THE MAKER-BREAKER RADO GAME ON A RANDOM SET OF INTEGERS

ROBERT HANCOCK

Abstract

Given an integer-valued matrix A of dimension $\ell \times k$ and an integer-valued vector b of dimension ℓ, the Maker-Breaker (A, b)-game on a set of integers X is the game where Maker and Breaker take turns claiming previously unclaimed integers from X, and Maker's aim is to obtain a solution to the system $A x=b$, whereas Breaker's aim is to prevent this. When X is a random subset of $\{1, \ldots, n\}$ where each number is included with probability p independently of all others, we determine the threshold probability p_{0} for when the game is Maker or Breaker's win, for a large class of matrices and vectors. This class includes but is not limited to all pairs (A, b) for which $A x=b$ corresponds to a single linear equation. The Maker's win statement also extends to a much wider class of matrices which include those which satisfy Rado's partition theorem.

MSC2010: 91A24, 11B75, 05C57.

1. Introduction

Given a finite set X and a family of subsets of $X, \mathcal{F} \subseteq \mathcal{P}(X)$, we define the Maker-Breaker game on (X, \mathcal{F}) to be the game where Maker and Breaker take turns to select a previously unchosen element $x \in X$, and at the conclusion of the game, if Maker has claimed all of the elements of some $F \in \mathcal{F}$, then Maker wins. Otherwise Breaker has claimed at least one element x in every set $F \subseteq \mathcal{F}$, and Breaker wins. The set X is known as the board, and the family \mathcal{F} as the winning sets. If Maker has a strategy so that no matter how Breaker plays, Maker can always win, then we call the game Maker's win. If Maker has no such strategy, then since there is no draw scenario, the game is Breaker's win.

Maker-Breaker games first stemmed from a seminal paper by Erdős and Selfridge [7, where they proved their famous criterion which gives a general winning strategy for Breaker. Some well-known examples of Maker-Breaker games are where the board X is the edge set of a complete graph K_{n}, and the winning sets \mathcal{F} are all sets of edges which correspond to a perfect matching; a Hamilton cycle; or a fixed subgraph H. All of these games turn out to be Maker's win if n is sufficiently large, therefore an adjustment to the game is required if we wish to make the problem of determining whose win the game is more interesting. This leads to the following two variations of Maker-Breaker board games, which have each received significant attention.

- Biased board games. Maker claims one element of the board per turn, whereas Breaker claims b elements per turn, for some fixed $b \in \mathbb{N}$. We call the game the ($1: b$) game on (X, \mathcal{F}). Maker-Breaker games are 'bias-monotone' (see e.g. [11). This means that there exists a threshold bias b_{0} such that the $(1: b)$ game on (X, \mathcal{F}) is Maker's win if and only if $b<b_{0}$.
- Random board games. For a fixed probability p and game (X, \mathcal{F}), let X_{p} be obtained by including each element $x \in X$ with probability p independently of all other elements, and let $\mathcal{F}_{p}:=\left\{F \in \mathcal{F}: x \in X_{p}\right.$ for all $\left.x \in F\right\}$. We then consider the game on the random board $\left(X_{p}, \mathcal{F}_{p}\right)$, noting that it is a probability space of games. By the monotonicity of the game (X, \mathcal{F}) being Maker's win, the existence of a threshold function follows from [5]. That
is, there exists a threshold probability p_{0} such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\text { The game on }\left(X_{p}, \mathcal{F}_{p}\right) \text { is Maker's win }\right]= \begin{cases}1 & \text { if } p \gg p_{0} ; \\ 0 & \text { if } p \ll p_{0}\end{cases}
$$

The interesting problem now is to determine the threshold bias and threshold probability for various Maker-Breaker games. For examples and further history of combinatorial board games, see e.g. [2, 11.

Random board games were first introduced by Stojaković and Szabó [24], who considered games played on a random subset of the edges of a complete graph. Note that this precisely corresponds to the edges of the Erdős-Rényi random graph $G_{n, p}$. Here, we focus on the game where Maker's aim is to obtain a solution to a system of linear equations within a random set of integers. To be precise, in our Maker-Breaker game, the board will be a random subset of $[n]:=\{1, \ldots, n\}$, that is $[n]_{p}$, which is obtained by including each element of $[n]$ with probability p independently of all other elements. The winning sets are all sets of size k which correspond to a k-distinct solution (i.e. $x=\left(x_{1}, \ldots, x_{k}\right)$ has each x_{i} distinct) to a system of linear equations $A x=b$, where A is a fixed integer-valued matrix of dimension $\ell \times k$ and b is a fixed integer-valued vector of dimension ℓ. We call such a game played on a set of integers X the (A, b)-game on X. The class of all (A, b)-games are known as Rado games (introduced in [14]), due to the intimate link with Rado's partition theorem, which will be discussed shortly.

Maker-Breaker games in this setting were first considered by Beck [3], who studied the van der Waerden game. Here, Maker's aim is to obtain a k-term arithmetic progression $a, a+r, \ldots, a+$ $(k-1) r$ for some $a, r \in \mathbb{N}$ and fixed $k \in \mathbb{N}$. Note that the set of k-term arithmetic progressions in [n] exactly coincides with the set of k-distinct solutions to $A x=0$ in $[n]$ where A is the $(k-2) \times k$ matrix given by

$$
\left(\begin{array}{cccccccc}
1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& & & & \ddots & & & \\
0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{array}\right)
$$

Beck determined that the smallest $n \in \mathbb{N}$ such that the ($A, 0$)-game on $[n]$ is Maker's win is $n=2^{k(1+o(1))}$.

Here we consider a generalisation of the van der Waerden game using the following definitions. Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector of dimension ℓ. We call a pair (A, b) (and the matrix A in the case where $b=0$) irredundant if there exists a k-distinct solution to $A x=b$ in \mathbb{N}, and partition regular if for any finite colouring of \mathbb{N}, there is always a monochromatic solution (of any kind) to $A x=b$. A cornerstone result in the area of Ramsey theory for integers is Rado's theorem [16], which characterises all partition regular pairs (A, b). In [12], Hindman and Leader extended Rado's theorem to characterise all pairs (A, b) for which given any finite colouring of \mathbb{N}, there is always a monochromatic k-distinct solution to $A x=b$ (in particular, if $b=0$ then A must be irredundant and partition regular). Hindman and Leader's result implies that given such a pair (A, b), if n is sufficiently large then however we 2 -colour [n], there exists a monochromatic k-distinct solution to $A x=b$. So in order for Breaker to win the (A, b)-game on $[n]$, he must himself obtain a k-distinct solution. But then by the classic strategy-stealing argument, Maker can claim this solution for herself. Thus this game is easily shown to be Maker's win. Therefore it is interesting to consider biased and random versions of the (A, b)-game on $[n]$. In a very recent paper of Kusch, Rué, Spiegel and Szabó [14], the biased version is considered. In this paper, we consider the random version.

In fact (as in [14]), we consider a wider class of pairs (A, b). Let $(*)$ be the following matrix property:
(*) Under Gaussian elimination A does not have any row which consists of precisely two nonzero rational entries.
An equivalent definition, abundant, is given in [14]. Note that in [10] it is proven that irredundant partition regular matrices are a strict subclass of irredundant matrices which satisfy ($*$).

We need the following definitions. For a matrix A index the columns by $[k]$. For a partition $W \dot{U} \bar{W}=[k]$ of the columns of A, let $A_{\bar{W}}$ be the matrix obtained from A by restricting to the columns indexed by \bar{W}. Let $\operatorname{rank}\left(A_{\bar{W}}\right)$ be the rank of $A_{\bar{W}}$, where $\operatorname{rank}\left(A_{\bar{W}}\right)=0$ if $\bar{W}=\emptyset$. Then define

$$
m(A):=\max _{\substack{W \dot{\bar{W}}=[k] \\|W| \geq 2}} \frac{|W|-1}{|W|-1+\operatorname{rank}\left(A_{\bar{W}}\right)-\operatorname{rank}(A)} .
$$

The biased game result of [14] is the following.
Theorem 1 ([14], Theorem 1.4 and Proposition 1.5). Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector of dimension ℓ. Given the pair (A, b) and the matrix A are both irredundant, then we have the following:
(i) If A satisfies (*) then the threshold bias for the (A, b)-game on $[n]$ is $\Theta\left(n^{1 / m(A)}\right)$;
(ii) If A does not satisfy $(*)$ then the $(1: 2)(A, b)$-game on $[n]$ is Breaker's win.

In this paper we mainly focus on the case when A satisfies $(*)$, though the case where A does not satisfy $(*)$ does feature in our first result and also Section 4 .

We use the abbreviation w.h.p. for with high probability (with probability tending to 1 as n tends to infinity). Our first result gives the threshold for the random (A, b)-game whenever $A x=b$ corresponds to a single linear equation.

Theorem 2. Let A be a fixed integer-valued matrix of dimension $1 \times k$ and b a fixed integer (i.e. $A x=b$ corresponds to a single linear equation $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ with the a_{i} non-zero integers).
(i) If the pair (A, b) is irredundant and A is irredundant and satisfies $(*)$, then the (A, b)-game on $[n]_{p}$ has a threshold probability of $\Theta\left(n^{-\frac{k-2}{k-1}}\right)$;
(ii) If the pair (A, b) is irredundant and A is irredundant and does not satisfy (*), then the (A, b)-game on $[n]_{p}$ is Maker's win if $p \gg n^{-1 / 3}$ and Breaker's win if $p \ll n^{-1 / 3}$;
(iii) If the pair (A, b) is irredundant and A is not irredundant, then
(a) the (A, b)-game on $[n]_{p}$ is Breaker's win w.h.p. for any $p=o(1)$ if the coefficients a_{i} are all positive or all negative;
(b) the (A, b)-game on $[n]_{p}$ is Maker's win if $p \gg n^{-1 / 3}$ and Breaker's win if $p \ll n^{-1 / 3}$ otherwise;
(iv) If the pair (A, b) is not irredundant, then the (A, b)-game on $[n]$ is (trivially) Breaker's win.

Note that most 'interesting' equations lies in the class of equations given by (i). Here A satisfying (*) implies that $k \geq 3$; in particular the class given by (i) includes several natural equations that have been extensively studied, e.g. $x+y=z, x+y=z+t$ and $x+y=2 z$. In the (A, b)-games corresponding to these equations, Breaker's aim is to restrict Maker's set to being a sum-free set, a Sidon set and a progression-free set respectively. The remaining classes of equations given by (ii)-(iv) are all in some sense 'trivial'; the proofs of these statements appear in Section 4.3 ,

In fact Theorem 2(i) will follow immediately from a much more general theorem. First we need some more definitions. We say that an $\ell \times k$ matrix A of full rank ℓ is strictly balanced if, for every $W \subseteq[k]$ for which $2 \leq|W|<k$, the inequality

$$
\frac{|W|-1}{|W|-1+\operatorname{rank}\left(A_{\bar{W}}\right)-\ell}<\frac{k-1}{k-1-\ell}
$$

holds. In particular note that if A is strictly balanced then $m(A)=\frac{k-1}{k-1-\ell}$ (though the converse is not true). Given an irredundant matrix A which satisfies (*), we define the associated matrix $B(A)$ to be a strictly balanced, irredundant matrix of full rank which satisfies ($*$), which is found by using elementary row operations on A then deleting some rows and columns, and satisfies $m(B(A))=m(A)$. The fact that such a matrix exists is not entirely obvious, and is essentially proven in [20]. We provide further details in Section 3. Also note that if A itself is strictly balanced then we simply have $B(A)=A$.

Let $\mu(n, A, b)$ denote the size of the largest subset of $[n]$ which does not contain a k-distinct solution to $A x=b$. The main result of this paper is the following.

Theorem 3. Let A be a fixed integer-valued matrix of dimension $\ell^{\prime} \times k^{\prime}$ and b a fixed integer-valued vector of dimension ℓ^{\prime}. Given the pair (A, b) is irredundant and A is irredundant and satisfies (*) we have the following:
(i) Let $\varepsilon>0$. There exists a positive constant C such that if $p>C n^{-1 / m(A)}$, then for any $R \subseteq[n]_{p}$ satisfying $|R| \leq\left(1-\frac{\mu(n, A, b)}{n}-\varepsilon\right) n p$, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\text { Maker wins the }(A, b) \text {-game on }[n]_{p} \backslash R\right)=1 \text {. }
$$

(ii) Suppose the associated matrix $B(A)$ is an $\ell \times k$ matrix of full rank ℓ, where ℓ divides $k-1$. There exists a positive constant c such that if $p<c n^{-1 / m(A)}$ then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\text { Breaker wins the }(A, b) \text {-game on }[n]_{p}\right)=1 \text {. }
$$

First note that it follows from a supersaturation result (Lemma 4.1 in [14) that for all pairs (A, b) as stated in Theorem 3, there exist $n_{0}=n_{0}(A, b), \delta=\delta(A, b)>0$, such that for all integers $n \geq n_{0}$ we have $\mu(n, A, b) \leq(1-\delta) n$. Thus in particular Theorem $3(i)$ implies that there exists a positive constant C such that if $p>C n^{-1 / m(A)}$, then Maker wins the (A, b)-game on $[n]_{p}$ w.h.p. Also, note that if A is a $1 \times k$ matrix with non-zero entries, then it is strictly balanced, and so $B(A)=A$. Thus A is a matrix which satisfies the hypothesis of Theorem 3(ii). Theorem 2(i) follows immediately from these two comments.

Another example of a class of pairs (A, b) for which Theorem 3 gives the threshold probability up to a constant factor are all irredundant pairs (A, b) such that A is irredundant, has no columns consisting entirely of zeroes, satisfies $(*)$ and is of dimension $2 \times k^{\prime}$ for some odd k^{\prime}. This follows since by construction either $B(A)=A$ or $B(A)$ is a $1 \times k$ matrix for some $k<k^{\prime}$. Either way, $B(A)$ then satisfies the hypothesis of Theorem 3(ii).

For the Maker's win statement, the fact that we can delete a certain fraction of elements from $[n]_{p}$ and still have Maker's win w.h.p. means we have a resilience theorem. The study of how strongly a graph or set satisfies a certain property has a rich history. An early famous example is Turán's theorem, which tells us that given $r \geq 3$ we must delete a $\frac{1}{r-1}$-fraction of the edges of the complete graph in order to obtain a graph which does not contain K_{r} as a subgraph. The global resilience of a graph or set property generally asks how many edges or elements must be deleted in order to rid the graph or set of the property. Note that in our resilience result, the property is the game being Maker's win w.h.p., and the resilience is best possible in terms of the bound on the size of the set R : Indeed, since the largest subset of $[n]$ with no k-distinct solutions to $A x=b$ has size $\mu(n, A, b)$, w.h.p. $[n]_{p}$ contains a subset S of size $p(\mu(n, A, b)-\varepsilon n)$ with no k-distinct solutions to $A x=b$. Thus we can remove $\left(1-\frac{\mu(n, A, b)}{n}+\varepsilon\right) n p$ elements from $[n]_{p}$ to obtain S (noting that a game on S is trivially Breaker's win).

It is very interesting to note the parallels between our theorem and the random Rado theorem and the resilience theorem stated below. In particular, the parameter $m(A)$ is also crucial here. First, call a set of integers $X(A, b, r)$-Rado if for any r-colouring of X, there is always a monochromatic
k-distinct solution to $A x=b$ in X. (Note X being ($A, b, 1$)-Rado just means there is a k-distinct solution to $A x=b$ in X.)

Theorem 4 ([8, [20]). Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and let $r \geq 2$ be a positive integer. Given A is irredundant and partition regular, there exist constants $C, c>0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[[n]_{p} \text { is }(A, 0, r)-\text { Rado }\right]=\left\{\begin{array}{l}
1 \text { if } p>C n^{-1 / m(A)} ; \\
0 \text { if } p<c n^{-1 / m(A)}
\end{array}\right.
$$

Theorem 5 ([10, [23]). Let A be a fixed integer-valued matrix of dimension $\ell \times k$. Given A is irredundant and satisfies (*), for all $\varepsilon>0$, there exists a positive constant C such that if $p>$ $C n^{-1 / m(A)}$, then for any $R \subseteq[n]_{p}$ satisfying $|R| \leq\left(1-\frac{\mu(n, A, 0)}{n}-\varepsilon\right) n p$, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[[n]_{p} \backslash R \text { is }(A, 0,1) \text {-Rado }\right]=1 .
$$

Note that Theorem 5 was already proven for density regular matrices and the matrix $\left(\begin{array}{lll}1 & 1 & -1\end{array}\right)$ by Schacht [22]. Further, although not explicity stated in the paper, Schacht's method extends to the class of matrices stated in Theorem 5.

Theorem 4 implies that by again using strategy-stealing, we could obtain a proof for the nonresilient version of Theorem (i) for irredundant partition regular matrices. However our method as already noted achieves the best resilience possible, and further it extends to all irredundant matrices which satisfy $(*)$ (even those for which there exists a 2-colouring of \mathbb{N} with no monochromatic k distinct solutions to $A x=b$). Our proof also gives an explicit strategy.

The proof of Theorem [3(i) closely follows the method of Theorem 16 in [15]. Here, Nenadov, Steger and Stojakovic consider a similar problem: the H-game is where the board is the edges of a complete graph, and the winning sets are sets of edges which correspond to a copy of a fixed subgraph H. This game and its related Ramsey problems resemble the (A, b)-game as follows: Set $d_{2}(H):=0$ if $e(H)=0, d_{2}(H):=1 / 2$ if $e(H)=1$, and $d_{2}(H):=(e(H)-1) /(v(H)-2)$ otherwise. Then define the 2-density of H to be $m_{2}(H):=\max _{H^{\prime} \subseteq H} d_{2}\left(H^{\prime}\right)$. For most graphs H, the graph analogues of Theorems 4 and 5 (the random Ramsey theorem and resilient subgraphs theorem, see [17, 18, 19, 6, 22]) have a threshold of $\Theta\left(n^{-1 / m_{2}(H)}\right)$. Bednarska and Luczak [4] showed that the threshold bias for the H-game is $\Theta\left(n^{1 / m_{2}(H)}\right)$. Thus both the H-games and (A, b)-games (in most cases) have a threshold bias which is the inverse of the threshold for the random (respective) Ramsey/Rado theorem and the resilience theorems. Kusch, Rué, Spiegel and Szabó [14] in fact show that there is an intimate link between resilience and the threshold bias, which explains the parameters of $m(A)$ and $m_{2}(H)$ appearing for both. They refer to this phenomenon as the probabilistic Turán intuition for biased Maker-Breaker games; see Section 6.4 of [14] for more details.

An analogous definition of strictly balanced exists for graphs. In [15], Nenadov, Steger and Stojaković show that the threshold probability for the random H-game is $\Theta\left(n^{-1 / m_{2}(H)}\right.$) when H is strictly balanced (Theorem 2 in [15). However there are a class of graphs which have a threshold probability different to that of the random Ramsey/resilient subgraph theorem and the inverse of the threshold bias (Theorem 4 in [15]). Indeed, this is one of the main motivations for studying the random (A, b)-game: For the proof of Theorem [3(ii), we build upon the method used by Rödl and Ruciński [20] to prove the 0 -statement of Theorem 4. Although our Breaker win statement is 'incomplete', its proof does seem to indicate that the threshold probability for the random (A, b) game (for any pair (A, b) which is irredundant and A irredundant and satisfying $(*)$) should be the same as the random Rado threshold. That is, we hope that there is no need for the assumption that ℓ divides $k-1$ in Theorem 3(ii). Also note that if we could prove our Breaker win statement for all strictly balanced matrices, then the full result would follow (see Proposition 12 and the paragraph
following it). So interestingly in this sense, the random (A, b)-game does not resemble the random H-game.

We prove the two parts of Theorem 3 in Sections 2 and 3 respectively, before finishing by proving Theorem 2(ii)-(iv) along with making some further remarks in Section 4 .

2. Proof of Maker's win in Theorem 3

First we list a few results which are required for the proof. We will use the following simplification of Theorem 4.7 in [10], a container result, which is itself a consequence of the general container theorems of Balogh, Morris and Samotij [1] and Saxton and Thomason [21].

Theorem 6 ([10]). Let $0<\delta<1$. Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector of dimension ℓ. Suppose the pair (A, b) is irredundant and A is irredundant and satisfies $(*)$. Let $\mathcal{I}(n, A, b)$ denote all sets from $\mathcal{P}([n])$ which contain no k-distinct solutions to $A x=b$. Then there exists $D>0$ such that the following holds. For all $n \in \mathbb{N}$, there is a collection $\mathcal{S} \subseteq \mathcal{P}([n])$ and a function $f: \mathcal{S} \rightarrow \mathcal{P}([n])$ such that:
(i) For all $I \in \mathcal{I}(n, A, b)$, there exists $S \in \mathcal{S}$ such that $S \subseteq I \subseteq f(S)$.

Additionally, every $S \in \mathcal{S}$ satisfies
(ii) $|S| \leq D n^{\frac{m(A)-1}{m(A)}}$;
(iii) $S \in \mathcal{I}(n, A, b)$;
(iv) $f(S)$ contains at most $\delta n^{k-\ell} k$-distinct solutions to $A x=b$; and
(v) $|f(S)| \leq \mu(n, A, b)+\delta n$.

Note that in [10] the theorem is stated for the homogeneous case $A x=0$ only. However, the result easily generalises to the inhomogeneous case $A x=b$. Full details can be found in $[9$.

An upper bound on the size of the largest subset of $[n]$ containing no k-distinct solutions to $A x=b$ is also required. The following is a consequence of Lemma 4.1 in [14 and Theorem 2 in [13.

Theorem 7. Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector of dimension ℓ. Given the pair (A, b) is irredundant and A is irredundant and satisfies (*), then there exist $n_{0} \in \mathbb{N}$ and $\delta>0$ such that for all integers $n \geq n_{0}$ we have $\mu(n, A, b) \leq(1-\delta) n$.

We will need the Markov and Chernoff inequalities.
Proposition 8. Let X be a non-negative random variable. Then for all $t>0$ we have $\mathbb{P}[X \geq t] \leq$ $\frac{\mathbb{E}[X]}{t}$.

Proposition 9. Let X_{1}, \ldots, X_{n} be independent Bernoulli distributed random variables with $\mathbb{P}\left[X_{i}=\right.$ $1]=p$ and $\mathbb{P}\left[X_{i}=0\right]=1-p$. Then for $X=\sum_{i=1}^{n} X_{i}$ and every $0<\delta \leq 1$, we have

$$
\mathbb{P}[X \leq(1-\delta) \mathbb{E}[X]] \leq e^{-\mathbb{E}[X] \delta^{2} / 2}
$$

Finally, we require the Erdős-Selfridge Criterion, commonly used to prove a Breaker strategy result, which we mentioned in the introduction. (Note that we do mean Breaker here; in our proof, we create an auxiliary game where the original Maker needs to play the role of Breaker!)

Theorem 10 (7). Let X be a set and let \mathcal{F} be a family of subsets of X. Then if Breaker has the first move in the game, and

$$
\sum_{A \in \mathcal{F}} 2^{-|A|}<1,
$$

then Breaker has a winning strategy for the Maker-Breaker game (X, \mathcal{F}).

Proof of Theorem 図(i). Apply Theorem7 with parameters A, b to obtain $\varepsilon^{\prime}>0$ such that $\mu(n, A, b) \leq$ $\left(1-\varepsilon^{\prime}\right) n$ for sufficiently large n. Let $\varepsilon>0$ noting that without loss of generality we can assume $\varepsilon \ll \varepsilon^{\prime}$. Suppose n is sufficiently large. Apply Theorem 6 with parameters $\varepsilon / 4, A, b$ to obtain $D>0$, a collection $\mathcal{S} \subseteq \mathcal{P}([n])$ and a function f satisfying Theorem $6(i)-(v)$. Fix $\delta \ll \varepsilon$ and choose C such that $0 \leq 1 / C \ll 1 / D, \delta, \varepsilon$. Let $p>C n^{-1 / m(A)}$. Note that $m(A)>1$ (see Proposition 4.3 in [10]) and thus $p n$ tends to infinity as n tends to infinity. Let R be as in the statement of the theorem and set $X:=[n]_{p} \backslash R$.

Maker's aim is to claim a k-distinct solution to $A x=b$ within X, and Breaker's aim is to prevent this. If Maker loses, then her set $M \subseteq X$ does not contain a k-distinct solution to $A x=b$. Hence $M \in \mathcal{I}(n, A, b)$ and so there exists $S \in \mathcal{S}$ such that $S \subseteq M \subseteq f(S)$ and $S \subseteq X$. Given $S \in \mathcal{S}$ note that if Maker claims one element from $X \backslash f(S)$ then $M \nsubseteq f(S)$; hence consider the auxiliary game (X, \mathcal{F}) where

$$
\mathcal{F}:=\{X \backslash f(S): S \in \mathcal{S} \text { and } S \subseteq X\} .
$$

Maker can ensure that she wins the (A, b)-game on X by picking at least one element from each set in \mathcal{F}, that is, she wins the auxiliary game as Breaker. We now make the following claim about the auxiliary game.
Claim 11. (i) For all $S \in \mathcal{S}$ such that $S \subseteq X$, we have $|X \backslash f(S)| \geq$ enp/2 w.h.p.
(ii) We have $|\mathcal{F}| \leq 2^{\varepsilon n p / 4}$ w.h.p.

Assuming the claim holds, it now easily follows that

$$
\sum_{A \in \mathcal{F}} 2^{-|A|} \leq 2^{\varepsilon n p / 4} \cdot 2^{-\varepsilon n p / 2}<1,
$$

that is, the hypothesis of Theorem 10 holds for the game (X, \mathcal{F}). Thus Maker wins the game as Breaker in the auxiliary game, and thus wins the original game (the (A, b)-game on X). Since this happens w.h.p., it remains to prove the claim.

Proof of Claim [11. First we shall count $|\mathcal{F}|$. We wish to count the number of $S \in \mathcal{S}$ such that $S \subseteq X$. Recall that every $S \in \mathcal{S}$ satisfies $|S| \leq D n^{1-1 / m(A)} \leq D p n / C$ and there are at most $\binom{n}{s}$ sets $S \in \mathcal{S}$ of size s. Thus we have

$$
\begin{align*}
\mathbb{E}[|\mathcal{F}|] & \leq \sum_{S \in \mathcal{S}} \mathbb{P}\left[S \subseteq[n]_{p}\right] \leq \sum_{S \in \mathcal{S}} p^{|S|} \leq \sum_{s=0}^{D p n / C}\binom{n}{s} p^{s} \leq(D p n / C+1)\binom{n}{D p n / C} p^{D p n / C} \tag{1}\\
& \leq(D p n / C+1)\left(\frac{C e}{D}\right)^{D p n / C} \leq e^{\delta n p} \leq 2^{\varepsilon n p / 8},
\end{align*}
$$

where the last two inequalities follows by our choice of C and since $\delta \ll \varepsilon$ respectively. Thus by Proposition 8 we have

$$
\mathbb{P}\left[|\mathcal{F}| \geq 2^{\varepsilon n p / 4}\right] \leq 2^{-\varepsilon n p / 8}
$$

which tends to zero as n tends to infinity, proving (ii).
Now for (i), observe that if we show that the probability that there exists $S \in \mathcal{S}$ such that $S \subseteq X$ and $|X \backslash f(S)| \leq \varepsilon n p / 2$ tends to zero as n tends to infinity, we will be done. First observe by Theorem [6 that for all $S \in \mathcal{S}$ we have $|f(S)| \leq \mu(n, A, b)+\varepsilon n / 4$ and so $|[n] \backslash f(S)| \geq$ $n-\mu(n, A, b)-\varepsilon n / 4$. Let $\gamma:=\varepsilon /(4-4 \mu(n, A, b) / n-\varepsilon)$ and $Y:=[n]_{p} \backslash f(S)$ (noting $\gamma>0$ since $\left.\varepsilon \ll \varepsilon^{\prime}\right)$. By Proposition 9 we have

$$
\begin{aligned}
& \mathbb{P}\left[\left|([n] \backslash f(S)) \cap[n]_{p}\right|<\left(1-\frac{\mu(n, A, b)}{n}-\frac{\varepsilon}{2}\right) n p\right] \leq \mathbb{P}[|Y|<(1-\gamma) \mathbb{E}[|Y|]] \\
\leq & e^{-\mathbb{E}[|Y|] \gamma^{2} / 2} \leq e^{-2 \delta n p}
\end{aligned}
$$

where the last inequality follows since $\delta \ll \varepsilon \ll \varepsilon^{\prime}$. Note that since $|R| \leq\left(1-\frac{\mu(n, A, b)}{n}-\varepsilon\right) n p$ and $X \backslash f(S)=Y \backslash R$ we have

$$
\begin{equation*}
\mathbb{P}[|X \backslash f(S)|<\varepsilon n p / 2] \leq e^{-2 \delta n p} \tag{2}
\end{equation*}
$$

for all $S \in \mathcal{S}$. Also since $S \subseteq f(S)$, the events $S \subseteq[n]_{p}$ and $|X \backslash f(S)|$ being small are independent. Thus

$$
\begin{aligned}
& \mathbb{P}\left[\text { There exists } S \in \mathcal{S} \text { such that } S \subseteq[n]_{p} \text { and }|X \backslash f(S)|<\varepsilon n p / 2\right] \\
\leq & \sum_{S \in \mathcal{S}} \mathbb{P}\left[S \subseteq[n]_{p} \text { and }|X \backslash f(S)|<\varepsilon n p / 2\right] \\
\leq & \sum_{S \in \mathcal{S}}\left(\mathbb{P}\left[S \subseteq[n]_{p}\right] \cdot \mathbb{P}[|X \backslash f(S)|<\varepsilon n p / 2]\right) \leq e^{-2 \delta n p} \sum_{S \in \mathcal{S}} \mathbb{P}\left[S \subseteq[n]_{p}\right] \\
\text { (1) } & e^{-2 \delta n p} \cdot e^{\delta n p}=e^{-\delta n p}
\end{aligned}
$$

which tends to zero as n tends to infinity, as required.

3. Proof of Breaker's win in Theorem 3

The proof will follow a similar tactic to that used by Rödl and Ruciński [20 for their proof of the 0 -statement of Theorem 4. Recall that the goal of Rödl and Ruciński was to show that, given an irredundant partition regular matrix A, an integer $r \geq 2$, and an upper bound on the probability p, then w.h.p. there exists an r-colouring of $[n]_{p}$ such that there are no monochromatic k-distinct solutions to $A x=0$. The proof consisted of three parts:
(P1) A reduction of the problem. It is shown that it suffices to prove the result for the associated matrix $B(A)$. The problem is then rephrased to one about an associated hypergraph.
(P2) A deterministic lemma. It is shown that if all r-colourings of $[n]_{p}$ contain a monochromatic k-distinct solution to $A x=0$, then the associated hypergraph must contain a certain connected subhypergraph.
(P3) A probabilistic lemma. It is shown that if $p<c n^{-1 / m(A)}$, then w.h.p. the associated hypergraph does not contain the subhypergraph given by the deterministic lemma.
Recall that our aim is to show that under the hypothesis of Theorem 3(ii), w.h.p. Breaker wins the (A, b)-game on $[n]_{p}$. Our proof consists of the same three general parts, with appropriate amendments to the lemmas.
(Q1) A reduction of the problem. As (P1) above.
(Q2) Two deterministic lemmas. These together show that if Maker wins the (A, b)-game on $[n]_{p}$, then the associated hypergraph must contain a certain connected subhypergraph.
(Q3) A probabilistic lemma. It is shown that if $B(A)$ is an $\ell \times k$ matrix of full rank ℓ which satisfies ℓ divides $k-1$, and $p<c n^{-1 / m(A)}$, then w.h.p. the associated hypergraph does not contain the subhypergraph given by the deterministic lemmas.
We will of course make this more rigorous as we get to each part of the proof.
(Q1) A reduction of the problem. First we show that in order for Breaker to win the (A, b) game on any set of integers X, its suffices to show that Breaker wins the $\left(B, b^{\prime}\right)$-game on X, for some matrix $B:=B(A)$ and vector $b^{\prime}:=b^{\prime}(A, b)$. For a vector $x=\left(x_{1}, \ldots, x_{k}\right)$ and a non-empty set $W \subseteq[k]$, let $x_{W}:=\left(x_{i}\right)_{i \in W}$.

Proposition 12 ([14], Corollary 4.3 and Lemma 4.2). Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector of dimension ℓ. Suppose the pair (A, b) is irredundant and A is irredundant and satisfies (*). There exists a non-empty set $W \subseteq[k]$, a matrix B of full rank which is irredundant, satisfies (*), and is strictly balanced, and a vector b^{\prime} for which the pair $\left(B, b^{\prime}\right)$ is irredundant, such that if $A x=b$, then $B x_{W}=b^{\prime}$.

Note that the homogeneous case for where b, b^{\prime} are zero vectors is implicitly stated in [20]. We call the pair $\left(B, b^{\prime}\right)$ above the associated pair of (A, b), and call $B=B(A)$ the associated matrix of A. The consequence for us of Proposition 12 is that if Maker wins the (A, b)-game, then Maker also wins the $\left(B, b^{\prime}\right)$-game (since a solution to $A x=b$ always gives rise to a solution to $B x^{\prime}=b^{\prime}$). Thus in order to prove Breaker wins the (A, b)-game, it suffices to prove that Breaker wins the (B, b^{\prime})-game.

With any game (X, \mathcal{F}) there exists an associated hypergraph $H(X, \mathcal{F})$ with vertex set X and edge set \mathcal{F}. Write $H\left(X, B, b^{\prime}\right):=H(X, \mathcal{F})$ to represent the hypergraph where X is a set of integers, and \mathcal{F} is the set of all k-distinct solutions to $B x^{\prime}=b^{\prime}$ (assuming that B is an $\ell \times k$ matrix). Thus we may think of the game as one where Maker and Breaker take turns claiming a vertex of the k-uniform hypergraph $H\left([n]_{p}, B, b^{\prime}\right)$ and Maker's aim is to obtain an edge of $H\left([n]_{p}, B, b^{\prime}\right)$, and Breaker's aim is to prevent this. For the remainder of the proof we will assume that we have fixed A and b (and therefore B and b^{\prime}), and set $H:=H\left([n]_{p}, B, b^{\prime}\right)$. We will assume that B is an $\ell \times k$ matrix, and note that since B satisfies property (*), it is easy to see that we must have $k \geq 3$.

Hypergraph notation. We now introduce some notation which will be required for the deterministic and probabilistic lemmas. For a k-uniform hypergraph H with edge set $E:=E(H)$ and vertex set $V:=V(H)$, let an edge order be an enumeration of the edges E. For a given edge order of E and edge $e \in E$, call a vertex $v \in e$ new in e if v did not appear in any edge which came before e in the edge order. Otherwise call v old in e. We call an edge e good if it has precisely one old vertex, bad if it has between two and $k-1$ old vertices, and k-bad if it has k old vertices. Note that we always consider edges to be good, bad, or k-bad with respect to a given edge order; similarly whether a vertex is new or old in a given edge also depends on the given edge order. So throughout we will make it clear which edge order we are referring to. Note that given an edge order, a vertex will always be new in precisely one edge (and old in every other edge it appears in). For ease of notation we may sometimes identify a hypergraph with an edge order of its edges, e.g. if we have $P:=e_{0}, \ldots, e_{t}$, then we consider the hypergraph P to have $E(P):=\left\{e_{0}, \ldots, e_{t}\right\}$ and $V(P):=\{x \in e, e \in E(P)\}$.

Let e_{0}, \ldots, e_{t} be an edge order. We call the edge order allowed if for all $i \in[t], e_{i}$ is good, bad or k-bad (that is, there is no edge e_{i} with $i \geq 1$ such that e_{i} is vertex-disjoint from all the edges $\left.e_{0}, \ldots, e_{i-1}\right)$. We call it valid if for all $i \in[t], e_{i}$ is good or bad. It is simple if for all $i \in[t], e_{i}$ is good. For a subset of edges $e_{f_{1}}, \ldots, e_{f_{u}}$ of e_{0}, \ldots, e_{t} we do not assume $f_{1} \leq \cdots \leq f_{u}$ unless otherwise stated. For two vertex-disjoint sets $X_{1}, X_{2} \subseteq V(H)$, we define a minimal path from X_{1} to X_{2} in $\left\{e_{0}, \ldots, e_{t}\right\}$ to be a subset of edges $e_{f_{1}}, \ldots, e_{f_{u}}$ of e_{0}, \ldots, e_{t} such that
(i) we have $X_{1} \cap e_{f_{1}} \neq \emptyset$, and $x \notin e_{f_{a}}$ for any $a \geq 2$ and $x \in X_{1}$;
(ii) we have $X_{2} \cap e_{f_{u}} \neq \emptyset$, and $x \notin e_{f_{a}}$ for any $a \leq u-1$ and $x \in X_{2}$;
(iii) for all $i, j \in[u]$ with $i<j$ we have $\left|e_{f_{i}} \cap e_{f_{j}}\right| \geq 1$ if $i=j-1$ and $\left|e_{f_{i}} \cap e_{f_{j}}\right|=0$ otherwise.

As a small example consider the second hypergraph in Figure 1 (with edges labelled):

- The edge order $e_{1}, e_{2}, \ldots, e_{8}$ is valid, but not simple, since all e_{i} for $2 \leq i \leq 8$ are good or bad, and in particular e_{2} is bad.
- The edge order e_{1}, e_{4}, e_{3} is not allowed, since e_{4} is vertex-disjoint from e_{1}.
- Setting $X_{1}:=e_{1}$ and $X_{2}:=e_{5}$, we see that e_{3}, e_{4} is a minimal path from X_{1} to X_{2} in $\left\{e_{2}, e_{3}, e_{4}\right\}$, whereas e_{2}, e_{3}, e_{4} is not; condition (i) of a minimal path is violated since there exists a vertex $x \in X_{1} \cap e_{3}$.

We now give names to a variety of k-uniform hypergraphs which will appear in our deterministic and probabilistic lemmas. Suppose that $e_{f_{1}}, \ldots, e_{f_{u}}$ for some $u \in \mathbb{N}$ is a valid edge order, where $\left|e_{f_{i}} \cap e_{f_{i+1}}\right| \geq 1$ for all $i \in[u-1]$. We call $e_{f_{1}}, \ldots, e_{f_{u}}$:

- An overlapping pair, if $u=2$ and $2 \leq\left|e_{f_{1}} \cap e_{f_{2}}\right| \leq k-1$;
- A loose cycle, if $u \geq 3$, and for all $i, j \in[u]$ with $i<j$ we have

$$
\left|e_{f_{i}} \cap e_{f_{j}}\right|=\left\{\begin{array}{l}
1 \text { if } i=j-1, \text { or } i=1 \text { and } j=u \\
0 \text { otherwise } ;
\end{array}\right.
$$

- A loose path, if for all $i, j \in[u]$ with $i<j$ we have

$$
\left|e_{f_{i}} \cap e_{f_{j}}\right|=\left\{\begin{array}{l}
1 \text { if } i=j-1 \\
0 \text { otherwise }
\end{array}\right.
$$

- A spoiled cycle, if $P_{1}:=e_{f_{1}}, e_{f_{2}}$ forms an overlapping pair, $P_{2}:=e_{f_{3}}, \ldots, e_{f_{u}}$ forms a loose path, and P_{1} and P_{2} are vertex-disjoint except for two vertices $x \neq y$, where we have $x=\left(e_{f_{2}} \backslash e_{f_{1}}\right) \cap\left(e_{f_{3}} \backslash e_{f_{z}}\right)$ (where $z=4$ if $u \geq 4$, and $z=1$ otherwise) and $y=\left(e_{f_{1}} \backslash e_{f_{2}}\right) \cap\left(e_{f_{u}} \backslash e_{f_{u-1}}\right)$;
- A double loose cycle, if for some $v \leq u-2, P_{1}:=e_{f_{1}}, \ldots, e_{f_{v}}$ forms a loose cycle, $P_{2}:=$ $e_{f_{v+1}}, \ldots, e_{f_{u}}$ forms a loose path, and P_{1} and P_{2} are vertex-disjoint except for two vertices $x \neq y$, where we have $x=\left(e_{f_{v+1}} \backslash e_{f_{v+2}}\right) \cap e_{f_{v}}$ and $y=\left(e_{f_{u}} \backslash e_{f_{u-1}}\right) \cap e_{f_{a}}$ for some $a \in[v]$;
- A double overlapping pair, if $u=4, e_{f_{1}}, e_{f_{2}}$ and $e_{f_{3}}, e_{f_{4}}$ each form overlapping pairs, which are vertex-disjoint except for two vertices $x \neq y$, where we have $x=\left(e_{f_{1}} \backslash e_{f_{2}}\right) \cap\left(e_{f_{4}} \backslash e_{f_{3}}\right)$ and $y=\left(e_{f_{2}} \backslash e_{f_{1}}\right) \cap\left(e_{f_{3}} \backslash e_{f_{4}}\right)$, and $\left|e_{f_{3}} \cap e_{f_{4}}\right| \leq k-2$;
- An overlapping pair/loose cycle with handle, if $e_{f_{1}}, \ldots, e_{f_{u-1}}$ forms an overlapping pair/loose cycle and $e_{f_{u}}$ is bad in the edge order $e_{f_{1}}, \ldots, e_{f_{u}}$;
- An overlapping pair/loose cycle to overlapping pair/loose cycle, if for some $w \leq v<u, P_{1}:=$ $e_{f_{1}}, \ldots, e_{f_{w}}$ forms an overlapping pair or loose cycle, $P_{2}:=e_{f_{w+1}}, \ldots, e_{f_{v}}$ forms a loose path and $P_{3}:=e_{f_{v+1}}, \ldots, e_{f_{u}}$ forms an overlapping pair or loose cycle; moreover if $w=v$ then $\left|V\left(P_{1}\right) \cap V\left(P_{3}\right)\right|=1$; otherwise $\left|V\left(P_{1}\right) \cap V\left(P_{2}\right)\right|=1, V\left(P_{1}\right) \cap V\left(P_{3}\right)=\emptyset,\left|V\left(P_{2}\right) \cap V\left(P_{3}\right)\right|=1$, and additionally if $w \leq v-2$, then $e_{f_{w+2}} \cap V\left(P_{1}\right)=\emptyset$ and $e_{f_{v-1}} \cap V\left(P_{3}\right)=\emptyset$.

An overlapping pair with handle
Also a spoiled cycle

An overlapping pair to loose cycle

Figure 1. Examples of our hypergraphs.
Note that since we identify hypergraphs with one of their allowed edge orders, a hypergraph may fit the description of more than one of the above (e.g. a hypergraph could be both a spoiled cycle
and an overlapping pair with handle, see Figure 1). We define a bicycle to be a hypergraph which is one of:

- a spoiled cycle;
- a double overlapping pair/loose cycle;
- an overlapping pair/loose cycle with handle;
- an overlapping pair/loose cycle to overlapping pair/loose cycle.

Suppose that $e_{f_{1}}, \ldots, e_{f_{u}}$ for some $u \in \mathbb{N}$ is an allowed edge order. We call $e_{f_{1}}, \ldots, e_{f_{u}}$:

- A Pasch configuration if $k=3, u=4$, there are six vertices within the four edges, and each of these appear in precisely two of the edges (one vertex for each of the six pairs of edges); see Figure 2;
- A k-uniform loose u-star, if the edges are completely disjoint except for all intersecting in one 'central vertex';
- A ($k, u / 2,2$)-star, if u is even and the edges form two k-uniform loose ($u / 2$)-stars S_{1} and S_{2}, and there is a bijection f between the edges of S_{1} to those of S_{2} such that e and $f(e)$ share all their vertices except for the two central vertices, for each edge e in S_{1} (so a ($k, u, 2$)-star has one more vertex than a k-uniform loose u-star, but has twice as many edges);
- A (k, u, a)-link, if there are $k+a$ vertices within the u edges, and given any $i, j \in[u]$ with $i<j$ we have $\left|e_{f_{i}} \cup e_{f_{j}}\right|=k+a$ (i.e. any pair of the edges contain all $k+a$ vertices between them).
Observe that a (k, u, a)-link with $u \geq 3$ must have $a \leq\lfloor k /(u-1)\rfloor$.

Figure 2. Further examples of our hypergraphs.
Given S is any of our defined hypergraphs, we say that e_{t} completes S if the edge order e_{0}, \ldots, e_{t-1} does not contain a copy of S, whereas e_{0}, \ldots, e_{t} does.

Note that all bicycles have a valid edge order which contains at least two bad edges; we will in fact show that any hypergraph which has a valid edge order with at least two bad edges must contain a bicycle (see Claim 16). Meanwhile Pasch configurations, ($k, u, 2$)-stars with $u \geq 2$ and ($k, u, a)$-links with $u \geq 3$ and $a \leq\lfloor k /(u-1)\rfloor$ all have the property that any allowed edge order contains at least one k-bad edge, and also precisely one bad edge; in particular these hypergraphs do not contain a bicycle.

The roles of bicycles are crucial in our proof. The deterministic lemmas will imply that Breaker has a winning strategy for the game played on any component of H which does not contain a
bicycle. The probabilistic lemma will show that w.h.p. H does not contain any bicycles.
(Q2) Two deterministic lemmas. Recall that we wish to show that if Maker wins the game on the associated hypergraph H, then H must contain a particular subhypergraph. (In particular, this subhypergraph will be a bicycle.) This section contains two deterministic lemmas, which together prove that the contrapositive statement holds; that is, if H does not contain a bicycle, then Breaker has a strategy to win the game on H.
Lemma 13. Let H^{\prime} be a connected component of H and suppose H^{\prime} does not contain a bicycle. Then H^{\prime} has an edge order e_{0}, \ldots, e_{t} with the property that there exists $a \in[0, t]$ such that e_{i} is good for all $i \in[a+1, t]$, and also precisely one of the following holds:
(i) $a=0$;
(ii) $a \geq 2$ and e_{0}, \ldots, e_{a} forms a loose cycle;
(iii) $a=1$ and e_{0}, e_{1} forms an overlapping pair;
(iv) $a=3, k=3$ and e_{0}, \ldots, e_{3} forms a Pasch configuration;
(v) $a \geq 3$ is odd and e_{0}, \ldots, e_{a} forms a $(k,(a+1) / 2,2)$-star;
(vi) $a \geq 2$, and e_{0}, \ldots, e_{a} forms a $(k,(a+1), d)$-link, where $d \leq\lfloor k / a\rfloor$.

Lemma 14. Let H^{\prime} be a component of H which is as described in Lemma 13. Breaker has a strategy for winning the Maker-Breaker game played on H^{\prime}.

Note that by Breaker always choosing a vertex from the same component as Maker if he can, these results imply that if H does not contain a bicycle, then Breaker can win the game played on H, and therefore the $\left(B, b^{\prime}\right)$-game on $[n]_{p}$.

We now prove four claims; the proof of Lemma 13 will follow easily from the statements of these claims.

Claim 15. Suppose that $E_{1}:=e_{0}, \ldots, e_{t}$ is an allowed edge order of the edges of a connected hypergraph J, for which e_{i} for some $i \in[t]$ is the first bad or k-bad edge. Then we have the following:
(i) Either there exists $j \in[0, i-1]$ such that e_{j}, e_{i} forms an overlapping pair, or e_{i} completes a loose cycle.
(ii) Suppose that S is a connected subhypergraph of J with s edges, which contains the overlapping pair or loose cycle guaranteed by (i). Then there exists an allowed edge order E_{2} of $E(J)$ which starts with the overlapping pair or loose cycle, followed by the rest of the edges of S, followed by any remaining edges of J.
(iii) If E_{1} is valid and if S in (ii) is a loose cycle or overlapping pair, then it is possible to construct E_{2} in (ii) so that additionally it is valid.

Proof. For (i), if there exists $j \in[0, i-1]$ such that $\left|e_{j} \cap e_{i}\right| \geq 2$ then e_{j}, e_{i} forms an overlapping pair and we are done. So suppose:
(A1) For all $j \in[0, i-1]$ we have $\left|e_{j} \cap e_{i}\right| \leq 1$.
Also note that since e_{i} is the first bad or k-bad edge in E_{1}, we have:
(A2) For all $j \in[1, i-1]$, e_{j} is good in E_{1}.
Since e_{i} is bad or k-bad, it has $q \geq 2$ old vertices in the edge order E_{1}. Label these as x_{1}, \ldots, x_{q} and consider a minimal path $P_{1}:=e_{f_{1}}, \ldots, e_{f_{u}}$ in $\left\{e_{0}, \ldots, e_{i-1}\right\}$ from $X_{1}:=\left\{x_{1}\right\}$ to $X_{2}:=\left\{x_{2}, \ldots, x_{q}\right\}$. By definition of P_{1}, (A1) and (A2) we have

- $\left|e_{f_{j}} \cap e_{i}\right|=\left\{\begin{array}{l}1 \text { if } j=1 \text { or } j=u ; \\ 0 \text { otherwise; }\end{array}\right.$
- $u \geq 2$;
- P_{1} is a loose path.

It follows from these three facts that $e_{f_{1}}, \ldots, e_{f_{u}}, e_{i}$ forms a loose cycle. By (A2) e_{0}, \ldots, e_{i-1} clearly does not contain a loose cycle, and hence e_{i} completes a loose cycle in e_{0}, \ldots, e_{i}.

For (ii), such an allowed edge order E_{2} exists since both S and J are connected; simply pick the overlapping pair or loose cycle first, then pick the remaining edges of S in any way so that each edge has non-empty intersection with the set of all previously chosen edges. Then pick the remaining edges of J in the same way.

For (iii), suppose E_{1} is valid and S is an overlapping pair or loose cycle. Then by the definition of E_{1}, there are k new vertices in $e_{0}, k-1$ new vertices in e_{a} for each $a \in[i-1]$ and at least one new vertex in e_{i}. Thus the hypergraph $J^{\prime}:=e_{0}, \ldots, e_{i}$ satisfies
(A3) $\left|V\left(J^{\prime}\right)\right| \geq k+(k-1)(i-1)+1$.
If there was an allowed edge order E_{3} of $E\left(J^{\prime}\right)$ which contained a k-bad edge, we would have $\left|V\left(J^{\prime}\right)\right| \leq k+(k-1)(i-1)$ since E_{3} has one initial edge, at most $i-1$ good or bad edges, and at least one k-bad edge. However this violates (A3) and thus:
(A4) All allowed edge orders of $E\left(J^{\prime}\right)$ are valid.
Now consider the edge order E_{2} which starts with the loose cycle or overlapping pair, followed by the rest of the edges in $\left\{e_{0}, \ldots, e_{i}\right\}$ chosen so that each edge has non-empty intersection with the set of all previously chosen edges, then followed by e_{i+1}, \ldots, e_{t} (in this order). First note that for any e_{a} with $a \in[i+1, t]$, the set of all previously chosen edges is $\left\{e_{0}, \ldots, e_{a-1}\right\}$ in both edge orders E_{1} and E_{2}. Thus if e_{a} is good or bad in E_{1}, then it is also good or bad in E_{2}. Finally note that by (A4), the first $i+1$ edges in E_{2} form a valid edge order of $E\left(J^{\prime}\right)$. We conclude that E_{2} is the valid edge order of $E(J)$ required.

Claim 16. A hypergraph J does not contain a bicycle if and only if any valid edge order of the edges of any connected subhypergraph J^{\prime} of J has at most one bad edge.
Proof. First note that if J contains a bicycle, then by considering the edge order $e_{f_{1}}, \ldots, e_{f_{u}}$ given in the definitions of each of the hypergraphs which the bicycle could be, we see immediately that J contains a connected subhypergraph which has a valid edge order with at least two bad edges.

Now we must show that if there exists a connected subhypergraph J^{\prime} of J and a valid edge order of $E\left(J^{\prime}\right)$ with at least two bad edges, then J contains a bicycle.

So let J^{\prime} be such a hypergraph, and let $E_{1}:=e_{0}, \ldots, e_{t}$ be the valid edge order of $E\left(J^{\prime}\right)$ with at least two bad edges. By using all three parts of Claim 15, we may assume without loss of generality that there exists $i \in[t]$ such that we have precisely one of the following:
(B1) $i=1$ and e_{0}, e_{1} forms an overlapping pair;
(B2) e_{0}, \ldots, e_{i} forms a loose cycle (with edges ordered cyclically).
Let $P_{1}:=e_{0}, \ldots, e_{i}$ and let $j \in[i+1, t]$ be such that e_{j} is the next bad edge in E_{1} after e_{i}. We have precisely one of the following:
(B3) $2 \leq\left|e_{j} \cap V\left(P_{1}\right)\right| \leq k-1$;
(B4) There exists $a \in[i+1, j-1]$ such that $\left|e_{j} \cap e_{a}\right| \geq 2$ and $x=e_{j} \cap V\left(P_{1}\right)$ and $y=e_{a} \cap V\left(P_{1}\right)$ are distinct vertices;
(B5) There exists $a \in[i+1, j-1]$ such that $\left|e_{j} \cap e_{a}\right| \geq 2$ and $\left|\left(e_{a} \cup e_{j}\right) \cap V\left(P_{1}\right)\right|=1$;
(B6) There exists $a \in[i+1, j-1]$ such that $\left|e_{j} \cap e_{a}\right| \geq 2$ and $\left(e_{a} \cup e_{j}\right) \cap V\left(P_{1}\right)=\emptyset$;
(B7) For all $a \in[0, j-1]$ we have $\left|e_{j} \cap e_{a}\right| \leq 1$, and $\left|e_{j} \cap V\left(P_{1}\right)\right|=1$;
(B8) For all $a \in[0, j-1]$ we have $\left|e_{j} \cap e_{a}\right| \leq 1$, and $e_{j} \cap V\left(P_{1}\right)=\emptyset$.
For each case, it suffices to find a subhypergraph of J^{\prime} which is a bicycle. Throughout we will make use of the following fact:
(B9) For all $a \in[j-1] \backslash\{i\}, e_{a}$ is good in E_{1}.

Case 1: (B3) holds. Clearly $e_{0}, \ldots, e_{i}, e_{j}$ forms an overlapping pair/loose cycle with handle.
Case 2: (B4) holds. We have precisely one of the following:

- There exists $d \in[0, i]$ such that $x, y \in e_{d}$; then e_{j}, e_{a}, e_{d} forms an overlapping pair with handle.
- There does not exist $d \in[0, i]$ such that $x, y \in e_{d}$; without loss of generality suppose that $x \in e_{0} \backslash e_{1}$. If P_{1} is an overlapping pair, then $e_{0}, e_{1}, e_{a}, e_{j}$ forms a double overlapping pair. (Note that $\left|e_{a} \cap e_{j}\right| \leq k-2$ since otherwise e_{j} would be k-bad in the edge order E_{1}.) If P_{1} is a loose cycle, then let $d \in[i]$ be the smallest integer such that $y \in e_{d}$. If $d=i$, then $e_{a}, e_{j}, e_{0}, e_{i}$ forms a spoiled cycle; otherwise $e_{a}, e_{j}, e_{0}, \ldots, e_{d}$ forms a spoiled cycle.
Case 3: (B5) holds. Let $P_{2}:=e_{a}, e_{j}$ and note that $\left|V\left(P_{2}\right) \cap V\left(P_{1}\right)\right|=1$. It follows that $e_{0}, \ldots, e_{i}, e_{a}, e_{j}$ forms an overlapping pair/loose cycle to overlapping pair.

Case 4: (B6) holds. Again let $P_{2}:=e_{a}, e_{j}$ and note that we have $V\left(P_{2}\right) \cap V\left(P_{1}\right)=\emptyset$. So consider a minimal path $P_{3}:=e_{f_{1}}, \ldots, e_{f_{u}}$ in $\left\{e_{i+1}, \ldots, e_{j-1}\right\} \backslash e_{a}$ from $X_{1}:=V\left(P_{1}\right)$ to $X_{2}:=V\left(P_{2}\right)$. By (B9) P_{3} is a loose path, moreover by definition of P_{3}, we have $\left|V\left(P_{1}\right) \cap V\left(P_{3}\right)\right|=1$ and $\left|V\left(P_{2}\right) \cap V\left(P_{3}\right)\right|=1$. Additionally if $u \geq 2$, then $e_{f_{2}} \cap V\left(P_{1}\right)=\emptyset$ and $e_{f_{u-1}} \cap V\left(P_{2}\right)=\emptyset$. Thus P_{1}, P_{3} and P_{2} together form an overlapping pair/loose cycle to overlapping pair.

Case 5: (B7) holds. Since e_{j} has at least one old vertex which is not in e_{0}, \ldots, e_{i}, we may consider a minimal path $P_{2}:=e_{f_{1}}, \ldots, e_{f_{u}}$ in $\left\{e_{i+1}, \ldots, e_{j-1}\right\}$ from $X_{1}:=V\left(P_{1}\right)$ to $X_{2}:=e_{j} \backslash V\left(P_{1}\right)$. First note by (B9) that P_{2} is a loose path. Now we have precisely one of the following:

- We have $\left(e_{f_{1}} \cap e_{j} \cap V\left(P_{1}\right)\right) \neq \emptyset$; then $P_{3}:=e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}$ forms a loose cycle. Now since $\left|V\left(P_{1}\right) \cap V\left(P_{3}\right)\right|=1, P_{1}$ and P_{3} together form an overlapping pair/loose cycle to loose cycle.
- There exists $d \in[0, i]$ such that $x=e_{j} \cap e_{d}$ and $y=e_{f_{1}} \cap e_{d}$ are distinct vertices; then $P_{3}:=e_{d}, e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}$ forms a loose cycle. If P_{1} is an overlapping pair, then let $d^{\prime} \in\{0,1\}$ be such that $d^{\prime} \neq d$. Then P_{3} together with $e_{d^{\prime}}$ forms a loose cycle with handle. If P_{1} is a loose cycle, then let P_{4} be the loose path $e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}$ and define $z:=j$ if $u=1$ and $z:=f_{2}$ otherwise. Observe that P_{1} and P_{4} are vertex-disjoint except for $x=\left(e_{j} \backslash e_{f_{u}}\right) \cap e_{d}$ and $y=\left(e_{f_{1}} \backslash e_{z}\right) \cap e_{d}$, and thus together form a double loose cycle.
- We have $x=e_{j} \cap V\left(P_{1}\right)$ and $y=e_{f_{1}} \cap V\left(P_{1}\right)$ are not together in any edge of P_{1}; without loss of generality suppose that $x \in e_{0} \backslash e_{1}$. If P_{1} is an overlapping pair, then $e_{0}, e_{1}, e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}$ forms a spoiled cycle. If P_{1} is a loose cycle, then define P_{4}, z as in the previous bullet point. Then observe that P_{1} and P_{4} are vertex-disjoint except for $x=\left(e_{j} \backslash e_{f_{u}}\right) \cap e_{0}$ and $y=\left(e_{f_{1}} \backslash e_{z}\right) \cap e_{d}$ for some $d \in[i]$, and thus as before, form a double loose cycle.
Case 6: (B8) holds. Label the $q \geq 2$ old vertices of e_{j} as x_{1}, \ldots, x_{q} and consider a minimal path $P_{2}:=e_{f_{1}}, \ldots, e_{f_{u}}$ in $\left\{e_{i+1}, \ldots, e_{j-1}\right\}$ from $X_{1}:=V\left(P_{1}\right)$ to $X_{2}:=\left\{x_{1}, \ldots, x_{q}\right\}$. Let $x_{a}:=e_{f_{u}} \cap e_{j}$ and consider a minimal path $P_{3}:=e_{f_{u+1}}, \ldots, e_{f_{v}}$ in $\left\{e_{i+1}, \ldots, e_{j-1}\right\} \backslash E\left(P_{2}\right)$ from $X_{3}:=X_{2} \backslash x_{a}$ to $X_{4}:=V\left(P_{1}\right) \cup V\left(P_{2}\right)$. By (B9) both P_{2} and P_{3} are loose paths. Now we have precisely one of the following:
- We have $e_{f_{v}} \cap V\left(P_{1}\right)=\emptyset$; let $d \in[u]$ be the largest integer such that $e_{f_{d}} \cap e_{f_{v}} \neq \emptyset$. Then $P_{4}:=$ $e_{f_{d}}, \ldots, e_{f_{u}}, e_{j}, e_{f_{u+1}}, \ldots, e_{f_{v}}$ forms a loose cycle. If $d=1$, then since $\left|V\left(P_{1}\right) \cap V\left(P_{4}\right)\right|=$ 1, we have that P_{1} and P_{4} together form an overlapping pair/loose cycle to loose cycle. Otherwise let $P_{5}:=e_{f_{1}}, \ldots, e_{f_{d-1}}$. Then we have $\left|V\left(P_{1}\right) \cap V\left(P_{5}\right)\right|=1,\left|V\left(P_{4}\right) \cap V\left(P_{5}\right)\right|=1$ and $V\left(P_{1}\right) \cap V\left(P_{4}\right)=\emptyset$. Additionally, if $d \geq 3$, then we see that $e_{f_{2}} \cap V\left(P_{1}\right)=\emptyset$ and $e_{f_{d-2}} \cap V\left(P_{4}\right)=\emptyset$. Thus P_{1}, P_{4}, P_{5} form an overlapping pair/loose cycle to loose cycle.
- We have $e_{f_{v}} \cap V\left(P_{1}\right) \neq \emptyset$; the properties of the hypergraph $e_{0}, \ldots, e_{i}, e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}, e_{f_{u+1}}, \ldots, e_{f_{v}}$ are identical to that the hypergraph $e_{0}, \ldots, e_{i}, e_{f_{1}}, \ldots, e_{f_{u}}, e_{j}$ found in Case 5 (up to the labelling of the edges), so a similar case study yields a bicycle.

For the remainer of the proof, we shall call a valid edge order which contains at least two bad edges a bad edge order. If a hypergraph J does not contain a bicycle, then by Claim 16, the existence of a bad edge order of $E\left(J^{\prime}\right)$ where J^{\prime} is a subhypergraph of J is a contradiction. In the claims which follow we will always assume that J does not contain a bicycle, and hence whenever some assumed condition of a case within a case analysis leads to the discovery of a bad edge order, we can immediately stop and move onto the next case.

Claim 17. Let S be a hypergraph with s edges, which is an overlapping pair, a loose cycle, a ($k, s / 2,2$)-star with $s \geq 4$, $a(k, s, a)$-link with $s \geq 3$ and $a \in[[k /(s-1)]]$, or a Pasch configuration. Suppose J is a connected hypergraph which does not contain a bicycle, and does contain S. Then there exists an allowed edge order $E_{1}:=e_{0}, \ldots, e_{t}$ such that
(i) e_{0}, \ldots, e_{i} forms an overlapping pair or loose cycle, e_{0}, \ldots, e_{s-1} forms S, and every edge e_{j} for $j \in[s, t]$ is either good or k-bad;
(ii) For all $j \in[s+1, t]$, if e_{j} is k-bad, then either e_{j-1} is also k-bad, or there exists a vertex $x \in e_{j}$ which is new in e_{j-1}.

Proof. For (i), by Claim 15(ii) we can assume that the edge order starts with the overlapping pair or loose cycle, followed by the rest of the edges of S, and that e_{i} is bad. If there exists another bad edge e_{j} for some $j \in[s, t]$, then the edge order E_{2}, found by deleting from e_{0}, \ldots, e_{j} all k-bad edges, is bad. Thus for all $j \in[s, t], e_{j}$ must either be good or k-bad.

For (ii) suppose that $E_{1}=e_{0}, \ldots, e_{t}$ does not satisfy the property stated in (ii). Then we have the following:
(C4) There exists $j \in[s+1, t]$ such that e_{j-1} is good and e_{j} is k-bad, and all vertices in e_{j} appeared in the edge order before e_{j-1}.
Now consider the edge order $E_{2}:=e_{0}, \ldots, e_{j-2}, e_{j}, e_{j-1}, e_{j+1}, \ldots, e_{t}$. In this order, e_{j} is still k-bad and e_{j-1} is still good; moreover E_{2} still starts with the overlapping pair or loose cycle. Hence by continuously performing swaps whenever such a pair e_{j-1} and e_{j} exists (satisfying (C4)], we eventually reach an edge order E_{p} where no such pair exists. Thus in the final edge order E_{p} the property stated in (ii) holds.

Claim 18. Let S be a hypergraph with s edges, which is an overlapping pair, a loose cycle, a ($k, s / 2,2$)-star with $s \geq 4$, $a(k, s, a)$-link with $s \geq 3$ and $a \in[\lfloor k /(s-1)]]$, or a Pasch configuration. Suppose J is a connected hypergraph which does not contain a bicycle, and does contain S. Finally suppose $E_{1}:=e_{0}, \ldots, e_{t}$ is the allowed edge order of $E(J)$ guaranteed by Claim 17 , which starts with the edges of S, in particular with the overlapping pair or loose cycle $P_{1}:=e_{0}, \ldots, e_{i}$. Suppose that E_{1} contains at least one k-bad edge amongst the edges e_{s}, \ldots, e_{t}. Then we have precisely one of the following:
(i) We have that $e_{0}, e_{1}, e_{j-1}, e_{j}$ forms a ($k, 2,2$)-star for some $j \in[s+1, t]$. Moreover either S is an overlapping pair, or S is a $(k, s / 2,2)$-star with $s \geq 4$ and $e_{0}, \ldots, e_{s-1}, e_{j-1}, e_{j}$ forms a ($k, s / 2+1,2$)-star.
(ii) We have that e_{0}, e_{1}, e_{s} forms a ($k, 3, a$)-link, where $a=\left|e_{0} \backslash e_{1}\right|$. Moreover either S is an overlapping pair, or S is a (k, s, a)-link with $s \geq 3$ and e_{0}, \ldots, e_{s} forms a $(k, s+1, a)$-link.
(iii) We have that S is a loose cycle with three edges, $k=3$, and e_{0}, e_{1}, e_{2}, e_{3} forms a Pasch configuration.

Proof. Suppose that e_{j} is the first k-bad edge amongst the edges e_{s}, \ldots, e_{t} (so if $j>s$ then e_{s}, \ldots, e_{j-1} are good). Let $e_{j}:=\left\{x_{1}, \ldots, x_{k}\right\}$ and let $e_{f_{1}}, \ldots, e_{f_{k}}$ be the respective edges in which each x_{i} is new in E_{1}, noting that without loss of generality we have $f_{1} \leq \cdots \leq f_{k}$.

We have precisely one of the following:
(D1) We have $j \in[s+1, t]$;
(D2) We have $j=s$ and $P_{1}=e_{0}, e_{1}$ is an overlapping pair;
(D3) We have $j=s$ and $P_{1}=e_{0}, \ldots, e_{i}$ is a loose cycle.
We will go through each of these cases in turn and show that Claims 18(i), (ii) and (iii) hold respectively.

Case 1: (D1) holds. Without loss of generality, we have precisely one of the following:
(D4) We have $2 \leq\left|e_{j} \cap V\left(P_{1}\right)\right| \leq k-1$;
(D5) We have $\left|e_{j} \cap V\left(P_{1}\right)\right| \leq 1$ and for all $a \in[i+1, j-1]$ we have $\left|e_{j} \cap e_{a}\right| \leq 1$;
(D6) There exists $a \in[i+1, j-1]$ such that $\left|e_{j} \cap e_{a}\right| \geq 2$ and $\left|\left(e_{j} \cup e_{a}\right) \cap V\left(P_{1}\right)\right| \leq 1$;
(D7) There exists $a \in[i+1, j-1]$ such that $\left|e_{j} \cap e_{a}\right| \geq 2$ and $x=e_{j} \cap V\left(P_{1}\right)$ and $y=e_{a} \cap V\left(P_{1}\right)$ are distinct vertices.

Case 1a: (D4) holds. We have that $e_{0}, \ldots, e_{i}, e_{a}$ forms an overlapping pair/loose cycle with handle, a contradiction to J not containing a bicycle.

Case 1b: (D5) holds. Since we have $\left|V\left(P_{1}\right) \cap e_{j}\right| \leq 1$ and each e_{a} for $a \in[i+1, j-1]$ is good in E_{1}, we have
(D8) $f_{2}>i$;
(D9) $f_{1}<\cdots<f_{k}$.
Then consider the edge orders $E_{2}:=e_{0}, \ldots, e_{f_{2}}, e_{j}$ and E_{3}, which is formed by deleting from E_{2} each edge which is k-bad. We will show that E_{3} is a bad edge order. First note that clearly E_{3} is a valid edge order since all k-bad edges were deleted. By (D8), E_{2} and hence also E_{3} both start with the edges of P_{1}, so have at least one bad edge. Further e_{j} is bad in E_{2} since precisely two of the vertices in e_{j} are old in E_{2}, namely x_{1} and x_{2}, which appear in $e_{f_{1}}$ and $e_{f_{2}}$ respectively. Since $e_{f_{1}}$ and $e_{f_{2}}$ both contain a new vertex, they are not k-bad, and so are both contained in E_{3}. Thus e_{j} is also bad in E_{3}, and so E_{3} is indeed a bad edge order.

Case 1c: (D6) holds. Let $P_{2}:=e_{a}, e_{j}$ and note that if $\left|V\left(P_{1}\right) \cap V\left(P_{2}\right)\right|=1$, then $V\left(P_{1}\right)$ and $V\left(P_{2}\right)$ together form an overlapping pair/loose cycle to overlapping pair, a contradiction to J not containing a bicycle. Otherwise we have $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\emptyset$, so consider a minimal path $P_{3}:=e_{g_{1}}, \ldots, e_{g_{u}}$ in $\left\{e_{d}: d \in[i+1, j-1], d \neq a, e_{d}\right.$ is good in $\left.E_{1}\right\}$ from $X_{1}:=V\left(P_{1}\right)$ to $X_{2}:=V\left(P_{2}\right)$. By the choice of where the edges in P_{3} are selected from, P_{3} is a loose path. Additionally we have $\left|V\left(P_{1}\right) \cap V\left(P_{3}\right)\right|=1,\left|V\left(P_{2}\right) \cap V\left(P_{3}\right)\right|=1$, and if $u \geq 2$, then $V\left(P_{1}\right) \cap e_{g_{2}}=\emptyset$ and $V\left(P_{2}\right) \cap e_{g_{u-1}}=\emptyset$. Thus P_{1}, P_{2}, P_{3} form an overlapping pair/loose cycle to overlapping pair, a contradiction to J not containing a bicycle.

Case 1d: (D7) holds. First suppose that P_{1} is a loose cycle and without loss of generality that $x \in e_{0} \backslash e_{i}$. If $y \in e_{0}$, then let $E_{2}:=e_{a}, e_{j}, e_{0}$. If $y \in e_{i} \backslash e_{0}$, then let $E_{2}:=e_{a}, e_{j}, e_{0}, e_{i}$. Otherwise let $E_{2}:=e_{a}, e_{j}, e_{0}, \ldots, e_{i}$. For each case e_{j} and the last edge are both bad edges in E_{2}. Further it is easy to see that in each case, E_{2} is valid, and thus E_{2} is bad.

Now suppose that P_{1} is an overlapping pair. If x and y are both in e_{d} for $d=0$ or $d=1$, then e_{j}, e_{a}, e_{d} is a bad edge order. So suppose without loss of generality that $x \in e_{1} \backslash e_{0}$, and $y \in e_{0} \backslash e_{1}$. If $\left|e_{j} \cap e_{a}\right| \leq k-2$, then $e_{0}, e_{1}, e_{j}, e_{a}$ forms a double overlapping pair. Similarly if $\left|e_{0} \cap e_{1}\right| \leq k-2$, then $e_{j}, e_{a}, e_{0}, e_{1}$ forms a double overlapping pair. Both would contradict J not containing a bicycle, and thus we have $\left|e_{j} \cap e_{a}\right|=\left|e_{0} \cap e_{1}\right|=k-1$. Hence we also have $x=e_{1} \backslash e_{0}=e_{j} \backslash e_{a}$ and $y=e_{0} \backslash e_{1}=e_{a} \backslash e_{j}$ and so in particular, we have that $e_{0}, e_{1}, e_{j}, e_{a}$ forms a ($k, 2,2$)-star.

The conclusion of our case analysis is that there exists $a \in[2, j-1]$ such that $e_{0}, e_{1}, e_{a}, e_{j}$ forms a $(k, 2,2)$-star and that P_{1} is an overlapping pair where $x=e_{1} \backslash e_{0}$ and $y=e_{0} \backslash e_{1}$.

Since E_{1} is the edge order obtained from Claim [17, we have e_{j} comes immediately after the edge for which the last of the vertices of e_{j} are new, or following another k-bad edge. Therefore, since e_{j-1} is not k-bad and $e_{j} \subseteq\left(e_{0} \cup e_{1} \cup e_{a}\right)$, we conclude that $a=j-1$.

Note that S cannot be a loose cycle or Pasch configuration, since P_{1} is an overlapping pair. If S is a (k, s, d)-link for some $s \geq 3$, then we have $e_{2} \cap\left(e_{j-1} \cup e_{j}\right)=\{x, y\}$ and so the edge order e_{j-1}, e_{j}, e_{2} is bad. If S is an overlapping pair, then there is nothing further to prove. Finally if S is a $(k, s / 2,2)$-star, then clearly $e_{0}, \ldots, e_{s-1}, e_{j-1}, e_{j}$ forms a $(k, s / 2+1,2)$-star (with central vertices x and y).

Case 2: (D2) holds. First note that S cannot be a loose cycle or Pasch configuration, since P_{1} is an overlapping pair. We have precisely one of the following:
(D10) We have $\left|e_{s} \cap\left(e_{0} \cup e_{1}\right)\right|=k$;
(D11) We have $2 \leq\left|e_{s} \cap\left(e_{0} \cup e_{1}\right)\right| \leq k-1$;
(D12) We have $\left|e_{s} \cap\left(e_{0} \cup e_{1}\right)\right| \leq 1$.
Case 2a: (D10) holds. First suppose that $\left|e_{s} \cap e_{1}\right| \leq 1$. Since e_{0}, e_{1} is an overlapping pair, we have

$$
k=\left|e_{s}\right|=\left|e_{s} \cap e_{1}\right|+\left|e_{s} \cap\left(e_{0} \backslash e_{1}\right)\right| \leq k-1,
$$

a contradiction, and hence we must have $\left|e_{s} \cap e_{1}\right| \geq 2$. Similarly $\left|e_{s} \cap e_{0}\right| \geq 2$. Thus any permutation of the edges e_{0}, e_{1}, e_{s} must have that the second edge is bad and the third edge is bad or k-bad. In order to not obtain a bad edge oder, we must have that the third edge is k-bad in all of these permutations. Thus by definition e_{0}, e_{1}, e_{s} forms a ($\left.k, 3,\left|e_{0} \backslash e_{1}\right|\right)$-link. If S is an overlapping pair, then there is nothing further to prove. If S is a $(k, s / 2,2)$-star for some $s \geq 4$, then without loss of generality we have $x=e_{0} \backslash e_{1}=e_{2} \backslash e_{3}$ and $y=e_{1} \backslash e_{0}=e_{3} \backslash e_{2}$. But then since $x, y \in e_{s}$, the edge order e_{2}, e_{3}, e_{s} is bad. Finally suppose that S is a (k, s, a)-link. Then for all $d, d^{\prime} \in[0, s-1]$ with $d<d^{\prime}$, we have that $e_{d}, e_{d^{\prime}}$ forms an overlapping pair, and $\left|e_{d} \backslash e_{d}^{\prime}\right|=\left|e_{0} \backslash e_{1}\right|=a$. By repeating the argument above for the permutations of e_{0}, e_{1}, e_{s}, we see that any permutation of $e_{d}, e_{d^{\prime}}, e_{s}$ must have that the second edge is bad and the third is k-bad. Thus e_{0}, \ldots, e_{s} forms a $\left(k, s+1,\left|e_{0} \backslash e_{1}\right|\right)$-link.

Case 2b: (D11) holds. We have that e_{0}, e_{1}, e_{s} forms an overlapping pair with handle, a contradiction to J not containing a bicycle.

Case 2c: (D12) holds. First note that since e_{s} contains vertices outside of $e_{0} \cup e_{1}$, we have that S cannot be an overlapping pair or a $\left(k, s,\left|e_{0} \backslash e_{1}\right|\right)$-link, and thus S must be a $(k, s / 2,2)$-star. If there exists i, j such that $\left|e_{i} \cap e_{j}\right|=k-1$ and $\left|e_{s} \cap\left(e_{i} \cup e_{j}\right)\right| \geq 2$, then repeat the argument from Case 2 a or 2 b with e_{0} and e_{1} replaced by e_{i} and e_{j}. For the remaining case we have that for all i, j such that $\left|e_{i} \cap e_{j}\right|=k-1$, we have $\left|e_{s} \cap\left(e_{i} \cup e_{j}\right)\right| \leq 1$ and in particular, the central vertices of the two stars are not in e_{s}. Now without loss of generality, suppose e_{2} and e_{3} is an overlapping pair, $\left|e_{s} \cap\left(e_{0} \cap e_{1}\right)\right|=1$ and $\left|e_{s} \cap\left(e_{2} \cap e_{3}\right)\right|=1$. Then the edge order $e_{0}, e_{1}, e_{2}, e_{s}$ is a bad edge order.

Case 3: (D3) holds. Since S contains a loose cycle, S cannot be an overlapping pair, ($k, s / 2,2$)star or a (k, s, a)-link, and hence S is a loose cycle or Pasch configuration. If S is the latter, then we have $j=4$, and by the symmetry of the Pasch configuration, we have without loss of generality that $\left|e_{0} \cap e_{4}\right|=2$ and $\left|e_{1} \cap\left(e_{0} \cup e_{4}\right)\right|=2$. Hence e_{0}, e_{4}, e_{1} is a bad edge order. Thus S must be a loose cycle and $j=i+1$. Without loss of generality we have precisely one of the following:

- $\left|e_{0} \cap e_{i+1}\right| \geq 2$ and $\left(e_{i} \backslash e_{0}\right) \cap e_{i+1}=\emptyset$; let $E_{2}:=e_{i+1}, e_{0}, \ldots, e_{i}$. For all $a \in[i]$, we have $\left|\left(e_{a} \backslash e_{a-1}\right) \cap e_{i+1}\right| \leq k-2$, and thus

$$
\left|e_{a} \cap\left(e_{a-1} \cup e_{i+1}\right)\right| \leq\left|e_{a-1} \cap e_{a}\right|+\left|\left(e_{a} \backslash e_{a-1}\right) \cap e_{i+1}\right| \leq k-1
$$

Thus E_{2} is a valid edge order. Further e_{0} is bad in E_{2}. Since e_{i} completes the cycle e_{0}, \ldots, e_{i}, it is also bad in E_{2}, and thus E_{2} is a bad edge order.

- $\left|e_{0} \cap e_{i+1}\right| \geq 2$ and $\left(e_{i} \backslash e_{0}\right) \cap e_{i+1} \neq \emptyset$; let $E_{2}:=e_{i+1}, e_{0}, e_{i}$. Here we have

$$
2 \leq\left|e_{i} \cap\left(e_{i+1} \cup e_{0}\right)\right| \leq k-1
$$

and so E_{2} is a bad edge order.

- For all $a \in[0, i]$, we have $\left|e_{i+1} \cap e_{a}\right| \leq 1$ and $\left(e_{i} \backslash\left(e_{0} \cup e_{i-1}\right)\right) \cap e_{i+1}=\emptyset$; We have that (D9) holds, and thus $E_{2}:=e_{0}, \ldots, e_{f_{2}}, e_{i+1}, e_{f_{2}+1}, \ldots, e_{i}$ is a bad edge order.
- For all $a \in[0, i]$, we have $\left|e_{i+1} \cap e_{a}\right| \leq 1,\left|\left(e_{a} \backslash\left\{e_{d}: d \in[0, i], d \neq a\right\}\right) \cap e_{i+1}\right|=1$ and $k \geq 4$; Then $E_{2}:=e_{0}, e_{1}, e_{i+1}, e_{2}$ is a bad edge order.
- For all $a \in[0, i]$, we have $\left|e_{i+1} \cap e_{a}\right| \leq 1,\left|\left(e_{a} \backslash\left\{e_{d}: d \in[0, i], d \neq a\right\}\right) \cap e_{i+1}\right|=1$ and $k=3$. Then we have $i=2$ and $e_{0}, e_{1}, e_{2}, e_{3}$ forms a Pasch configuration.
Only the last case does not produce a bad edge order, and thus we have that $e_{0}, e_{1}, e_{2}, e_{3}$ forms a Pasch configuration, as required.

We are now ready to prove our two deterministic lemmas.
Proof of Lemma 13. If there exists a simple edge order of $E\left(H^{\prime}\right)$, then we have (i), so suppose that any edge order of $E\left(H^{\prime}\right)$ contains at least one bad or k-bad edge. Now by Claim 15we may assume that $E_{1}:=e_{0}, \ldots, e_{t}$ is an allowed edge order of $E\left(H^{\prime}\right)$ which starts with an overlapping pair or loose cycle $P_{1}:=e_{0}, \ldots, e_{i}$. Then using Claim 17 applied with $S:=P_{1}$, we have that every edge e_{i+1}, \ldots, e_{t} is either k-bad or good. If all of these edges are good, then we have (ii) or (iii), so are done. So assume that there is at least one k-bad edge. Then using Claim 18 applied with $S:=P_{1}$, we have that H^{\prime} contains a ($k, 2,2$)-star, a $\left(k, 3,\left|e_{0} \backslash e_{1}\right|\right)$-link or a Pasch configuration. We can now repeatedly use Claims 17 and 18 as follows:
(a) Let S be the ($k, p, 2$)-star, a $\left(k, p+1,\left|e_{0} \backslash e_{1}\right|\right)$-link or a Pasch configuration found previously (where $p \geq 2$). By Claim [17, there exists an allowed edge order of $E\left(H^{\prime}\right)$ which starts with all of the edges of S. If there are no further k-bad edges, then we have (iv), (v) or (vi). If there are, then move to step (b).
(b) By Claim 18, either S was a $(k, p, 2)$-star and H^{\prime} contains a $(k, p+1,2)$-star, or S was a $\left(k, p+1,\left|e_{0} \backslash e_{1}\right|\right)$-link and H^{\prime} contains a $\left(k, p+2,\left|e_{0} \backslash e_{1}\right|\right)$-link. Now return to step (a).
Since H^{\prime} is a finite hypergraph, this process must eventually stop, and hence we have (iv), (v) or (vi).

For the proof of Lemma 14, we simply find an explicit strategy for Breaker to win the game played on H^{\prime}.

Proof of Lemma 14. By Lemma [13, H^{\prime} may contain a subhypergraph S for which there exists an edge order which starts with all of the edges of S, and all subsequent edges are good: The subhypergraph S if it exists must be

Case 1: A $(k, u, 2)$-star for some integer $u \geq 2$;
Case 2: A (k, u, a)-link for some $u, a \in \mathbb{N}$ with $u \geq 3$ and $a \leq\lfloor k /(u-1)\rfloor$;
Case 3: A Pasch configuration;
Case 4: A loose cycle;
Case 5: An overlapping pair.
Let the edges of S be e_{0}, \ldots, e_{s-1}, and the rest of the good edges e_{s}, \ldots, e_{t}. (If S does not exist, then set $s=0$.)

Breaker uses the following strategy.

- If Maker selects a vertex in S, then Breaker does the following, corresponding to the cases above for what S could be.

Case 1: There are $2 u$ edges; suppose without loss of generality that they are labelled so that e_{i} and e_{i+u} have intersection $k-1$ for each $i \in[0, u-1]$. Suppose Maker has selected a vertex in $e_{j} \cap e_{j+u}$ for $j \in[0, u-1]$. Then Breaker if he can, also selects such a vertex. Otherwise he selects an arbitrary vertex.

Case 2: Breaker selects an arbitrary vertex in S if he can. Otherwise he selects an arbitrary vertex.

Case 3: If Maker has two out of three vertices from one of the edges of S, Breaker chooses the final vertex from this edge. Otherwise Breaker chooses an arbitrary vertex in S if he can. If he cannot then he chooses an arbitrary vertex.

Case 4: Assume without loss of generality that the edges are ordered cyclically e_{0}, \ldots, e_{s-1}. If Maker has selected an element from $e_{i} \backslash e_{j}$ where $i \in[s-1]$ and $j=i-1$, or $i=0$ and $j=s-1$, then Breaker if he can, also selects such a vertex. Otherwise he selects an arbitrary vertex.

Case 5: These two edges are e_{0} and e_{1}. If Maker has selected an element from $e_{0} \cap e_{1}$, then Breaker if he can, also selects such a vertex. Otherwise he selects an arbitrary vertex.

- If Maker selects any other vertex, let i be such that e_{i} is the edge in which this vertex is new. If Breaker can, he also selects a vertex which is new in e_{i}. Otherwise he selects an arbitrary vertex.
We must now show that at the end of the game, Maker has failed to claim every vertex of any edge in H^{\prime}. First observe that Maker has failed to claim any of the edges e_{s}, \ldots, e_{t}. Let $i \in[s, t]$. In the edge order, e_{i} is good, and so there exists at least $k-1 \geq 2$ vertices x_{i} and y_{i} which are new in e_{i} (they do not appear in any edge e_{j} for $j<i$). By part two of the strategy above, Maker cannot claim all of the vertices of e_{i} since as soon as she tries to claim one of the at least two new vertices in e_{i}, Breaker will claim another new vertex in e_{i}. Thus if Maker has won the game, she must have claimed an edge from S. However, we will now run through each case, corresponding to the cases for S in Breaker's strategy above, showing that Maker has not claimed such an edge.

Case 1: Let $j \in[0, u-1]$ and suppose Maker is trying to claim e_{j} or e_{j+u}. There are $k-1 \geq 2$ vertices in $e_{j} \cap e_{j+u}$ and so Maker cannot claim all of the vertices of e_{j} or e_{j+u} since as soon as she tries to claim one of the vertices which lie in $e_{j} \cap e_{j+u}$, Breaker will claim another vertex in $e_{j} \cap e_{j+u}$. Since all edges of S are of this form, Maker cannot claim any edge of S.

Case 2: Note that a (k, u, a)-link has at most $2 k-2$ vertices. Hence by Breaker always claiming any vertex in S whenever Maker does, he ensures that Maker can claim at most $\lceil(2 k-2) / 2\rceil=k-1$ of the vertices in S, therefore does not have enough to claim a full edge of S.

Case 3: Breaker always tries to claims a vertex in S if Maker does, hence Maker claims at most three of the six vertices in S. Note that any pair of vertices in S lie together in at most one edge. Hence by Breaker selecting the third vertex of an edge if Maker has selected the first two, Maker is never able to claim all three vertices of an edge of S.

Case 4: Suppose Maker is trying to claim e_{i} for some $i \in[0, s-1]$. Let $j=i-1$ if $i \geq 1$, and let $j=s-1$ if $i=0$. There are $k-1 \geq 2$ vertices in $e_{i} \backslash e_{j}$ and so Maker cannot claim all of the vertices of e_{i} since as soon as she tries to claim one of the vertices in $e_{i} \backslash e_{j}$, Breaker will claim another vertex in $e_{i} \backslash e_{j}$. Since e_{i} was arbitrary, Maker cannot claim any edge of S.

Case 5: There are at least two vertices in $e_{0} \cap e_{1}$ and so Maker cannot claim all of the vertices in e_{0} or e_{1} since as soon as she tries to claim one of the vertices in $e_{0} \cap e_{1}$, Breaker will claim another vertex in $e_{0} \cap e_{1}$.

(Q3) A probabilistic lemma.

Lemma 19. Given B is an $\ell \times k$ matrix, if ℓ divides $k-1$, then with high probability H does not contain a bicycle.
Proof. Let $R_{b_{t}}$ be a random variable counting the number of bicycles which are in H. By Proposition 8, it suffices to show that the expectation of $R_{b_{t}}$ converges to zero as n tends to infinity.

We let $R_{b_{1}}, \ldots, R_{b_{8}}$ respectively count the number of hypergraphs $J:=e_{f_{1}}, \ldots, e_{f_{u}}$ in H with $u \leq \log n$, for which J corresponds to
(i) a spoiled cycle;
(ii) a double overlapping pair;
(iii) a double loose cycle;
(iv) an overlapping pair with handle;
(v) a loose cycle with handle;
(vi) a loose cycle to loose cycle;
(vii) an overlapping pair to overlapping pair;
(viii) an overlapping pair to loose cycle.

Note that each of these hypergraphs contain a loose path of length $u-2$; hence let $R_{b_{9}}$ count the number of loose paths $e_{f_{1}}, \ldots, e_{f_{u}}$ in H with $u \geq(\log n)-1$. Then we have $R_{b_{t}} \leq \sum_{i=1}^{9} R_{b_{i}}$ and hence it suffices to show $\mathbb{E}\left(R_{b_{i}}\right)=o(1)$ for each i. The cases for $i=1,5,9$ were covered by Rödl and Ruciński's proof, however we will repeat them here for clarity.

Suppose that $J:=e_{f_{1}}, \ldots, e_{f_{u}}$ is the valid edge order corresponding to one of the nine cases listed above given by the definitions earlier. When calculating an upper bound on the expected number of copies of some hypergraph J in H, we need to first bound the number of ways to draw J (i.e. bound the number of non-isomorphic hypergraphs which J could be - e.g. for a spoiled cycle $e_{f_{1}}, \ldots, e_{f_{u}}$ we need to choose the size of the intersection $e_{f_{1}} \cap e_{f_{2}}$, and also the number of edges $u)$. Second, we should consider J as being drawn, and bound the number of ways to pick elements from $[n]_{p}$ to represent each vertex of J. Thus we are interested in bounding the number of ways of drawing each J and also the number of ways of choosing representatives from $[n]_{p}$ for each vertex of J.

Each hypergraph J which we wish to count can be written as a union of at most three hypergraphs P_{1}, P_{2}, P_{3}, for which each of these are one of an overlapping pair, loose cycle, or loose path. Further, if P_{2} and P_{3} exist, we have $\left|V\left(P_{1}\right) \cap V\left(P_{2}\right)\right| \leq k-1,\left|V\left(P_{2}\right) \cap V\left(P_{3}\right)\right| \leq k-1$ and $\left|V\left(P_{1}\right) \cap V\left(P_{3}\right)\right|=\emptyset$. Thus for each $i \in[2]$ we have at most $\left(\left|V\left(P_{i}\right)\right| \cdot\left|V\left(P_{i+1}\right)\right|\right)^{k-1}$ choices for how to make P_{i} and P_{i+1} intersect. There is only one way to draw a loose cycle or loose path, and at most $k-2$ ways to draw an overlapping pair. Further for each J in (i)-(viii), we have $|V(J)| \leq k \log n$. Thus the total number of ways of drawing each J in (i)-(viii) is at most polylogarithmic in n.

Recall that B is a strictly balanced matrix of dimension $\ell \times k$, and hence for every $W \subseteq[k]$ for which $2 \leq|W|<k$ we have

$$
\begin{equation*}
\frac{|W|-1}{|W|-1+\operatorname{rank}\left(B_{\bar{W}}\right)-\ell}<\frac{k-1}{k-1-\ell} \tag{3}
\end{equation*}
$$

Additionally we have $m(B)=\frac{k-1}{k-1-\ell}$. Now let $p<c n^{-1 / m(B)}=c n^{-(k-\ell-1) /(k-1)}$ where we choose c to be a constant satisfying

$$
\begin{equation*}
c<1 /\left(k e^{2}\right) \tag{4}
\end{equation*}
$$

Given $i \in[u]$ and $J=e_{f_{1}}, \ldots, e_{f_{u}}$ has been drawn, we wish to bound the expected number of ways of picking $e_{f_{i}}$ to be an edge with q old elements. Such an edge represents a solution x to $B x=b^{\prime}$, where q of the x_{i} have already been chosen. Let these indices be W; we are now attempting to solve $B_{\bar{W}} x^{\prime}=b^{\prime \prime}$ for some vector $b^{\prime \prime}$ of $k-q$ elements. Note also we must choose one of the q ! possible assignments of the q indices in W to the q old elements. Thus the expected number of ways, Y, of picking the $k-q$ new vertices for e_{i}, satisfies

$$
Y \leq \sum_{\substack{W \subseteq[k] \\|W|=q}} q!n^{k-q-\operatorname{rank}\left(B_{\bar{W}}\right)} p^{k-q}
$$

We wish to bound Y. By rearranging the inequality given by (3), we have (if $|W| \geq 2$)

$$
\ell(k-|W|)-(k-1) \operatorname{rank}\left(B_{\bar{W}}\right)<0
$$

In fact since all quantities above are integers and ℓ divides $k-1$, we must have

$$
\begin{equation*}
\ell(k-|W|)-(k-1) \operatorname{rank}\left(B_{\bar{W}}\right) \leq-\ell . \tag{5}
\end{equation*}
$$

Thus we have

$$
n^{k-|W|-\operatorname{rank}\left(B_{\bar{W}}\right)} p^{k-|W|} \leq \begin{cases}c^{k} n^{\frac{\ell}{k-1}} & \text { if }|W|=0 \tag{6}\\ c^{k-1} & \text { if }|W|=1 \\ c n^{\frac{-\ell}{k-1}} & \text { if } 2 \leq|W| \leq k-1\end{cases}
$$

(Note that here we used $\operatorname{rank}\left(B_{\bar{W}}\right)=\ell$ if $|W|=1$; see Proposition 4.3 in [10].)
For each hypergraph J in (i)-(viii), there is always precisely one initial edge, $u-3$ good edges, and two bad edges. Thus the number of choices we have for picking which element of $[n]_{p}$ to use for each vertex in J has expectation which is at most:

$$
\begin{aligned}
& \quad n^{k-\ell} p^{k}\left(\sum_{\substack{W \subseteq[k] \\
|W|=1}} n^{k-|W|-\operatorname{rank}\left(B_{\bar{W}}\right)} p^{k-|W|}\right)^{u-3}\left(\sum_{\substack{W \subseteq[k] \\
2 \leq|W| \leq k-1}}|W|!n^{k-|W|-\operatorname{rank}\left(B_{\bar{W}}\right)} p^{k-|W|}\right)^{2} \\
& \leq(k!)^{2} \cdot(k c)^{u} \cdot n^{-\ell /(k-1)} .
\end{aligned}
$$

We conclude that for each $i \in[1,8]$ we have $\mathbb{E}\left(R_{b_{i}}\right)<O\left(n^{-\ell /(k-1)} \cdot \operatorname{polylog}(n)\right)=o(1)$.
Finally, note that a loose path with at most n vertices clearly has at most n edges. Further, again using Proposition 4.3 in [10], we have $k \geq \ell+2$. Thus we have

$$
\begin{aligned}
& \mathbb{E}\left(R_{b 9}\right) \leq O\left(\sum_{u \geq(\log n)-1}^{n} n^{k-\ell} p^{k} \prod_{i=1}^{u-1}\left(\sum_{\substack{W \subseteq \mid k] \\
|W|=1}} n^{k-|W|-\operatorname{rank}\left(B_{\bar{W}}\right)} p^{k-|W|}\right)\right) \\
& \quad \frac{66}{\leq} O\left(n^{\frac{\ell}{k-1}} \sum_{u \geq(\log n)-1}^{n}(k c)^{u}\right) \stackrel{(4)}{=} o(1),
\end{aligned}
$$

as required.
Putting the parts together. To reiterate the main points of the proof of Theorem 3(ii), we finish by showing that it follows easily from the lemmas in each of the parts (Q1) (Q3).

Proof (summary) of Theorem 圂(ii). Let A be a fixed integer-valued matrix of dimension $\ell^{\prime} \times k^{\prime}$ and b a fixed integer-valued vector of dimension ℓ^{\prime}, such that the pair (A, b) is irredundant, and A is irredundant and satisfies (*). In order to prove w.h.p. Breaker wins the (A, b)-game on $[n]_{p}$, by Proposition [12, it suffices to show w.h.p. Breaker wins the $\left(B, b^{\prime}\right)$-game on $[n]_{p}$, where $\left(B, b^{\prime}\right)$ is the associated pair of (A, b). We rephrase the problem to a game on the hypergraph $H:=H\left([n]_{p}, B, b^{\prime}\right)$. We then show that if a component H^{\prime} of H does not contain a bicycle, then it satisfies certain conditions stated in Lemma 13, Breaker wins the game played on such a component by Lemma 14 . Supposing that B is an $\ell \times k$ matrix where ℓ divides $k-1$, then by Lemma 19 , w.h.p. H (and therefore each component of H) does not contain a bicycle. Finally since Breaker can win the game on each component of H, he wins the game on H, and thus wins the (A, b)-game on $[n]_{p}$ w.h.p., as required.

4. Concluding remarks and Proof of Theorem 2

4.1. Improvements on Breaker's strategy. The strange fact that our proof of Theorem 3(ii) works when $B(A)$ is an $\ell \times k$ matrix such that ℓ divides $k-1$ follows precisely via inequality given by (5). We found an equivalence between bicycles and valid edge orders with two bad edges in Claim 16. Suppose we extended our language to p-cycles (corresponding to valid edge orders with p bad edges), and were able to find a winning strategy for Breaker playing the game on any component of H that does not contain a p-cycle. We could then obtain a proof for matrices A for which the associated matrix B of dimension $\ell \times k$ satisfies $\ell=p-1$ (without the need for any divisibility conditions). However given the number of cases that arose from considering bicycles, it would seem unfeasible to attempt this.

For a similar reason we did not consider the alternate problem of allowing Maker to try to obtain solutions to $A x=b$ which are not k-distinct. Allowing solutions with repeats would make the associated hypergraphs non-uniform (e.g. for $x+y=z$ there would be edges of size 2 and 3) and therefore require a more in-depth case analysis. Note that Kusch, Rué, Spiegel and Szabó do consider the analagous problem in the biased version; see Section 4.3 of [14].

Lemma 13 gives a precise description of hypergraphs with at most one bad edge and a fixed number of k-bad edges. What can be said of hypergraphs with at most p bad edges (for fixed p) and a fixed number of k-bad edges? Also note that our definition of a valid edge order (where every edge after the first one is either good or bad, i.e. there are zero k-bad edges) is a hypergraph generalisation of a tree. This is since trees have precisely this property in the graph case; a 2-bad edge here is an edge which completes a cycle. Thus it would be interesting to obtain a more detailed description of hypergraphs with a valid edge order.

Observe the following connection of this with Rödl and Ruciński's proof of the 0 -statement of Theorem 4. It is very easy to 2-colour a hypergraph with a valid edge order so that it has no monochromatic edges; simply go through the edges in order, colouring the (at least one) new vertex of an edge e_{i} the colour which was not assigned to one of the old vertices of e_{i}. Thus if the hypergraph associated to $[n]_{p}$ has a valid edge order, then $[n]_{p}$ can be 2 -coloured so that there are no monochromatic solutions to $A x=0$.
4.2. Matrices which do not satisfy $(*)$. Matrices A which are irredundant and do not satisfy $(*)$ traditionally have not received as much attention. For such a matrix, \mathbb{N} is not $(A, 0, r)$-Rado for any $r \geq 2$ since we can 2 -colour \mathbb{N} and avoid any monochromatic solutions to $A x=0$ (see Section 4.1 in [10]). Also note that $m(A)$ is ill-defined in this case. Further in the bias version of the (A, b)-game, recall that Theorem 1 (ii) states that Breaker wins the $(1: 2)(A, b)$-game on $[n]$. All of these facts follow easily via use of the row of the matrix which (under Gaussian elimination) has at most two non-zero entries. We show through some examples that the threshold for the random (A, b)-game is at least slightly less trivial.

Theorem 20. Let A be a fixed integer-valued matrix of dimension $\ell \times k$ and b a fixed integer-valued vector. Given the pair (A, b) is irredundant and A is irredundant and does not satisfy (*), we have the following:
(i) If $A=\left(\begin{array}{ll}\alpha & -\beta\end{array}\right)$ is such that α, β are non-equal positive integers, then Maker wins the (A, b)-game on $[n]_{p} w . h . p$. if $p \gg n^{-1 / 3}$.
(ii) Breaker wins the (A, b)-game on $[n]_{p}$ w.h.p. if $p \ll n^{-1 / 3}$.
(iii) If $A=\left(\begin{array}{ccc}\alpha & -\beta & 0 \\ 0 & \alpha & -\beta\end{array}\right)$ is such that α, β are non-equal positive integers, then Breaker wins the $(A, 0)$-game on $[n]$ (i.e. the non-biased non-random game; thus with probability equal to one, Breaker wins the $(A, 0)$-game on $[n]_{p}$ for any $0<p<1$).

Proof. For the (A, b)-game in (i), since (A, b) is irredundant, we have that there exists a solution to $\alpha x_{1}-\beta x_{2}=b$ in \mathbb{N} with $x_{1} \neq x_{2}$. Thus we have that $t:=\operatorname{gcd}(\alpha, \beta)$ must divide b : hence we may assume without loss of generality that $\operatorname{gcd}(\alpha, \beta)=1$.

Maker wins the (A, b)-game in (i) if there exists a distinct triple $\{(\alpha x-b) / \beta, x,(\beta x+b) / \alpha\} \subseteq[n]_{p}$, since she can have the first pick and choose x. Then she can complete a solution by picking whichever of $(\alpha x-b) / \beta$ and $(\beta x+b) / \alpha$ remains unchosen after Breaker's turn.

Claim 21. There exists a fixed $z \in[0, \alpha \beta-1]$ (depending on α, β, b) such that whenever $x \equiv z$ $\bmod \alpha \beta$, the triple $\{(\alpha x-b) / \beta, x,(\beta x+b) / \alpha\}$ is contained in the integers.
Proof. Let $x \in \mathbb{Z}$. Note that we have $(\beta x+b) / \alpha \in \mathbb{Z}$ whenever $\beta x \equiv-b \bmod \alpha$. Since $\operatorname{gcd}(\alpha, \beta)=$ 1 , there exists $y \in[0, \alpha-1]$ such that whenever $x \equiv y \bmod \alpha$, we have $(\beta x+b) / \alpha \in \mathbb{Z}$. Similarly there exists $y^{\prime} \in[0, \beta-1]$ such that whenever $x \equiv y^{\prime} \bmod \beta$, we have $(\alpha x-b) / \beta \in \mathbb{Z}$. Combining these two facts, the Chinese remainder theorem implies that there exists $z \in[0, \alpha \beta-1]$ such that whenever $x \equiv z \bmod \alpha \beta$ we have $(\beta x+b) / \alpha \in \mathbb{Z}$ and $(\alpha x-b) / \beta \in \mathbb{Z}$.

Call triples which satisfy the property in Claim 21 good. From the claim, for sufficiently large n we deduce that $[n]$ contains $n /\left(2 \alpha^{2} \beta^{2}\right)$ good triples. Further, each $x \in[n]$ is in at most three good triples. Thus, there is a collection X of at least $n /\left(6 \alpha^{2} \beta^{2}\right)$ good triples in $[n]$ that are all pairwise disjoint. The expected number of triples in X in $[n]_{p}$ is $\Theta\left(n p^{3}\right)$. Hence if $p \gg n^{-1 / 3}$ then by Proposition 9 w.h.p. there exists x such that $\{(\alpha x-b) / \beta, x,(\beta x+b) / \alpha\} \subseteq[n]_{p}$, so Maker wins as required.

If $p \ll n^{-1 / 3}$, then the expected number of triples is $o(1)$, so via Proposition 8 w.h.p. there are no triples of this form at all. For the game in (ii), since A is irredundant but does not satisfy (*), under Gaussian elimination there exists one row of A which consists of $\alpha,-\beta$ (where α and β are nonequal positive integers) and zeroes, and thus any solution to $A x=b$ contains the positive integers $(\beta z+c) / \alpha$ and $(\beta((\beta z+c) / \alpha)+c) / \alpha$ for some rational number z and fixed integer $c=c(A, b)$. Since w.h.p. there are no triples (replacing b with c and x with z), whenever we have the pair $(\beta z+c) / \alpha,(\beta((\beta z+c) / \alpha)+c) / \alpha \in[n]_{p}$, then $z,(\beta((\beta((\beta z+c) / \alpha)+c) / \alpha)+c) / \alpha \notin[n]_{p}$. Thus Breaker can devise a pairing strategy to win the game.

For (iii), as in (i) we may assume without loss of generality that $\operatorname{gcd}(\alpha, \beta)=1$. Then every solution in $[n]$ is a triple of the form $\left\{\alpha^{2} x, \alpha \beta x, \beta^{2} x\right\}$ for some $x \in \mathbb{N}$. Every element of $[n]$ which could be in a solution is of the form $\alpha^{i} \beta^{j} y$ with $y \in \mathbb{N}$, where α and β do not divide y, and i, j are non-negative integers where at most one of i or j is zero. Using these facts, Breaker has a strategy to win the game. Indeed, Breaker can create a pairing strategy as follows: pair $\alpha^{i} \beta^{j} y$ with $\alpha^{i+1} \beta^{j-1} y$ whenever i is even and $j \geq 1$. Then observe that for any triple $\left\{\alpha^{2} x, \alpha \beta x, \beta^{2} x\right\}$ with $x \in \mathbb{N}$, the middle element is paired with one of the two end elements, so Maker cannot obtain a triple.
4.3. Proof of Theorem 2. We conclude the paper by finishing the proof of Theorem 2,

Theorem 2 Let A be a fixed integer-valued matrix of dimension $1 \times k$ and b a fixed integer (i.e. $A x=b$ corresponds to a single linear equation $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ with the a_{i} non-zero integers).
(i) If the pair (A, b) is irredundant and A is irredundant and satisfies $(*)$, then the (A, b)-game on $[n]_{p}$ has a threshold probability of $\Theta\left(n^{-\frac{k-2}{k-1}}\right)$;
(ii) If the pair (A, b) is irredundant and A is irredundant and does not satisfy (*), then the (A, b)-game on $[n]_{p}$ is Maker's win if $p \gg n^{-1 / 3}$ and Breaker's win if $p \ll n^{-1 / 3}$;
(iii) If the pair (A, b) is irredundant and A is not irredundant, then
(a) the (A, b)-game on $[n]_{p}$ is Breaker's win w.h.p. for any $p=o(1)$ if the coefficients a_{i} are all positive or all negative;
(b) the (A, b)-game on $[n]_{p}$ is Maker's win if $p \gg n^{-1 / 3}$ and Breaker's win if $p \ll n^{-1 / 3}$ otherwise;
(iv) If the pair (A, b) is not irredundant, then the (A, b)-game on $[n]$ is (trivially) Breaker's win.

Proof. (i) As discussed in the introduction, this follows immediately from Theorem 3
(ii) We have $k \geq 3$ if and only if A satisfies $(*)$. Hence if A does not satisfy $(*)$ and is a linear equation, we must have $k=2$. So write $A=(\alpha \beta)$, where $\alpha, \beta \in \mathbb{Z}$. Note that since A is irredundant there exist $x_{1}, x_{2} \in \mathbb{N}$ such that $\alpha x_{1}+\beta x_{2}=0$ where $x_{1} \neq x_{2}$. Thus we must have $\alpha>0$ and $\beta<0$ or vice versa, and $\alpha \neq-\beta$. Thus the result follows from Theorem 20(i) and (ii).
(iii) Note that any linear equation $a_{1} x_{1}+\ldots a_{k} x_{k}=0$ with $k \geq 3$ clearly has a k-distinct solution in \mathbb{N} if there exists at least one positive a_{i} and at least one negative a_{j}, for some $i, j \in[k]$. The same holds for $k=2$ unless if $a_{1}=-a_{2}$. Thus, since A is not irredundant, we have one of the following:
(a) the a_{i} are all positive integers or all negative integers;
(b) we have $k=2$ and $a_{1}=-a_{2}$.

For (a), we may assume without loss of generality that a_{1}, \ldots, a_{k} and therefore b are positive integers. For such a game there are a finite number of k-distinct solutions in \mathbb{N}, all of which are contained in $[b]$. Thus for any $p=o(1)$, w.h.p. there are no solutions in $[n]_{p}$ by Proposition 8, so the game is Breaker's win. For (b), the existence of any triple $\{x-$ $\left.b / a_{1}, x, x+b / a_{1}\right\}$ leads to a win for Maker, meanwhile if no triples exist then Breaker can win by a pairing strategy. Since the number of such triples in $[n]_{p}$ is of order $n p^{3}$, the result follows by a similar argument to that given for Theorems 20(i) and (ii).
(iv) The (A, b)-game is trivially Breaker's win, since there are no winning sets in \mathbb{N}.

Acknowledgements

The author would like to thank Christoph Spiegel for helpful conversations on [14]. The author is also grateful to Andrew Treglown for his general support and encouragement for writing this paper, and for reading the manuscript. Finally the author thanks the anonymous referees for their helpful comments and suggestions.

References

[1] J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669-709.
[2] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory. Cambridge University Press (2008).
[3] J. Beck, Van der Waerden and Ramsey type games, Combinatorica 1 (2) (1981), 103-116.
[4] M. Bednarska and T. Łuczak, Biased positional games for which random strategies are nearly optimal, Combinatorica 20 (4) (2000), 477-488.
[5] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1), (1987), 35-38.
[6] D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Ann. Math. 84 (2016), 367-454.
[7] P. Erdős and J. L. Selfridge, On a combinatorial game, J. Comb. Theory Ser. A 14 (1973), 298-301.
[8] E. Friedgut, V. Rödl and M. Schacht, Ramsey properties of random discrete structures, Random Structures \& Algorithms 37 (2010), 407-436.
[9] R. Hancock, PhD thesis, University of Birmingham, submitted.
[10] R. Hancock, K. Staden and A. Treglown, Independent sets in hypergraphs and Ramsey properties of graphs and the integers, to appear in SIAM J. Discrete Math.
[11] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Positional Games, Oberwolfach Seminars, vol. 44, Birkhäuser (2014).
[12] N. Hindman and I. Leader, Nonconstant monochromatic solutions to systems of linear equations, Topics in Discrete Math. Springer, Berlin (2006), 145-154.
[13] D. Král', O. Serra and L. Vena, A removal lemma for systems of linear equations over finite fields, Israel J. Math., 187, (2012), 193-207.
[14] C. Kusch, J. Rué, C. Spiegel and T. Szabó, On the optimality of the uniform random strategy, to appear in Random Structures ξ^{8} Algorithms.
[15] R. Nenadov, A. Steger and M. Stojaković, On the threshold for the Maker-Breaker H-game, Random Structures § Algorithms, 49 (3) (2016), 558-578.
[16] R. Rado, Studien zur kombinatorik, Mathematische Zeitschrift, 36 (1933), 424-470.
[17] V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, in Combinatorics, Paul Erdős is Eighty, Vol. 1, 317-346, Bolyai Soc. Math. Studies, János Bolyai Math. Soc., Budapest, 1993.
[18] V. Rödl and A. Ruciński, Random graphs with monochromatic triangles in every edge coloring, Random Structures $\xi^{\text {G }}$ Algorithms 5 (1994), 253-270.
[19] V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917-942.
[20] V. Rödl and A. Ruciński, Rado partition theorem for random subsets of integers, Proc. London Math. Soc. 74 (3) (1997), 481-502.
[21] D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), 925-992.
[22] M. Schacht, Extremal results for random discrete structures, Ann. Math. 184 (2016), 331-363.
[23] C. Spiegel, A Note on Sparse Supersaturation and Extremal Results for Linear Homogeneous Systems, Electron. J. Combin. 24 (3) (2017), \#P3.38.
[24] M. Stojaković and T. Szabó, Positional games on random graphs, Random Structures \& Algorithms, 26 (2005), 204-223.
Robert Hancock
Institute of Mathematics
Czech Academy of Sciences
Žitná 25
11000
Praha
Czechia
E-mail address: hancock@math.cas.cz

