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Abstract. We derive a representation formula for harmonic polynomials and Laurent polynomials
in terms of densities of the double-layer potential on bounded piecewise smooth and simply connected
domains. From this result, we obtain a method for the numerical computation of conformal maps
that applies to both exterior and interior regions. We present analysis and numerical experiments
supporting the accuracy and broad applicability of the method.
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1. Introduction. This paper presents an integral equation method for numerical
conformal mapping, using an integral equation based on the Faber polynomials (on
the interior) and their counterpart, Faber-Laurent polynomials (on the exterior). Our
method is applicable to computing the conformal map from the interior and exterior
of domains bounded by a piecewise smooth Jordan curve Γ onto the interior/exterior
of the unit disk. Like most techniques for conformal mapping, this method relies on
computing a boundary correspondence function between Γ and the boundary of the
target domain. From the boundary correspondence, the mapping function can be
derived via a Cauchy integral [25, p. 381].

The numerical construction of a function that maps the exterior of a simply
connected region conformally onto the exterior of some other region arises in a number
of applications including fluid mechanics [8, Ch. 4.5], the generation of finite element
meshes for problems in fracture mechanics [45], the design of optical media [31], the
analysis of iterative methods [15,16,40], and the solution of initial value problems [32].
The exterior mapping function’s close relation to the Faber polynomials [11, 41]
enables a number of the latter applications. Complex analytic functions defined inside
a Jordan domain admit a near-optimal polynomial expansion in a basis of Faber
polynomials [11, 19, 41]. By means of the Faber transform, this can be exploited
numerically to perform polynomial or rational approximation [18]. A key step of this
approximation procedure is the evaluation of the Faber polynomials themselves, which,
given a numerically derived exterior boundary correspondence, can be achieved with
an FFT-based method [17] or by applying Lemma 3.1 in this paper.

As a technical tool, we introduce a representation formula of complex-valued
harmonic polynomials and Laurent polynomials in terms of the double-layer potential.
The double-layer potential with a complex-valued density σ is given by

Dσ(x) = − 1

2π

∫
Γ

σ(y) n̂ · ∇y log |y − x| ds(y), x /∈ Γ.

We study the density functions σ that give rise to polynomials on the interior in
terms of the exterior Riemann map f+. Specifically, in this paper, we prove that the
images of the mth powers of the values of the exterior map (f+)

m
used as a density

under D are scaled Faber polynomials of degree m. Since the Faber polynomials form
a basis for all complex polynomials, this result characterizes all densities that give rise
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to polynomials under the double-layer operator. On the exterior domain, we study the
representation of complex Laurent polynomials. We find, analogously to the interior
case, that the images of the mth powers of values of the interior map (f−)m under
D are scaled Faber-Laurent polynomials on the exterior domain, where f− is the
interior mapping function. In both the polynomial and the Laurent polynomial case,
letting m = 1 leads to a uniquely solvable integral equation from which the boundary
correspondence of the interior or exterior map may be recovered by the solution of an
integral equation identical to that of an appropriate Dirichlet problem of the Laplace
equation.

Furthermore, we demonstrate how a Nyström discretization [34] using high-order
accurate quadrature rules achieves high-order accuracy in the computed density. Our
method is of practical interest because of the ready availability of fast solvers for
second kind equations involving the double-layer potential. In the numerical examples
of this paper we use an accelerated solver consisting of GMRES [38] with the required
matrix-vector product driven by the Fast Multipole Method [9]. Since the number
of GMRES iterations in our scheme does not depend on the mesh resolution, this
solution scheme has an overall complexity of O(n log n), where n is the number of
discretization points on the boundary.

Compared with the second-kind integral equation formulations in the existing
literature, our method is perhaps operationally the most similar to Lichtenstein’s
method [4,48], which is also based on the double-layer (Neumann) kernel, and methods
based on the Kerzman-Stein kernel [28, 33]. Like our method, these methods are
based on an integral equation whose solution is an easily invertible function of the
boundary correspondence, and they can be used for both interior and exterior mapping.
Similarly, these integral equation methods are also suitable for the Nyström method
with trapezoidal rule. Nevertheless, our method differs from these because it is the
only one which we are aware to make use that the images of powers of the Riemann
map under the double-layer operator are Faber/Faber-Laurent polynomials.

Other integral equation formulations (e.g. due to Berrut [3], Warschawski [3], or
Banin [25]) produce the derivative of the boundary correspondence, from which the
boundary correspondence may be recovered by numerical integration. The integral
equations of Gershgorin [25] and Kantorovich-Krylov [25,27] may be used to recover
the boundary correspondence directly, but since the solution is not periodic, this
requires somewhat careful numerical treatment. Perhaps the most well-known first-
kind equation is Symm’s equation, which has been applied to the computation of both
interior and exterior mapping functions [42,43].

For methods for the reverse problem, that is, finding a conformal map from the
interior/exterior of the unit disk onto the interior/exterior of a given domain, see, for
instance [12,13,24]. For a comprehensive overview of methods for interior and exterior
mapping, including methods not based on linear boundary integral equations, see
Wegmann [48], Gaier [22], or Henrici [25]. The use of iterative methods and acceleration
techniques also has a long history in the the solution of systems of equations arising in
conformal mapping; see [35,44,47] for examples.

The remainder of this paper is organized as follows: In Section 2.1, we recall some
facts about harmonic functions defined on interior or exterior domains, in particular
relating to potential theory and the Cauchy integral, and in Section 2.2, we discuss
the Faber and Faber-Laurent polynomials. Based on these preliminaries, we introduce
our main technical results regarding the representation of harmonic polynomials and
Laurent polynomials by double-layer potentials in Section 3. This allows us to develop
a method for interior and exterior conformal mapping and a high-order discretization
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method thereof, in Sections 4 and 5. We close with some numerical experiments on
smooth and non-smooth domains in Section 6.

2. Preliminaries. In this paper, we work with a simple, closed, positively ori-
ented curve Γ, which we assume to be piecewise smooth. The following conventions
will be in use throughout the paper.

We will refer to the inner component of the curve Γ as Ω− and to the outer
component as Ω+. Without loss of generality, we will assume 0 ∈ Ω−.

We will use CR to denote the set {z : |z| = R}.
The interior Riemann map f− denotes the complex analytic bijection that maps

Ω− onto {z : |z| < 1} such that f−(0) = 0 and (f−)′(0) is a positive real number,
ensuring uniqueness.

Similarly, we define the exterior Riemann map f+ as the complex analytic bijection
that maps Ω+ onto {z : |z| > 1} for which lim

z→∞
f+(z) = ∞ and lim

z→∞
(f+)

′
(z) is a

positive real number, again ensuring uniqueness.
Carathéodory’s theorem [36] implies that the interior and exterior Riemann map

continuously extend to the boundary Γ, establishing a one-to-one correspondence
between Γ and the unit circle C1. By the boundary correspondences we will mean the
real multi-valued mappings θ− and θ+, defined on Γ, such that θ±(w) = arg f±(w).

2.1. The Double-Layer Potential. The double-layer potential integral oper-
ator with density function ϕ : Γ → C gives rise to a harmonic function f on the
complement of Γ

(2.1) f(x) = Dϕ(x) = − 1

2π

∫
Γ

ϕ(y) n̂ · ∇y log |y − x| ds(y), x ∈ C \ Γ.

Here n̂ · ∇y denotes the derivative with respect to the variable y along the outward-
facing unit normal n̂ at y. Where the normal is not defined or discontinuous, such as
at a corner point, the kernel has a discontinuity.

Since x /∈ Γ, in a neighborhood of y the value |y−x| is nonzero and so the logarithm
locally possesses a complex analytic branch. The Cauchy-Riemann equations then
imply the relationship

n̂ · ∇y log |y − x| = Re n̂ · ∇y log(y − x) = Im τ̂ · ∇y log(y − x)

between the normal derivative and the derivative with respect to the unit tangential
vector to the curve, τ̂ . Since

τ̂ · ∇y(log(y − x)) = lim
h→0

1

h
[log (y − x+ hτ̂)− log(y − x)] =

τ̂(y)

y − x
,

it follows that the double-layer potential Dσ can be written as

(2.2) f(x) = Dσ(x) = − 1

2π

∫
Γ

σ(y)

(
Im

τ̂(y)

y − x

)
ds(y).

The kernel appearing in (2.2) is also referred to the Neumann kernel [25, Def. 15.9-4].
The equality (2.2) establishes a relationship between the double-layer potential

and the Cauchy integral operator. Since τ̂(y)ds(y) = dy and Re iα = − Imα, we have

(2.3) f(x) = − 1

2πi

∫
Γ

σ(y)

(
Re

1

y − x

)
dy,

and thus the kernel of the double-layer potential coincides with the real part of the
Cauchy kernel [30, eqn. (7.37)].
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f+

f−

Fig. 2.1. Graphical representation of the Riemann maps for the interior/exterior of a Koch
snowflake with 192 corners.

2.2. Faber Polynomials and Faber-Laurent Polynomials. Let R > 0 be
sufficiently large that the domain Ω− is contained within a disk of radius R centered
at 0. Then, as f+ is one-to-one for |z| > R, it follows that g+(w) := f+(1/w) is
one-to-one for 0 < |w| < 1/R. The pole of g+ at w = 0 is simple: Consider the root of
1/g+ at the origin. If it were a root of multiplicity m greater than one, then there
would exist an ε ∈ C so that the equation 1/g+ = ε has m simple roots [10, Thm. 7.4],
in contradiction to g+ being one-to-one. As a result, g+ has the Laurent expansion

g+(w) = f+
( 1

w

)
=
α1

w
+ α0 + α−1w + α−2w

2 + · · · , 0 < |w| < 1/R.

This implies that f+ has the series representation

(2.4) f+(z) = α1z + α0 +
α−1

z
+
α−2

z2
+ · · · , |z| > R.

The mth Faber polynomial pm(z) is defined as the terms of nonnegative power in
the series for f+(z)m. It is a polynomial of degree m. Accordingly, f+(z)

m
may be

written as

(2.5) f+(z)
m

= pm(z) + p̂m(z)

where p̂m(z) is a decaying (as z →∞) function of z defined on Ω+.
The mth Faber-Laurent polynomial is defined in a similar manner using the

function the g−(w) := 1/f−(w) mapping Ω− onto the exterior of the unit disk. This
function, being injective on Ω−, has a pole of order 1 at w = 0, and so for small enough
r > 0 admits the Laurent expansion

g−(w) =
1

f−(w)
=
β−1

w
+ β0 + β1w + β2w

2 + · · · , 0 < |w| < r.

The mth Faber-Laurent polynomial qm is defined as the terms of negative power in
the Laurent series for g−(w)

m
. We have the representation

g−(w)
m

= qm(z) + q̂m(z),

where q̂m(z) is a complex analytic function and qm(z) has a single order-m pole at 0.
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3. Representation of Harmonic Polynomials and Laurent Polynomials.

Lemma 3.1. Let m > 0 be an integer. For all z ∈ Ω−, the mth Faber polynomial
pm satisfies

(3.1) pm(z) =
1

π

∫
Γ

f+(y)
m
n̂ · ∇y log |y − z| ds(y).

Effectively, the lemma states that the double-layer potential ‘filters out’ the
decaying part of (2.5).

Proof. Let z ∈ Ω−. Denote the by I(z) the integral

I(z) =
1

π

∫
Γ

Re
(
f+(y)m

)
n̂ · ∇y log |y − z| ds(y).

We provide a proof that I(z) = Re pm(z), thus handling the case of the real part of
pm. The argument for the imaginary part of pm is completely analogous to the one
for the real part.

Because |f+(y)| = 1 for y ∈ Γ, we can can write Re (f+(y)m) as

Re
(
f+(y)m

)
=

1

2

(
f+(y)m +

1

f+(y)m

)
.

Using this identity and the identification of the double-layer kernel with the real part
of the Cauchy kernel (2.3), we can represent I(z) as

(3.2) I(z) = Re
1

2πi

∫
Γ

(
f+(y)m +

1

f+(y)m

)
1

y − z
dy.

We proceed by breaking the integral on the right hand side of (3.2) into parts. We
show

(3.3)
1

2πi

∫
Γ

f+(y)m

y − z
dy = pm(z).

We write
f+(y)m = pm(y) + p̂m(y)

where p̂m(y) goes to 0 as |y| → ∞. From the Cauchy integral formula, we have

1

2πi

∫
Γ

pm(y)

y − z
dy = pm(z).

To handle p̂m, let R > 0 be sufficiently large so that Ω is contained in the interior of
the disk with boundary CR. In Ω+, the function y 7→ p̂m(y)/(y − z) is analytic (recall
z ∈ Ω−). It follows from Cauchy’s theorem that

1

2πi

∫
Γ

p̂m(y)

y − z
dy =

1

2πi

∫
CR

p̂m(y)

y − z
dy

Let R → ∞. Since p̂m(y) = O(|y|−1), the integrand in the previous equation is
O(|y|−2). It follows from a standard integral estimate that

lim
R→∞

∣∣∣∣ 1

2πi

∫
CR

p̂m(y)

y − z
dy

∣∣∣∣ = 0,
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and thus
1

2πi

∫
Γ

p̂m(y)

y − z
dy = 0.

This demonstrates (3.3) since

1

2πi

∫
Γ

f+(y)m

y − z
dy =

1

2πi

∫
Γ

pm(y) + p̂m(y)

y − z
dy = pm(z).

Next, we show that

(3.4)
1

2πi

∫
Γ

1

f+(y)m(y − z)
dy = 0.

Again, recall z ∈ Ω−. As in the previous paragraph, the integrand is an analytic
function of y in Ω+, so we can choose R > 0 sufficiently large so that by Cauchy’s
theorem

1

2πi

∫
Γ

1

f+(y)m(y − z)
dy =

1

2πi

∫
CR

1

f+(y)m(y − z)
dy.

Since f+(y)m = Θ(|y|m), it follows that the integrand in the previous equation is
Θ(|y|−(m+1)). By a standard integral estimate, we obtain that

lim
R→∞

∣∣∣∣ 1

2πi

∫
CR

1

f+(y)m(y − z)
dy

∣∣∣∣ = 0

which implies (3.4).
By adding together the right hand sides of (3.3) and (3.4) and then taking the

real part, we obtain that I(z) = Re pm(z) via (3.2).

Lemma 3.2. Let m > 0 be an integer. For all z ∈ Ω+, the mth Faber-Laurent
polynomial qm satisfies

(3.5) qm(z) = − 1

π

∫
Γ

f−(y)m n̂ · ∇y log |y − z| ds(y).

The overline notation · denotes the complex conjugate.

Proof. Let z ∈ Ω+ and

I(z) = − 1

π

∫
Γ

Re
(
f−(y)m

)
n̂ · ∇y log |y − z| ds(y).

As in the proof of Lemma 3.1, we show that I(z) = Re qm(z), and remark that the
imaginary part of qm can be handled similarly.

We start by representing I(z) as

I(z) = −Re
1

2πi

∫
Γ

(
f−(y)m +

1

f−(y)m

)
1

y − z
dy.

By Cauchy’s theorem, it follows that

(3.6) − 1

2πi

∫
Γ

f−(y)m

y − z
dy = 0.

We show that

(3.7) qm(z) = − 1

2πi

∫
Γ

1

f−(y)m(y − z)
dy.
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We proceed by breaking up 1/f−(y)m into

1

f−(y)m
= qm(y) + q̂m(y)

where qm is the mth Faber-Laurent polynomial, and q̂m is the complex analytic part.
First, we handle qm. For y close to 0, we express

1

y − z
= −

∞∑
k=0

yk

zk+1
, and qm(y) =

m∑
k=1

ak
yk

for some (ak). Multiplying both sums, collecting terms, and using the fact that qm
has a exactly one pole of order m at 0, we conclude that

Res
y=0

(
−qm(y)

∞∑
k=0

yk

zk+1

)
= −qm(z),

which implies by the residue theorem that

− 1

2πi

∫
Γ

qm(y)

y − z
dy = qm(z).

Since q̂m is an analytic function inside Ω−, we have from Cauchy’s theorem that

− 1

2πi

∫
Γ

q̂m(y)

y − z
dy = 0.

This demonstrates (3.7).
The result I(z) = Re qm(z) follows by adding together (3.6) and (3.7) and then

taking the real part.

We briefly point out three related results in the literature. The basis (3.1) can
also be derived from [25, Lemma 18.2d, p. 524], although our proof does not rely on
this lemma. Gaier proves a result similar to the case m = 1 of Lemma 3.1, in [22, p.
14, (2.20)], for the case of a horizontal slit. Finally, in [33, (3.12)] a related integral
equation is derived involving the derivative (f+)

′
and the adjoint Neumann kernel.

4. Integral Equations for Interior and Exterior Conformal Mapping. In
this section, we develop a method for recovering the boundary correspondence assuming
that the boundary Γ is smooth.

4.1. Exterior Case. This section derives an integral equation method for com-
puting the boundary correspondence θ+(z) for the exterior map f+. We solve an
integral equation corresponding to an interior Laplace Dirichlet problem to obtain a
density function σ, and recover the boundary correspondence from the density by an
application of the Cauchy integral formula and a normalization.

Recall the power series expansion of the exterior map

f+(z) = α1z + α0 +
α−1

z
+
α−2

z2
+ · · · .

From Lemma 3.1 for m = 1, we have that for all z ∈ Ω−

α1z + α0 =
1

π

∫
Γ

f+(y) n̂ · ∇y log |y − z| ds(y) = −2Df+(z).
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Letting z approach a boundary point ζ ∈ Γ from the interior we obtain, using
the inner jump relation for the double-layer potential [30, Thm. (6.18)], the integral
equation

α1ζ + α0 = −2Df+(ζ) + f+(ζ), ζ ∈ Γ.

The parameters α1 and α0 are not assumed to be known a priori. We use the fact
that D is linear, and that for the constant density 1(ζ), D1(ζ) = −1/2 [30, Ex. 6.17].
Using these two facts, let us define the density σ as

σ(ζ) = − 1

α1

(
2f+(ζ)− α0

)
, ζ ∈ Γ.

Then we can write the previous integral equation as

(4.1) ζ =

(
D − 1

2

)
σ(ζ), ζ ∈ Γ.

This integral equation is uniquely solvable [30, Thm. 6.21]. From the density σ, we
can recover f+ and the boundary correspondence as follows. As a consequence of (3.3)
established in Lemma 3.1, we have

1

2πi

∫
Γ

f+(y)

y
dy = α0.

Then, from the definition of σ and the Cauchy integral formula, we obtain

1

2πi

∫
Γ

σ(y)

y
dy =

1

2πi

[
−
∫

Γ

2

α1
· f

+(y)

y
dy +

∫
Γ

α0

α1
· 1

y
dy

]
= −α0

α1
.

Let σ̃(ζ) denote

σ̃(ζ) = σ(ζ) +
1

2πi

∫
Γ

σ(y)

y
dy = − 2

α1
f+(ζ).

By normalizing σ̃ we obtain, for ζ ∈ Γ,

f+(ζ) = − σ̃(ζ)

|σ̃(ζ)|
and θ+(ζ) = arg

(
− σ̃(ζ)

|σ̃(ζ)|

)
.

4.2. Interior Case. In this section, we describe a method to recover the interior
boundary correspondence analogous to the exterior one of the previous section. We
proceed by describing the solution of an integral equation corresponding to that of an
exterior Laplace Dirichlet problem for a density function σ, from which the boundary
correspondence may likewise be recovered by a Cauchy integral and a normalization.

Recall the Laurent series expansion for the inverted interior map

1

f−(z)
=
β−1

z
+ β0 + β1z + β2z + · · · .

From the case m = 1 of Lemma 3.2, we have that for all z ∈ Ω+,

β−1z−1 = − 1

π

∫
Γ

f−(y) n̂ · ∇y log |y − z| = 2Df−(z).

Letting z approach a boundary point ζ ∈ Γ from the exterior, and using the exterior
jump relation for the double-layer potential, we obtain the integral equation

β−1ζ−1 = 2Df−(ζ) + f−(ζ), ζ ∈ Γ.
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Defining the density σ̃(ζ) as

σ̃(ζ) = 2(β−1
−1)f−(ζ), ζ ∈ Γ,

we can rearrange the above equation to obtain the integral equation

(4.2) ζ−1 =

(
D +

1

2

)
σ̃(ζ), ζ ∈ Γ.

The operator
(
D + 1

2

)
has a non-trivial nullspace, which affects the solvability of

this integral equation. Following [30], we remedy this by defining the operator
M : C(Γ)→ C(Γ) as

Mϕ =

∫
Γ

ϕds.

Then the following equation is uniquely solvable [30, Thm. (6.24)] for a density σ:

(4.3) ζ−1 =

(
D +M+

1

2

)
σ(ζ), ζ ∈ Γ.

Next, we recall the following facts about the operator
(
D + 1

2

)
. First, the range

of
(
D + 1

2

)
omits the nonzero constant functions. Secondly, the null space of

(
D + 1

2

)
consists of the constant functions [30, Thm. (6.21)].

If we subtract both sides of (4.3) from both sides of (4.2), we obtain that constant
function Mσ is in the range of the operator

(
D + 1

2

)
. This implies Mσ = 0. Thus,

we find that

ζ−1 =

(
D +

1

2

)
σ̃(ζ) =

(
D +

1

2

)
σ(ζ), ζ ∈ Γ.

This implies σ = σ̃ + δ for some δ ∈ C.
From the fact that f−(0) = 0, we know that

1

2πi

∫
Γ

σ(y)

y
dy =

1

2πi

[
2(β−1
−1)

∫
Γ

f−(y)

y
dy +

∫
Γ

δ

y
dy

]
= δ.

Thus we recover σ̃ as

σ̃(ζ) = σ(ζ)− 1

2πi

∫
Γ

σ(y)

y
dy = 2(β−1

−1)f−(ζ), ζ ∈ Γ.

Recalling |f−(ζ)| = 1, we normalize to find

f−(ζ) =
σ̃(ζ)

|σ̃(ζ)|
and θ−(ζ) = arg

(
σ̃(ζ)

|σ̃(ζ)|

)
, ζ ∈ Γ.

4.3. Summary. Algorithm 4.1 captures the operational essence of the previous
two sections. The algorithm is not specific to a particular choice of discretization, for
which a broad range of schemes is applicable. In the next section, we provide the
details for the Nyström discretization scheme with the trapezoidal rule for concreteness
and for the benefit of our numerical experiments. This scheme has the advantage of
being spectrally accurate, simple to implement, and amenable to acceleration.

5. Numerical Realization of the Methods. Our main concern in the numer-
ical treatment of Algorithm 4.1 is the rapid and accurate solution of the integral
equations involved.
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Algorithm 4.1 Computational method for the obtaining the boundary correspondence

Require: A smooth Jordan boundary Γ, with 0 in the interior.
Require: A boundary sign s: +1 for exterior, −1 for interior.
Ensure: Computes the boundary correspondence θ.

Stage 1
Solve the following integral equation for the density σ, for all ζ ∈ Γ:

ζ =

(
D − 1

2

)
σ(ζ) if s = +1

ζ−1 =

(
D +M+

1

2

)
σ(ζ) if s = −1.

Stage 2

Let σ̃(ζ) = σ(ζ) +
s

2πi

∫
Γ

σ(y)

y
dy (ζ ∈ Γ).

Stage 3

Let θ(ζ) = arg

(
−s σ̃(ζ)

|σ̃(ζ)|

)
(ζ ∈ Γ).

5.1. Nyström Method. We assume a boundary parametrization γ : [0, L]→ C
that is m + 2 times continuously and periodically differentiable. The operator D
may by substitution be evaluated in the interval [0, L] using the parametric Neumann
kernel ν,

(5.1) Dσ[γ(x)] =

∫ L

0

σ(γ(y))ν(x, y) dy

which is given by [25, p. 394]

ν(x, y) = − 1

2π
Im

{
γ′(y)/(γ(y)− γ(x)) x 6= y,

γ′′(x)/(2γ′(x)) x = y.

We consider the discretization of this integral on an n point quadrature rule with
weights {wj}nj=1 and nodes {yj}nj=1 on [0, L], which is given by the functional Qng =∑n

j=1 wjg(yj). Our specific choice of quadrature rule is the periodic trapezoidal rule,
whose weights are given by wj = L/n and the nodes are yj = Lj/n, j = 1, . . . , n.

The Nyström approximation Qn[D] to the operator D uses pointwise values of the
density µ = σ ◦ γ at the quadrature nodes as its discrete degrees of freedom,

Qn[D]µ(x) =

n∑
i=1

wjµ(yj)ν(x, yj).

To solve the integral equation
(
D − 1

2

)
σ = f, we reduce the continuous system to the

linear system in n unknowns discretized at the quadrature points

(5.2) Qn[D]µn(yj)−
1

2
µn(yj) = f(yj), j = 1, . . . , n.

Given values of a solution µn(y1), µn(y2), . . . , µn(yn) to this system, we may extend
µn to a continuous function µn : [0, L]→ C, by way of the interpolation formula

(5.3) µn(x) = 2 (Qn[D]µn(x)− f(x)) , x ∈ [0, L].
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Then, under broadly applicable assumptions on the quadrature rule, the sequenceQn[D]
of operator approximations is invertible for sufficiently large n > 0 [30, Thm. 12.8],
has uniformly bounded condition number [30, Thm. 14.3], and the sequence µn
of approximations to the density converges uniformly as n → ∞ to the solution
of the continuous system [30, Cor. 12.9]. Furthermore, it can also be shown [30,
Cor. 10.14] the the error in the discrete solution is bounded from above in the form
‖µn − µ‖∞ ≤ K‖(Qn[D]−D)µ‖, where K is a constant independent of n.

For an m times continuously and periodically differentiable integrand g, the

trapezoidal rule admits a spectral error estimate of the form |Qng −
∫ L

0
g dy| ≤

Cn−m‖g(m)‖∞, with a constant C independent of n. It follows that because of the
spectral convergence of the periodic trapezoidal rule we expect spectral convergence
in the number of discretization points for smooth geometries.

5.2. Fast Iterative Solution of the System. The explicit formation of the
dense matrices associated with the system (5.2) may be avoided by using an iterative
method such as GMRES. Using a Nyström approximation, the number of GMRES
iterations for a fixed accuracy is independent of the number of unknowns [30, Sec. 14.4].
The iterative application of the operator D may be accelerated by considering the
discrete operator D as the potential due to a set of sources in R2, and using the Fast
Multipole Method (FMM [9]). Specifically, we use the potential

Qn[D]σ(yk) =
1

2
ωkκ(yk)σ(yk) +

n∑
j=1
j 6=k

ωj n̂ · ∇yj log |yj − yk|σ(yj), k = 1, . . . , n

where κ denotes the signed curvature and ωj = −L/(2πn) |γ′(yj)|. On non-pathological
particle distributions, the evaluation phase of the FMM runs in O(n) time and the
setup phase takes O(n log n) time. It follows that the overall complexity of the solve
is O(n log n).

5.3. Evaluation of the Cauchy Integral. In order to recover the off-boundary
values of the Riemann map, one may employ the Cauchy integral formula for the
interior and exterior case (e.g. [1, Eqn. 2.6]). At target points z ∈ C \ Γ sufficiently far
from the boundary, quadrature with the trapezoidal rule is sufficient to achieve high
accuracy. However, numerical evaluation of Cauchy integrals presents challenges close
to the boundary Γ for standard smooth quadrature rules such as the trapezoidal rule,
leading to the need for an unacceptably large amount of discretization points [1]. The
root cause of the challenges is the near-singularity of the integrand. A more efficient
strategy for close evaluation is Quadrature by Expansion (QBX, [2, 29]), a quadrature
scheme that exploits the smoothness of the potential to recover high accuracy near
the boundary via appropriately placed local expansions. QBX operates by computing
approximate Taylor coefficients of a potential g about centers c, so that an error
estimate composed of truncation and quadrature contributions∣∣∣∣∣g(x)−

m∑
k=0

g̃(k)(c)

k!
(x− c)k

∣∣∣∣∣ ≤ C1‖σ‖Cm+1rm+1 + C2

(
h

4r

)2q

‖σ‖C2q

can be obtained, dependent on expansion radius r, truncation order m, mesh resolution
h and quadrature order q. We refer to [21] for details. QBX-based layer potential eval-
uation may be accelerated by ways of a fast algorithm [37,46], with error contributions
from acceleration very similar to those of conventional point-based FMMs.
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Table 6.1
Absolute `∞ errors in the boundary correspondence on the exterior of an oval of Cassini with

shape parameter α discretized with n points, computed with the methods of Section 4.3 and 5.

n α = 5 α = 2 α = 1.25 α = 1.11 α = 1.0101 α = 1.001001

8 2.38 · 10−9 2.46 · 10−5 4.43 · 10−3 2.74 · 10−2

16 6.96 · 10−16 4.66 · 10−9 5.44 · 10−5 1.25 · 10−3

32 6.28 · 10−16 1.15 · 10−8 4.23 · 10−6 1.57 · 10−2

64 1.05 · 10−15 6.79 · 10−11 4.15 · 10−4 9.82 · 10−2

128 4.00 · 10−16 4.73 · 10−7 5.90 · 10−3

256 8.61 · 10−13 7.03 · 10−5

512 4.09 · 10−16 1.52 · 10−8

1024 1.11 · 10−15

Table 6.2
Absolute `∞ errors in the boundary correspondence on the interior of an epitrochoid with shape

parameter α discretized with n points, computed with the methods of Section 4.3 and 5.

n α = 0.3 α = 0.4 α = 0.6 α = 0.8 α = 0.9 α = 0.99

8 2.68 · 10−6 2.47 · 10−5 1.39 · 10−3 3.56 · 10−2

16 2.55 · 10−12 5.38 · 10−10 1.80 · 10−6 1.24 · 10−3 2.41 · 10−2

32 3.24 · 10−15 2.87 · 10−15 2.37 · 10−12 3.68 · 10−7 1.66 · 10−4

64 1.44 · 10−14 5.82 · 10−13 5.84 · 10−7

128 2.56 · 10−14 3.06 · 10−13 6.41 · 10−3

256 3.63 · 10−14 1.80 · 10−4

512 3.87 · 10−7

1024 4.66 · 10−12

6. Experimental Results. We implement the method of Section 4 using the nu-
merical approach of Section 5. In particular, our discretization is based on the periodic
trapezoidal rule with the parametric Neumann kernel. We employ an FMM-accelerated
GMRES solver for the solution of the integral equations based on FMMLIB [23]. The
visualizations in Figures 2.1 and 6.4 were obtained using QBX for evaluation close to
the curve Γ.

6.1. Smooth Domains. We test our method on a number of smooth test ge-
ometries for the interior and exterior case for which the interior or exterior boundary
correspondences are available as analytical expressions. To test the accuracy of our
method, we use the Nyström interpolation formula to evaluate the compute bound-
ary correspondence at 36 points on the boundary equispaced in the parametrization
variable, and report the `∞ norm of the error.

−2 −1 0 1 2

−1

0

1

α = 2

α = 1.25

α = 1.0101

Fig. 6.1. Oval of Cassini for various α.

0 1

−1

0

1

α = 0.4

α = 0.6

α = 0.9

Fig. 6.2. Epitrochoid for various α.
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6.1.1. Oval of Cassini. The oval of Cassini curve family is parametrized by
α > 1. At the limiting value α = 1 the interior is disconnected into two components.
For α→∞ the domain resembles a disk of radius α. See Figure 6.1 for a visualization.
The boundary parametrization and analytical value of the exterior mapping function
are given by:

γα(t) =

(
cos(2t) +

√
a4 − sin2(2t)

)1/2

exp(it), t ∈ [0, 2π],

f+(γα(t)) = (γα(t)2 − 1)1/2/α.

Numerical results demonstrating the accuracy of our method for the oval of Cassini
are shown in Table 6.1.

6.1.2. Epitrochoid. The epitrochoid family is parametrized by 0 ≤ α ≤ 1. At
α = 0 the boundary is the unit circle, while for α = 1 the boundary is a cardioid. A sub-
set of the tested geometries are visualized in Figure 6.2. The boundary parametrization
and the analytical value of the interior mapping function are given by:

γα(t) = exp(it) +
α

2
exp(2it), t ∈ [0, 2π],

f−(γα(t)) = exp(it).

Numerical results demonstrating the accuracy of our method for the epitrochoid are
shown in Table 6.2.

Fig. 6.3. Whale test geometry, analyt-
ically represented as a Fourier series. The
origin is marked.

Table 6.3
Absolute `∞ self-convergence errors in the

boundary correspondence for the ‘Fourier whale’
geometry discretized with n points, computed with
the methods of Section 4.3 and 5.

n Interior Exterior

128 7.21 · 10−2 1.07 · 10−2

256 2.29 · 10−3 4.16 · 10−4

512 1.24 · 10−5 3.61 · 10−6

1024 8.10 · 10−10 7.90 · 10−11

2048 2.77 · 10−12 4.07 · 10−13

4096 2.80 · 10−12 4.11 · 10−13

6.1.3. Fourier Whale. We also report the results for a complicated smooth
geometry for which the boundary correspondence is not analytically available. The
geometry in Figure 6.3, with the origin marked, was obtained by parametrizing the
boundary of the image of a spouting whale from the EmojiOne project [20]. Specifically,
we used a parametrization γ(t) = γ1(t) + iγ2(t), t ∈ [0, 2π], such that the functions γ1

and γ2 are given by 53-term Fourier interpolants of selected boundary points. Since the
boundary correspondence is not analytically available, we test the accuracy using a self-
convergence test. We solve for the boundary correspondence using 213 discretization
points. Using this value as a reference solution, we estimate the accuracy for a given
number of discretization points by comparing values at 36 points equispaced in the
parameter domain. We report the absolute `∞ error for different discretization point
counts in Table 6.3. The Riemann maps we found for this geometry are visualized in
Figure 6.4.
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Fig. 6.4. Graphical representation of the Riemann maps for the interior/exterior of the whale
domain.
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Fig. 6.5. Estimated absolute `∞ errors for
the unit square with increasing refinement. The
initial system size was 36 unknowns and each
refinement added 72 unknowns, up to 3060 un-
knowns.
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Fig. 6.6. Solve time for system associ-
ated with the Koch snowflake using an FMM-
accelerated GMRES solver. The initial system
size was 1728 unknowns and each refinement
added 3456 unknowns, up to 136512 unknowns.

6.1.4. Discussion: Accuracy on Smooth Geometries. It is evident from
these results that our methods, combined with a Nyström/trapezoidal scheme, exhibit
spectral convergence. The examples in this section have been used in previous
research to test the accuracy of integral equation methods for obtaining the boundary
correspondence; for instance, for analogous experiments using the Nyström method
applied to the Kerzman-Stein integral equation, see [44] for the interior case and [33]
for the exterior case. We find that these results have a similar level of accuracy to
the results for the Nyström solution of integral equations based on the Kerzman-Stein
kernel. In the next section, we will apply our method to a domain with a corner, for
which the trapezoidal rule is not an ideal quadrature method.

6.2. Domains with Corners. It is well known that the Nyström method with
the trapezoidal rule does not retain its high order accuracy on boundaries with corners,
due to the presence of singularities in the integral kernel at the corner. Nevertheless, a
high accuracy solution can be recovered with modifications to the scheme. We review
one of these techniques and give numerical results in the case of the square.

The technique we use is based on a simplified version of the quadrature technique
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described in [6]. We use composite Gauss-Legendre panels refined dyadically towards
the corners of the square. The last two panels on either side of each corner are omitted.
Additionally, each unknown is multiplied by the square root of the quadrature weight
as a way to improve conditioning (see [6] for details).

For the reference solution, we compute the boundary correspondence at 36 eq-
uispaced points on the unit square. We use the SC Toolbox [14] to compute the
Schwarz-Christoffel map from the disk to the square, and then we invert this map
with the provided evalinv subroutine.

The experimental results on the accuracy of our method are given in Figure 6.5.
The results show the absolute `∞ error in the boundary correspondence versus the
number of refinements that were made recursively to the panels closest to the corner
points. The Gauss-Legendre panels had 9 points per panel. Starting with one panel
per side, each refinement added two panels per side half the width of the previous
near-corner panels.

This scheme is able to recover up to 13–14 digits of accuracy in the exterior case
and 10 digits in the interior case. The difference in convergence speeds between the
interior and the exterior of the square is the subject of future investigation. We have
chosen this scheme for its simplicity, though more advanced schemes can both improve
the accuracy and reduce the number of unknowns required.

6.3. Scaling. To study the scaling of our method, we time our implementation
of the solve phase of Algorithm 4.1, which is the dominant contribution to the cost of
the algorithm. The test geometry is the fourth iteration of a Koch snowflake curve,
which has 192 corners (see Figure 2.1 for a visualization) and the system contains
up to 136512 unknowns. We use the quadrature scheme described in Section 6.2 and
measure the wall time of the algorithm with increasing refinements. The timing results,
obtained on a single core of a dual-socket 2.2 GHz Intel Xeon E5-2650 v4 processor, are
presented in Figure 6.6. After 39 refinements, the mapping obtains approximately 7–8
digits of accuracy according to direct comparison with results from the SC Toolbox.
As expected, the timing data demonstrates the solve phase of the algorithm scales
close to linearly with the number of unknowns.

7. Conclusions. This paper makes two contributions.
First, we characterize the density functions σ that give rise to harmonic polynomials

represented as double-layer potentials Dσ on the interior of a piecewise smooth Jordan
domain, and their counterparts that give rise to Laurent polynomials on the exterior
of the domain. We show how these density functions relate to the Riemann maps
associated with the domain. In addition to the described application to conformal
mapping, this work may be of mathematical interest for those studying the behavior
of the double-layer potential and numerical methods for it.

Second, we derive an integral equation whose solution allows us to recover the
boundary correspondence for the exterior or interior mapping function. From a practical
standpoint, our equation is second-kind, uniquely solvable and has a continuous kernel,
which leads to a robust and simple discretization with the Nyström method. We further
demonstrate the effective acceleration of the method, avoiding quadratic complexity in
all parts of the method. A major advantage of the double-layer potential is the ready
availability of existing fast solvers, such as those in [5, 7, 26,37,39]. Our experiments
demonstrate that the method achieves spectral accuracy on smooth domains, with
results of comparable accuracy to those based on the solution of integral equations
using the Kerzman-Stein kernel. Finally, we demonstrate that the method can be
made accurate in the presence of corners.
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