burger & Lucka [15]: MAP estimation is proper decision-theoretic Bayesian
estimation for all models of the form p(x|y) ∝ exp{−‖y −Ax‖2Σ−1/2− λh(x)}, with known lin-
ear operator A and noise covariance Σ, and where h is convex and Lipchitz continuous. More
precisely, that paper shows that for this class of models MAP estimation is optimal w.r.t. the
loss L(u, x) = ‖A(u − x)‖2Σ−1 + 2λDh(u, x)}, where Dh(x) = h(u) − h(x) − ∇h(x)>(u − x) is
the h-Bregman divergence [9]. The paper also shows that x̂MAP outperforms x̂MMSE w.r.t., the
expected Bregman error Ex|y{Dh(u, x)}, an error measure that grasps some distinctive features
of x (e.g., sparsity, regularity, smoothness, etc.). It may appear that the loss identified in [15]
is rather artificial and difficult to analyse and motivate; however, the new results presented in
Section 3 show that it is a specific instance of a more general loss that stems directly from the
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consideration of the geometry of the Bayesian model.
It is also worth mentioning that several recent works have studied MAP estimation in infinite-

dimensional settings, which is important for our understanding of how the technique behaves
in increasingly large problems. An important advance in this area is the connection of the
topological description of the MAP estimate to a variational problem, developed in [23] for non-
linear inverse problems in a Gaussian framework, and subsequently extended to non-Gaussian
settings in [31]. Agapiou et al. made another key contributions in this area by studying infinite-
dimensional MAP estimation with Besov priors, which are very relevant to imaging sciences
because they promote sparsity and preservation of edges[2]. We also mention the recent work
[33] that further improves our understanding of modes in infinite dimensions.

In order to better understand MAP estimation, in this paper we first revisit the choice of
the loss function for Bayesian point estimation in the context of models that are log-concave,
where MAP is a convex problem (we limit our analysis to finite-dimensional problems). A
main novelty of our analysis is that, instead of specifying the loss directly, we use differential
geometry to derive the loss from the geometry of the model. Precisely, we show that under some
regularity assumptions, the log-concavity of p(x|y) induces a specific Riemannian differential
geometry on the parameter space, and that taking into account this space geometry naturally
leads to an intrinsic or canonical loss function to perform Bayesian point estimation in that
space. Following on from this, we establish that the canonical loss for the parameter space is
the Bregman divergence associated with φ(x) = − log p(x|y), and that the Bayesian estimator
w.r.t. this loss is the MAP estimator. We then show that the MMSE estimator is the Bayesian
estimator associated with the dual canonical loss, and propose universal estimation performance
guarantees for MAP and MMSE estimation in log-concave models. We conclude by illustrating
our theory with an application to linear inverse problems with sparsity-promoting wavelet priors,
and an analysis of the regularisation-by-denoising models proposed recently in [39].

The remainder of the paper is organised as follows: Section 2 introduces the elements of dif-
ferential geometry that are essential to our analysis. In Section 3 we present our main theoretical
results: a decision-theoretic and differential-geometric derivation of MAP and MMSE estima-
tion, with universal bounds on the estimation error involved. Section 5 discusses the impact of
relaxing the regularity assumptions adopted in Section 3. Conclusions are finally reported in
section 6. Proofs are presented in the appendix.

2 Riemannian geometry and the canonical divergence function

In this section we recall some elements of differential geometry that are necessary for our analysis.
For a detailed introduction to this topic we refer the reader to [3].

An n-dimensional Riemannian manifold (Rn, g), with metric g : Rn → Sn++ and global
coordinate system x, is a vector space that behaves locally as an Euclidean space1. More
precisely, at any point x ∈ Rn, we have a tangent space TxRn with inner product 〈u, x〉 =
u>g(x)x and norm ‖x‖ =

√
x>g(x)x. This tangent space describes how the manifold (Rn, g)

behaves locally at x. The geometry is local and may vary smoothly from TxRn to neighbouring
tangent spaces (i.e., the inner product and norm used are local properties and vary spatially).
The variations are encoded in the affine connection Γ, with coefficients given by Γij, k(x) =
∂kgi,j(x) describing the spatial evolution of the metric g.

A crucial property of (Rn, g) is that, similarly to Euclidean spaces, manifolds supports di-
vergence functions:

Definition 2.1. A function D : Rn × Rn → R is a divergence function on Rn if the following
conditions hold for any u, x ∈ Rn:

1Recall that Sn++ is the set of n× n positive definite matrices.
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• D(u, x) ≥ 0, ∀u, x ∈ Rn,

• D(u, x) = 0 ⇐⇒ x = u,

• D(u, x) is strongly convex w.r.t. u, and C2 w.r.t u and x.

Observe that the class of divergence functions is equivalent to that of loss functions for
Bayesian point estimation specified in Section 1, with some mild additional regularity condi-
tions. This suggests that divergence functions are sensible losses to define estimators. Moreover,
divergence functions also provide a link to the differential geometry of the space, which allows
relating space geometry and Bayesian decision theory. This relationship has been used previ-
ously to analyse Bayesian decision problems from a Riemannian geometric viewpoint, leading
to the so-called decision geometry framework [24]. Here we adopt an opposite perspective: we
start by considering a Riemannian manifold (Rn, g) and then use the relationship to identify the
divergence functions that arise naturally in that space. In particular, we focus on the so-called
canonical divergence on (Rn, g), which generalises the Euclidean squared distance to this kind
of manifold [4].

Definition 2.2 (Canonical divergence [4]). For any two points u, x ∈ Rn, the (Rn, g)-canonical
divergence is given by

D(u, x) =

∫ 1

0
tγ̇t
>g(γt)γ̇tdt (2)

where γt is the Γ-geodesic from u to x and γ̇t = d/dt γt.

The reason why D is the (Rn, g)-canonical divergence is that it fully specifies the geometry
of (Rn, g); i.e., there is a one-to-one relationship between D and the metric g.

Observe that D has connections to the length of the Γ-geodesic between u and x. Precisely,
by noting that the squared length of a curve ζt : [0, 1] → Rn on the manifold (Rn, g) is given

by
∫ 1

0 ζ̇t
>
g(ζt)ζ̇tdt, we observe that D(u, x) is essentially the squared length of the Γ-geodesic

γt weighted linearly along the path from u to x. This weighting in (2) is important because it
guarantees that D(u, x) is convex in u, a necessary condition to define a divergence function
(the weighting also leads to other important properties such as linearity w.r.t. g, see section 3).
Note that the weighting also introduces an asymmetry, i.e., generally D(u, x) 6= D(x, u), which
will have deep implications for Bayesian estimation.

Finally, it is easy to check that (2) reduces to the Euclidean squared distance D(u, x) =
1
2(u − x)>g(u − x) when (Rn, g) is the Euclidean space with product 〈u, x〉 = u>gx2. More
generally, D is always consistent with the local Euclidean geometry of the manifold (Rn, g). That
is, for any point x+ dx in the neighbourhood of x we have D(x+ dx, x) = ‖dx‖2/2 + o(‖dx‖2),
where ‖ · ‖ is the Euclidean norm of the tangent space TxRn (a higher order approximation of
D(x + dx, x) is also possible by using the connection Γ [3]). And because D is the canonical
divergence, if we use the decision geometry framework [24] to derive the Riemannian geometry
induced by D on Rn we obtain

g
(D)
i,j (x) , ∂i∂jD(x, x) = gi,j(x),

Γ
(D)
ij, k(x) , ∂i∂j∂

′
kD(x, x) = Γij, k(x),

(here ∂ and ∂′ denote differentiation w.r.t. the first and second components of D respectively),
indicating that D fully specifies the geometry of (Rn, g), and vice-versa.

2In the Euclidean case we have that case g is constant, the Γ-geodesic is γt = u + t(x − u), so D(u, x) =∫ 1

0
t(u− x)>g(u− x)dt =

∫ 1

0
tdt(x− u)>g(x− u) = 1

2
(x− u)>g(x− u).
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3 A differential-geometric derivation of MAP and MMSE esti-
mation

3.1 Canonical Bayesian estimation: from differential geometry to decision
theory

In this section we use differential geometry to relate the geometry of p(x|y) to the loss functions
used for Bayesian estimation of x. Precisely, we exploit the log-concavity of p(x|y) to induce a
Riemannian geometry on the solutions space. This in turn defines a canonical loss for that space
and two Bayesian estimators: a primal estimator related to D(u, x) and a dual estimator related
to the dual divergence D∗φ(u, x) = Dφ(x, u). We focus on the case where p(x|y) is smooth and
strongly log-concave, and later analyse the effect of relaxing these assumptions.

Theorem 3.1 (Canonical Bayesian estimators). Suppose that φ(x) = − log p(x|y) is strongly
convex, continuous, and C3 on Rn. Let (Rn, g) denote the Riemannian manifold induced by φ,
with metric coefficients gi,j(x) = ∂i∂jφ(x). Then, the canonical divergence on (Rn, g) is the
φ-Bregman divergence, i.e.,

Dφ(u, x) = φ(u)− φ(x)−∇φ(x)(u− x).

In addition, the Bayesian estimator associated with Dφ(u, x) is unique and is given by the
maximum-a-posteriori estimator,

x̂Dφ , argmin
u∈Rn

Ex|y[Dφ(u, x)] ,

= argmin
x∈Rn

φ(x) ,

= x̂MAP .

The Bayesian estimator associated with the dual canonical divergence D∗φ(u, x) = Dφ(x, u) is
also unique and is given by the minimum mean squared error estimator

x̂D∗φ , argmin
u∈Rn

Ex|y[D
∗
φ(u, x)] ,

=

∫
Rn
xp(x|y)dx ,

= x̂MMSE .

The proof is reported in the appendix.
Theorem 3.1 provides several interesting new insights into MAP and MMSE estimation in

log-concave models. First and foremost, MAP estimation stems from Bayesian decision theory,
and hence it stands on the same theoretical footing as the core Bayesian methodologies such as
MMSE estimation (albeit w.r.t. a different class of loss functions). The MAP loss, Dφ(u, x), is a
generalisation of the Euclidean squared distance that arises naturally from the consideration of
the geometry of p(x|y). Consequently, the conventional definition of the MAP estimator as the
maximiser x̂MAP = argmaxx∈Rn p(x|y) is mainly algorithmic for these models, useful to highlight
that these estimators take the form of a convex optimisation problem. (Of course, this is a key
computational advantage over other Bayesian point estimators because it allows computing
x̂MAP by using using modern proximal convex optimisation algorithms that scale very efficiently
to high-dimensions - see e.g., [19] for details). Moreover, Theorem 3.1 also reveals a surprising
form of duality between MAP and MMSE estimation, with the two estimators intimately related
to each other by the (asymmetry of the) canonical divergence function that p(x|y) induced on
the solutions space. Note that Gaussian models are particular because (Rn, g) is Euclidean in
that case, which is a self-dual space; consequently Dφ(u, x) = Dφ(x, u) = 1

2‖u− x‖
2
Σ−1 and the
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primal and dual canonical estimators coincide as a result. Finally, Theorem 3.1 also shows that,
under log-concavity and smoothness assumptions, the posterior mode is a global property of
p(x|y), similarly to the posterior mean.

The way in which the Bregman divergence Dφ(u, x) measures the similarity between u and
x is directly related to the geometry of p(x|y). Precisely, because φ(x) = − log p(x|y) is strongly
convex, then φ(u) > φ(x) − ∇φ(x)(u − x) for any u 6= x. The divergence Dφ(u, x) essentially
quantifies this gap, which as mentioned previously, is directly related to the length of the affine
geodesic from u to x (and hence not only to the relative position of u and x but also to the space
geometry induced by p(x|y)). Moreover, this geometry can depend on the value of y, however
for the important class of models of the p(x|y) ∝ exp{−‖y − Ax‖2Σ−1/2− λh(x)} the geometry
is completely specified by Σ and λh independently of y. Furthermore, observe that because Dφ

is linear w.r.t. φ, then for any decomposition φ = αφ1 + βφ2 based on two convex functions
φ1 and φ2 and α, β ∈ R, we obtain Dφ = αDφ1 + βDφ2 . It follows that for the specific case
of Gaussian linear observation models, the canonical divergence Dφ is equivalent to the specific
loss identified in [15].

We also mention at this point that for Gaussian denoising models; i.e., φ(x) = ‖y −
x‖22/2σ2 + ψ(x), the estimator x̂Dφ = x̂MAP results from the computation of the proximal
operator proxσ2ψ(y) = argminx∈Rn ‖y − x‖22/2σ2 + ψ(x) [19]. This is equivalent to a gradi-

ent step on the Moreau-Yoshida regularisation of ψ; i.e., x̂MAP = y + σ2∇φ̃(y), with ψ̃(y) =
infx∈Rn ‖y − x‖22/2σ2 + ψ(x). In like manner, x̂D∗φ = x̂MMSE can be expressed as the gradient

step x̂MMSE = y+σ2∇φ̄(y), where ψ̄ = log
∫

exp{−‖y−x‖22/σ2−ψ(x)}dx is a different smooth
approximation of ψ (please see [36] for details).

Also note that a different Bregman divergence, namely the KL divergence KL(u, x) =∫
log
[
p(y|x)
p(y|u

]
p(y|x)dy, is often used in Bayesian point estimation to define an estimator that

is independent of the parametrisation of the likelihood [38]. This estimator is particularly rel-
evant when the object of interest is p(y|x), as opposed to the value of x itself, for example in
prediction problems. This estimator is not often used in imaging sciences.

Finally, we notice that because Dφ(u, x) is derived from p(x|y) may depend on the value of
y, which is controversial in some lines of Bayesian thinking because it implies that the decision
problem underpinning the estimator is defined a-posteriori. This can happen for example in
problems involving non-Gaussian observation models. Our view on this matter is that although
decision problems are generally defined a-priori, the case of Bayesian estimators is particular
because the decision involved is precisely how to summarise p(x|y), and this decision can be
considered a-posteriori if this allows delivering an estimator with favourable accuracy or com-
putational properties. Of course, loss functions that do not depend on the model considered
also have advantages, namely the mean squared error loss that also leads to an estimator with
good properties (albeit often very expensive to compute). In any case, it is fundamental that
one understands how the estimator that one uses summarises p(x|y), and the aim of this work
is to improve our understanding of the widely used MAP estimator.

3.2 Error bounds for MAP and MMSE estimation

Theorem 3.1 establishes that under certain conditions x̂MAP is a proper Bayesian estimator.
Following on from this, it is natural to study the accuracy of x̂MAP as a Bayesian estimator. The
Bayesian approach to this question is to infer the accuracy of x̂MAP according to the posterior
distribution p(x|y). For x̂MMSE this generally corresponds to computing the expected MSE loss,
related to the posterior covariance. This type of analysis can be useful, for example, to identify
high dimensional stability conditions (i.e., conditions under which the error grows linearly with
n = dim(x)).

Here we perform this type of analysis for x̂MAP w.r.t. the canonical loss. Precisely, we es-
tablish universal estimation error bounds w.r.t. the dual error function D∗φ(u, x) for MAP and
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MMSE estimation, for which we have the following result:

Proposition 3.1 (Expected error bound). Suppose that φ(x) = − log p(x|y) is convex on Rn
and φ ∈ C1. Then,

Ex|y
[
D∗φ(x̂MMSE, x)

]
≤ Ex|y

[
D∗φ(x̂MAP, x)

]
≤ n.

Proof. The proof is reported in the appendix.
We read Proposition 3.1 as a high dimensional stability result for MAP and MMSE esti-

mation, stating that the expected estimation error, as measured by the dual loss D∗φ, grows at
most linearly with the number of image pixels. Therefore, even if the likelihood p(y|x) is poorly
identifiable because dim(y) � dim(x), or because the linear operator A is very rank deficient,
or because y is corrupted by Poison noise, in smooth log-concave settings the expected error
cannot grow polynomially or with a linear constant greater than 1.

To formally study the expected error as n increases we consider a generic log-concave
stochastic process X = {x(n), n ∈ N}, where for each n ∈ N, the random vector x(n) =
(x1, . . . , xn) ∈ Rn has marginal distribution pn(x(n)|y) ∝ exp{−φn(x(n))} for some convex
function φn : Rn → (−∞,∞]. We also assume that the entropy rate of X is finite; i.e.,
limn→∞ Ex(n+1)|y[φn+1(x(n+1))]−Ex(n)|y[φn(x(n))] <∞ [22]. This limit captures the asymptotic
information gain per pixel and characterises global statistical features of the image, particu-
larly correlations at any rage. In log-concave settings, this condition holds for example when

limn→∞ φn(x̂
(n)
MAP)/n < ∞ ; it also holds when X is strongly stationary [12]. By analysing

Proposition 3.1 in this setting we see that

Ex(n)|y

[
D∗φn(x̂

(n)
MMSE, x

(n))
]
≤ Ex(n)|y

[
D∗φn(x̂

(n)
MAP, x

(n))
]
≤ n .

Then, because the entropic rate of X is finite limn→∞ Ex(n)|y[φn(x(n))]/n < ∞ [22], and hence
the dimension-normalised expected errors verify

lim
n→∞

Ex(n)|y

[
D∗φn(x̂

(n)
MMSE, x

(n))/n
]
≤ lim

n→∞
Ex(n)|y

[
D∗φn(x̂

(n)
MAP, x

(n))/n
]
≤ 1 .

We emphasise again this form of dimension stability is not generally available in estimation
problems, and is a direct consequence of the log-concavity of the model and its relationship
with the MAP and MMSE estimators. Finally, observe that the above error bounds are tight;
e.g., the trivial i.i.d. process xi|y ∼ Exp(λy), for i ≥ 1, λy ∈ R+, attains the bound. Lastly,
we conjecture that this bound can be improved for specific subclasses of log-concave models by
using entropy rate results from the probability literature; future work will investigate this.

3.3 Connections to other works

We conclude this section by discussing some connections between this paper and other theoretical
works related to MAP estimation. As previously explained, Theorem 3.1 directly builds on
[15], which considered the class of log-concave models p(x|y) ∝ exp{−‖y − Ax‖2Σ−1/2− λh(x)}
with Gaussian likelihood y ∼ N (Ax,Σ) and prior p(x) ∝ exp{λh(x)}, and establishes that
in this case x̂MAP is the Bayesian estimator for the Bregman loss L(u, x) = ‖A(u − x)‖2Σ−1 +
2λDh(u, x)}. Theorem 3.1 generalises this result to a larger class of posterior distributions and
provides motivation for this unconventional loss function by showing that it stems directly from
the consideration of the geometry of the parameter space. Proposition 3.1 provides further
motivation for this loss by establishing explicit bounds on the expected estimation error.

It is worth mentioning that the generalisation of [15] to other log-concave models was de-
veloped simultaneously and independently in Burger et al. [14] (see [14, Theorem 3.2] for MAP
estimation, and [14, Theorem 4.3] for MSSE estimation, which is also closely related to [7,

8



Proposition 1]). Moreover, that work also analyses the expected estimation error involved in
MAP and MMSE estimation but w.r.t. other divergence functions. More precisely, Burger et al.
[14] uses the Bregman divergence Dh related to the regulariser or negative log-prior, whereas we
use the canonical Bregman divergence Dφ related to the negative log-posterior. As mentioned
previously, Dh grasps important features of x (e.g;, sparsity, regularity, smoothness), and is
always independent of the observed data y, whereas Dφ is independent of y only in special cases
(e.g., Gaussian linear observation models).

Moreover, Burger et al. also show that Ex|y [D∗h(x̂MMSE, x)] ≤ Ex|y [D∗h(x̂MAP, x)] and con-
clude that x̂MMSE outperforms x̂MAP when the estimation error is measured in this way, which
is independent of y. To analyse how these expected errors behave as dimensionality increases
we combine this result with Proposition 3.1 and obtain the following bound:

Corollary 3.1. Suppose that h(x) = − log p(x) is convex on Rn and φ ∈ C1. Then,

Ex|y [D∗h(x̂MMSE, x)] ≤ Ex|y [D∗h(x̂MAP, x)] ≤ n .

Proof. The proof follows directly from combining [14, Theorem 5.1] with Proposition 3.1 and
the fact that D∗h ≤ D∗φ, for any splitting φ = h + f where h and f are convex functions. This
result can also be derived from the integration by parts argument in [14].

Again, we read Corollary 3.1 as a high dimensional stability result for MAP and MMSE
estimation, stating that the expected estimation error, measured in this case by the dual loss
D∗h, grows at most linearly with the number of image pixels. Polynomial growth or faster linear
growth is not possible within the class of smooth log-concave models, even if the problem is
very ill-conditioned. At the same time, this linear rate cannot be further improved, as any i.i.d.
process p(x|y)

∏n
i=1 p(xi|y) will have an error that grows linearly with n.

4 Illustrative examples

As a way of illustrating our theory, we now analyse the geometry of a simple image denoising
model in the wavelet domain, and of the regularisation-by-denoising (RED) Bayesian models
recently proposed in [39].

4.1 Wavelet image denoising model

In this example we analyse the behaviour of MAP estimation in linear inverse problems with
sparsity-promoting or shrinkage priors. Without loss of generality, we first consider a simple
additive noise observation model y = x+ w, with noise w ∼ N (0, σ2In) with variance σ2 ∈ R+,
that allows a detailed analysis. To recover x we put a shrinkage prior on a wavelet representation
z = Wx of x, where W is some orthogonal wavelet transform. More precisely, we use the
smoothed Laplace prior

p(z) ∝ exp{−λ
n∑
i=1

√
z2
i + α2} , (3)

where λ ∈ R+ and α ∈ R+ are respectively scale and shape regularisation parameters; this
prior is also known as the pseudo-Huber, Hardy, or Charbonnier prior [10, 20]. The likelihood
is p(y|z) ∝ exp{− 1

2σ2 ‖y −W>z‖22}, and hence the posterior for the wavelet coefficients is

p(z|y) ∝ exp{− 1

2σ2
‖y −W>z‖22 − λ

n∑
i=1

√
z2
i + α2} .

To check that Theorem 3.1 and Proposition 3.1 apply, we note that φ(z) = − 1
2σ2 ‖y −W>z‖22 −

λ
∑n

i=1

√
z2
i + α2 belongs to C∞ and has a diagonal Hessian matrix with elements given by

∂2

∂z2
i

φ(z) =
1

σ2
+

λα2

(α2 + z2
i )3/2

.
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Noticing that the elements ∂2

∂z2i
φ(z) take values in [ 1

σ2 ,
1
σ2 + λ] for all z ∈ Rn, we conclude that

φ(z) is strongly convex. Notice that, similarly to the previous example, the geometry of the
manifold {Rn, g} does not depend on the value of the observation y, and hence the canonical
divergences are independent of y too.

Because of the action of the shrinkage prior (3), the Bayesian model p(z|y) will promote
solutions that have some large wavelet coefficients and some coefficients close to zero. This
behaviour is controlled by the regularisation parameter λ, and also by the choice of the Bayesian
estimator used to summarise z|y. In particular, MAP estimation may significantly accentuate
shrinkage. This can be theoretically analysed in different ways, and in particular by using
Theorem 3.1. Accordingly, ẑMAP minimises the expected canonical divergence on {Rn, g}, given
by the φ-Bregman divergence

Dφ(u, z) =φ(u)− φ(z)−∇φ(z)>(u− z) ,

= 1
2σ2 ‖W>u−W>z‖22 + λ

n∑
i=1

√u2
i + α2 −

√
z2
i + α2 +

z2
i − ziui√
z2
i + α2

 .
Because WW> = In we have that Dφ is fully separable, i.e., Dφ(u, z) =

∑n
i=1Dψ(ui, zi) with

Dψ(ui, zi) = 1
2σ2 (ui − zi)2 + λ

√
z2
i + α2

√
u2
i + α2 − ziui − α2√
z2
i + α2

.

Because Dψ is a divergence it promotes values of ui that are close to zi. To develop an intuition
for Dψ it is useful to analyse its behaviour when zi is small and when it is large relative to
α. Observe that Dφ has a quadratic term related to the likelihood, and a non-quadratic term
related to the shrinkage prior. When zi � α the non-quadratic term vanishes and hence

Dψ(ui, zi) ≈ 1
2σ2 (ui − zi)2 .

As a result, if the observed data is such that the posterior distribution for zi|y has most of its
mass in large values of zi, the MAP estimate for zi will essentially coincide with the MMSE
estimate given by the posterior mean of zi|y. In this case there is no additional shrinkage from
the estimator. Conversely, when zi � α the estimator will significantly boost shrinkage. More
precisely, when zi � α, the non-quadratic term behaves as

Dψ(ui, zi) ≈ 1
2σ2 (ui − zi)2 + λ|ui| ,

≈ 1
2σ2u

2
i + λ|ui| ,

for ui � α, and for ui � α as

Dψ(ui, zi) ≈ 1
2σ2 (ui − zi)2 + λ

[
u2
i

2α
+
z2
i

2α
− −ziui

α

]
=

(
1

2σ2
+

λ

2α

)
(ui − zi)2

2 ,

≈
(

1

2σ2
+

λ

2α

)
u2
i .

In these two cases Dψ strongly promotes ui values that are close to zero, either explicitly via the
shrinkage term λ|ui|, or by amplifying the convexity constant of the quadratic loss from 1/2σ2

to 1/2σ2 +λ/2α. As a result, if the posterior distribution for zi|y has mass in small values of zi,
then the MAP estimate will intensify the shrinkage effect of the prior. This additional shrinkage
is not observed with other loss functions, e.g., MMSE, and is consistent with the empirical
observation that MAP estimation performs well with shrinkage priors.

For illustration, Figure 4.1 shows an experiment with the Flinstones image of size 256×256
pixels. Figure 4.1(a) shows a corrupted observation y = x + w with noise w ∼ N (0, σ) with
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(a) observation y (b) restored image x̂MAP

(c) restored image x̂MMSE (d) denoising functions for ẑMAP and ẑMMSE

Figure 1: Wavelet denoising experiment with the Flinstones image with the smoothed Laplace
prior (3).

σ = 0.08, which has a signal-to-noise ratio of 17.6dB. The restored imaged obtained by MAP
estimation is displayed in Figure 4.1(b), this estimate has a signal-to-noise ratio of 19.8dB (we
used a Haar wavelet decomposition with four levels and λ = 12 and α = 0.01 for all scales except
the coarse scale, for which we used a Jeffreys’ prior p(zi) ∝ 1 to avoid excessively biasing the
estimates). For comparison, we also report x̂MMSE , which in this experiment performs poorly
(signal-to-noise ratio of 17.7dB). The MAP estimator obtained with a conventional Laplace or
`1 prior (i.e., with α→ 0) has a worse signal-to-noise ratio (18.8dB, not displayed)

Because p(z|y) is fully separable, i.e., p(z|y)
∏n
i=1 p(zi|y) - and thus Dψ =

∑n
i=1Dψ(ui, zi)

- the action of these estimator can be clearly visualised by plotting the estimation function
that performs the denoising of the wavelet coefficients: for MAP estimation this is given by
ẑi,MAP (y) : y → argminui Ezi

[
Dψ(ui, zi)|w>i y

]
, where w>i y is the ith wavelet coefficient of y;

and for MMSE estimation it is the marginal posterior mean ẑi,MMSE(y) : y →
∫
zip(zi|y)dzi.

These functions, displayed in Figure 4.1(d), clearly show the importance of the choice of the loss
used to summarise p(z|y).

We emphasise at this point that this experiment has been selected to highlight the additional
shrinkage obtained by using MAP estimation instead of MMSE estimation. However, there are
other models where, because of the likelihood and the choice of the wavelet representation and
the parameters used, shrinkage arises mainly from the prior. In that case MAP and MMSE esti-
mation perform equally well. To illustrate this point, Figure 4.1 below shows the reconstruction
results obtained in [16] with MAP and MMSE estimation for a radio-interferometric imaging
problem with a very similar model of the form p(z|y) ∝ exp{− 1

2σ2 ‖y −AW>z‖22 − λ
∑n

i=1 |zi|},
where the difference is that the likelihood term involves a linear operator A modelling the radio-
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(a) true image x (b) observation y

(c) restored image x̂MAP (d) restored image x̂MMSE

Figure 2: Bayesian radio-interferometric imaging experiment with the Cygnus A radio galaxy
(size 256× 512 pixels). See [16] for more details.

telescope system (see [16] for more details about the model and the algorithms used to compute
the estimates). Observe that in this case both MAP and MMSE estimation deliver excellent
and remarkably similar results. A similar empirical observation is reported in [15] for a sparse
tomography experiment using the Besov wavelet model of [30], which is closely related to the
model considered here.

To conclude, shrinkage priors promote solutions that are sparse or approximately sparse
through two mechanisms: directly through the definition of the bayesian model p(z|y), and
indirectly through the loss function used to summarise z|y. In the case of MAP estimation,
this loss function is a Bregman divergence that can significantly amplify shrinkage. In some
cases this may lead to better estimation performance. Therefore, when designing Bayesian
procedures for imaging problems, it is important to carefully consider both the model and the
Bayesian estimator used to summarise the information provided by the model.

4.2 Regularisation-by-denoising (RED) Bayesian models

As a second illustrative example we analyse the geometry of the RED Bayesian models [39]. In
this class of models the prior p(x) is defined implicitly through an image denoising algorithm.
Precisely, starting from some image denoising filter f : Rn → Rn, we posit the prior

p(x) ∝ exp{−λ
2x
>[x− f(x)]} , (4)

which promotes values of x that are approximately invariant to filtering by f (i.e., for which
f(x) ≈ x), the rationale being that these are values that f considers to be realistic images. Note
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that this approach has close connections to plug-and-play priors, that are also defined through
denoising algorithms [40].

The RED framework [39] assumes that f verifies three regularity conditions that are neces-
sary to make inference with (4) analytically and computationally tractable. First, f is smooth,
at least C2. Second, the Jacobian matrix Jf (x) is symmetric and has all its eigenvalues in [−1, 1]
for all x ∈ Rn. Third, f is locally homogenous, i.e., limε→0 ε

−1[f(x+εx)−f(x)] = f(x) ∀x ∈ Rn;
this property implies that f(x) = Jf (x)x. Under these assumptions, it is possible to express (4)
in the following pseudo-quadratic form

p(x) ∝ exp{−λ
2x
>Λf (x)x} . (5)

where Λf (x) = In − Jf (x) plays the role of an image-adapted graph Laplacian operator, high-
lighting the connection between f and the model geometry [39].

Notice that these regularity assumptions imply the regulariser or negative log-prior h(x) =
− log p(x) is C3 and convex, which is important for example for the efficient computation of xMAP

by optimisation. To show that h(x) ∈ C3 we first use the fact that ∇h(x) = ∇ log p(x) = −λ[x−
f(x)/2 − Jf (x)>x/2] = −λ[x − f(x)], where we have used the symmetry Jf (x)> = Jf (x) and
the identity f(x) = Jf (x)x related to the local homogeneity of f . Therefore, the Hessian matrix
of h(x) has elements given by ∂i∂jh(x) = −Λf (x)i,j = Jf (x) − In, which are also continuously
differentiable because f ∈ C2, and hence h(x) ∈ C3. Moreover, the Hessian matrix of h(x), given
by −Λf (x) = Jf (x)− In, is negative-semidefinite because Jf (x) has all its eigenvalues in [−1, 1]
∀x ∈ Rn, and consequently h(x) is convex. As a result, if the negative log-likelihood − log p(y|x)
is C3 and convex w.r.t. x, then φ(x) = − log p(x|y) is also C3 and log-concave, and Theorem 3.1
and Proposition 3.1 apply.

As illustrative example, consider linear inverse problems of the form y = Ax+w, where A is
a known linear operator, and w ∼ N (0, σ2In) with noise variance σ2 ∈ R+. The resulting RED
Bayesian model has posterior density3

p(x|y) ∝ exp{− 1
2σ2 ‖y −Ax‖22 − λ

2x
>Λ(x)x} . (6)

This distribution is strongly log-concave and C3, and hence Theorem 3.1 and Proposition 3.1
apply. More precisely, we have φ(x) = 1

2σ2 ‖y −Ax‖22 + λ
2x
>Λ(x)x, which induces the metric

gi,j(x) = ∂i∂jφ(x) = {σ−2A>A+ λΛ(x)}i,j . (7)

Observe that (7) combines an Euclidean geometry term A>A from the Gaussian likelihood, and
a non-Euclidean term from the Laplacian Λ(x). Again, note that for this class of models the
geometry of the manifold {Rn, g} does not depend on the value of the observation y.

Moreover, from Theorem 3.1, the estimator x̂MAP is the Bayesian estimator associated with
the canonical divergence on {Rn, g}, given by the φ-Bregman divergence

Dφ(u, x) =φ(u)− φ(x)−∇φ(x)>(u− x) ,

= 1
2σ2 ‖y −Au‖22 + λ

2u
>Λ(u)u− 1

2σ2 ‖y −Ax‖22 + λ
2x
>Λ(x)x

− [σ−2A>(Ax− y) + λx− λf(x)]>(u− x) ,

=σ−2[u>A>Au+ x>A>Ax− 2u>A>Ax] + λ[u>Λ(u)u+ x>Λ(x)x− 2u>Λ(x)x] ,

=σ−2DA>A(u, x) + λDΛ(u, x) ,

where the Mahalanobis (Euclidean) distance

DA>A(u, x) = ‖u− x‖A>A ,
= u>A>Au+ x>A>Ax− 2u>A>Ax ,

3Because Λ(x) is potentially rank deficient, to guarantee that p(x|y) is a proper probability density function
we further assume that ker(A>A) ∩ ker(Λ(x)) = {0} for all x ∈ Rn.

13



is a measure of prediction MSE related to the Gaussian likelihood, and

DΛ(u, x) = u>Λ(u)u+ x>Λ(x)x− 2u>Λ(x)x ,

is related to the Laplacian Λ(x), which encodes the geometry of the prior (to compute DΛ we
used the local homogeneity property f(x) = Jf (x)x of the denoiser, see [39] for details).

Finally, observe that DΛ is very similar to the Euclidean loss DA>A in that it measures the
difference between the squared norms of u and x and the projection of u on x, with the only
difference being that for DΛ(u, x) these norms and projections are measured on the tangent
spaces TuRn and TxRn of the manifold {Rn,Λ}, with inner products specified by Λ.

5 Relaxation of regularity conditions

We now examine the effect of relaxing the regularity assumptions of Theorem 3.1. We consider
three main cases: lack of smoothness, lack of strong convexity, and lack of continuity.

5.1 Non-smooth models

The results of Theorem 3.1 hold for non-smooth models with the following modifications. First,
assume that φ is almost everywhere C3 on Rn; i.e., the set of points of Rn where φ is not smooth
has dimension n−1 and hence zero Lebesgue measure. To check that φ is C3 almost everywhere it
is necessary to analyse the regularity of the second order derivatives ∂i∂jφ(x) (e.g., if the second
derivatives are Lipchitz continuous then φ is almost everywhere C3 by Rademacher’s theorem
[34]). Because in models that are almost everywhere smooth the set of non-differentiable points
has no probability mass, this set can be simply omitted in the computation of expectations.
Second, because the non-differentiable points do not have Euclidean tangent spaces, instead of
a global manifold we need to consider the collection local manifolds associated with the regions
of Rn where p(x|y) is C3. Each one of these regions has a local canonical divergence given by
the Bregman divergence D(u, x) = Dφ(u, x) = φ(u) − φ(x) − ∇φ(x)>(u − x). Therefore, for
these models we need to posit Dφ(u, x) as the global loss function for any (u, x) ∈ Rn × Rn
[technically the global loss is the generalised Bregman divergence Dφ(u, x) = φ(u) − φ(x) −
q>x (u − x), where qx belongs to the subdifferential set of φ at x [9], however the expectation
Ex|y[Dφ(u, x)] is taken over the points where φ is C3 and hence qx = ∇φ(x)]. By calculating
the primal and dual Bayesian estimators related to this global loss we obtain that x̂MAP =
argminu∈Rn Ex|y[Dφ(u, x)] and x̂MMSE = argminu∈Rn Ex|y[D

∗
φ(u, x)], similarly to Theorem 3.1.

Observe that these modifications do not affect the fact that x̂MAP and x̂MMSE can correspond
to non-differentiable points. Also note that despite not being a global canonical divergence,
Dφ(u, x) is still consistent with the space’s Riemannian geometry which is local.

Many imaging models involve non-smooth norms such as the `1 and the nuclear norm, or
the total-variation pseudo-norm, that are almost everywhere C1 but not C3. More generally, all
Lipchitz continuous functions are almost everywhere C1. In this case, only the second and third
parts of Theorem 3.1 hold. That is, we posit Dφ(u, x) as the loss function for any u ∈ Rn and any
x ∈ Rn, excluding non-differentiable points, and obtain that x̂MAP = argminu∈Rn Ex|y[Dφ(u, x)]
and x̂MMSE = argminu∈Rn Ex|y[D

∗
φ(u, x)] by removing non-differentiable points from the calcu-

lation of the expectations. To recover the differential geometric derivation of Dφ it is necessary
to use a smooth approximation of the model, i.e., the smoothed L1 norm |s| =

√
s2 + α2 for

some arbitrarily small α > 0.

Finally, also note that the bound Ex|y

[
D∗φ(x̂MAP, x)

]
≤ n in Proposition 3.1 is straight-

forwardly extended to non-smooth models by using the generalised dual Bregman divergence
D∗φ(u, x) = φ(x) − φ(u) − q>u (x − u) with subgradient qx̂MAP

= 0. Conversely, the other bound

Ex|y

[
D∗φ(x̂MMSE, x)

]
≤ n is lost (see the appendix for details).
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5.2 Strictly log-concave models

For models that are strictly but not strongly log-concave only the second and third results of The-
orem 3.1 remain true. It is easy to check that the Bayesian estimators w.r.t. Dφ = φ(u)−φ(x)−
∇φ(x)>(u−x) are still x̂MAP = argminu∈Rn Ex|y[Dφ(u, x)] and x̂MMSE = argminu∈Rn Ex|y[D

∗
φ(u, x)],

similarly to strongly log-concave models (see in the appendix that strong log-concavity is not
required to prove the second and third parts of Theorem 3.1). Thus, the decision-theoretic
derivation of x̂MAP remains valid, and x̂MAP and x̂MMSE remain dual to each other. The high
dimensional performance guarantees of Proposition 3.1 also hold because φ is convex. However,
without strong convexity, g becomes semi-positive definite and (Rn, g) becomes a singular man-
ifold. Currently, the validity of the interpretation of Dφ as a canonical divergence in singular
manifolds is not clear. The generalisation of canonical divergences and of Theorem 3.1 to sin-
gular manifolds is currently under investigation. In any case, without strong convexity Dφ is no
longer a divergence in the sense of Definition 2.1 as Dφ(x, u) = 0 does not imply x = u, which
is an important desired property for loss functions.

5.3 Models involving constraints

Finally, in cases where x|y is constrained to a convex set S ⊂ Rn only the first and the third
results of Theorem 3.1 hold. Proceeding similarly to the proof of Theorem 3.1, it is easy to show
that Dφ is the canonical divergence of the manifold (S, g), and that the Bayesian estimator
related to the dual divergence is x̂MMSE = argminu∈S Ex|y[D

∗
φ(u, x)]. However, the Bayesian

estimator that minimises the canonical divergence is now a shifted or tilted MAP estimator

x̂Dφ = argmin
u∈S

Dφ(u, x̂MAP) + u>Ex|y[∇φ(x)],

where generally Ex|y[∇φ(x)] 6= 0 (see the appendix for details). It is not clear at this point under
what conditions x̂MAP ≈ x̂Dφ . Nevertheless, the high dimensional guarantees of Proposition 3.1
still hold for x̂MAP, providing some theoretical justification for using this estimator.

5.4 Models with heavy-tails

We conclude this section by discussing the difficulties of extending our results to models that are
heavy-tailed and hence not log-concave, such as imaging models involving heavy-tailed priors
related to compressible distributions [29]. Unfortunately, extending our results to heavy-tailed
settings is extremely challenging for several reasons. First, the Hessian matrix of φ does not
define a Riemannian metric because there are regions of the space where it has negative eigen-
values. Also, directly postulating Dφ = φ(u) − φ(x) − ∇φ(x)>(u − x) as loss function is not
appropriate either because Dφ can take negative values. The analysis is further complicated
by the fact that p(x|y) may have an infinite number of maximisers in disconnected areas of the
parameter space. As mentioned previously, the derivation of MAP estimation as an approxima-
tion arising from the degenerate loss Lε(u, x) = 1‖x−u‖<ε with ε → 0 also fails in this case [8].
Interestingly, MMSE estimation may also struggle here given that models in this class may not
have a posterior mean [38].

6 Conclusion

MAP estimation is one of the the most successful Bayesian estimation methodologies in imaging
science, with a track record of accurate results across a wide range of challenging imaging
problems. Our aim here has been to contribute to the theoretical understanding of this widely
used methodology, particularly by placing it in the Bayesian decision theory framework that
underpins the core Bayesian inference methodologies.
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In order to analyse MAP estimators we have adopted an entirely new approach: we al-
lowed the model to specify the loss function, or equivalently the Bayesian estimator, that is
used to summarise the information that the model represents. This was achieved by using
the connections between model log-concavity, Riemannian geometry, and divergence functions.
We first established that if p(x|y) is strongly log-concave, continuous, and C3 on Rn, then
φ(x) = − log p(x|y) induces a dually-flat Riemannian structure on the parameter space, where
the canonical divergence is the Bregman divergence associated with φ, and where the MAP
estimator is the unique Bayesian estimator w.r.t. to this loss function. We also established that
the MMSE estimator is the Bayesian estimator w.r.t. the dual canonical loss, and that both
estimators enjoy favourable stability properties in high dimensions. We then examined the effect
of relaxing these assumptions to models with weaker regularity conditions.

The theoretical results presented in this work provide several valuable new insights into MAP
and MMSE estimation. In particular, both estimators stem from Bayesian decision theory and
from the consideration of the geometry of the parameter space, and exhibit an interesting form
of duality. Also, the expected estimation error - as measured by the canonical loss - is stable
in high dimensions; this is in agreement with the remarkable empirical performance observed
imaging and other large scale settings. The fact that MAP estimators are available as solutions
to convex problems is a fundamental practical advantage. However, our results also show that
the predominant view of MAP estimators as hastily approximate inferences, motivated only
by computational efficiency, is fundamentally incorrect. We hope that these results will provide
some clarity to imaging scientists using MAP estimators, and that they stimulate further research
into the theory of this powerful Bayesian methodology.
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Appendix - Proofs of Theorem 3.1 and Proposition 3.1

Proof of Theorem 3.1

The first part of Theorem 3.1 follows directly from differential geometry and from the regularity
properties of φ (see [3] for an introduction to differential geometry). From differential geometry,
under the conditions of Theorem 3.1, φ induces a Riemannian metric on Rn with coefficients

gi,j(x) = ∂i∂jφ(x),

and where we note that g(x) is positive definite from the strong convexity of φ. Similarly, we
have the affine connection coefficients Γij, k = ∂i∂j∂kφ(x).

Moreover, because φ is convex it endows (Rn, g) with a dual affine coordinate system η,
related to the primal coordinate system by the duality ηx = ∇φ(x) and xη = ∇φ?(η), where
φ?(η) = maxx∈Rn x

>η−φ(x) is the convex conjugate of φ [3, Ch. 3]. As a result we have a dual
Riemannian metric g? w.r.t. η, with coefficients given by

g?i,j(η) = ∂i∂jφ
?(η),

and a dual affine connection Γ? with coefficients given by

Γ?ij, k(η) = ∂i∂j∂kφ
?(η).

Finally, it is easy the check that x and η are mutually dual w.r.t. g. That is, for all x ∈ Rn

g?(ηx) = g(x)−1

which implies that (Rn, g,Γ,Γ?) is a dually-flat Riemannian manifold [3, Ch. 3]. Please see [35,
Section 2] for an excellent introduction to dually-flat structures and their main properties.

From [4], in such manifolds the Γ-geodesic connecting u→ x in (2) is given by γt = u+t(x−u),
and γ̇t = x−u. The proof is then concluded by integration by parts of (2) to obtain the Bregman
divergence Dφ(u, x) = φ(u) − φ?(ηx) − η>x u, which also admits the more familiar expression
Dφ(u, x) = φ(u)− φ(x)−∇φ(x)(u− x).

To prove the second part of Theorem 3.1 we use the linearity property of the expectation
operator to express the definition x̂Dφ = argminu∈Rn Ex|y[Dφ(u, x)] as follows

x̂Dφ = argmin
u∈Rn

φ(u) + Ex|y[φ(x)]− u>Ex|y[∇φ(x)]− x>Ex|y[∇φ(x)],

= argmin
u∈Rn

φ(u)− u>Ex|y[∇φ(x)].

In a manner akin to [15], the proof is concluded by using the divergence theorem, together with
the fact that p(x|y) is continuous and vanishes at least exponentially as ‖x‖ → 0, to show that
Ex|y[∇φ(x)] =

∫
Rn ∇p(x|y)dx = 0. Hence,

x̂Dφ = argmin
u∈Rn

φ(u),

= x̂MAP.
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Note that in the case where p(x|y) involves hard constraints on the parameter space then gen-
erally Ex|y[∇φ(x)] 6= 0, and we have x̂Dφ = argminu∈Rn Dφ(u, x̂MAP)− u>Ex|y[∇φ(x)] generally
different from x̂MAP.

Finally, the proof of the third part of Theorem 3.1 follows directly from [7, Proposition 1],
which for completeness we detail below

x̂D∗φ = argmin
u∈Rn

Ex|y[D
∗
φ(u, x)],

= argmin
u∈Rn

Ex|y[Dφ(x, u)],

= argmin
u∈Rn

Ex|y[Dφ(x, u)]− Ex|y[Dφ(x, x̂MMSE)],

= argmin
u∈Rn

φ(x̂MMSE)− φ(u)− (x̂MMSE − u)>∇φ(u),

= argmin
u∈Rn

Dφ(x̂MMSE, u),

= x̂MMSE.

Notice that strict log-concavity suffices to prove the second and third parts of Theorem 3.1.

Proof of Proposition 3.1

Assume that φ(x) = − log p(x|y) is convex on Rn and C1. From the optimality condition of
x̂MAP, ∇φ(x̂MAP) = 0 and hence the dual divergence

D∗φ(x̂MAP, x) = φ(x)− φ(x̂MAP) .

Noting that Ex|y [φ(x)] is the entropy of x|y, we use Proposition I.2 of [12] and obtain

Ex|y
[
D∗φ(x̂MAP, x)

]
= Ex|y [φ(x)]− φ(x̂MAP) ≤ n.

Finally, using that x̂MMSE minimises the posterior expectation of D∗φ(x̂MMSE, x) we obtain

Ex|y
[
D∗φ(x̂MMSE, x)

]
≤ Ex|y

[
D∗φ(x̂MAP, x)

]
≤ n ,

concluding the proof.
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