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THE MAKER-BREAKER RADO GAME ON A RANDOM SET OF INTEGERS

ROBERT HANCOCK

Abstract. Given an integer-valued matrix A of dimension ℓ× k and an integer-valued vector b of
dimension ℓ, the Maker-Breaker (A, b)-game on a set of integers X is the game where Maker and
Breaker take turns claiming previously unclaimed integers from X, and Maker’s aim is to obtain
a solution to the system Ax = b, whereas Breaker’s aim is to prevent this. When X is a random
subset of {1, . . . , n} where each number is included with probability p independently of all others,
we determine the threshold probability p0 for when the game is Maker or Breaker’s win, for a large
class of matrices and vectors. This class includes but is not limited to all pairs (A, b) for which
Ax = b corresponds to a single linear equation. The Maker’s win statement also extends to a much
wider class of matrices which include those which satisfy Rado’s partition theorem.

MSC2010: 91A24, 11B75, 05C57.

1. Introduction

Given a finite set X and a family of subsets of X, F ⊆ P(X), we define the Maker-Breaker game
on (X,F) to be the game where Maker and Breaker take turns to select a previously unchosen
element x ∈ X, and at the conclusion of the game, if Maker has claimed all of the elements of
some F ∈ F , then Maker wins. Otherwise Breaker has claimed at least one element x in every set
F ⊆ F , and Breaker wins. The set X is known as the board, and the family F as the winning sets.
If Maker has a strategy so that no matter how Breaker plays, Maker can always win, then we call
the game Maker’s win. If Maker has no such strategy, then since there is no draw scenario, the
game is Breaker’s win.

Maker-Breaker games first stemmed from a seminal paper by Erdős and Selfridge [7], where they
proved their famous criterion which gives a general winning strategy for Breaker. Some well-known
examples of Maker-Breaker games are where the board X is the edge set of a complete graph Kn,
and the winning sets F are all sets of edges which correspond to a perfect matching; a Hamilton
cycle; or a fixed subgraph H. All of these games turn out to be Maker’s win if n is sufficiently large,
therefore an adjustment to the game is required if we wish to make the problem of determining
whose win the game is more interesting. This leads to the following two variations of Maker-Breaker
board games, which have each received significant attention.

• Biased board games. Maker claims one element of the board per turn, whereas Breaker
claims b elements per turn, for some fixed b ∈ N. We call the game the (1 : b) game on
(X,F). Maker-Breaker games are ‘bias-monotone’ (see e.g. [11]). This means that there
exists a threshold bias b0 such that the (1 : b) game on (X,F) is Maker’s win if and only if
b < b0.

• Random board games. For a fixed probability p and game (X,F), let Xp be obtained
by including each element x ∈ X with probability p independently of all other elements,
and let Fp := {F ∈ F : x ∈ Xp for all x ∈ F}. We then consider the game on the random
board (Xp,Fp), noting that it is a probability space of games. By the monotonicity of the
game (X,F) being Maker’s win, the existence of a threshold function follows from [5]. That
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is, there exists a threshold probability p0 such that

lim
n→∞

P[The game on (Xp,Fp) is Maker’s win] =

{

1 if p ≫ p0;

0 if p ≪ p0.

The interesting problem now is to determine the threshold bias and threshold probability for various
Maker-Breaker games. For examples and further history of combinatorial board games, see e.g. [2,
11].

Random board games were first introduced by Stojaković and Szabó [24], who considered games
played on a random subset of the edges of a complete graph. Note that this precisely corresponds
to the edges of the Erdős–Rényi random graph Gn,p. Here, we focus on the game where Maker’s
aim is to obtain a solution to a system of linear equations within a random set of integers. To be
precise, in our Maker-Breaker game, the board will be a random subset of [n] := {1, . . . , n}, that
is [n]p, which is obtained by including each element of [n] with probability p independently of all
other elements. The winning sets are all sets of size k which correspond to a k-distinct solution
(i.e. x = (x1, . . . , xk) has each xi distinct) to a system of linear equations Ax = b, where A is a
fixed integer-valued matrix of dimension ℓ × k and b is a fixed integer-valued vector of dimension
ℓ. We call such a game played on a set of integers X the (A, b)-game on X. The class of all
(A, b)-games are known as Rado games (introduced in [14]), due to the intimate link with Rado’s
partition theorem, which will be discussed shortly.

Maker-Breaker games in this setting were first considered by Beck [3], who studied the van der
Waerden game. Here, Maker’s aim is to obtain a k-term arithmetic progression a, a + r, . . . , a +
(k − 1)r for some a, r ∈ N and fixed k ∈ N. Note that the set of k-term arithmetic progressions in
[n] exactly coincides with the set of k-distinct solutions to Ax = 0 in [n] where A is the (k− 2)× k
matrix given by











1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0

. . .

0 0 0 0 · · · 1 −2 1











.

Beck determined that the smallest n ∈ N such that the (A, 0)-game on [n] is Maker’s win is

n = 2k(1+o(1)).
Here we consider a generalisation of the van der Waerden game using the following definitions.

Let A be a fixed integer-valued matrix of dimension ℓ × k and b a fixed integer-valued vector of
dimension ℓ. We call a pair (A, b) (and the matrix A in the case where b = 0) irredundant if there
exists a k-distinct solution to Ax = b in N, and partition regular if for any finite colouring of N,
there is always a monochromatic solution (of any kind) to Ax = b. A cornerstone result in the
area of Ramsey theory for integers is Rado’s theorem [16], which characterises all partition regular
pairs (A, b). In [12], Hindman and Leader extended Rado’s theorem to characterise all pairs (A, b)
for which given any finite colouring of N, there is always a monochromatic k-distinct solution to
Ax = b (in particular, if b = 0 then A must be irredundant and partition regular). Hindman
and Leader’s result implies that given such a pair (A, b), if n is sufficiently large then however we
2-colour [n], there exists a monochromatic k-distinct solution to Ax = b. So in order for Breaker
to win the (A, b)-game on [n], he must himself obtain a k-distinct solution. But then by the classic
strategy-stealing argument, Maker can claim this solution for herself. Thus this game is easily
shown to be Maker’s win. Therefore it is interesting to consider biased and random versions of the
(A, b)-game on [n]. In a very recent paper of Kusch, Rué, Spiegel and Szabó [14], the biased version
is considered. In this paper, we consider the random version.

In fact (as in [14]), we consider a wider class of pairs (A, b). Let (∗) be the following matrix
property:
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(∗) Under Gaussian elimination A does not have any row which consists of precisely two non-
zero rational entries.

An equivalent definition, abundant, is given in [14]. Note that in [10] it is proven that irredundant
partition regular matrices are a strict subclass of irredundant matrices which satisfy (∗).

We need the following definitions. For a matrix A index the columns by [k]. For a partition
W ∪̇W = [k] of the columns of A, let AW be the matrix obtained from A by restricting to the

columns indexed by W . Let rank(AW ) be the rank of AW , where rank(AW ) = 0 if W = ∅. Then
define

m(A) := max
W ∪̇W=[k]

|W |≥2

|W | − 1

|W | − 1 + rank(AW ) − rank(A)
.

The biased game result of [14] is the following.

Theorem 1 ([14], Theorem 1.4 and Proposition 1.5). Let A be a fixed integer-valued matrix of
dimension ℓ × k and b a fixed integer-valued vector of dimension ℓ. Given the pair (A, b) and the
matrix A are both irredundant, then we have the following:

(i) If A satisfies (∗) then the threshold bias for the (A, b)-game on [n] is Θ(n1/m(A));
(ii) If A does not satisfy (∗) then the (1 : 2) (A, b)-game on [n] is Breaker’s win.

In this paper we mainly focus on the case when A satisfies (∗), though the case where A does
not satisfy (∗) does feature in our first result and also Section 4.

We use the abbreviation w.h.p. for with high probability (with probability tending to 1 as n
tends to infinity). Our first result gives the threshold for the random (A, b)-game whenever Ax = b
corresponds to a single linear equation.

Theorem 2. Let A be a fixed integer-valued matrix of dimension 1 × k and b a fixed integer (i.e.
Ax = b corresponds to a single linear equation a1x1 + · · ·+ akxk = b with the ai non-zero integers).

(i) If the pair (A, b) is irredundant and A is irredundant and satisfies (∗), then the (A, b)-game

on [n]p has a threshold probability of Θ(n− k−2
k−1 );

(ii) If the pair (A, b) is irredundant and A is irredundant and does not satisfy (∗), then the

(A, b)-game on [n]p is Maker’s win if p ≫ n−1/3 and Breaker’s win if p ≪ n−1/3;
(iii) If the pair (A, b) is irredundant and A is not irredundant, then

(a) the (A, b)-game on [n]p is Breaker’s win w.h.p. for any p = o(1) if the coefficients ai
are all positive or all negative;

(b) the (A, b)-game on [n]p is Maker’s win if p ≫ n−1/3 and Breaker’s win if p ≪ n−1/3

otherwise;
(iv) If the pair (A, b) is not irredundant, then the (A, b)-game on [n] is (trivially) Breaker’s win.

Note that most ‘interesting’ equations lies in the class of equations given by (i). Here A satisfying
(∗) implies that k ≥ 3; in particular the class given by (i) includes several natural equations that
have been extensively studied, e.g. x + y = z, x + y = z + t and x + y = 2z. In the (A, b)-games
corresponding to these equations, Breaker’s aim is to restrict Maker’s set to being a sum-free set,
a Sidon set and a progression-free set respectively. The remaining classes of equations given by
(ii)–(iv) are all in some sense ‘trivial’; the proofs of these statements appear in Section 4.3.

In fact Theorem 2(i) will follow immediately from a much more general theorem. First we need
some more definitions. We say that an ℓ× k matrix A of full rank ℓ is strictly balanced if, for every
W ⊆ [k] for which 2 ≤ |W | < k, the inequality

|W | − 1

|W | − 1 + rank(AW ) − ℓ
<

k − 1

k − 1 − ℓ
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holds. In particular note that if A is strictly balanced then m(A) = k−1
k−1−ℓ (though the converse

is not true). Given an irredundant matrix A which satisfies (∗), we define the associated matrix
B(A) to be a strictly balanced, irredundant matrix of full rank which satisfies (∗), which is found
by using elementary row operations on A then deleting some rows and columns, and satisfies
m(B(A)) = m(A). The fact that such a matrix exists is not entirely obvious, and is essentially
proven in [20]. We provide further details in Section 3. Also note that if A itself is strictly balanced
then we simply have B(A) = A.

Let µ(n,A, b) denote the size of the largest subset of [n] which does not contain a k-distinct
solution to Ax = b. The main result of this paper is the following.

Theorem 3. Let A be a fixed integer-valued matrix of dimension ℓ′×k′ and b a fixed integer-valued
vector of dimension ℓ′. Given the pair (A, b) is irredundant and A is irredundant and satisfies (∗)
we have the following:

(i) Let ε > 0. There exists a positive constant C such that if p > Cn−1/m(A), then for any

R ⊆ [n]p satisfying |R| ≤ (1 − µ(n,A,b)
n − ε)np, we have

lim
n→∞

P (Maker wins the (A, b)-game on [n]p \R) = 1.

(ii) Suppose the associated matrix B(A) is an ℓ× k matrix of full rank ℓ, where ℓ divides k− 1.

There exists a positive constant c such that if p < cn−1/m(A) then

lim
n→∞

P (Breaker wins the (A, b)-game on [n]p) = 1.

First note that it follows from a supersaturation result (Lemma 4.1 in [14]) that for all pairs
(A, b) as stated in Theorem 3, there exist n0 = n0(A, b), δ = δ(A, b) > 0, such that for all integers
n ≥ n0 we have µ(n,A, b) ≤ (1 − δ)n. Thus in particular Theorem 3(i) implies that there exists a

positive constant C such that if p > Cn−1/m(A), then Maker wins the (A, b)-game on [n]p w.h.p.
Also, note that if A is a 1 × k matrix with non-zero entries, then it is strictly balanced, and so
B(A) = A. Thus A is a matrix which satisfies the hypothesis of Theorem 3(ii). Theorem 2(i)
follows immediately from these two comments.

Another example of a class of pairs (A, b) for which Theorem 3 gives the threshold probability
up to a constant factor are all irredundant pairs (A, b) such that A is irredundant, has no columns
consisting entirely of zeroes, satisfies (∗) and is of dimension 2 × k′ for some odd k′. This follows
since by construction either B(A) = A or B(A) is a 1 × k matrix for some k < k′. Either way,
B(A) then satisfies the hypothesis of Theorem 3(ii).

For the Maker’s win statement, the fact that we can delete a certain fraction of elements from
[n]p and still have Maker’s win w.h.p. means we have a resilience theorem. The study of how
strongly a graph or set satisfies a certain property has a rich history. An early famous example is
Turán’s theorem, which tells us that given r ≥ 3 we must delete a 1

r−1 -fraction of the edges of the
complete graph in order to obtain a graph which does not contain Kr as a subgraph. The global
resilience of a graph or set property generally asks how many edges or elements must be deleted
in order to rid the graph or set of the property. Note that in our resilience result, the property is
the game being Maker’s win w.h.p., and the resilience is best possible in terms of the bound on the
size of the set R: Indeed, since the largest subset of [n] with no k-distinct solutions to Ax = b has
size µ(n,A, b), w.h.p. [n]p contains a subset S of size p(µ(n,A, b)− εn) with no k-distinct solutions

to Ax = b. Thus we can remove (1 − µ(n,A,b)
n + ε)np elements from [n]p to obtain S (noting that a

game on S is trivially Breaker’s win).
It is very interesting to note the parallels between our theorem and the random Rado theorem and

the resilience theorem stated below. In particular, the parameter m(A) is also crucial here. First,
call a set of integers X (A, b, r)-Rado if for any r-colouring of X, there is always a monochromatic
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k-distinct solution to Ax = b in X. (Note X being (A, b, 1)-Rado just means there is a k-distinct
solution to Ax = b in X.)

Theorem 4 ([8, 20]). Let A be a fixed integer-valued matrix of dimension ℓ× k and let r ≥ 2 be a
positive integer. Given A is irredundant and partition regular, there exist constants C, c > 0 such
that

lim
n→∞

P[[n]p is (A, 0, r)-Rado] =

{

1 if p > Cn−1/m(A);

0 if p < cn−1/m(A).

Theorem 5 ([10, 23]). Let A be a fixed integer-valued matrix of dimension ℓ × k. Given A is
irredundant and satisfies (∗), for all ε > 0, there exists a positive constant C such that if p >

Cn−1/m(A), then for any R ⊆ [n]p satisfying |R| ≤ (1 − µ(n,A,0)
n − ε)np, we have

lim
n→∞

P[[n]p \R is (A, 0, 1)-Rado] = 1.

Note that Theorem 5 was already proven for density regular matrices and the matrix
(

1 1 −1
)

by Schacht [22]. Further, although not explicity stated in the paper, Schacht’s method extends to
the class of matrices stated in Theorem 5.

Theorem 4 implies that by again using strategy-stealing, we could obtain a proof for the non-
resilient version of Theorem 3(i) for irredundant partition regular matrices. However our method as
already noted achieves the best resilience possible, and further it extends to all irredundant matrices
which satisfy (∗) (even those for which there exists a 2-colouring of N with no monochromatic k-
distinct solutions to Ax = b). Our proof also gives an explicit strategy.

The proof of Theorem 3(i) closely follows the method of Theorem 16 in [15]. Here, Nenadov,
Steger and Stojaković consider a similar problem: the H-game is where the board is the edges of
a complete graph, and the winning sets are sets of edges which correspond to a copy of a fixed
subgraph H. This game and its related Ramsey problems resemble the (A, b)-game as follows:
Set d2(H) := 0 if e(H) = 0, d2(H) := 1/2 if e(H) = 1, and d2(H) := (e(H) − 1)/(v(H) − 2)
otherwise. Then define the 2-density of H to be m2(H) := maxH′⊆H d2(H

′). For most graphs H,
the graph analogues of Theorems 4 and 5 (the random Ramsey theorem and resilient subgraphs

theorem, see [17, 18, 19, 6, 22]) have a threshold of Θ(n−1/m2(H)). Bednarska and  Luczak [4]

showed that the threshold bias for the H-game is Θ(n1/m2(H)). Thus both the H-games and
(A, b)-games (in most cases) have a threshold bias which is the inverse of the threshold for the
random (respective) Ramsey/Rado theorem and the resilience theorems. Kusch, Rué, Spiegel and
Szabó [14] in fact show that there is an intimate link between resilience and the threshold bias, which
explains the parameters of m(A) and m2(H) appearing for both. They refer to this phenomenon as
the probabilistic Turán intuition for biased Maker-Breaker games; see Section 6.4 of [14] for more
details.

An analogous definition of strictly balanced exists for graphs. In [15], Nenadov, Steger and

Stojaković show that the threshold probability for the random H-game is Θ(n−1/m2(H)) when H is
strictly balanced (Theorem 2 in [15]). However there are a class of graphs which have a threshold
probability different to that of the random Ramsey/resilient subgraph theorem and the inverse of
the threshold bias (Theorem 4 in [15]). Indeed, this is one of the main motivations for studying
the random (A, b)-game: For the proof of Theorem 3(ii), we build upon the method used by Rödl
and Ruciński [20] to prove the 0-statement of Theorem 4. Although our Breaker win statement is
‘incomplete’, its proof does seem to indicate that the threshold probability for the random (A, b)-
game (for any pair (A, b) which is irredundant and A irredundant and satisfying (∗)) should be the
same as the random Rado threshold. That is, we hope that there is no need for the assumption that
ℓ divides k− 1 in Theorem 3(ii). Also note that if we could prove our Breaker win statement for all
strictly balanced matrices, then the full result would follow (see Proposition 12 and the paragraph
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following it). So interestingly in this sense, the random (A, b)-game does not resemble the random
H-game.

We prove the two parts of Theorem 3 in Sections 2 and 3 respectively, before finishing by proving
Theorem 2(ii)–(iv) along with making some further remarks in Section 4.

2. Proof of Maker’s win in Theorem 3

First we list a few results which are required for the proof. We will use the following simplification
of Theorem 4.7 in [10], a container result, which is itself a consequence of the general container
theorems of Balogh, Morris and Samotij [1] and Saxton and Thomason [21].

Theorem 6 ([10]). Let 0 < δ < 1. Let A be a fixed integer-valued matrix of dimension ℓ × k
and b a fixed integer-valued vector of dimension ℓ. Suppose the pair (A, b) is irredundant and A is
irredundant and satisfies (∗). Let I(n,A, b) denote all sets from P([n]) which contain no k-distinct
solutions to Ax = b. Then there exists D > 0 such that the following holds. For all n ∈ N, there is
a collection S ⊆ P([n]) and a function f : S → P([n]) such that:

(i) For all I ∈ I(n,A, b), there exists S ∈ S such that S ⊆ I ⊆ f(S).

Additionally, every S ∈ S satisfies

(ii) |S| ≤ Dn
m(A)−1
m(A) ;

(iii) S ∈ I(n,A, b);
(iv) f(S) contains at most δnk−ℓ k-distinct solutions to Ax = b; and
(v) |f(S)| ≤ µ(n,A, b) + δn.

Note that in [10] the theorem is stated for the homogeneous case Ax = 0 only. However, the
result easily generalises to the inhomogeneous case Ax = b. Full details can be found in [9].

An upper bound on the size of the largest subset of [n] containing no k-distinct solutions to
Ax = b is also required. The following is a consequence of Lemma 4.1 in [14] and Theorem 2
in [13].

Theorem 7. Let A be a fixed integer-valued matrix of dimension ℓ× k and b a fixed integer-valued
vector of dimension ℓ. Given the pair (A, b) is irredundant and A is irredundant and satisfies (∗),
then there exist n0 ∈ N and δ > 0 such that for all integers n ≥ n0 we have µ(n,A, b) ≤ (1 − δ)n.

We will need the Markov and Chernoff inequalities.

Proposition 8. Let X be a non-negative random variable. Then for all t > 0 we have P[X ≥ t] ≤
E[X]
t .

Proposition 9. Let X1, . . . ,Xn be independent Bernoulli distributed random variables with P[Xi =
1] = p and P[Xi = 0] = 1 − p. Then for X =

∑n
i=1Xi and every 0 < δ ≤ 1, we have

P[X ≤ (1 − δ)E[X]] ≤ e−E[X]δ2/2.

Finally, we require the Erdős-Selfridge Criterion, commonly used to prove a Breaker strategy
result, which we mentioned in the introduction. (Note that we do mean Breaker here; in our proof,
we create an auxiliary game where the original Maker needs to play the role of Breaker!)

Theorem 10 ([7]). Let X be a set and let F be a family of subsets of X. Then if Breaker has the
first move in the game, and

∑

A∈F

2−|A| < 1,

then Breaker has a winning strategy for the Maker-Breaker game (X,F).
6



Proof of Theorem 3(i). Apply Theorem 7 with parameters A, b to obtain ε′ > 0 such that µ(n,A, b) ≤
(1 − ε′)n for sufficiently large n. Let ε > 0 noting that without loss of generality we can assume
ε ≪ ε′. Suppose n is sufficiently large. Apply Theorem 6 with parameters ε/4, A, b to obtain D > 0,
a collection S ⊆ P([n]) and a function f satisfying Theorem 6(i)–(v). Fix δ ≪ ε and choose C such

that 0 ≤ 1/C ≪ 1/D, δ, ε. Let p > Cn−1/m(A). Note that m(A) > 1 (see Proposition 4.3 in [10])
and thus pn tends to infinity as n tends to infinity. Let R be as in the statement of the theorem
and set X := [n]p \R.

Maker’s aim is to claim a k-distinct solution to Ax = b within X, and Breaker’s aim is to prevent
this. If Maker loses, then her set M ⊆ X does not contain a k-distinct solution to Ax = b. Hence
M ∈ I(n,A, b) and so there exists S ∈ S such that S ⊆ M ⊆ f(S) and S ⊆ X. Given S ∈ S note
that if Maker claims one element from X \ f(S) then M 6⊆ f(S); hence consider the auxiliary game
(X,F) where

F := {X \ f(S) : S ∈ S and S ⊆ X}.

Maker can ensure that she wins the (A, b)-game on X by picking at least one element from each
set in F , that is, she wins the auxiliary game as Breaker. We now make the following claim about
the auxiliary game.

Claim 11. (i) For all S ∈ S such that S ⊆ X, we have |X \ f(S)| ≥ εnp/2 w.h.p.

(ii) We have |F| ≤ 2εnp/4 w.h.p.

Assuming the claim holds, it now easily follows that
∑

A∈F

2−|A| ≤ 2εnp/4 · 2−εnp/2 < 1,

that is, the hypothesis of Theorem 10 holds for the game (X,F). Thus Maker wins the game as
Breaker in the auxiliary game, and thus wins the original game (the (A, b)-game on X). Since this
happens w.h.p., it remains to prove the claim.

Proof of Claim 11. First we shall count |F|. We wish to count the number of S ∈ S such that

S ⊆ X. Recall that every S ∈ S satisfies |S| ≤ Dn1−1/m(A) ≤ Dpn/C and there are at most
(n
s

)

sets S ∈ S of size s. Thus we have

E[|F|] ≤
∑

S∈S

P[S ⊆ [n]p] ≤
∑

S∈S

p|S| ≤

Dpn/C
∑

s=0

(

n

s

)

ps ≤ (Dpn/C + 1)

(

n

Dpn/C

)

pDpn/C(1)

≤ (Dpn/C + 1)

(

Ce

D

)Dpn/C

≤ eδnp ≤ 2εnp/8,

where the last two inequalities follows by our choice of C and since δ ≪ ε respectively. Thus by
Proposition 8 we have

P[|F| ≥ 2εnp/4] ≤ 2−εnp/8,

which tends to zero as n tends to infinity, proving (ii).
Now for (i), observe that if we show that the probability that there exists S ∈ S such that

S ⊆ X and |X \ f(S)| ≤ εnp/2 tends to zero as n tends to infinity, we will be done. First
observe by Theorem 6 that for all S ∈ S we have |f(S)| ≤ µ(n,A, b) + εn/4 and so |[n] \ f(S)| ≥
n− µ(n,A, b) − εn/4. Let γ := ε/(4 − 4µ(n,A, b)/n − ε) and Y := [n]p \ f(S) (noting γ > 0 since
ε ≪ ε′). By Proposition 9 we have

P

[

|([n] \ f(S)) ∩ [n]p| <

(

1 −
µ(n,A, b)

n
−

ε

2

)

np

]

≤ P [|Y | < (1 − γ)E[|Y |]]

≤ e−E[|Y |]γ2/2 ≤ e−2δnp,

7



where the last inequality follows since δ ≪ ε ≪ ε′. Note that since |R| ≤ (1 − µ(n,A,b)
n − ε)np and

X \ f(S) = Y \R we have

P[|X \ f(S)| < εnp/2] ≤ e−2δnp,(2)

for all S ∈ S. Also since S ⊆ f(S), the events S ⊆ [n]p and |X \f(S)| being small are independent.
Thus

P[There exists S ∈ S such that S ⊆ [n]p and |X \ f(S)| < εnp/2]

≤
∑

S∈S

P[S ⊆ [n]p and |X \ f(S)| < εnp/2]

≤
∑

S∈S

(P[S ⊆ [n]p] · P[|X \ f(S)| < εnp/2])
(2)
≤ e−2δnp

∑

S∈S

P[S ⊆ [n]p]

(1)
≤ e−2δnp · eδnp = e−δnp,

which tends to zero as n tends to infinity, as required. �

�

3. Proof of Breaker’s win in Theorem 3

The proof will follow a similar tactic to that used by Rödl and Ruciński [20] for their proof of the
0-statement of Theorem 4. Recall that the goal of Rödl and Ruciński was to show that, given an
irredundant partition regular matrix A, an integer r ≥ 2, and an upper bound on the probability
p, then w.h.p. there exists an r-colouring of [n]p such that there are no monochromatic k-distinct
solutions to Ax = 0. The proof consisted of three parts:

(P1) A reduction of the problem. It is shown that it suffices to prove the result for the asso-
ciated matrix B(A). The problem is then rephrased to one about an associated hypergraph.

(P2) A deterministic lemma. It is shown that if all r-colourings of [n]p contain a monochro-
matic k-distinct solution to Ax = 0, then the associated hypergraph must contain a certain
connected subhypergraph.

(P3) A probabilistic lemma. It is shown that if p < cn−1/m(A), then w.h.p. the associated
hypergraph does not contain the subhypergraph given by the deterministic lemma.

Recall that our aim is to show that under the hypothesis of Theorem 3(ii), w.h.p. Breaker
wins the (A, b)-game on [n]p. Our proof consists of the same three general parts, with appropriate
amendments to the lemmas.

(Q1) A reduction of the problem. As (P1) above.
(Q2) Two deterministic lemmas. These together show that if Maker wins the (A, b)-game on

[n]p, then the associated hypergraph must contain a certain connected subhypergraph.
(Q3) A probabilistic lemma. It is shown that if B(A) is an ℓ× k matrix of full rank ℓ which

satisfies ℓ divides k − 1, and p < cn−1/m(A), then w.h.p. the associated hypergraph does
not contain the subhypergraph given by the deterministic lemmas.

We will of course make this more rigorous as we get to each part of the proof.

(Q1) A reduction of the problem. First we show that in order for Breaker to win the (A, b)-
game on any set of integers X, its suffices to show that Breaker wins the (B, b′)-game on X, for
some matrix B := B(A) and vector b′ := b′(A, b). For a vector x = (x1, . . . , xk) and a non-empty
set W ⊆ [k], let xW := (xi)i∈W .
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Proposition 12 ([14], Corollary 4.3 and Lemma 4.2). Let A be a fixed integer-valued matrix of
dimension ℓ × k and b a fixed integer-valued vector of dimension ℓ. Suppose the pair (A, b) is
irredundant and A is irredundant and satisfies (∗). There exists a non-empty set W ⊆ [k], a matrix
B of full rank which is irredundant, satisfies (∗), and is strictly balanced, and a vector b′ for which
the pair (B, b′) is irredundant, such that if Ax = b, then BxW = b′.

Note that the homogeneous case for where b, b′ are zero vectors is implicitly stated in [20]. We
call the pair (B, b′) above the associated pair of (A, b), and call B = B(A) the associated matrix
of A. The consequence for us of Proposition 12 is that if Maker wins the (A, b)-game, then Maker
also wins the (B, b′)-game (since a solution to Ax = b always gives rise to a solution to Bx′ = b′).
Thus in order to prove Breaker wins the (A, b)-game, it suffices to prove that Breaker wins the
(B, b′)-game.

With any game (X,F) there exists an associated hypergraph H(X,F) with vertex set X and
edge set F . Write H(X,B, b′) := H(X,F) to represent the hypergraph where X is a set of integers,
and F is the set of all k-distinct solutions to Bx′ = b′ (assuming that B is an ℓ× k matrix). Thus
we may think of the game as one where Maker and Breaker take turns claiming a vertex of the
k-uniform hypergraph H([n]p, B, b′) and Maker’s aim is to obtain an edge of H([n]p, B, b′), and
Breaker’s aim is to prevent this. For the remainder of the proof we will assume that we have fixed
A and b (and therefore B and b′), and set H := H([n]p, B, b′). We will assume that B is an ℓ× k
matrix, and note that since B satisfies property (∗), it is easy to see that we must have k ≥ 3.

Hypergraph notation. We now introduce some notation which will be required for the deter-
ministic and probabilistic lemmas. For a k-uniform hypergraph H with edge set E := E(H) and
vertex set V := V (H), let an edge order be an enumeration of the edges E. For a given edge order
of E and edge e ∈ E, call a vertex v ∈ e new in e if v did not appear in any edge which came
before e in the edge order. Otherwise call v old in e. We call an edge e good if it has precisely
one old vertex, bad if it has between two and k − 1 old vertices, and k-bad if it has k old vertices.
Note that we always consider edges to be good, bad, or k-bad with respect to a given edge order;
similarly whether a vertex is new or old in a given edge also depends on the given edge order. So
throughout we will make it clear which edge order we are referring to. Note that given an edge
order, a vertex will always be new in precisely one edge (and old in every other edge it appears in).
For ease of notation we may sometimes identify a hypergraph with an edge order of its edges, e.g.
if we have P := e0, . . . , et, then we consider the hypergraph P to have E(P ) := {e0, . . . , et} and
V (P ) := {x ∈ e, e ∈ E(P )}.

Let e0, . . . , et be an edge order. We call the edge order allowed if for all i ∈ [t], ei is good, bad
or k-bad (that is, there is no edge ei with i ≥ 1 such that ei is vertex-disjoint from all the edges
e0, . . . , ei−1). We call it valid if for all i ∈ [t], ei is good or bad. It is simple if for all i ∈ [t], ei
is good. For a subset of edges ef1 , . . . , efu of e0, . . . , et we do not assume f1 ≤ · · · ≤ fu unless
otherwise stated. For two vertex-disjoint sets X1,X2 ⊆ V (H), we define a minimal path from X1

to X2 in {e0, . . . , et} to be a subset of edges ef1 , . . . , efu of e0, . . . , et such that

(i) we have X1 ∩ ef1 6= ∅, and x /∈ efa for any a ≥ 2 and x ∈ X1;
(ii) we have X2 ∩ efu 6= ∅, and x /∈ efa for any a ≤ u− 1 and x ∈ X2;
(iii) for all i, j ∈ [u] with i < j we have |efi ∩ efj | ≥ 1 if i = j − 1 and |efi ∩ efj | = 0 otherwise.

As a small example consider the second hypergraph in Figure 1 (with edges labelled):

• The edge order e1, e2, . . . , e8 is valid, but not simple, since all ei for 2 ≤ i ≤ 8 are good or
bad, and in particular e2 is bad.

• The edge order e1, e4, e3 is not allowed, since e4 is vertex-disjoint from e1.
• Setting X1 := e1 and X2 := e5, we see that e3, e4 is a minimal path from X1 to X2 in
{e2, e3, e4}, whereas e2, e3, e4 is not; condition (i) of a minimal path is violated since there
exists a vertex x ∈ X1 ∩ e3.
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We now give names to a variety of k-uniform hypergraphs which will appear in our deterministic
and probabilistic lemmas. Suppose that ef1 , . . . , efu for some u ∈ N is a valid edge order, where
|efi ∩ efi+1

| ≥ 1 for all i ∈ [u− 1]. We call ef1 , . . . , efu :

• An overlapping pair, if u = 2 and 2 ≤ |ef1 ∩ ef2 | ≤ k − 1;
• A loose cycle, if u ≥ 3, and for all i, j ∈ [u] with i < j we have

|efi ∩ efj | =

{

1 if i = j − 1, or i = 1 and j = u;

0 otherwise;

• A loose path, if for all i, j ∈ [u] with i < j we have

|efi ∩ efj | =

{

1 if i = j − 1;

0 otherwise;

• A spoiled cycle, if P1 := ef1 , ef2 forms an overlapping pair, P2 := ef3 , . . . , efu forms a
loose path, and P1 and P2 are vertex-disjoint except for two vertices x 6= y, where we
have x = (ef2 \ ef1) ∩ (ef3 \ efz) (where z = 4 if u ≥ 4, and z = 1 otherwise) and
y = (ef1 \ ef2) ∩ (efu \ efu−1);

• A double loose cycle, if for some v ≤ u − 2, P1 := ef1 , . . . , efv forms a loose cycle, P2 :=
efv+1 , . . . , efu forms a loose path, and P1 and P2 are vertex-disjoint except for two vertices
x 6= y, where we have x = (efv+1 \ efv+2) ∩ efv and y = (efu \ efu−1) ∩ efa for some a ∈ [v];

• A double overlapping pair, if u = 4, ef1 , ef2 and ef3 , ef4 each form overlapping pairs, which
are vertex-disjoint except for two vertices x 6= y, where we have x = (ef1 \ ef2) ∩ (ef4 \ ef3)
and y = (ef2 \ ef1) ∩ (ef3 \ ef4), and |ef3 ∩ ef4 | ≤ k − 2;

• An overlapping pair/loose cycle with handle, if ef1 , . . . , efu−1 forms an overlapping pair/loose
cycle and efu is bad in the edge order ef1 , . . . , efu ;

• An overlapping pair/loose cycle to overlapping pair/loose cycle, if for some w ≤ v < u, P1 :=
ef1 , . . . , efw forms an overlapping pair or loose cycle, P2 := efw+1 , . . . , efv forms a loose path
and P3 := efv+1 , . . . , efu forms an overlapping pair or loose cycle; moreover if w = v then
|V (P1)∩V (P3)| = 1; otherwise |V (P1)∩V (P2)| = 1, V (P1)∩V (P3) = ∅, |V (P2)∩V (P3)| = 1,
and additionally if w ≤ v − 2, then efw+2 ∩ V (P1) = ∅ and efv−1 ∩ V (P3) = ∅.

An overlapping pair with handle

Also a spoiled cycle

e1

e2
e3 e4

e5

e6

e7

e8

An overlapping pair to loose cycle

Figure 1. Examples of our hypergraphs.

Note that since we identify hypergraphs with one of their allowed edge orders, a hypergraph may
fit the description of more than one of the above (e.g. a hypergraph could be both a spoiled cycle
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and an overlapping pair with handle, see Figure 1). We define a bicycle to be a hypergraph which
is one of:

• a spoiled cycle;
• a double overlapping pair/loose cycle;
• an overlapping pair/loose cycle with handle;
• an overlapping pair/loose cycle to overlapping pair/loose cycle.

Suppose that ef1 , . . . , efu for some u ∈ N is an allowed edge order. We call ef1 , . . . , efu :

• A Pasch configuration if k = 3, u = 4, there are six vertices within the four edges, and each
of these appear in precisely two of the edges (one vertex for each of the six pairs of edges);
see Figure 2;

• A k-uniform loose u-star, if the edges are completely disjoint except for all intersecting in
one ‘central vertex’;

• A (k, u/2, 2)-star, if u is even and the edges form two k-uniform loose (u/2)-stars S1 and S2,
and there is a bijection f between the edges of S1 to those of S2 such that e and f(e) share
all their vertices except for the two central vertices, for each edge e in S1 (so a (k, u, 2)-star
has one more vertex than a k-uniform loose u-star, but has twice as many edges);

• A (k, u, a)-link, if there are k + a vertices within the u edges, and given any i, j ∈ [u] with
i < j we have |efi ∪ efj | = k+a (i.e. any pair of the edges contain all k+a vertices between
them).

Observe that a (k, u, a)-link with u ≥ 3 must have a ≤ ⌊k/(u− 1)⌋.

A Pasch configuration A (4, 3, 2)-star A (9, 4, 2)-link

Figure 2. Further examples of our hypergraphs.

Given S is any of our defined hypergraphs, we say that et completes S if the edge order e0, . . . , et−1

does not contain a copy of S, whereas e0, . . . , et does.
Note that all bicycles have a valid edge order which contains at least two bad edges; we will

in fact show that any hypergraph which has a valid edge order with at least two bad edges must
contain a bicycle (see Claim 16). Meanwhile Pasch configurations, (k, u, 2)-stars with u ≥ 2 and
(k, u, a)-links with u ≥ 3 and a ≤ ⌊k/(u − 1)⌋ all have the property that any allowed edge order
contains at least one k-bad edge, and also precisely one bad edge; in particular these hypergraphs
do not contain a bicycle.

The roles of bicycles are crucial in our proof. The deterministic lemmas will imply that Breaker
has a winning strategy for the game played on any component of H which does not contain a
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bicycle. The probabilistic lemma will show that w.h.p. H does not contain any bicycles.

(Q2) Two deterministic lemmas. Recall that we wish to show that if Maker wins the game on
the associated hypergraph H, then H must contain a particular subhypergraph. (In particular, this
subhypergraph will be a bicycle.) This section contains two deterministic lemmas, which together
prove that the contrapositive statement holds; that is, if H does not contain a bicycle, then Breaker
has a strategy to win the game on H.

Lemma 13. Let H ′ be a connected component of H and suppose H ′ does not contain a bicycle.
Then H ′ has an edge order e0, . . . , et with the property that there exists a ∈ [0, t] such that ei is
good for all i ∈ [a + 1, t], and also precisely one of the following holds:

(i) a = 0;
(ii) a ≥ 2 and e0, . . . , ea forms a loose cycle;
(iii) a = 1 and e0, e1 forms an overlapping pair;
(iv) a = 3, k = 3 and e0, . . . , e3 forms a Pasch configuration;
(v) a ≥ 3 is odd and e0, . . . , ea forms a (k, (a + 1)/2, 2)-star;
(vi) a ≥ 2, and e0, . . . , ea forms a (k, (a + 1), d)-link, where d ≤ ⌊k/a⌋.

Lemma 14. Let H ′ be a component of H which is as described in Lemma 13. Breaker has a
strategy for winning the Maker-Breaker game played on H ′.

Note that by Breaker always choosing a vertex from the same component as Maker if he can,
these results imply that if H does not contain a bicycle, then Breaker can win the game played on
H, and therefore the (B, b′)-game on [n]p.

We now prove four claims; the proof of Lemma 13 will follow easily from the statements of these
claims.

Claim 15. Suppose that E1 := e0, . . . , et is an allowed edge order of the edges of a connected
hypergraph J , for which ei for some i ∈ [t] is the first bad or k-bad edge. Then we have the
following:

(i) Either there exists j ∈ [0, i − 1] such that ej , ei forms an overlapping pair, or ei completes
a loose cycle.

(ii) Suppose that S is a connected subhypergraph of J with s edges, which contains the overlap-
ping pair or loose cycle guaranteed by (i). Then there exists an allowed edge order E2 of
E(J) which starts with the overlapping pair or loose cycle, followed by the rest of the edges
of S, followed by any remaining edges of J .

(iii) If E1 is valid and if S in (ii) is a loose cycle or overlapping pair, then it is possible to
construct E2 in (ii) so that additionally it is valid.

Proof. For (i), if there exists j ∈ [0, i − 1] such that |ej ∩ ei| ≥ 2 then ej, ei forms an overlapping
pair and we are done. So suppose:

(A1) For all j ∈ [0, i − 1] we have |ej ∩ ei| ≤ 1.

Also note that since ei is the first bad or k-bad edge in E1, we have:

(A2) For all j ∈ [1, i − 1], ej is good in E1.

Since ei is bad or k-bad, it has q ≥ 2 old vertices in the edge order E1. Label these as x1, . . . , xq and
consider a minimal path P1 := ef1 , . . . , efu in {e0, . . . , ei−1} from X1 := {x1} to X2 := {x2, . . . , xq}.
By definition of P1, (A1) and (A2) we have

• |efj ∩ ei| =

{

1 if j = 1 or j = u;

0 otherwise;
• u ≥ 2;

12



• P1 is a loose path.

It follows from these three facts that ef1 , . . . , efu , ei forms a loose cycle. By (A2) e0, . . . , ei−1 clearly
does not contain a loose cycle, and hence ei completes a loose cycle in e0, . . . , ei.

For (ii), such an allowed edge order E2 exists since both S and J are connected; simply pick
the overlapping pair or loose cycle first, then pick the remaining edges of S in any way so that
each edge has non-empty intersection with the set of all previously chosen edges. Then pick the
remaining edges of J in the same way.

For (iii), suppose E1 is valid and S is an overlapping pair or loose cycle. Then by the definition
of E1, there are k new vertices in e0, k − 1 new vertices in ea for each a ∈ [i− 1] and at least one
new vertex in ei. Thus the hypergraph J ′ := e0, . . . , ei satisfies

(A3) |V (J ′)| ≥ k + (k − 1)(i− 1) + 1.

If there was an allowed edge order E3 of E(J ′) which contained a k-bad edge, we would have
|V (J ′)| ≤ k + (k − 1)(i − 1) since E3 has one initial edge, at most i− 1 good or bad edges, and at
least one k-bad edge. However this violates (A3) and thus:

(A4) All allowed edge orders of E(J ′) are valid.

Now consider the edge order E2 which starts with the loose cycle or overlapping pair, followed by
the rest of the edges in {e0, . . . , ei} chosen so that each edge has non-empty intersection with the
set of all previously chosen edges, then followed by ei+1, . . . , et (in this order). First note that for
any ea with a ∈ [i+ 1, t], the set of all previously chosen edges is {e0, . . . , ea−1} in both edge orders
E1 and E2. Thus if ea is good or bad in E1, then it is also good or bad in E2. Finally note that by
(A4), the first i+ 1 edges in E2 form a valid edge order of E(J ′). We conclude that E2 is the valid
edge order of E(J) required. �

Claim 16. A hypergraph J does not contain a bicycle if and only if any valid edge order of the
edges of any connected subhypergraph J ′ of J has at most one bad edge.

Proof. First note that if J contains a bicycle, then by considering the edge order ef1 , . . . , efu given
in the definitions of each of the hypergraphs which the bicycle could be, we see immediately that
J contains a connected subhypergraph which has a valid edge order with at least two bad edges.

Now we must show that if there exists a connected subhypergraph J ′ of J and a valid edge order
of E(J ′) with at least two bad edges, then J contains a bicycle.

So let J ′ be such a hypergraph, and let E1 := e0, . . . , et be the valid edge order of E(J ′) with at
least two bad edges. By using all three parts of Claim 15, we may assume without loss of generality
that there exists i ∈ [t] such that we have precisely one of the following:

(B1) i = 1 and e0, e1 forms an overlapping pair;
(B2) e0, . . . , ei forms a loose cycle (with edges ordered cyclically).

Let P1 := e0, . . . , ei and let j ∈ [i + 1, t] be such that ej is the next bad edge in E1 after ei. We
have precisely one of the following:

(B3) 2 ≤ |ej ∩ V (P1)| ≤ k − 1;
(B4) There exists a ∈ [i+ 1, j− 1] such that |ej ∩ ea| ≥ 2 and x = ej ∩V (P1) and y = ea ∩V (P1)

are distinct vertices;
(B5) There exists a ∈ [i + 1, j − 1] such that |ej ∩ ea| ≥ 2 and |(ea ∪ ej) ∩ V (P1)| = 1;
(B6) There exists a ∈ [i + 1, j − 1] such that |ej ∩ ea| ≥ 2 and (ea ∪ ej) ∩ V (P1) = ∅;
(B7) For all a ∈ [0, j − 1] we have |ej ∩ ea| ≤ 1, and |ej ∩ V (P1)| = 1;
(B8) For all a ∈ [0, j − 1] we have |ej ∩ ea| ≤ 1, and ej ∩ V (P1) = ∅.

For each case, it suffices to find a subhypergraph of J ′ which is a bicycle. Throughout we will make
use of the following fact:

(B9) For all a ∈ [j − 1] \ {i}, ea is good in E1.
13



Case 1: (B3) holds. Clearly e0, . . . , ei, ej forms an overlapping pair/loose cycle with handle.
Case 2: (B4) holds. We have precisely one of the following:

• There exists d ∈ [0, i] such that x, y ∈ ed; then ej , ea, ed forms an overlapping pair with
handle.

• There does not exist d ∈ [0, i] such that x, y ∈ ed; without loss of generality suppose that
x ∈ e0 \ e1. If P1 is an overlapping pair, then e0, e1, ea, ej forms a double overlapping pair.
(Note that |ea ∩ ej | ≤ k − 2 since otherwise ej would be k-bad in the edge order E1.) If
P1 is a loose cycle, then let d ∈ [i] be the smallest integer such that y ∈ ed. If d = i, then
ea, ej , e0, ei forms a spoiled cycle; otherwise ea, ej , e0, . . . , ed forms a spoiled cycle.

Case 3: (B5) holds. Let P2 := ea, ej and note that |V (P2) ∩ V (P1)| = 1. It follows that
e0, . . . , ei, ea, ej forms an overlapping pair/loose cycle to overlapping pair.

Case 4: (B6) holds. Again let P2 := ea, ej and note that we have V (P2) ∩ V (P1) = ∅. So
consider a minimal path P3 := ef1 , . . . , efu in {ei+1, . . . , ej−1}\ea from X1 := V (P1) to X2 := V (P2).
By (B9) P3 is a loose path, moreover by definition of P3, we have |V (P1) ∩ V (P3)| = 1 and
|V (P2) ∩ V (P3)| = 1. Additionally if u ≥ 2, then ef2 ∩ V (P1) = ∅ and efu−1 ∩ V (P2) = ∅. Thus P1,
P3 and P2 together form an overlapping pair/loose cycle to overlapping pair.

Case 5: (B7) holds. Since ej has at least one old vertex which is not in e0, . . . , ei, we may
consider a minimal path P2 := ef1 , . . . , efu in {ei+1, . . . , ej−1} from X1 := V (P1) to X2 := ej\V (P1).
First note by (B9) that P2 is a loose path. Now we have precisely one of the following:

• We have (ef1 ∩ ej ∩ V (P1)) 6= ∅; then P3 := ef1 , . . . , efu , ej forms a loose cycle. Now since
|V (P1)∩V (P3)| = 1, P1 and P3 together form an overlapping pair/loose cycle to loose cycle.

• There exists d ∈ [0, i] such that x = ej ∩ ed and y = ef1 ∩ ed are distinct vertices; then
P3 := ed, ef1 , . . . , efu , ej forms a loose cycle. If P1 is an overlapping pair, then let d′ ∈ {0, 1}
be such that d′ 6= d. Then P3 together with ed′ forms a loose cycle with handle. If P1 is
a loose cycle, then let P4 be the loose path ef1 , . . . , efu , ej and define z := j if u = 1 and
z := f2 otherwise. Observe that P1 and P4 are vertex-disjoint except for x = (ej \ efu) ∩ ed
and y = (ef1 \ ez) ∩ ed, and thus together form a double loose cycle.

• We have x = ej∩V (P1) and y = ef1∩V (P1) are not together in any edge of P1; without loss of
generality suppose that x ∈ e0 \ e1. If P1 is an overlapping pair, then e0, e1, ef1 , . . . , efu , ej
forms a spoiled cycle. If P1 is a loose cycle, then define P4, z as in the previous bullet
point. Then observe that P1 and P4 are vertex-disjoint except for x = (ej \ efu) ∩ e0 and
y = (ef1 \ ez) ∩ ed for some d ∈ [i], and thus as before, form a double loose cycle.

Case 6: (B8) holds. Label the q ≥ 2 old vertices of ej as x1, . . . , xq and consider a minimal path
P2 := ef1 , . . . , efu in {ei+1, . . . , ej−1} from X1 := V (P1) to X2 := {x1, . . . , xq}. Let xa := efu ∩ ej
and consider a minimal path P3 := efu+1 , . . . , efv in {ei+1, . . . , ej−1} \E(P2) from X3 := X2 \ xa to
X4 := V (P1) ∪ V (P2). By (B9) both P2 and P3 are loose paths. Now we have precisely one of the
following:

• We have efv∩V (P1) = ∅; let d ∈ [u] be the largest integer such that efd∩efv 6= ∅. Then P4 :=
efd , . . . , efu , ej , efu+1 , . . . , efv forms a loose cycle. If d = 1, then since |V (P1) ∩ V (P4)| =
1, we have that P1 and P4 together form an overlapping pair/loose cycle to loose cycle.
Otherwise let P5 := ef1 , . . . , efd−1

. Then we have |V (P1)∩ V (P5)| = 1, |V (P4)∩ V (P5)| = 1
and V (P1) ∩ V (P4) = ∅. Additionally, if d ≥ 3, then we see that ef2 ∩ V (P1) = ∅ and
efd−2

∩ V (P4) = ∅. Thus P1, P4, P5 form an overlapping pair/loose cycle to loose cycle.
• We have efv∩V (P1) 6= ∅; the properties of the hypergraph e0, . . . , ei, ef1 , . . . , efu , ej , efu+1 , . . . , efv

are identical to that the hypergraph e0, . . . , ei, ef1 , . . . , efu , ej found in Case 5 (up to the
labelling of the edges), so a similar case study yields a bicycle.

�
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For the remainer of the proof, we shall call a valid edge order which contains at least two bad
edges a bad edge order. If a hypergraph J does not contain a bicycle, then by Claim 16, the
existence of a bad edge order of E(J ′) where J ′ is a subhypergraph of J is a contradiction. In the
claims which follow we will always assume that J does not contain a bicycle, and hence whenever
some assumed condition of a case within a case analysis leads to the discovery of a bad edge order,
we can immediately stop and move onto the next case.

Claim 17. Let S be a hypergraph with s edges, which is an overlapping pair, a loose cycle, a
(k, s/2, 2)-star with s ≥ 4, a (k, s, a)-link with s ≥ 3 and a ∈ [⌊k/(s−1)⌋], or a Pasch configuration.
Suppose J is a connected hypergraph which does not contain a bicycle, and does contain S. Then
there exists an allowed edge order E1 := e0, . . . , et such that

(i) e0, . . . , ei forms an overlapping pair or loose cycle, e0, . . . , es−1 forms S, and every edge ej
for j ∈ [s, t] is either good or k-bad;

(ii) For all j ∈ [s + 1, t], if ej is k-bad, then either ej−1 is also k-bad, or there exists a vertex
x ∈ ej which is new in ej−1.

Proof. For (i), by Claim 15(ii) we can assume that the edge order starts with the overlapping pair
or loose cycle, followed by the rest of the edges of S, and that ei is bad. If there exists another
bad edge ej for some j ∈ [s, t], then the edge order E2, found by deleting from e0, . . . , ej all k-bad
edges, is bad. Thus for all j ∈ [s, t], ej must either be good or k-bad.

For (ii) suppose that E1 = e0, . . . , et does not satisfy the property stated in (ii). Then we have
the following:

(C4) There exists j ∈ [s + 1, t] such that ej−1 is good and ej is k-bad, and all vertices in ej
appeared in the edge order before ej−1.

Now consider the edge order E2 := e0, . . . , ej−2, ej , ej−1, ej+1, . . . , et. In this order, ej is still k-bad
and ej−1 is still good; moreover E2 still starts with the overlapping pair or loose cycle. Hence
by continuously performing swaps whenever such a pair ej−1 and ej exists (satisfying (C4)), we
eventually reach an edge order Ep where no such pair exists. Thus in the final edge order Ep the
property stated in (ii) holds. �

Claim 18. Let S be a hypergraph with s edges, which is an overlapping pair, a loose cycle, a
(k, s/2, 2)-star with s ≥ 4, a (k, s, a)-link with s ≥ 3 and a ∈ [⌊k/(s−1)⌋], or a Pasch configuration.
Suppose J is a connected hypergraph which does not contain a bicycle, and does contain S. Finally
suppose E1 := e0, . . . , et is the allowed edge order of E(J) guaranteed by Claim 17, which starts
with the edges of S, in particular with the overlapping pair or loose cycle P1 := e0, . . . , ei. Suppose
that E1 contains at least one k-bad edge amongst the edges es, . . . , et. Then we have precisely one
of the following:

(i) We have that e0, e1, ej−1, ej forms a (k, 2, 2)-star for some j ∈ [s + 1, t]. Moreover either S
is an overlapping pair, or S is a (k, s/2, 2)-star with s ≥ 4 and e0, . . . , es−1, ej−1, ej forms
a (k, s/2 + 1, 2)-star.

(ii) We have that e0, e1, es forms a (k, 3, a)-link, where a = |e0 \ e1|. Moreover either S is an
overlapping pair, or S is a (k, s, a)-link with s ≥ 3 and e0, . . . , es forms a (k, s + 1, a)-link.

(iii) We have that S is a loose cycle with three edges, k = 3, and e0, e1, e2, e3 forms a Pasch
configuration.

Proof. Suppose that ej is the first k-bad edge amongst the edges es, . . . , et (so if j > s then
es, . . . , ej−1 are good). Let ej := {x1, . . . , xk} and let ef1 , . . . , efk be the respective edges in which
each xi is new in E1, noting that without loss of generality we have f1 ≤ · · · ≤ fk.

We have precisely one of the following:

(D1) We have j ∈ [s + 1, t];
15



(D2) We have j = s and P1 = e0, e1 is an overlapping pair;
(D3) We have j = s and P1 = e0, . . . , ei is a loose cycle.

We will go through each of these cases in turn and show that Claims 18(i), (ii) and (iii) hold
respectively.

Case 1: (D1) holds. Without loss of generality, we have precisely one of the following:

(D4) We have 2 ≤ |ej ∩ V (P1)| ≤ k − 1;
(D5) We have |ej ∩ V (P1)| ≤ 1 and for all a ∈ [i + 1, j − 1] we have |ej ∩ ea| ≤ 1;
(D6) There exists a ∈ [i + 1, j − 1] such that |ej ∩ ea| ≥ 2 and |(ej ∪ ea) ∩ V (P1)| ≤ 1;
(D7) There exists a ∈ [i+ 1, j− 1] such that |ej ∩ ea| ≥ 2 and x = ej ∩V (P1) and y = ea ∩V (P1)

are distinct vertices.

Case 1a: (D4) holds. We have that e0, . . . , ei, ea forms an overlapping pair/loose cycle with
handle, a contradiction to J not containing a bicycle.

Case 1b: (D5) holds. Since we have |V (P1) ∩ ej | ≤ 1 and each ea for a ∈ [i + 1, j − 1] is good
in E1, we have

(D8) f2 > i;
(D9) f1 < · · · < fk.

Then consider the edge orders E2 := e0, . . . , ef2 , ej and E3, which is formed by deleting from E2

each edge which is k-bad. We will show that E3 is a bad edge order. First note that clearly E3 is
a valid edge order since all k-bad edges were deleted. By (D8), E2 and hence also E3 both start
with the edges of P1, so have at least one bad edge. Further ej is bad in E2 since precisely two of
the vertices in ej are old in E2, namely x1 and x2, which appear in ef1 and ef2 respectively. Since
ef1 and ef2 both contain a new vertex, they are not k-bad, and so are both contained in E3. Thus
ej is also bad in E3, and so E3 is indeed a bad edge order.

Case 1c: (D6) holds. Let P2 := ea, ej and note that if |V (P1) ∩ V (P2)| = 1, then V (P1)
and V (P2) together form an overlapping pair/loose cycle to overlapping pair, a contradiction to
J not containing a bicycle. Otherwise we have V (P1) ∩ V (P2) = ∅, so consider a minimal path
P3 := eg1 , . . . , egu in {ed : d ∈ [i+1, j−1], d 6= a, ed is good in E1} from X1 := V (P1) to X2 := V (P2).
By the choice of where the edges in P3 are selected from, P3 is a loose path. Additionally we have
|V (P1)∩V (P3)| = 1, |V (P2)∩V (P3)| = 1, and if u ≥ 2, then V (P1)∩eg2 = ∅ and V (P2)∩egu−1 = ∅.
Thus P1, P2, P3 form an overlapping pair/loose cycle to overlapping pair, a contradiction to J not
containing a bicycle.

Case 1d: (D7) holds. First suppose that P1 is a loose cycle and without loss of generality that
x ∈ e0 \ ei. If y ∈ e0, then let E2 := ea, ej , e0. If y ∈ ei \ e0, then let E2 := ea, ej , e0, ei. Otherwise
let E2 := ea, ej , e0, . . . , ei. For each case ej and the last edge are both bad edges in E2. Further it
is easy to see that in each case, E2 is valid, and thus E2 is bad.

Now suppose that P1 is an overlapping pair. If x and y are both in ed for d = 0 or d = 1, then
ej , ea, ed is a bad edge order. So suppose without loss of generality that x ∈ e1 \ e0, and y ∈ e0 \ e1.
If |ej ∩ ea| ≤ k− 2, then e0, e1, ej , ea forms a double overlapping pair. Similarly if |e0 ∩ e1| ≤ k− 2,
then ej , ea, e0, e1 forms a double overlapping pair. Both would contradict J not containing a bicy-
cle, and thus we have |ej ∩ ea| = |e0 ∩ e1| = k − 1. Hence we also have x = e1 \ e0 = ej \ ea and
y = e0 \ e1 = ea \ ej and so in particular, we have that e0, e1, ej , ea forms a (k, 2, 2)-star.

The conclusion of our case analysis is that there exists a ∈ [2, j − 1] such that e0, e1, ea, ej forms
a (k, 2, 2)-star and that P1 is an overlapping pair where x = e1 \ e0 and y = e0 \ e1.

Since E1 is the edge order obtained from Claim 17, we have ej comes immediately after the edge
for which the last of the vertices of ej are new, or following another k-bad edge. Therefore, since
ej−1 is not k-bad and ej ⊆ (e0 ∪ e1 ∪ ea), we conclude that a = j − 1.
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Note that S cannot be a loose cycle or Pasch configuration, since P1 is an overlapping pair. If
S is a (k, s, d)-link for some s ≥ 3, then we have e2 ∩ (ej−1 ∪ ej) = {x, y} and so the edge order
ej−1, ej , e2 is bad. If S is an overlapping pair, then there is nothing further to prove. Finally if S is
a (k, s/2, 2)-star, then clearly e0, . . . , es−1, ej−1, ej forms a (k, s/2 + 1, 2)-star (with central vertices
x and y).

Case 2: (D2) holds. First note that S cannot be a loose cycle or Pasch configuration, since
P1 is an overlapping pair. We have precisely one of the following:

(D10) We have |es ∩ (e0 ∪ e1)| = k;
(D11) We have 2 ≤ |es ∩ (e0 ∪ e1)| ≤ k − 1;
(D12) We have |es ∩ (e0 ∪ e1)| ≤ 1.

Case 2a: (D10) holds. First suppose that |es ∩ e1| ≤ 1. Since e0, e1 is an overlapping pair, we
have

k = |es| = |es ∩ e1| + |es ∩ (e0 \ e1)| ≤ k − 1,

a contradiction, and hence we must have |es∩e1| ≥ 2. Similarly |es∩e0| ≥ 2. Thus any permutation
of the edges e0, e1, es must have that the second edge is bad and the third edge is bad or k-bad.
In order to not obtain a bad edge oder, we must have that the third edge is k-bad in all of these
permutations. Thus by definition e0, e1, es forms a (k, 3, |e0 \ e1|)-link. If S is an overlapping pair,
then there is nothing further to prove. If S is a (k, s/2, 2)-star for some s ≥ 4, then without loss
of generality we have x = e0 \ e1 = e2 \ e3 and y = e1 \ e0 = e3 \ e2. But then since x, y ∈ es, the
edge order e2, e3, es is bad. Finally suppose that S is a (k, s, a)-link. Then for all d, d′ ∈ [0, s − 1]
with d < d′, we have that ed, ed′ forms an overlapping pair, and |ed \ e′d| = |e0 \ e1| = a. By
repeating the argument above for the permutations of e0, e1, es, we see that any permutation of
ed, ed′ , es must have that the second edge is bad and the third is k-bad. Thus e0, . . . , es forms a
(k, s + 1, |e0 \ e1|)-link.

Case 2b: (D11) holds. We have that e0, e1, es forms an overlapping pair with handle, a
contradiction to J not containing a bicycle.

Case 2c: (D12) holds. First note that since es contains vertices outside of e0 ∪ e1, we have
that S cannot be an overlapping pair or a (k, s, |e0 \ e1|)-link, and thus S must be a (k, s/2, 2)-star.
If there exists i, j such that |ei ∩ ej | = k− 1 and |es ∩ (ei ∪ ej)| ≥ 2, then repeat the argument from
Case 2a or 2b with e0 and e1 replaced by ei and ej . For the remaining case we have that for all
i, j such that |ei ∩ ej | = k − 1, we have |es ∩ (ei ∪ ej)| ≤ 1 and in particular, the central vertices
of the two stars are not in es. Now without loss of generality, suppose e2 and e3 is an overlapping
pair, |es∩(e0∩e1)| = 1 and |es∩(e2∩e3)| = 1. Then the edge order e0, e1, e2, es is a bad edge order.

Case 3: (D3) holds. Since S contains a loose cycle, S cannot be an overlapping pair, (k, s/2, 2)-
star or a (k, s, a)-link, and hence S is a loose cycle or Pasch configuration. If S is the latter, then
we have j = 4, and by the symmetry of the Pasch configuration, we have without loss of generality
that |e0 ∩ e4| = 2 and |e1 ∩ (e0 ∪ e4)| = 2. Hence e0, e4, e1 is a bad edge order. Thus S must be a
loose cycle and j = i + 1. Without loss of generality we have precisely one of the following:

• |e0 ∩ ei+1| ≥ 2 and (ei \ e0) ∩ ei+1 = ∅; let E2 := ei+1, e0, . . . , ei. For all a ∈ [i], we have
|(ea \ ea−1) ∩ ei+1| ≤ k − 2, and thus

|ea ∩ (ea−1 ∪ ei+1)| ≤ |ea−1 ∩ ea| + |(ea \ ea−1) ∩ ei+1| ≤ k − 1.

Thus E2 is a valid edge order. Further e0 is bad in E2. Since ei completes the cycle
e0, . . . , ei, it is also bad in E2, and thus E2 is a bad edge order.

• |e0 ∩ ei+1| ≥ 2 and (ei \ e0) ∩ ei+1 6= ∅; let E2 := ei+1, e0, ei. Here we have

2 ≤ |ei ∩ (ei+1 ∪ e0)| ≤ k − 1
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and so E2 is a bad edge order.
• For all a ∈ [0, i], we have |ei+1 ∩ ea| ≤ 1 and (ei \ (e0 ∪ ei−1))∩ ei+1 = ∅; We have that (D9)

holds, and thus E2 := e0, . . . , ef2 , ei+1, ef2+1, . . . , ei is a bad edge order.
• For all a ∈ [0, i], we have |ei+1 ∩ ea| ≤ 1, |(ea \ {ed : d ∈ [0, i], d 6= a})∩ ei+1| = 1 and k ≥ 4;

Then E2 := e0, e1, ei+1, e2 is a bad edge order.
• For all a ∈ [0, i], we have |ei+1 ∩ ea| ≤ 1, |(ea \ {ed : d ∈ [0, i], d 6= a})∩ ei+1| = 1 and k = 3.

Then we have i = 2 and e0, e1, e2, e3 forms a Pasch configuration.

Only the last case does not produce a bad edge order, and thus we have that e0, e1, e2, e3 forms a
Pasch configuration, as required. �

We are now ready to prove our two deterministic lemmas.

Proof of Lemma 13. If there exists a simple edge order of E(H ′), then we have (i), so suppose that
any edge order of E(H ′) contains at least one bad or k-bad edge. Now by Claim 15 we may assume
that E1 := e0, . . . , et is an allowed edge order of E(H ′) which starts with an overlapping pair or
loose cycle P1 := e0, . . . , ei. Then using Claim 17 applied with S := P1, we have that every edge
ei+1, . . . , et is either k-bad or good. If all of these edges are good, then we have (ii) or (iii), so are
done. So assume that there is at least one k-bad edge. Then using Claim 18 applied with S := P1,
we have that H ′ contains a (k, 2, 2)-star, a (k, 3, |e0 \ e1|)-link or a Pasch configuration. We can
now repeatedly use Claims 17 and 18 as follows:

(a) Let S be the (k, p, 2)-star, a (k, p+1, |e0 \e1|)-link or a Pasch configuration found previously
(where p ≥ 2). By Claim 17, there exists an allowed edge order of E(H ′) which starts with
all of the edges of S. If there are no further k-bad edges, then we have (iv), (v) or (vi). If
there are, then move to step (b).

(b) By Claim 18, either S was a (k, p, 2)-star and H ′ contains a (k, p + 1, 2)-star, or S was a
(k, p + 1, |e0 \ e1|)-link and H ′ contains a (k, p + 2, |e0 \ e1|)-link. Now return to step (a).

Since H ′ is a finite hypergraph, this process must eventually stop, and hence we have (iv), (v) or
(vi). �

For the proof of Lemma 14, we simply find an explicit strategy for Breaker to win the game
played on H ′.

Proof of Lemma 14. By Lemma 13, H ′ may contain a subhypergraph S for which there exists
an edge order which starts with all of the edges of S, and all subsequent edges are good: The
subhypergraph S if it exists must be

Case 1: A (k, u, 2)-star for some integer u ≥ 2;
Case 2: A (k, u, a)-link for some u, a ∈ N with u ≥ 3 and a ≤ ⌊k/(u− 1)⌋;
Case 3: A Pasch configuration;
Case 4: A loose cycle;
Case 5: An overlapping pair.
Let the edges of S be e0, . . . , es−1, and the rest of the good edges es, . . . , et. (If S does not exist,

then set s = 0.)
Breaker uses the following strategy.

• If Maker selects a vertex in S, then Breaker does the following, corresponding to the cases
above for what S could be.

Case 1: There are 2u edges; suppose without loss of generality that they are labelled so
that ei and ei+u have intersection k − 1 for each i ∈ [0, u− 1]. Suppose Maker has selected
a vertex in ej ∩ ej+u for j ∈ [0, u − 1]. Then Breaker if he can, also selects such a vertex.
Otherwise he selects an arbitrary vertex.
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Case 2: Breaker selects an arbitrary vertex in S if he can. Otherwise he selects an
arbitrary vertex.

Case 3: If Maker has two out of three vertices from one of the edges of S, Breaker
chooses the final vertex from this edge. Otherwise Breaker chooses an arbitrary vertex in
S if he can. If he cannot then he chooses an arbitrary vertex.

Case 4: Assume without loss of generality that the edges are ordered cyclically e0, . . . , es−1.
If Maker has selected an element from ei \ ej where i ∈ [s − 1] and j = i − 1, or i = 0
and j = s − 1, then Breaker if he can, also selects such a vertex. Otherwise he selects an
arbitrary vertex.

Case 5: These two edges are e0 and e1. If Maker has selected an element from e0 ∩ e1,
then Breaker if he can, also selects such a vertex. Otherwise he selects an arbitrary vertex.

• If Maker selects any other vertex, let i be such that ei is the edge in which this vertex is
new. If Breaker can, he also selects a vertex which is new in ei. Otherwise he selects an
arbitrary vertex.

We must now show that at the end of the game, Maker has failed to claim every vertex of any
edge in H ′. First observe that Maker has failed to claim any of the edges es, . . . , et. Let i ∈ [s, t].
In the edge order, ei is good, and so there exists at least k − 1 ≥ 2 vertices xi and yi which are
new in ei (they do not appear in any edge ej for j < i). By part two of the strategy above, Maker
cannot claim all of the vertices of ei since as soon as she tries to claim one of the at least two new
vertices in ei, Breaker will claim another new vertex in ei. Thus if Maker has won the game, she
must have claimed an edge from S. However, we will now run through each case, corresponding to
the cases for S in Breaker’s strategy above, showing that Maker has not claimed such an edge.

Case 1: Let j ∈ [0, u− 1] and suppose Maker is trying to claim ej or ej+u. There are k− 1 ≥ 2
vertices in ej ∩ ej+u and so Maker cannot claim all of the vertices of ej or ej+u since as soon as
she tries to claim one of the vertices which lie in ej ∩ ej+u, Breaker will claim another vertex in
ej ∩ ej+u. Since all edges of S are of this form, Maker cannot claim any edge of S.

Case 2: Note that a (k, u, a)-link has at most 2k−2 vertices. Hence by Breaker always claiming
any vertex in S whenever Maker does, he ensures that Maker can claim at most ⌈(2k−2)/2⌉ = k−1
of the vertices in S, therefore does not have enough to claim a full edge of S.

Case 3: Breaker always tries to claims a vertex in S if Maker does, hence Maker claims at most
three of the six vertices in S. Note that any pair of vertices in S lie together in at most one edge.
Hence by Breaker selecting the third vertex of an edge if Maker has selected the first two, Maker
is never able to claim all three vertices of an edge of S.

Case 4: Suppose Maker is trying to claim ei for some i ∈ [0, s − 1]. Let j = i− 1 if i ≥ 1, and
let j = s − 1 if i = 0. There are k − 1 ≥ 2 vertices in ei \ ej and so Maker cannot claim all of the
vertices of ei since as soon as she tries to claim one of the vertices in ei \ ej , Breaker will claim
another vertex in ei \ ej. Since ei was arbitrary, Maker cannot claim any edge of S.

Case 5: There are at least two vertices in e0∩e1 and so Maker cannot claim all of the vertices in
e0 or e1 since as soon as she tries to claim one of the vertices in e0 ∩ e1, Breaker will claim another
vertex in e0 ∩ e1. �

(Q3) A probabilistic lemma.

Lemma 19. Given B is an ℓ× k matrix, if ℓ divides k − 1, then with high probability H does not
contain a bicycle.

Proof. Let Rbt be a random variable counting the number of bicycles which are in H. By Proposi-
tion 8, it suffices to show that the expectation of Rbt converges to zero as n tends to infinity.

We let Rb1 , . . . , Rb8 respectively count the number of hypergraphs J := ef1 , . . . , efu in H with
u ≤ log n, for which J corresponds to
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(i) a spoiled cycle;
(ii) a double overlapping pair;
(iii) a double loose cycle;
(iv) an overlapping pair with handle;
(v) a loose cycle with handle;

(vi) a loose cycle to loose cycle;
(vii) an overlapping pair to overlapping pair;
(viii) an overlapping pair to loose cycle.

Note that each of these hypergraphs contain a loose path of length u− 2; hence let Rb9 count the

number of loose paths ef1 , . . . , efu in H with u ≥ (log n) − 1. Then we have Rbt ≤
∑9

i=1Rbi and
hence it suffices to show E(Rbi) = o(1) for each i. The cases for i = 1, 5, 9 were covered by Rödl
and Ruciński’s proof, however we will repeat them here for clarity.

Suppose that J := ef1 , . . . , efu is the valid edge order corresponding to one of the nine cases
listed above given by the definitions earlier. When calculating an upper bound on the expected
number of copies of some hypergraph J in H, we need to first bound the number of ways to draw J
(i.e. bound the number of non-isomorphic hypergraphs which J could be - e.g. for a spoiled cycle
ef1 , . . . , efu we need to choose the size of the intersection ef1 ∩ ef2 , and also the number of edges
u). Second, we should consider J as being drawn, and bound the number of ways to pick elements
from [n]p to represent each vertex of J . Thus we are interested in bounding the number of ways of
drawing each J and also the number of ways of choosing representatives from [n]p for each vertex
of J .

Each hypergraph J which we wish to count can be written as a union of at most three hypergraphs
P1, P2, P3, for which each of these are one of an overlapping pair, loose cycle, or loose path. Further,
if P2 and P3 exist, we have |V (P1)∩V (P2)| ≤ k−1, |V (P2)∩V (P3)| ≤ k−1 and |V (P1)∩V (P3)| = ∅.
Thus for each i ∈ [2] we have at most (|V (Pi)| · |V (Pi+1)|)k−1 choices for how to make Pi and Pi+1

intersect. There is only one way to draw a loose cycle or loose path, and at most k − 2 ways to
draw an overlapping pair. Further for each J in (i)–(viii), we have |V (J)| ≤ k log n. Thus the total
number of ways of drawing each J in (i)–(viii) is at most polylogarithmic in n.

Recall that B is a strictly balanced matrix of dimension ℓ× k, and hence for every W ⊆ [k] for
which 2 ≤ |W | < k we have

|W | − 1

|W | − 1 + rank(BW ) − ℓ
<

k − 1

k − 1 − ℓ
.(3)

Additionally we have m(B) = k−1
k−1−ℓ . Now let p < cn−1/m(B) = cn−(k−ℓ−1)/(k−1) where we choose

c to be a constant satisfying

c < 1/(ke2).(4)

Given i ∈ [u] and J = ef1 , . . . , efu has been drawn, we wish to bound the expected number of ways
of picking efi to be an edge with q old elements. Such an edge represents a solution x to Bx = b′,
where q of the xi have already been chosen. Let these indices be W ; we are now attempting to solve
BWx′ = b′′ for some vector b′′ of k − q elements. Note also we must choose one of the q! possible
assignments of the q indices in W to the q old elements. Thus the expected number of ways, Y , of
picking the k − q new vertices for ei, satisfies

Y ≤
∑

W⊆[k]

|W |=q

q!nk−q−rank(B
W

)pk−q.

We wish to bound Y . By rearranging the inequality given by (3), we have (if |W | ≥ 2)

ℓ(k − |W |) − (k − 1)rank(BW ) < 0.
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In fact since all quantities above are integers and ℓ divides k − 1, we must have

ℓ(k − |W |) − (k − 1)rank(BW ) ≤ −ℓ.(5)

Thus we have

nk−|W |−rank(B
W

)pk−|W | ≤











ckn
ℓ

k−1 if |W | = 0;

ck−1 if |W | = 1;

cn
−ℓ
k−1 if 2 ≤ |W | ≤ k − 1.

(6)

(Note that here we used rank(BW ) = ℓ if |W | = 1; see Proposition 4.3 in [10].)
For each hypergraph J in (i)–(viii), there is always precisely one initial edge, u− 3 good edges,

and two bad edges. Thus the number of choices we have for picking which element of [n]p to use
for each vertex in J has expectation which is at most:

nk−ℓpk









∑

W⊆[k]

|W |=1

nk−|W |−rank(B
W

)pk−|W |









u−3







∑

W⊆[k]

2≤|W |≤k−1

|W |!nk−|W |−rank(B
W

)pk−|W |









2

(6)
≤ (k!)2 · (kc)u · n−ℓ/(k−1).

We conclude that for each i ∈ [1, 8] we have E(Rbi) < O(n−ℓ/(k−1) · polylog(n)) = o(1).
Finally, note that a loose path with at most n vertices clearly has at most n edges. Further,

again using Proposition 4.3 in [10], we have k ≥ ℓ + 2. Thus we have

E(Rb9) ≤O









n
∑

u≥(logn)−1

nk−ℓpk
u−1
∏

i=1









∑

W⊆[k]

|W |=1

nk−|W |−rank(B
W

)pk−|W |

















(6)
≤ O



n
ℓ

k−1

n
∑

u≥(log n)−1

(kc)u





(4)
= o(1),

as required. �

Putting the parts together. To reiterate the main points of the proof of Theorem 3(ii), we
finish by showing that it follows easily from the lemmas in each of the parts (Q1)–(Q3).

Proof (summary) of Theorem 3(ii). Let A be a fixed integer-valued matrix of dimension ℓ′ × k′

and b a fixed integer-valued vector of dimension ℓ′, such that the pair (A, b) is irredundant, and
A is irredundant and satisfies (∗). In order to prove w.h.p. Breaker wins the (A, b)-game on
[n]p, by Proposition 12, it suffices to show w.h.p. Breaker wins the (B, b′)-game on [n]p, where
(B, b′) is the associated pair of (A, b). We rephrase the problem to a game on the hypergraph
H := H([n]p, B, b′). We then show that if a component H ′ of H does not contain a bicycle, then it
satisfies certain conditions stated in Lemma 13. Breaker wins the game played on such a component
by Lemma 14. Supposing that B is an ℓ × k matrix where ℓ divides k − 1, then by Lemma 19,
w.h.p. H (and therefore each component of H) does not contain a bicycle. Finally since Breaker
can win the game on each component of H, he wins the game on H, and thus wins the (A, b)-game
on [n]p w.h.p., as required. �
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4. Concluding remarks and Proof of Theorem 2

4.1. Improvements on Breaker’s strategy. The strange fact that our proof of Theorem 3(ii)
works when B(A) is an ℓ × k matrix such that ℓ divides k − 1 follows precisely via inequality
given by (5). We found an equivalence between bicycles and valid edge orders with two bad edges
in Claim 16. Suppose we extended our language to p-cycles (corresponding to valid edge orders
with p bad edges), and were able to find a winning strategy for Breaker playing the game on any
component of H that does not contain a p-cycle. We could then obtain a proof for matrices A for
which the associated matrix B of dimension ℓ × k satisfies ℓ = p − 1 (without the need for any
divisibility conditions). However given the number of cases that arose from considering bicycles, it
would seem unfeasible to attempt this.

For a similar reason we did not consider the alternate problem of allowing Maker to try to obtain
solutions to Ax = b which are not k-distinct. Allowing solutions with repeats would make the
associated hypergraphs non-uniform (e.g. for x + y = z there would be edges of size 2 and 3)
and therefore require a more in-depth case analysis. Note that Kusch, Rué, Spiegel and Szabó do
consider the analagous problem in the biased version; see Section 4.3 of [14].

Lemma 13 gives a precise description of hypergraphs with at most one bad edge and a fixed
number of k-bad edges. What can be said of hypergraphs with at most p bad edges (for fixed p)
and a fixed number of k-bad edges? Also note that our definition of a valid edge order (where
every edge after the first one is either good or bad, i.e. there are zero k-bad edges) is a hypergraph
generalisation of a tree. This is since trees have precisely this property in the graph case; a 2-bad
edge here is an edge which completes a cycle. Thus it would be interesting to obtain a more detailed
description of hypergraphs with a valid edge order.

Observe the following connection of this with Rödl and Ruciński’s proof of the 0-statement of
Theorem 4. It is very easy to 2-colour a hypergraph with a valid edge order so that it has no
monochromatic edges; simply go through the edges in order, colouring the (at least one) new
vertex of an edge ei the colour which was not assigned to one of the old vertices of ei. Thus if the
hypergraph associated to [n]p has a valid edge order, then [n]p can be 2-coloured so that there are
no monochromatic solutions to Ax = 0.

4.2. Matrices which do not satisfy (∗). Matrices A which are irredundant and do not satisfy
(∗) traditionally have not received as much attention. For such a matrix, N is not (A, 0, r)-Rado
for any r ≥ 2 since we can 2-colour N and avoid any monochromatic solutions to Ax = 0 (see
Section 4.1 in [10]). Also note that m(A) is ill-defined in this case. Further in the bias version of
the (A, b)-game, recall that Theorem 1(ii) states that Breaker wins the (1:2) (A, b)-game on [n]. All
of these facts follow easily via use of the row of the matrix which (under Gaussian elimination) has
at most two non-zero entries. We show through some examples that the threshold for the random
(A, b)-game is at least slightly less trivial.

Theorem 20. Let A be a fixed integer-valued matrix of dimension ℓ×k and b a fixed integer-valued
vector. Given the pair (A, b) is irredundant and A is irredundant and does not satisfy (∗), we have
the following:

(i) If A =
(

α −β
)

is such that α, β are non-equal positive integers, then Maker wins the

(A, b)-game on [n]p w.h.p. if p ≫ n−1/3.

(ii) Breaker wins the (A, b)-game on [n]p w.h.p. if p ≪ n−1/3.

(iii) If A =

(

α −β 0
0 α −β

)

is such that α, β are non-equal positive integers, then Breaker wins

the (A, 0)-game on [n] (i.e. the non-biased non-random game; thus with probability equal to
one, Breaker wins the (A, 0)-game on [n]p for any 0 < p < 1).
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Proof. For the (A, b)-game in (i), since (A, b) is irredundant, we have that there exists a solution
to αx1 − βx2 = b in N with x1 6= x2. Thus we have that t := gcd(α, β) must divide b: hence we
may assume without loss of generality that gcd(α, β) = 1.

Maker wins the (A, b)-game in (i) if there exists a distinct triple {(αx−b)/β, x, (βx+b)/α} ⊆ [n]p,
since she can have the first pick and choose x. Then she can complete a solution by picking whichever
of (αx− b)/β and (βx + b)/α remains unchosen after Breaker’s turn.

Claim 21. There exists a fixed z ∈ [0, αβ − 1] (depending on α, β, b) such that whenever x ≡ z
mod αβ, the triple {(αx − b)/β, x, (βx + b)/α} is contained in the integers.

Proof. Let x ∈ Z. Note that we have (βx+ b)/α ∈ Z whenever βx ≡ −b mod α. Since gcd(α, β) =
1, there exists y ∈ [0, α − 1] such that whenever x ≡ y mod α, we have (βx + b)/α ∈ Z. Similarly
there exists y′ ∈ [0, β − 1] such that whenever x ≡ y′ mod β, we have (αx− b)/β ∈ Z. Combining
these two facts, the Chinese remainder theorem implies that there exists z ∈ [0, αβ − 1] such that
whenever x ≡ z mod αβ we have (βx + b)/α ∈ Z and (αx− b)/β ∈ Z. �

Call triples which satisfy the property in Claim 21 good. From the claim, for sufficiently large
n we deduce that [n] contains n/(2α2β2) good triples. Further, each x ∈ [n] is in at most three
good triples. Thus, there is a collection X of at least n/(6α2β2) good triples in [n] that are all

pairwise disjoint. The expected number of triples in X in [n]p is Θ(np3). Hence if p ≫ n−1/3 then
by Proposition 9 w.h.p. there exists x such that {(αx− b)/β, x, (βx + b)/α} ⊆ [n]p, so Maker wins
as required.

If p ≪ n−1/3, then the expected number of triples is o(1), so via Proposition 8 w.h.p. there are no
triples of this form at all. For the game in (ii), since A is irredundant but does not satisfy (∗), under
Gaussian elimination there exists one row of A which consists of α,−β (where α and β are non-
equal positive integers) and zeroes, and thus any solution to Ax = b contains the positive integers
(βz + c)/α and (β((βz + c)/α) + c)/α for some rational number z and fixed integer c = c(A, b).
Since w.h.p. there are no triples (replacing b with c and x with z), whenever we have the pair
(βz + c)/α, (β((βz + c)/α) + c)/α ∈ [n]p, then z, (β((β((βz + c)/α) + c)/α) + c)/α /∈ [n]p. Thus
Breaker can devise a pairing strategy to win the game.

For (iii), as in (i) we may assume without loss of generality that gcd(α, β) = 1. Then every
solution in [n] is a triple of the form {α2x, αβx, β2x} for some x ∈ N. Every element of [n] which
could be in a solution is of the form αiβjy with y ∈ N, where α and β do not divide y, and i, j
are non-negative integers where at most one of i or j is zero. Using these facts, Breaker has a
strategy to win the game. Indeed, Breaker can create a pairing strategy as follows: pair αiβjy with
αi+1βj−1y whenever i is even and j ≥ 1. Then observe that for any triple {α2x, αβx, β2x} with
x ∈ N, the middle element is paired with one of the two end elements, so Maker cannot obtain a
triple. �

4.3. Proof of Theorem 2. We conclude the paper by finishing the proof of Theorem 2.

Theorem 2 Let A be a fixed integer-valued matrix of dimension 1 × k and b a fixed integer (i.e.
Ax = b corresponds to a single linear equation a1x1 + · · ·+ akxk = b with the ai non-zero integers).

(i) If the pair (A, b) is irredundant and A is irredundant and satisfies (∗), then the (A, b)-game

on [n]p has a threshold probability of Θ(n− k−2
k−1 );

(ii) If the pair (A, b) is irredundant and A is irredundant and does not satisfy (∗), then the

(A, b)-game on [n]p is Maker’s win if p ≫ n−1/3 and Breaker’s win if p ≪ n−1/3;
(iii) If the pair (A, b) is irredundant and A is not irredundant, then

(a) the (A, b)-game on [n]p is Breaker’s win w.h.p. for any p = o(1) if the coefficients ai
are all positive or all negative;
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(b) the (A, b)-game on [n]p is Maker’s win if p ≫ n−1/3 and Breaker’s win if p ≪ n−1/3

otherwise;
(iv) If the pair (A, b) is not irredundant, then the (A, b)-game on [n] is (trivially) Breaker’s win.

Proof. (i) As discussed in the introduction, this follows immediately from Theorem 3.
(ii) We have k ≥ 3 if and only if A satisfies (∗). Hence if A does not satisfy (∗) and is a linear

equation, we must have k = 2. So write A =
(

α β
)

, where α, β ∈ Z. Note that since
A is irredundant there exist x1, x2 ∈ N such that αx1 + βx2 = 0 where x1 6= x2. Thus
we must have α > 0 and β < 0 or vice versa, and α 6= −β. Thus the result follows from
Theorem 20(i) and (ii).

(iii) Note that any linear equation a1x1+. . . akxk = 0 with k ≥ 3 clearly has a k-distinct solution
in N if there exists at least one positive ai and at least one negative aj , for some i, j ∈ [k].
The same holds for k = 2 unless if a1 = −a2. Thus, since A is not irredundant, we have
one of the following:
(a) the ai are all positive integers or all negative integers;
(b) we have k = 2 and a1 = −a2.
For (a), we may assume without loss of generality that a1, . . . , ak and therefore b are positive
integers. For such a game there are a finite number of k-distinct solutions in N, all of which
are contained in [b]. Thus for any p = o(1), w.h.p. there are no solutions in [n]p by
Proposition 8, so the game is Breaker’s win. For (b), the existence of any triple {x −
b/a1, x, x + b/a1} leads to a win for Maker, meanwhile if no triples exist then Breaker can
win by a pairing strategy. Since the number of such triples in [n]p is of order np3, the result
follows by a similar argument to that given for Theorems 20(i) and (ii).

(iv) The (A, b)-game is trivially Breaker’s win, since there are no winning sets in N.
�

Acknowledgements

The author would like to thank Christoph Spiegel for helpful conversations on [14]. The author
is also grateful to Andrew Treglown for his general support and encouragement for writing this
paper, and for reading the manuscript. Finally the author thanks the anonymous referees for their
helpful comments and suggestions.

References

[1] J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.
[2] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory. Cambridge University Press (2008).
[3] J. Beck, Van der Waerden and Ramsey type games, Combinatorica 1 (2) (1981), 103–116.
[4] M. Bednarska and T.  Luczak, Biased positional games for which random strategies are nearly optimal, Combi-

natorica 20 (4) (2000), 477–488.
[5] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1), (1987), 35–38.
[6] D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Ann. Math. 84 (2016), 367–454.
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