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DYNKIN GAMES WITH POISSON RANDOM INTERVENTION
TIMES∗

GECHUN LIANG, HAODONG SUN†

Abstract. This paper introduces a new class of Dynkin games, where the two players are
allowed to make their stopping decisions at a sequence of exogenous Poisson arrival times. The value
function and the associated optimal stopping strategy are characterized by the solution of a backward
stochastic differential equation. The paper further provides a replication strategy for the game, and
applies the model to study the optimal conversion and calling strategies of convertible bonds, and
their asymptotics when the Poisson intensity goes to infinity.

Key words. constrained Dynkin game, penalized BSDE, optimal stopping strategy, replication
strategy, convertible bond.
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1. Introduction. Dynkin games are the games on stopping times, where two
players determine their optimal stopping times as their strategies. The game was
first introduced by Dynkin [14], and later generalized by Neveu [28] in 1970s. In this
game, two players observe two stochastic processes, say L and U , and their aims are
to maximize/minimize the expected value of the payoff

R(σ, τ) = Lτ1{τ≤σ} + Uσ1{σ<τ}

over stopping times τ and σ, respectively. In a discrete-time setting, under the as-
sumption that U ≥ L, Neveu proved the existence of the game value and its associated
optimal strategy.

Since then, there has been a considerable development of Dynkin games. The
corresponding continuous time models were developed, among others, by Bismut [6],
Alario-Nazaret et al [1], Lepeltier and Maingueneau [21] and Morimoto [27]. In order
to relax the condition U ≥ L, Yasuda [36] proposed to extend the class of strategies
to randomized stopping times, and proved that the game value exists under merely
an integrability condition. Rosemberg et al [30], Touzi and Vielle [34] and Laraki and
Solan [19] further extended his work in this direction. If the two players in the game
are with asymmetric payoffs, then it gives arise to a nonzero-sum Dynkin game. See,
for example, Hamadene and Zhang [16] and more recently De Angelis et al [12] with
more references therein. A robust version of Dynkin games can be found in Bayraktar
and Yao [3] if the players are ambiguous about their probability model.

The setups in all the aforementioned works are either in continuous time where
stopping times take any value in a certain time interval, or in discrete time where
stopping times only take values in a pre-specified time grid. In this paper, we consider
a hybrid of continuous and discrete times, and introduce a new type of Dynkin games,
where both players are allowed to stop at a sequence of random times generated by an
exogenous Poisson process serving as a signal process. We call such a Dynkin game a
constrained Dynkin game.

The underlying Poisson process can be regarded as an exogenous constraint on
the players’ abilities to stop, so it may represent the liquidity effect, i.e. the Poisson
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process indicates the times at which the underlying stochastic processes are available
to stop. Moreover, the Poisson process can also be seen as an information constraint.
The players are allowed to make their stopping decisions at all times, but they are
only able to observe the underlying stochastic processes at Poisson times.

Our first main result is Theorem 2.3, which characterizes the value of the con-
strained Dynkin game and its associated optimal stopping strategy in terms of the
solution of a penalized backward stochastic differential equation (BSDE). The latter
is widely used to approximate the solution of a reflected BSDE with double obstacles
and the corresponding continuous time Dynkin game. The main idea to solve the con-
strained Dynkin game is to introduce a family of auxiliary games (see (3.9)-(3.10)),
for which standard dynamic programming principle holds. Furthermore, following
from the convergence of penalized BSDE to reflected BSDE (see, for example, [11]
and [15]) and the penalized BSDE characterization (2.6) of the constrained Dynkin
game, we also make a connection with standard Dynkin games in continuous time.
That is, the value of the constrained Dynkin game will converge to the value of its
continuous time counterpart when the Poisson intensity goes to infinity.

Our second main result is about replication of the constrained Dynkin game (see
Theorem 5.1). This has an application to the hedging problems in finance. In the
existing literature of financial applications of optimal stopping with Poisson times,
the vast majority of papers focus on the risk-neutral valuation without even men-
tioning the issue of hedging (see [13] and [20] among others). This somewhat lacks a
foundation since, as is well known, the major argument supporting the risk-neutral
valuation is the existence of hedging strategies. We address this issue by constructing
a replication strategy for the constrained Dynkin game (which in particular covers the
optimal stopping case). For such a replication problem, a new element is the jump risk
stemming from the Poisson process. To hedge this jump risk, we introduce a pricing
process generated by the jump times of the Poisson process. We then construct the
replication strategies recursively for a sequence of constrained Dynkin games starting
from different Poisson arrival times, and for each game, the replication strategy is
constructed via two linear BSDEs. The first BSDE is used to replicate the payoff of
the game before the next jump time, and the second equation is used to replicate the
payoff after this jump time.

With the above replication strategies behind the risk-neutral valuation, we then
apply the constrained Dynkin game to study convertible bonds. In a convertible bond,
the bondholder decides whether to keep the bond to collect coupons or to convert it to
the firm’s stocks. She will choose a conversion strategy to maximize the bond value.
On the other hand, the issuing firm has the right to call the bond, and presumably
acts to maximize the equity value of the firm by minimizing the bond value. This
creates a two-person, zero-sum Dynkin game.

Traditionally, convertible bond models often assume that both the bond holder
and the firm are allowed to stopped at any stopping time adapted to the firm’s fun-
damental (such as its stock prices). In reality, there may exist some liquidation con-
straint as an external shock, and both players only make their decisions when such
a shock arrives. We model such a liquidation shock as the arrival times of an exoge-
nous Poisson process, and thus the convertible bond model falls into the framework
of constrained Dynkin games. A similar idea has first appeared in the modeling of
debt run problems (see [23]), which can be formulated as optimal stopping problems
with Poisson arrival times.

Furthermore, in a Markovian setting, we derive explicitly the optimal stopping
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strategies for both the bondholder and the firm. We show that if the initial stock
price is not too high (otherwise the game will stop at the first Poisson arrival time),
the optimal stopping rules of the two players depend on the relationship between the
coupon rate c, dividend rate q, interest rate r and surrender price K. For the firm,
its optimal stopping strategy is to either call the bond back as soon as possible (if
c ≥ rK) or postpone the calling time of the bond as late as possible (if c < rK). In
contrast, the investor’s optimal stopping strategy depends on the relationship between
c and qK. If c > qK, the investor will delay her conversion time as late as possible;
if c ≤ qK, her conversion strategy is determined by an optimal conversion boundary,
the latter of which is obtained by solving a free boundary problem.

Turning to the literature, the optimal stopping problem with constraints on the
stopping times was introduced by Dupuis and Wang [13], when they used it to model
perpetual American options exercised at exogenous Poisson arrival times. See also
Lempa [20] and Menaldi and Robin [25] for further extensions of this type of optimal
stopping problems. On the other hand, Liang [22] made a connection between such
kind of optimal stopping problems with penalized BSDE. The corresponding optimal
switching (impulse control) problems were studied by Liang and Wei [24] and more
recently by Menaldi and Robin [26] with more general signal times and state spaces.

The study of convertible bonds dated back to Brennan and Schwartz [7] and
Ingersoll [17]. However, it was Sirbu et al [31] who first analyzed the optimal strategy
of perpetual convertible bonds (see also Sirbu and Shreve [32] for the finite horizon
counterpart). They reduced the problem from a Dynkin game to an optimal stopping
problem, and discussed when call precedes conversion and vice versa. Several more
realistic features of convertible bonds have been taken into account since then. For
example, Bielecki et al [4] considered the problem of the decomposition of a convertible
bond into bond component and option component. Crepey and Rahal [10] studied
the convertible bond with call protection, which is typically path dependent. Chen
et al [9] considered the tax benefit and bankruptcy cost for convertible bonds. For
a complete literature review, we refer to the aforementioned papers with references
therein.

The paper is organized as follows. Section 2 contains the problem formulation and
main result, with its proof provided in section 3. In section 4, we establish a connection
with standard Dynkin games. Section 5 is about replication of the constrained Dynkin
game. In section 6, we apply the constrained Dynkin game to study the convertible
bonds in a Markovian setting, and derive the explicit optimal stopping strategies and
the corresponding free boundaries under various situations. Section 7 carries out an
asymptotic analysis of the game values and the free boundaries when the Poisson
intensity goes to infinity.

2. Constrained Dynkin games. Let (Wt)t≥0 be a d-dimensional standard
Brownian motion defined on a filtered probability space (Ω,F ,F = (Ft)t≥0,P) with
F being the minimal augmented filtration of W . Let (Ti)i≥0 be the arrival times of
an independent Poisson process with intensity λ and minimal augmented filtration
H = (Ht)t≥0. Denote the smallest filtration generated by F and H as G = (Gt)t≥0, i.e.
Gt = Ft ∨Ht. Without loss of generality, we also assume that T0 = 0 and T∞ = ∞.

Let T be a finite F-stopping time representing the terminal time of the game,
and ξ be an FT -measurable random variable representing the corresponding payoff.
Define a random variable M : Ω → N such that TM is the next Poisson arrival time
after T , i.e. M(ω) =

∑
i≥1 i1{Ti−1(ω)≤T (ω)<Ti(ω)}.
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For any integer i ≥ 0, define the control set

RTi
(λ) = {G-stopping time τ for τ(ω) = TN (ω) where i ≤ N ≤ M(ω)}.

The subscript Ti in RTi
(λ) represents the smallest stopping time that is allowed to

choose, and λ represents the intensity of the underlying Poisson process.

Consider the following constrained Dynkin game, where two players choose their
respective stopping times σ, τ ∈ RT1

(λ) in order to minimize/maximize the expected
value of the discounted payoff
(2.1)

R(σ, τ) =

∫ σ∧τ∧T

0

e−rsfs ds+e−rT ξ1{σ∧τ≥T}+e−rτLτ1{τ<T,τ≤σ}+e−rσUσ1{σ<T,σ<τ},

where r > 0 is the discount rate, and f , as a real-valued F-progressively measurable
process, is the running payoff. The terminal payoff is U if σ happens firstly, L if τ
happens firstly or σ and τ happen simultaneously, and ξ otherwise, where L and U
are two real-valued F-progressively measurable processes.

Let us define the upper and lower values of the constrained Dynkin game

(2.2) vλ = inf
σ∈RT1

(λ)
sup

τ∈RT1
(λ)

E [R(σ, τ)] ,

(2.3) vλ = sup
τ∈RT1

(λ)

inf
σ∈RT1

(λ)
E [R(σ, τ)] .

The game (2.2)-(2.3) is said to have value vλ if vλ = vλ = vλ. It is standard to show
that if there exists a saddle point (σ∗, τ∗) ∈ RT1

(λ)×RT1
(λ) such that E [R(σ∗, τ)] ≤

E [R(σ∗, τ∗)] ≤ E [R(σ, τ∗)] for every (σ, τ) ∈ RT1
(λ)×RT1

(λ), then the value of this
game exists and equals to vλ = E [R(σ∗, τ∗)] .

There are two new features of the above constrained Dynkin game. First, there is
a control constraint in the sense that only stopping at Poisson arrival times is allowed.
Second, the players are not allowed to stop at the initial starting time. Instead, they
are only allowed to stop from the first Poisson time onwards.

We also consider an auxiliary game related to the above constrained Dyknin game
by replacing the control set in (2.2)-(2.3) with RT0

(λ), so the players are also allowed
to stop at the initial starting time. That is

(2.4) v̂
λ
= inf

σ∈RT0
(λ)

sup
τ∈RT0

(λ)

E [R(σ, τ)] ,

(2.5) v̂λ = sup
τ∈RT0

(λ)

inf
σ∈RT0

(λ)
E [R(σ, τ)] .

Note that the difference between (2.4)-(2.5) and (2.2)-(2.3) is that the former is allowed
to stop at the initial starting time T0 = 0, while the latter not. In other words, the
players in (2.4)-(2.5) first make their stopping decisions and then move forward, while
in (2.2)-(2.3) they first move forward and then make their decisions. We shall show
that if the game (2.2)-(2.3) has value vλ, then the value of (2.4)-(2.5) also exists and
is given by v̂λ = min{U0,max{vλ, L0}}, so the key is to solve the game (2.2)-(2.3).
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2.1. Main result. To solve the above constrained Dynkin games, we introduce
the following BSDE defined on a random horizon [0, T ]:

(2.6) V λ
t∧T = ξ+

∫ T

t∧T

[
fs + λ

(
Ls − V λ

s

)+ − λ
(
V λ
s − Us

)+ − rV λ
s

]
ds−

∫ T

t∧T

Zλ
s dWs

for t ≥ 0. Note that the above BSDE (2.6) is often used to construct the solution of
a reflected BSDE with two reflecting barriers L and U (cf. (4.3)). Intuitively, when
V λ falls below L (or goes above U), there will be a penalty λ(L−V λ) (or λ(V λ−U))
incurred, so BSDE (2.6) is also refereed to as the penalized equation.

Assumption 2.1. For t ∈ [0, T ], Lt ≤ Ut, a.s. Moreover, (i) when T is an
unbounded stopping time, the running payoff f and the terminal payoffs L, U and ξ
are all bounded; (ii) when T is a bounded stopping time, f , L, U and ξ are square-
integrable, i.e. E[sup0≤t≤T |Xt|2] < ∞ for X = f, L, U and ξ.

The assumption L ≤ U is crucial to the existence of the game value. On the other
hand, the conditions (i) and (ii) are to guarantee the existence and uniqueness of the
solution to BSDE (2.6), which will in turn be used to construct the game value and
its associated optimal stopping strategy.

Proposition 2.2. Suppose that Assumption 2.1 holds. Then, there exists a
unique solution (V, Z) to BSDE (2.6). Moreover, (i) when T is unbounded, V is a
bounded and continuous F-adapted process, and Z ∈ M2

loc(0, T ;R
d), where the latter

denotes the space of all F-progressively measurable processes Z such that

||Z||2loc := E

[∫ t∧T

0

|Zs|2 ds

]
< ∞ for t ≥ 0;

(ii) when T is bounded, then V is a continuous square-integrable F-adapted process,
and Z ∈ M2(0, T ;Rd).

The proof essentially follows from Theorem 4.1 in [29] (for bounded T ) and Section
5 in [8] (for unbounded T ), so we omit its proof and refer to [29] and [8] for the details.
We are now in a position to state the main result of this paper.

Theorem 2.3. Suppose that Assumption 2.1 holds. Let (V λ, Zλ) be the unique
solution to BSDE (2.6). Then, the value of the constrained Dynkin game (2.2)-(2.3)
exists and is given by vλ = vλ = vλ = V λ

0 . The corresponding optimal stopping
strategy is given by

(2.7)

{
σ∗
T1

= inf{TN ≥ T1 : V λ
TN

≥ UTN
} ∧ TM ;

τ∗T1
= inf{TN ≥ T1 : V λ

TN
≤ LTN

} ∧ TM .

Moreover, the value of the Dynkin game (2.4)-(2.5) also exists and is given by v̂λ =
min{U0,max{vλ, L0}}, with the associated optimal stopping strategy σ∗

T0
and τ∗T0

.

2.2. Examples. Theorem 2.3 solves a wide class of problems in a unified man-
ner, covering from Markovian to non-Markovian situations and from finite to infinite
horizons. In the one-dimensional homogenous Markovian setting, there usually exists
a threshold strategy. For this, we will discuss a specific convertible-bond example in
section 6. In the rest of the section, we list several path-dependent examples, which
are difficult to deal with under Markovian framework (at least it needs a case-by-case
study) but covered by Theorem 2.3.

(i) Path-dependent payoffs L and U . Let T be fixed so it is a constant stopping
time and S be a one-dimensional positive diffusion process adapted to F. For δ > 0,
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consider an Israeli option written on S with maturity T , where the holder may exercise
to get a normal claim but the writer is punished by an amount δS for annulling the
contract early (see [18]). The payoffs L and U may take the form Lt = max{m,S∗

t }
and Ut = max{m,S∗

t } + δSt for m > S0 and S∗
t = sup0≤u≤t Su. This is so called

Israeli Russian option. For Lt =
∫ t

0
Sudu and Ut =

∫ t

0
Sudu + δSt, it is called Israeli

integral option (see [2]). Under mild integrability assumption on S as in Assumption
2.1, Theorem 2.3 shows that the values of both Israeli options exist and the associated
optimal strategies can be characterized via the solution to (2.6).

(ii) Path-dependent stopping time T . Stopping times are widely used in insurance
as indicators of a variety of risks. Let S be a one-dimensional positive diffusion process
adapted to F. We may consider the following stopping times as the terminal time of
the game: drawdown stopping time T = inf{t ≥ 0 : S∗

t − St ≥ m} for m ≥ 0;

occupation stopping time T = inf{t ≥ m :
∫ t

0
1{Su∈A}du ≥ m} for A ⊂ R+. Note

that unlike the standard first-passage-time (see θλ in section 6), both types of path-
dependent stopping times need tailor-made analysis under Markovian framework, but
can be covered by Theorem 2.3 in a unified manner.

3. Proof of Theorem 2.3. We first give an equivalent formulation of the con-
strained Dynkin game (2.2)-(2.3). Given the arrival time Ti, define pre-Ti σ-field

GTi =

A ∈
∨
s≥0

Gs : A ∩ {Ti ≤ s} ∈ Gs for s ≥ 0


and G̃ = (GTi)i≥0. It is obvious that the upper and lower values of the constrained
Dynkin game can be rewritten as

(3.1) vλ = inf
Nσ∈N1(λ)

sup
Nτ∈N1(λ)

E [R(TNσ , TNτ )] ,

(3.2) vλ = sup
Nτ∈N1(λ)

inf
Nσ∈N1(λ)

E [R(TNσ , TNτ )] ,

where

Nn(λ) =
{
G̃-stopping time N for n ≤ N(ω) ≤ M(ω)

}
.

The subscript n in Nn(λ) represents the smallest stopping time that is allowed to
choose, and λ represents the intensity of the underlying filtration G̃. Both players are
allowed to stop at a sequence of integers n, n+ 1, · · · ,M .

We also observe that a pair of processes
(
V λ, Zλ

)
solve (2.6), if and only if the

corresponding discounted processes (Qλ
t , Z̃

λ
t ) = (e−rtV λ

t , e−rtZλ
t ), for t ∈ [0, T ], solve

the following BSDE

(3.3) Qλ
t∧T = ξ̃ +

∫ T

t∧T

[
f̃s + λ

(
L̃s −Qλ

s

)+
− λ

(
Qλ

s − Ũs

)+]
ds−

∫ T

t∧T

Z̃λ
s dWs,

where ξ̃ = e−rT ξ and ϕ̃s = e−rsϕs for ϕ = f, L, U .
Thus, to prove Theorem 2.3, it is equivalent to show that Qλ

0 = qλ = qλ, where

(3.4) qλ := inf
Nσ∈N1(λ)

sup
Nτ∈N1(λ)

E

[
R̃ (TNσ , TNτ )

]
,
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(3.5) qλ := sup
Nτ∈N1(λ)

inf
Nσ∈N1(λ)

E

[
R̃ (TNσ , TNτ )

]
,

with

R̃(σ, τ) =

∫ σ∧τ∧T

0

f̃s ds+ ξ̃1{σ∧τ≥T} + L̃τ1{τ<T,τ≤σ} + Ũσ1{σ<T,σ<τ},

and the optimal stopping strategy is given by

(3.6)

{
Nσ,∗

1 = inf{N ≥ 1 : Qλ
TN

≥ ŨTN
} ∧M,

Nτ,∗
1 = inf{N ≥ 1 : Qλ

TN
≤ L̃TN

} ∧M.

To prove the above assertions, we start with the following lemma.
Lemma 3.1. Suppose that Assumption 2.1 holds. Then, for any 1 ≤ n ≤ M , the

solution of BSDE (3.3) at time Tn−1 is the unique solution of the recursive equation

Qλ
Tn−1

= E

[∫ Tn∧T

Tn−1

f̃s ds+ ξ̃1{Tn>T}

(3.7)

+
(
1{Qλ

Tn
≥ŨTn}ŨTn

+ 1{Qλ
Tn

≤L̃Tn}L̃Tn
+ 1{L̃Tn<Qλ

Tn
<ŨTn}Q

λ
Tn

)
1{Tn≤T}

∣∣∣GTn−1

]
.

Proof. Applying Itô’s formula to αtQ
λ
t , where αt = e−λt, we obtain, for t ∈ [0, T ],

αtQ
λ
t = αTQ

λ
T +

∫ T

t

αs

[
f̃s + λFs(Q

λ
s )
]
ds−

∫ T

t

αsZ̃
λ
s dWs,

where Fs(Q
λ
s ) := Qλ

s + (L̃s −Qλ
s )

+ − (Qλ
s − Ũs)

+. Consequently,

Qλ
Tn−1

=
αT

αTn−1

ξ̃ +

∫ T

Tn−1

αs

αTn−1

[
f̃s + λFs(Q

λ
s )
]
ds−

∫ T

Tn−1

αs

αTn−1

Z̃λ
s dWs

= E

[
e−λ(T−Tn−1)ξ̃ +

∫ T

Tn−1

e−λ(s−Tn−1)
[
f̃s + λFs(Q

λ
s )
]
ds

∣∣∣∣∣GTn−1

]
.

On the other hand, we use the conditional density λe−λ(x−Tn−1) dx of Tn to cal-
culate the right-hand side of (3.7):

E

[∫ Tn∧T

Tn−1

f̃s ds

∣∣∣∣∣GTn−1

]

= E

[
e−λ(T−Tn−1)

∫ T

Tn−1

f̃s ds+

∫ T

Tn−1

λe−λ(x−Tn−1)

∫ x

Tn−1

f̃s ds dx

∣∣∣∣∣GTn−1

]

= E

[
e−λ(T−Tn−1)

∫ T

Tn−1

f̃s ds+

∫ T

Tn−1

f̃s

∫ T

s

λe−λ(x−Tn−1) dx ds

∣∣∣∣∣GTn−1

]

= E

[∫ T

Tn−1

e−λ(s−Tn−1)f̃s ds

∣∣∣∣∣GTn−1

]
,



8 Gechun Liang and Haodong Sun

where we used integration by parts in the second equality. Similarly, we have

E

[
ξ̃1{Tn>T}

∣∣∣GTn−1

]
= E

[
e−λ(T−Tn−1)ξ̃

∣∣∣GTn−1

]
,

and

E

[(
1{Qλ

Tn
≥ŨTn}ŨTn

+ 1{Qλ
Tn

≤L̃Tn}L̃Tn
+ 1{L̃Tn<Qλ

Tn
<ŨTn}Q

λ
Tn

)
1{Tn≤T}

∣∣∣GTn−1

]
= E

[∫ T

Tn−1

λe−λ(s−Tn−1)
(
1{Qλ

s≥Ũs}Ũs + 1{Qλ
s≤L̃s}L̃s + 1{L̃s<Qλ

s<Ũs}Q
λ
s

)
ds

∣∣∣∣∣GTn−1

]
.

It follows that (3.7) holds. Since the recursive equation (3.7) obviously admits a
unique solution, Qλ

Tn−1
is then the unique solution of (3.7) for 1 ≤ n ≤ M .

As a direct consequence of Lemma 3.1, if we define Q̂λ = min{Ũ ,max{Qλ, L̃}},
then by the assumption L ≤ U (so L̃ ≤ Ũ),

Q̂λ = 1{Qλ≥Ũ}Ũ + 1{Qλ≤L̃}L̃+ 1{L̃<Qλ<Ũ}Q
λ,

and thus, Q̂λ satisfies the following recursive equation: For 1 ≤ n ≤ M ,

Q̂λ
Tn−1

(3.8)

= min

{
ŨTn−1 ,max

{
E

[∫ Tn∧T

Tn−1

f̃s ds+ ξ̃1{Tn>T} + Q̂λ
Tn
1{Tn≤T}

∣∣∣∣∣GTn−1

]
, L̃Tn−1

}}
,

which also admits a unique solution since we can calculate its solution backwards in a
recursive way. We show that Q̂λ

Tn−1
is the value of another constrained Dynkin game.

Introduce the upper and lower values of an auxiliary constrained Dynkin game as

(3.9) q̂
λ

Tn−1
= ess inf

Nσ∈Nn−1(λ)
ess sup

Nτ∈Nn−1(λ)

E

[
R̃n−1(TNσ , TNτ )|GTn−1

]
,

(3.10) q̂λ
Tn−1

= ess sup
Nτ∈Nn−1(λ)

ess inf
Nσ∈Nn−1(λ)

E

[
R̃n−1(TNσ , TNτ )|GTn−1

]
,

where

R̃n−1(σ, τ) =

∫ σ∧τ∧T

Tn−1∧T

f̃s ds+ ξ̃1{σ∧τ≥T} + L̃τ1{τ<T,τ≤σ} + Ũσ1{σ<T,σ<τ}

with R̃0(σ, τ) = R̃(σ, τ), and

Nn−1(λ) =
{
G̃-stopping time N for n− 1 ≤ N(ω) ≤ M(ω)

}
.

Note that, when n = 1, (3.9)-(3.10) corresponds to the auxiliary Dynkin game
(2.4)-(2.5), which will be used to solve the original constrained Dynkin game. The
difference between the auxiliary game and the original game is that the players first
make their stopping decisions and then move forward in the auxiliary game, while in
original game they first move forward and then make their decisions.
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Lemma 3.2. Suppose that Assumption 2.1 holds. Then, for any 1 ≤ n ≤ M , the
value of the auxiliary constrained Dynkin game (3.9)-(3.10) exists. Its value, denoted
by q̂λTn−1

, satisfies the recursive equation (3.8), namely,

q̂λTn−1

= min

{
ŨTn−1 ,max

{
E

[∫ Tn∧T

Tn−1

f̃s ds+ ξ̃1{Tn>T} + q̂λTn
1{Tn≤T}

∣∣∣∣∣GTn−1

]
, L̃Tn−1

}}
.

Hence, q̂λTn−1
= Q̂λ

Tn−1
a.s. The optimal stopping strategy of (3.9)-(3.10) is given by

(3.11)

{
N̂σ,∗

n−1 = inf{N ≥ n− 1 : q̂λTN
= ŨTN

} ∧M ;

N̂τ,∗
n−1 = inf{N ≥ n− 1 : q̂λTN

= L̃TN
} ∧M.

Proof. Without loss of generality, we may assume f̃s = 0.
Step 1. Since TM−1 ≤ T < TM , the upper value of the auxiliary game (3.9) is
equivalent to

q̂
λ

Tn−1
= ess inf

Nσ∈Nn−1(λ)
ess sup

Nτ∈Nn−1(λ)

E

[
ξ̃1{Nσ=Nτ=M} + L̃TNτ 1{n−1≤Nτ≤M−1,Nτ≤Nσ}

+ ŨTNσ1{n−1≤Nσ≤M−1,Nσ<Nτ}|GTn−1

]
.

We claim that

(3.12) q̂
λ

TM−1
= min

{
ŨTM−1

,max
{
E

[
ξ̃|GTM−1

]
, L̃TM−1

}}
,

and, for n− 1 ≤ i ≤ M − 2,

(3.13) q̂
λ

Ti
= min

{
ŨTi

,max
{
E

[
q̂
λ

Ti+1
|GTi

]
, L̃Ti

}}
.

If (3.12)-(3.13) hold, then

q̂
λ

Tn−1
= min

{
ŨTn−1

,max
{
E

[
ξ̃1{n=M} + q̂

λ

Tn
1{n≤M−1}|GTn−1

]
, L̃Tn−1

}}
= min

{
ŨTn−1

,max
{
E

[
ξ̃1{Tn>T} + q̂

λ

Tn
1{Tn≤T}|GTn−1

]
, L̃Tn−1

}}
,

which is the recursive equation (3.8).
Similarly, we obtain that q̂λ

Tn−1
also satisfies the recursive equation (3.8). Since

(3.8) admits a unique solution, it is clear that q̂
λ

Tn−1
= q̂λ

Tn−1
= q̂λTn−1

= Q̂λ
Tn−1

a.s.

Step 2. Next, we show (3.12)-(3.13). Indeed, for i = M − 1,

q̂
λ

TM−1
= ess inf

Nσ∈NM−1(λ)
ess sup

Nτ∈NM−1(λ)

E

[
ξ̃1{Nσ=Nτ=M} + L̃TM−1

1{M−1=Nτ≤Nσ}

+ ŨTM−1
1{M−1=Nσ<Nτ}|GTM−1

]
= min

Nσ∈NM−1(λ)
max

Nτ∈NM−1(λ)

{
E[ξ̃|GTM−1

]1{Nσ=Nτ=M} + L̃TM−1
1{M−1=Nτ≤Nσ}

+ ŨTM−1
1{M−1=Nσ<Nτ}

}
= min

{
ŨTM−1

,max
{
E[ξ̃|GTM−1

], L̃TM−1

}}
.
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In general, for n− 1 ≤ i ≤ M − 2, we have

q̂
λ

Ti
= ess inf

Nσ∈Ni(λ)
ess sup

Nτ∈Ni(λ)

E

[
ξ̃1{Nσ=Nτ=M} + L̃TNτ 1{i≤Nτ≤M−1,Nτ≤Nσ}

+ ŨTNσ1{i≤Nσ≤M−1,Nσ<Nτ}|GTi

]
.

Taking conditional expectation on GTi+1
further yields

q̂
λ

Ti
= ess inf

Nσ∈Ni(λ)
ess sup

Nτ∈Ni(λ)

E

[
L̃Ti
1{i=Nτ≤Nσ} + ŨTi

1{i=Nσ<Nτ}

+ E

[
ξ̃1{Nσ=Nτ=M} + L̃TNτ 1{i+1≤Nτ≤M−1,Nτ≤Nσ}

+ ŨTNσ1{i+1≤Nσ≤M−1,Nσ<Nτ}|GTi+1

]
|GTi

]
= min

{
ŨTi

,max
{
E

[
q̂
λ

Ti+1
|GTi

]
, L̃Ti

}}
,

where the second equality holds since the operations ess infNσ∈Ni+1(λ) ess supNτ∈Ni+1(λ)

and E [·|GTi
] are interchangeable, which will be proved in the next step.

Step 3. In this step, we show the operations ess infNσ∈Ni+1(λ) ess supNτ∈Ni+1(λ) and
E [·|GTi

] are interchangeable, i.e. (3.16) below holds. To this end, for fixed i and
Nσ ∈ Ni(λ), we note that the family

(3.14)
(
E

[
R̃i(TNσ , TNτ )|GTi

]
, Nτ ∈ Ni(λ)

)
is an increasing directed set. Indeed, if we choose arbitrary Nτ

1 , N
τ
2 ∈ Ni(λ) and let

Xj = E

[
R̃i(TNσ , TNτ

j
)|GTi

]
, for j = 1, 2. Then, defining the stopping time Nτ as

Nτ = Nτ
1 1{X1≥X2}+Nτ

2 1{X1<X2}, we have N
τ ∈ Ni(λ) and E

[
R̃i(TNσ , TNτ )|GTi

]
≥

max{X1, X2}.
Similarly, we also have, for fixed i, the family

(3.15)

(
ess sup

Nτ∈Ni(λ)

E

[
R̃i(TNσ , TNτ )|GTi

]
, Nσ ∈ Ni(λ)

)

is a decreasing directed set. Under Assumption 2.1, it is obvious that both (3.14) and
(3.15) are uniformly integrable. Therefore, by Proposition VI-1-1 of Neveu [28], we
obtain

E

[
q̂
λ

Ti+1

∣∣∣GTi

]
= E

[
ess inf

Nσ∈Ni+1(λ)
ess sup

Nτ∈Ni+1(λ)

E

[
R̃i+1(TNσ , TNτ )|GTi+1

]∣∣∣∣∣GTi

]

= ess inf
Nσ∈Ni+1(λ)

E

[
ess sup

Nτ∈Ni+1(λ)

E

[
R̃i+1(TNσ , TNτ )|GTi+1

]∣∣∣∣∣GTi

]
= ess inf

Nσ∈Ni+1(λ)
ess sup

Nτ∈Ni+1(λ)

E

[
R̃i+1(TNσ , TNτ )|GTi

]
.(3.16)

Step 4. It remains to prove that
(
N̂σ,∗

n−1, N̂
τ,∗
n−1

)
in (3.11) are indeed the optimal

stopping times for the auxiliary Dynkin game (3.9)-(3.10), i.e. for every (Nσ, Nτ ) ∈
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Nn−1(λ)×Nn−1(λ),

E

[
R̃n−1

(
TN̂σ,∗

n−1
, TNτ

)
|GTn−1

]
≤ E

[
R̃n−1

(
TN̂σ,∗

n−1
, TN̂τ,∗

n−1

)
|GTn−1

]
≤ E

[
R̃n−1

(
TNσ , TN̂τ,∗

n−1

)
|GTn−1

]
.

To this end, it suffices to prove that

(i)

(
q̂λT

m∧N̂
σ,∗
n−1

∧N̂
τ,∗
n−1

)
m≥n−1

is a G̃-martingale;

(ii)

(
q̂λT

m∧N̂
σ,∗
n−1

∧Nτ

)
m≥n−1

is a G̃-supermartingale for any Nτ ∈ Nn−1(λ);

(iii)

(
q̂λT

m∧Nσ∧N̂
τ,∗
n−1

)
m≥n−1

is a G̃-submartingale for any Nσ ∈ Nn−1(λ).

Indeed, we have

E

[
q̂λT

(m+1)∧N̂
σ,∗
n−1

∧N̂
τ,∗
n−1

∣∣∣∣GTm

]

= E

 m∑
j=n−1

1{N̂σ,∗
n−1∧N̂τ,∗

n−1=j} + 1{N̂σ,∗
n−1∧N̂τ,∗

n−1≥m+1}

 q̂λT
(m+1)∧N̂

σ,∗
n−1

∧N̂
τ,∗
n−1

∣∣∣∣∣∣GTm


=

m∑
j=n−1

1{N̂σ,∗
n−1∧N̂τ,∗

n−1=j}q̂
λ
Tj

+ 1{N̂σ,∗
n−1∧N̂τ,∗

n−1≥m+1}E
[
q̂λTm+1

∣∣∣GTm

]
=

m∑
j=n−1

1{N̂σ,∗
n−1∧N̂τ,∗

n−1=j}q̂
λ
Tj

+ 1{N̂σ,∗
n−1∧N̂τ,∗

n−1≥m+1}q̂
λ
Tm

= q̂λT
m∧N̂

σ,∗
n−1

∧N̂
τ,∗
n−1

,

where the second last equality follows from the definition of
(
N̂σ,∗

n−1, N̂
τ,∗
n−1

)
in (3.11),

so the martingale property (i) has been proved.
To prove the supermartingale property (ii), we note that

E

[
q̂λT

(m+1)∧N̂
σ,∗
n−1

∧Nτ

∣∣∣∣GTm

]
= E

[
q̂λT

(m+1)∧N̂
σ,∗
n−1

1{Nτ≥m+1} + q̂λT
N̂

σ,∗
n−1

∧Nτ
1{Nτ≤m}

∣∣∣∣GTm

]

= E

 m∑
j=n−1

1{N̂σ,∗
n−1=j} + 1{N̂σ,∗

n−1≥m+1}

 q̂λT
(m+1)∧N̂

σ,∗
n−1

1{Nτ≥m+1}

+ q̂λT
N̂

σ,∗
n−1

∧Nτ
1{Nτ≤m}

∣∣∣∣GTm

]

=

 m∑
j=n−1

1{N̂σ,∗
n−1=j}q̂

λ
Tj

+ 1{N̂σ,∗
n−1≥m+1}E

[
q̂λTm+1

∣∣∣GTm

]1{Nτ≥m+1}

+ q̂λT
N̂

σ,∗
n−1

∧Nτ
1{Nτ≤m}.

Using the definition of N̂σ,∗
n−1 in (3.11), we further have

E

[
q̂λTm+1

∣∣∣GTm

]
≤ max

{
E

[
q̂λTm+1

∣∣∣GTm

]
, L̃Tm

}
= q̂λTm

on {N̂σ,∗
n−1 ≥ m+ 1}.
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In turn,

E

[
q̂λT

(m+1)∧N̂
σ,∗
n−1

∧Nτ

∣∣∣∣GTm

]

≤

 m∑
j=n−1

1{N̂σ,∗
n−1=j}q̂

λ
Tj

+ 1{N̂σ,∗
n−1≥m+1}q̂

λ
Tm

1{Nτ≥m+1} + q̂λT
N̂

σ,∗
n−1

∧Nτ
1{Nτ≤m}

= q̂λT
m∧N̂

σ,∗
n−1

1{Nτ≥m+1} + q̂λT
N̂

σ,∗
n−1

∧Nτ
1{Nτ≤m} = q̂λT

m∧N̂
σ,∗
n−1

∧Nτ
,

which proves the supermartingale property (ii). Likewise, the submartingale property
(iii) can be proved in a similar way, and the proof of the lemma is completed.

We are now in a position to prove Theorem 2.3. By Lemmas 3.1 and 3.2, we have

Qλ
0 = E

[∫ T1∧T

0

f̃s ds+ ξ̃1{T1>T} + Q̂λ
T1
1{T1≤T}

]

= E

[∫ T1∧T

0

f̃s ds+ ξ̃1{T1>T} + q̂λT1
1{T1≤T}

]

≥ E
[ ∫ T1∧T

0

f̃s ds+ ξ̃1{T1>T} +E
[
R̃1(TN̂σ,∗

1
, TNτ )|GT1

]
1{T1≤T}

]
(3.17)

for any Nτ ∈ N1(λ), where last inequality follows from the supermartingale property
(ii). Moreover, recall that

E

[
R̃1(TN̂σ,∗

1
, TNτ )|GT1

]
= E

[∫ T
N̂

σ,∗
1

∧TNτ ∧T

T1∧T

f̃s ds+ ξ̃1{
T
N̂

σ,∗
1

∧TNτ ≥T
}

+ L̃TNτ 1
{
TNτ <T,TNτ ≤T

N̂
σ,∗
1

} + ŨT
N̂

σ,∗
1

1{
T
N̂

σ,∗
1

<T,T
N̂

σ,∗
1

<TNτ

}|GT1

]
.

Plugging the above expression into (3.17) further yields

Qλ
0 ≥ E

[∫ T
N̂

σ,∗
1

∧TNτ ∧T

0

f̃s ds+ ξ̃1{
T
N̂

σ,∗
1

∧TNτ ≥T
} + L̃TNτ 1

{
TNτ <T,TNτ ≤T

N̂
σ,∗
1

}

+ ŨT
N̂

σ,∗
1

1{
T
N̂

σ,∗
1

<T,T
N̂

σ,∗
1

<TNτ

}] = E [R̃(TN̂σ,∗
1

, TNτ )
]
,

for any G̃-stopping time Nτ ∈ N1(λ). Taking the supremum over Nτ ∈ N1(λ), we
obtain

Qλ
0 ≥ sup

Nτ∈N1(λ)

E

[
R̃(TN̂σ,∗

1
, TNτ )

]
≥ inf

Nσ∈N1(λ)
sup

Nτ∈N1(λ)

E

[
R̃(TNσ , TNτ )

]
= qλ.

Similarly, we also have Qλ
0 ≤ qλ. It then follows from qλ ≥ qλ that Qλ

0 = qλ = qλ.

Finally, we verify that Qλ
0 = E[R̃(TN̂σ,∗

1
, TN̂τ,∗

1
)], so (N̂σ,∗

1 , N̂τ,∗
1 ) are the optimal

stopping strategy. Indeed, with Nσ = N̂σ,∗
1 and Nτ = N̂τ,∗

1 , (3.17) becomes an
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equality due to the martingale property (i), i.e.

Qλ
0 = E

[∫ T1∧T

0

f̃s ds+ ξ̃1{T1>T} + q̂λT1
1{T1≤T}

]

= E

[∫ T1∧T

0

f̃s ds+ ξ̃1{T1>T} +E
[
R̃1(TN̂σ,∗

1
, TN̂τ,∗

1
)|GT1

]
1{T1≤T}

]
= E

[
R̃(TN̂σ,∗

1
, TN̂τ,∗

1
)
]
.

We conclude the proof by proving that the optimal stopping times
(
N̂σ,∗

1 , N̂τ,∗
1

)
are

actually
(
Nσ,∗

1 , Nτ,∗
1

)
in (3.6). Indeed,

N̂σ,∗
1 = inf{N ≥ 1 : q̂λTN

= ŨTN
} ∧M

= inf{N ≥ 1 : Q̂λ
TN

= ŨTN
} ∧M

= inf{N ≥ 1 : Qλ
TN

≥ ŨTN
} ∧M = Nσ,∗

1 ,

and, similarly, N̂τ,∗
1 = Nτ,∗

1 .

4. Connection with standard Dynkin games. We show that, when λ → ∞,
the value vλ of the constrained Dynkin game converges to the value of a standard
Dynkin game. The setup is the same as in section 2 except that the control set is
replaced with Rt, which is defined as

Rt = {F-stopping time τ for t ≤ τ(ω) ≤ T}.

Define the corresponding upper and lower values of the standard Dynkin game as

(4.1) v = inf
σ∈R0

sup
τ∈R0

E [R(σ, τ)] ,

(4.2) v = sup
τ∈R0

inf
σ∈R0

E [R(σ, τ)] .

This game is said to have value v if v = v = v, and (σ∗, τ∗) ∈ R0 × R0 is called
a saddle point of the game if E [R(σ∗, τ)] ≤ E [R(σ∗, τ∗)] ≤ E [R(σ, τ∗)] for every
(σ, τ) ∈ R0 ×R0.

Proposition 4.1. Suppose that Assumption 2.1 holds and, moreover, both L and
U are continuous and satisfy LT ≤ ξ ≤ UT . Then, the value v of the Dynkin game
(4.1)-(4.2) exists and, moreover, limλ↑∞ vλ = v.

Proof. To solve the Dynkin game (4.1)-(4.2), we introduce the following reflected
BSDE defined on a random horizon [0, T ]:

(4.3) Vt∧T = ξ +

∫ T

t∧T

(fs − rVs)ds+

∫ T

t∧T

dK+
s −

∫ T

t∧T

dK−
s −

∫ T

t∧T

Zs dWs

for t ≥ 0, under the constraints (i) Lt ≤ Vt ≤ Ut, for 0 ≤ t ≤ T ; (ii)
∫ T

0
(Vt − Lt) dK

+
t =∫ T

0
(Ut − Vt) dK

−
t = 0. By a solution to the reflected BSDE (4.3), we mean a triplet

of F-progressively measurable processes (V, Z,K), where K := K+ − K− with K+

and K− being increasing processes starting from K+
0 = K−

0 = 0.



14 Gechun Liang and Haodong Sun

It follows from Hamadene et al [15] that (4.3) is well-posed and admits a unique
solution. Using arguments similar to the ones in Cvitanic and Karatzas [11], it is
standard to show that the value of the Dynkin game (4.1)-(4.2) exists and is given by
the solution of the reflected BSDE (4.3), i.e. v = v = v = V0.

To prove the second assertion, we note that BSDE (2.6) can be regarded as a
sequence of penalized BSDEs for (4.3), where the local time processes K+ and K−

are approximated by

Kλ,+
t :=

∫ t

0

λ
(
Ls − V λ

s

)+
ds; Kλ,−

t :=

∫ t

0

λ
(
V λ
s − Us

)+
ds,

with Kλ := Kλ,+−Kλ,−. Since limλ↑∞E[supt∈[0,T ] |V λ
t −Vt|2] = 0 (see, for example,

[15] and [11]), the second assertion follows immediately.

5. Replication of constrained Dynkin games. In this section, we discuss
about replication of the constrained Dynkin game. This provides a foundation for the
risk-neutral valuation of convertible bonds introduced in the next section.

Let N̄t :=
∑

n≥1 1{Tn≤t} − λt, t ≥ 0, be the compensated Poisson martingale on
the filtered probability space (Ω,F ,G,P). Suppose there exist (d + 2) underlying
assets, whose pricing processes follow

dSi
t = Si

t(r − qi)dt+ Si
tσ

idWt, 1 ≤ i ≤ d;(5.1)

dPt = Pt−rdt+ Pt−σ̄dN̄t;(5.2)

dBt = Btrdt,(5.3)

where r > 0 is the risk-free interest rate, σ̄ > 0 represents the volatility of P , and qi

and σi := (σij)1≤j≤d represent, respectively, the dividend and volatility of Si. Assume
that the volatility matrix σ := (σij)1≤i,j≤d is invertible. The risky assets (Si)1≤i≤d

are the underlying assets used to hedge the Brownian noise of the game. The risky
asset P is used to hedge the jump risk of the Poisson process. In practice, it could be
the cash flow of a credit default swap delivering payoffs at jump times (Tn)n≥1 (see,
for example, [5] for the single jump case). Finally, B represents the risk-free bank
account. Therefore, P could be interpreted as a risk-neutral probability measure.

From section 2.3 (Lemmas 3.1 and 3.2 in particular), we know that the solution
V λ of BSDE (2.6) provides the values of the constrained Dynkin game (2.2)-(2.3)
starting at different Poisson arrival times Tn−1, for 1 ≤ n ≤ M , and they satisfy the
recursive equation

e−rTn−1V λ
Tn−1

= E

[∫ Tn∧T

Tn−1

e−rsfsds+ e−rT ξ1{Tn>T}(5.4)

+ e−rTn min{UTn ,max{V λ
Tn

, LTn}}1{Tn≤T}|GTn−1

]
.

Thus, the discounted payoff of the game starting at Tn−1 is(∫ T

Tn−1

e−rsfs ds+ e−rT ξ

)
1{Tn>T}(5.5)

+

(∫ Tn

Tn−1

e−rsfs ds+ e−rTn min{UTn
,max{V λ

Tn
, LTn

}}

)
1{Tn≤T},
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with V λ
Tn

being the value of the game starting at Tn. Compared to the original payoff
(2.1), the above payoff (5.5) (with n = 1) only involves the first Poisson arrival time
T1, and the optimality of stopping strategies is encoded in V λ

T1
. Thus, the replication

of the constrained Dynkin game (2.2)-(2.3) naturally depends on the replication of the
same game but starting at Poisson arrival time T1, the later of which in turn depends
on the replication of the game starting from T2 and so on and so forth. In particular,

the discounted payoff of the game starting at TM−1 is
∫ T

TM−1
e−rsfsds+ e−rT ξ, since

TM−1 ≤ T < TM by the definition of the random variable M .

For 1 ≤ n ≤ M , consider the constrained Dynkin game starting at Poisson
arrival time Tn−1. We aim to construct a replication portfolio (πS,n

t , πP,n
t , πB,n

t ),

t ∈ [Tn−1, T ], to replicate the discounted payoff (5.5), where πS,n = (πSi,n)1≤i≤d rep-
resents the amount of the money invested in (Si)1≤i≤d, and πP,n and πB,n represent
the amount of the money invested in P and B, respectively. Let Xn

t be the corre-

sponding wealth of each player at time t. Then, Xn
t =

∑d
i=1 π

Si,n
t +πP,n

t +πB,n
t , and

the self-financing condition implies that

Xn
t = Xn

Tn−1
+

∫ t

Tn−1

(
d∑

i=1

πSi,n
s

Si
s

dSi
s +

πP,n
s

Ps−
dPs +

πB,n
s

Bs
dBs +

d∑
i=1

qiπSi,n
s ds

)

= Xn
Tn−1

+

∫ t

Tn−1

(
rXn

s ds+ πS,n
s σdWs + πP,n

s σ̄dN̄s

)
,(5.6)

for t ∈ [Tn−1, T ]. The problem is to find a replication portfolio (πS,n, πP,n, πB,n)
such that the discounted wealth e−rTXn

T replicates the discounted payoff (5.5), and
to prove that Xn

Tn−1
= V λ

Tn−1
, i.e. the constrained Dynkin game starting from Tn−1

is replicable and its value is indeed given by V λ
Tn−1

.

Theorem 5.1. Let (Y ξ,θ, Zξ,θ) be the unique solution of the linear BSDE defined
on the random horizon [θ, T ] with a parameter θ ∈ [0, T ], i.e.

(5.7) Y ξ,θ
t∧T =

(∫ T

θ

er(T−s)fsds+ ξ

)
−
∫ T

t∧T

rY ξ,θ
s ds−

∫ T

t∧T

Zξ,θ
s dWs,

for t ≥ θ. Then, for the constrained Dynkin game starting at TM−1, its replication
wealth and the corresponding replication portfolio are given by

(5.8)

{
XM

t = Y
ξ,TM−1

t ;

(πS,M
t , πP,M

t , πB,M
t ) = (Z

ξ,TM−1

t σ−1, 0, XM
t − πS,M

t ), t ∈ [TM−1, T ],

where σ−1 is the inverse of the volatility matrix (σij)1≤i,j≤d. Moreover, the value of
the game is given by XM

TM−1
= V λ

TM−1
.

In general, let (Y θ, Zθ) be the unique solution of the linear BSDE defined on [θ, T ]
with a parameter θ ∈ [0, T ], i.e.

(5.9) Y θ
t∧T =

(∫ T

θ

er(T−s)fs ds+ ξ

)
−
∫ T

t∧T

[
rY θ

s − λ(Y θ,s
s − Y θ

s )
]
ds−

∫ T

t∧T

Zθ
sdWs,

for t ≥ θ, and (Y θ,θ̄, Zθ,θ̄) be the unique solution of the linear BSDE defined on [θ̄, T ]
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with parameters θ, θ̄ satisfying 0 ≤ θ < θ̄ ≤ T , i.e.

Y θ,θ̄
t∧T =

(∫ θ̄

θ

er(T−s)fsds+ er(T−θ̄) min{Uθ̄,max{V λ
θ̄ , Lθ̄}}

)
(5.10)

−
∫ T

t∧T

rY θ,θ̄
s ds−

∫ T

t∧T

Zθ,θ̄
s dWs,

for t ≥ θ̄, where V λ is the unique solution to BSDE (2.6). Then, for the constrained
Dynkin game starting at Tn−1 for 1 ≤ n ≤ M − 1, its replication wealth and the
corresponding replication portfolio are given by

(5.11)


Xn

t = Y
Tn−1

t 1{t<Tn} + Y
Tn−1,Tn

t 1{t≥Tn};

πS,n
t =

(
Z

Tn−1

t 1{t≤Tn} + Z
Tn−1,Tn

t 1{t>Tn}

)
σ−1;

πP,n
t =

(
Y

Tn−1,t
t − Y

Tn−1

t

)
1{t≤Tn}σ̄

−1;

πB,n
t = Xt − πS,n

t − πP,n
t , t ∈ [Tn−1, T ].

Moreover, the value of the game is given by Xn
Tn−1

= V λ
Tn−1

.
Proof. We first replicate the constrained Dynkin game starting at TM−1. It is

clear that (Y ξ,TM−1 , Zξ,TM−1σ−1, 0) satisfies the wealth equation (5.6) and, moreover,

by applying Itô’s formula to e−rtY ξ,θ
t , we further have

e−r(t∧T )Y ξ,θ
t∧T =

(∫ T

θ

e−rsfsds+ e−rT ξ

)
−
∫ T

t∧T

e−rsZξ,θ
s dWs.

Thus, e−rTY
ξ,TM−1

T replicates the discounted payoff (5.5) with n = M and, moreover,

XM
TM−1

= Y
ξ,TM−1

TM−1
= E

[∫ T

TM−1

e−r(s−TM−1)fsds+ e−r(T−TM−1)ξ

∣∣∣∣∣GTM−1

]
= V λ

TM−1
.

In general, we prove the assertion for 1 ≤ n ≤ M − 1 by induction. Suppose the
assertion holds for the game starting at Tn and Xn+1

Tn
= V λ

Tn
. Then, for the game

starting at Tn−1, by the construction of Xn in (5.11) and the terminal data for BSDEs
(5.9) and (5.10), we have

e−rTXn
T = e−rT

(
Y

Tn−1

T 1{T<Tn} + Y
Tn−1,Tn

T 1{T≥Tn}

)
=

(∫ T

Tn−1

e−rsfs ds+ e−rT ξ

)
1{Tn>T}

+

(∫ Tn

Tn−1

e−rsfs ds+ e−rTn min{UTn
,max{V λ

Tn
, LTn

}}

)
1{Tn≤T}.(5.12)

Therefore, e−rTXn
T replicates the discounted payoff (5.5).

Next, we show that (Xn, πS,n, πP,n) given in (5.11) indeed satisfies the wealth
equation (5.6). To this end, note that

Xn
t = Xn

t∧Tn− + (Xn
t∧Tn

−Xn
t∧Tn−) + (Xn

t −Xn
t∧Tn

),
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for t ∈ [Tn−1, T ]. Since Xn
t∧Tn− = Y

Tn−1

t∧Tn− by the definition of Xn, we have

Xn
t∧Tn− = Y

Tn−1

Tn−1
+

∫ t∧Tn−

Tn−1

[
rY Tn−1

s − λ(Y Tn−1,s
s − Y Tn−1

s )
]
ds+

∫ t∧Tn−

Tn−1

ZTn−1
s dWs

= Xn
Tn−1

+

∫ t∧Tn−

Tn−1

rY Tn−1
s ds+

∫ t∧Tn−

Tn−1

ZTn−1
s dWs

−
∫ t

Tn−1

(Y Tn−1,s
s − Y Tn−1

s )1{s≤Tn}λds.

Furthermore, at the Poisson arrival time Tn, X
n has a jump with size

Xn
t∧Tn

−Xn
t∧Tn− =

(
Y

Tn−1,Tn

Tn
− Y

Tn−1

Tn−

)
1{Tn≤t} =

∫ t

Tn−1

(Y Tn−1,s
s −Y Tn−1

s )1{s≤Tn}dNs.

On the other hand, since Xn
t = Y

Tn−1,Tn

t on the event {t ≥ Tn}, we have

Xn
t −Xn

t∧Tn
=

∫ t

t∧Tn

rY Tn−1,Tn
s ds+

∫ t

t∧Tn

ZTn−1,Tn
s dWs.

In turn, we deduce, using the constructions of Xn, πS,n and πP,n in (5.11), that

Xn
t = Xn

Tn−1
+

∫ t

Tn−1

rXn
s ds+

∫ t

Tn−1

πS,n
s σdWs +

∫ t

Tn−1

πP,n
s σ̄dN̄s.

Finally, applying Itô’s formula to e−rtXn
t and using (5.12), we obtain that

e−rTn−1Xn
Tn−1

=

(∫ T

Tn−1

e−rsfs ds+ e−rT ξ

)
1{Tn>T}

+

(∫ Tn

Tn−1

e−rsfs ds+ e−rTn min{UTn
,max{V λ

Tn
, LTn

}}

)
1{Tn≤T}

−
∫ T

Tn−1

e−rsπS,n
s σdWs −

∫ T

Tn−1

e−rsπP,n
s σ̄dN̄s.

In turn, taking conditional expectation with respect to GTn−1
and using (5.4), we

conclude that Xn
Tn−1

= V λ
Tn−1

.

6. Application to convertible bonds with random intervention times.
In this section, using the constrained Dynkin game introduced in section 2, we study
convertible bonds for which both players are only allowed to stop at a sequence of
random intervention times.

Traditionally, convertible bond models often assume that both the bond holder
and the issuing firm are allowed to stopped at any stopping time adapted to the firm’s
fundamental (such as its stock prices). In reality, there may exist some liquidation
constraint as an external shock, and both players only make their decisions when
such a shock arrives. We model such a liquidation shock as the arrival times of an
exogenous Poisson process. A similar idea has first appeared in the modeling of debt
run problems (see [23]), which can be formulated as optimal stopping problems with
Poisson arrival times.
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Assumption 6.1. Let d = 1. The firm’s stock price Ss, under the risk-neutral
probability measure P, follows

(6.1) Ss
t = s+

∫ t

0

(r − q)Ss
u du+

∫ t

0

σSs
u dWu,

with Ss
0 = s > 0, where the constants r, q, σ represent the risk-free interest rate,

the dividend rate and the volatility of the stock, satisfying the parameter assumption
r > q1.

The firm issues convertible bonds as perpetuities with a constant coupon rate c.
Consider an investor purchasing a share of this convertible bond at initial time t = 0.
By holding the convertible bond, the investor will continuously receive the coupon
rate c from the firm until the contract is terminated. The investor has the right to
convert her bond to the firm’s stocks, while the firm has the right to call the bond
and force the bondholder to surrender her bond to the firm at a sequence of Poisson
arrival times (Tn)n≥1 with a constant intensity λ > 0. Hence, there are two situations
that the contract maybe terminated:

(i) if the firm calls the bond at some G-stopping time σ firstly, the bondholder
will receive a pre-specified surrender price K at time σ;

(ii) if the investor chooses to convert her bond at some G-stopping time τ firstly
or both players choose to stop the contract simultaneously, the bondholder will obtain
γSτ at time τ from converting her bond with a pre-specified conversion rate γ ∈ (0, 1).

In summary, the investor will obtain the following discounted payoff at initial
time t = 0:

(6.2) P (s;σ, τ) =

∫ σ∧τ

0

e−ruc du+ e−rτγSs
τ1{τ≤σ} + e−rσK1{σ<τ},

with σ, τ ∈ R̃T1
(λ), where

R̃Ti
(λ) = {G-stopping time τ for τ(ω) = TN (ω) where N ≥ i}.

The investor will choose τ ∈ R̃T1
(λ) to maximize the bond value, while the firm

will choose σ ∈ R̃T1
(λ) to maximize the equity value of the firm by minimizing the

bond value. This leads to a constrained Dynkin game as introduced in section 2. The
upper value and lower value of this constrained convertible bond are

(6.3) vλ(s) = inf
σ∈R̃T1

(λ)
sup

τ∈R̃T1
(λ)

E [P (s;σ, τ)] ,

(6.4) vλ(s) = sup
τ∈R̃T1

(λ)

inf
σ∈R̃T1

(λ)
E [P (s;σ, τ)] .

Note that the constrained Dynkin game in section 2 does not exactly cover the
above constrained convertible bond, since the model in section 2 has a random ter-
minal time T , while the convertible bond is perpetual. However, in the following
proposition, we shall show that when

s ≥ s̄λ :=
q + λ

r + λ

K

γ
,

1The case r ≤ q can be treated in a similar way.
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the optimal stopping strategy is trivial. In this region, it is always optimal for both
the investor and the firm to stop at the first Poisson arrival time. Intuitively, when
the stock price is high, the stock is attractive enough to lead both the investor to
convert her bond to stocks and the firm to prevent the investor from converting by
calling the bond as early as possible.

Proposition 6.2. Suppose that Assumption 6.1 holds. Then, the value of the
constrained convertible bond, denoted as vλ(s), exists and satisfies Lλ(s) ≤ vλ(s) ≤
Uλ for s ∈ (0,∞), where

Lλ(s) :=
c

r + λ
+

λ

q + λ
γs; Uλ :=

c+ λK

r + λ
.

Moreover, in the domain s ∈
[
s̄λ,∞

)
, it holds that vλ(s) = Lλ(s), and the optimal

stopping strategy is τ∗,λ = σ∗,λ = T1.

Proof. Choosing τ ≡ T1 in (6.4) yields a lower bound of the convertible bond
price:

vλ(s) = sup
τ∈R̃T1

(λ)

inf
σ∈R̃T1

(λ)
E

[∫ σ∧τ

0

e−ruc du+ e−rτγSs
τ1{τ≤σ} + e−rσK1{σ<τ}

]

≥ inf
σ∈R̃T1

(λ)
E

[∫ T1

0

e−ruc du+ e−rT1γSs
T1

]

= E

[∫ ∞

0

λe−λm

(∫ m

0

e−ruc du+ e−rmγSs
m

)
dm

]
=

∫ ∞

0

λe−λm

∫ m

0

e−ruc du dm+ λγE

[∫ ∞

0

e−(r+λ)mSs
m dm

]
=

c

r + λ
+

λ

q + λ
γs = Lλ(s),

where we used the integration by parts in the last equality.

On the other hand, by choosing σ ≡ T1 in (6.3), we get an upper bound of the
convertible bond price:

vλ(s) = inf
σ∈R̃T1

(λ)
sup

τ∈R̃T1
(λ)

E

[∫ σ∧τ

0

e−ruc du+ e−rτγSs
τ1{τ≤σ} + e−rσK1{σ<τ}

]

≤ sup
τ∈R̃T1

(λ)

E

[∫ T1

0

e−ruc du+ e−rT1γSs
T1
1{τ=T1} + e−rT1K1{τ>T1}

]

=
c

r + λ
+max

{
λ

q + λ
γs,

λK

r + λ

}
= max{Lλ(s), Uλ}.

In the domain s ∈
[
s̄λ,∞

)
, we always have Lλ(s) ≥ Uλ so vλ(s) ≤ Lλ(s) ≤ vλ(s).

Thus, the value of the convertible bond exists, and vλ(s) = v̄λ(s) = vλ(s) = Lλ(s),
with the optimal stopping strategy τ∗,λ = σ∗,λ = T1.

In the domain s ∈
(
0, s̄λ

)
, we have Lλ(s) < Uλ. Introduce an F-stopping time

θλ := inf{u ≥ 0 : Ss
u ≥ s̄λ}.
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Then, it follows from the dynamic programming principle that

vλ(s) = inf
σ∈R̃T1

(λ)
sup

τ∈R̃T1
(λ)

E

[∫ σ∧τ∧θλ

0

e−ruc du+ e−rθλ

vλ (Ss
θλ)1{σ∧τ≥θλ}

+
(
e−rτγSs

τ1{τ≤σ} + e−rσK1{σ<τ}
)
1{σ∧τ<θλ} ] .

By the definition of the stopping time θλ, vλ
(
Ss
θλ

)
= vλ

(
s̄λ
)
= Lλ(s̄λ) = Uλ. Thus,

in the domain s ∈ (0, s̄λ), (6.3)-(6.4) are equivalent to

(6.5) vλ(s) = inf
σ∈R̃T1

(λ)
sup

τ∈R̃T1
(λ)

E

[
P̃ (s;σ, τ)

]
,

(6.6) vλ(s) = sup
τ∈R̃T1

(λ)

inf
σ∈R̃T1

(λ)
E

[
P̃ (s;σ, τ)

]
,

where the payoff P̃ (s;σ, τ) is∫ σ∧τ∧θλ

0

e−ruc du+ e−rθλ

Uλ
1{σ∧τ≥θλ} + e−rτγSs

τ1{τ<θλ,τ≤σ} + e−rσK1{σ<θλ,σ<τ}.

Note that if we introduce the G-stopping time

(6.7) TM := inf{TN ≥ θλ : N ≥ 1},

since the payoff function P̃ (s;σ, τ) does not change after TM , we may replace the
control set R̃T1

(λ) in (6.5)-(6.6) withRT1
(λ), the latter of which consists ofG-stopping

times T1, T2, · · · , TM .
Now, we apply Theorem 2.3 with T = θλ, Lt = γSs

t , Ut = K, ft = c and ξ = Uλ

to (6.5)-(6.6), and obtain the existence of the value of the convertible bond in the
domain s ∈ (0, s̄λ).

Thanks to the above proposition, we focus our analysis to the domain s ∈
(
0, s̄λ

)
in the rest of this section. We characterize the value of the convertible bond and the
corresponding optimal stopping strategy via the solution of ODEs and the associated
free boundaries, respectively.

Proposition 6.3. Suppose that Assumption 6.1 holds. Define the infinitesimal
generator L0 = 1

2σ
2s2∂2

ss + (r− q)s∂s − r. For s ∈ (0, s̄λ), the value of the convertible
bond vλ(s) is the unique solution to the following ODEs:

(i) If c > qK, then vλ(s) > γs, and

(6.8) −L0v
λ = c− λ(vλ −K)+

with the boundary condition vλ(s̄λ) = Uλ;
(ii) If c < rK, then vλ(s) < K, and

(6.9) −L0v
λ = c+ λ(γs− vλ)+

with the boundary condition vλ(s̄λ) = Uλ.
Proof. It is immediate from Theorem 2.3 and (6.5)-(6.6) that the convertible bond

value is vλ(s) = V λ,s
0 , for s ∈ (0, s̄λ), where V λ,s is the first component of the solution

to the penalized BSDE
(6.10)

V λ,s
t∧θλ = Uλ+

∫ θλ

t∧θλ

[
c+ λ

(
γSs

u − V λ,s
u

)+ − λ
(
V λ,s
u −K

)+ − rV λ,s
u

]
du−

∫ θλ

t∧θλ

Zλ,s
u dWu.



Dynkin games with Poisson random intervention times 21

Moreover, the optimal stopping strategy is

(6.11)

{
σ∗,λ = inf{TN ≥ T1 : V λ,s

TN
≥ K} ∧ TM ;

τ∗,λ = inf{TN ≥ T1 : V λ,s
TN

≤ γSs
TN

} ∧ TM ,

with TM given in (6.7).

On the other hand, by the Markov property of the stock price S, V λ,s
t = vλ(Ss

t ).
In turn, Itô’s formula further implies that
(6.12)

vλ(Ss
θλ)− vλ(Ss

t∧θλ) =

∫ θλ

t∧θλ

[
L0v

λ(Ss
u) + rvλ(Ss

u)
]
du+

∫ θλ

t∧θλ

σs∂sv
λ(Ss

u)dWu.

It then follows from (6.10) and (6.12) that vλ(s), for s ∈ (0, s̄λ), solves the ODE

(6.13) −L0v
λ = c+ λ(γs− vλ)+ − λ(vλ −K)+,

with the boundary condition vλ(s̄λ) = Uλ. Note that if c < rK, Proposition 6.2 yields

vλ(s) ≤ Uλ =
c+ λK

r + λ
<

rK + λK

r + λ
= K,

and if c > qK, it follows that

vλ(s) ≥ Lλ(s) =
c

r + λ
+

λ

q + λ
γs >

qK

r + λ
+

λ

q + λ
γs > γs.

The ODEs (6.8)-(6.9) then follow immediately.
The rest of this section is devoted to the characterization of the optimal stopping

strategy of the constrained convertible bond via its associated free boundaries.

6.1. The Case I: qK < c < rK. From Proposition 6.3, when qK < c < rK,
we always have γs < vλ(s) < K. Thus, following from (6.11), the optimal stopping
strategy is

τ∗,λ = σ∗,λ = TM .

Intuitively, when the coupon rate c satisfies c < rK, i.e. c
r < K, the firm shall

never spend K to call the bond back, since it only needs to pay the coupon rate c as
a perpetual bond, whose value is c

r . Thus, the firm shall never call until TM .

When the coupon rate c satisfies c > qK, i.e. c > qK > q r+λ
q+λγs > qγs, the

investor shall never convert her bond into stocks, since the stock dividends she will
receive by holding γ shares of the stock are no more than what she would otherwise
receive from the bond coupons. Thus, the investor shall never convert until TM .

In Figure 7.1, the bold horizontal line s̄λ represents the conversion and calling
boundary. We simulate three Poisson times T1 = 0.3, T2 = 0.5, T3 = 0.8, and two
stock price paths. The investor (and the firm) will convert (and call) the bond at T1

for the stock path 1. They will continue at T1 and T2, and terminate the contract at
T3 for the stock path 2.

We further calculate the convertible bond value by solving the corresponding ODE
explicitly. Note that in such a situation, vλ = v1,λ solves

(6.14)


−L0v

1,λ − c = 0, for 0 < s < s̄λ;

v1,λ(0+) =
c

r
;

v1,λ(s̄λ) = Uλ.
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We put the perpetual bond value c
r at the boundary v1,λ(0+) := lims↓0 v

1,λ(s), be-
cause in such a situation, there is no motivation for the firm to call or for the investor
to convert the bond.

The general solution of (6.14) has the form v1,λ(s) = A+s
α+

+ A−s
α−

+ c
r , for

0 < s < s̄λ, where

(6.15) α± =
−(r − q − σ2

2 )±
√
(r − q − σ2

2 )2 + 2rσ2

σ2
.

Since α− < 0, we obtain A− = 0 by the boundary condition at v1,λ(0+). Using the
other boundary condition, we further obtain

(6.16) v1,λ(s) = A1,λsα +
c

r
,

where α = α+ and A1,λ = λ
r+λ

rK−c
r

(
s̄λ
)−α

.

In Figure 2, we further plot the value function v1,λ(s), which always stays between
[Lλ(s), Uλ] for s ∈ (0, s̄λ). Since Lλ > γs and Uλ < K, the value function also stays
between (γs,K), which means it is never optimal for the firm or the investor to stop
in the region s ∈ (0, s̄λ).

6.2. The Case II: c ≥ rK. It is obvious that c > qK if c ≥ rK. Thus, from
Proposition 6.3, we always have vλ(s) > γs, and following from (6.11), the optimal
conversion strategy for the investor is

τ∗,λ = TM ,

i.e. it is never optimal for the investor to convert until TM . Instead, the investor’s
optimal strategy is to keep the convertible bond to receive its coupons (up to TM ).

On the other hand, following from (6.8), vλ = v2,λ solves

(6.17)


−L0v

2,λ − c+ λ(v2,λ −K)+ = 0, for 0 < s < s̄λ;

v2,λ(0+) = Uλ;

v2,λ(s̄λ) = Uλ.

We put Uλ at the boundary v2,λ(0+) := lims↓0 v
2,λ(s). In this situation, since the

coupon rate c is too large, the firm would prefer to convert as soon as possible to stop
paying the bond coupons. It is clear that v2,λ(s) = Uλ ≥ K. In turn, by (6.11), it is
optimal for the firm to call as soon as possible, i.e. at the first Poisson arrival time

σ∗,λ = T1.

In Figure 3, the bold horizontal line s̄λ represents the conversion boundary for the
investor. Once again, we simulate three Poisson times T1 = 0.25, T2 = 0.5, T3 = 0.8,
and two stock price paths. For the stock price path 1, the firm will call the bond at
T1 firstly, and for the stock price path 2, both the firm and the investor will terminate
the contract at T1.

Figure 4 further plots the value function v2,λ, which is a constant Uλ for s ∈
(0, s̄λ). Since the value function always stays above K, and therefore also above γs,
it is never optimal for the investor to convert in the region (0, s̄λ).
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6.3. The Case III: c ≤ qK. It is obvious that c < rK if c ≤ qK. Thus, from
Proposition 6.3, we always have vλ(s) < K, and following from (6.11), the optimal
calling time for the firm is

σ∗,λ = TM ,

i.e. it is never optimal for the firm to call until TM . Furthermore, following from
(6.9), vλ = v3,λ solves

(6.18)


−L0v

3,λ − c− λ(γs− v3,λ)+ = 0, for 0 < s < s̄λ;

v3,λ(0+) =
c

r
;

v3,λ(s̄λ) = Uλ.

Next, we solve (6.18) explicitly. Since c ≤ qK, the intersection point of the lower
bound Lλ(s) of the convertible bond value and the investor’s payoff function γs is no
greater than s̄λ (so γs is no less than Lλ(s) between this intersection point and s̄λ).
Thus, it may happen that, in the region s ∈ (0, s̄λ), the investor converts the bond
earlier than TM . Since v3,λ(s) > γs when s ↓ 0, and v3,λ(s) ≤ γs for s = s̄λ, we define

(6.19) x∗,λ = inf
{
s ∈ (0, s̄λ] : v3,λ(s) ≤ γs

}
.

By definition it is obvious v3,λ > γs for s ∈ (0, x∗,λ), and by the continuity of v3,λ(·),
v3,λ(x∗,λ) = γx∗,λ. Let us at the moment assume that v3,λ ≤ γs for s ∈ (x∗,λ, s̄λ].
Later, we will verify this condition. If this condition holds, (6.18) is equivalent to the
following free boundary problem

−L0v
3,λ − c = 0, for 0 < s < x∗,λ;(6.20)

−L0v
3,λ − c+ λ(v3,λ − γs) = 0, for x∗,λ < s < s̄λ;(6.21)

v3,λ(0+) =
c

r
;(6.22)

v3,λ(s̄λ) = Uλ;(6.23)

v3,λ(x∗,λ−) = γx∗,λ;(6.24)

v3,λ(x∗,λ+) = γx∗,λ;(6.25) (
v3,λ

)′
(x∗,λ−) =

(
v3,λ

)′
(x∗,λ+).(6.26)

We first observe that, with the boundary condition (6.22), ODEs (6.20)-(6.21) imply

(6.27) v3,λ(s) =

{
A3,λsα + c

r , if s ∈ (0, x∗,λ);

B+s
β+

+B−s
β−

+ c
r+λ + λ

q+λγs, if s ∈ (x∗,λ, s̄λ),

where α = α+ is given in (6.15),

(6.28) β± =
−(r − q − σ2

2 )±
√
(r − q − σ2

2 )2 + 2(r + λ)σ2

σ2
,

and four unknowns (A3,λ, B+, B−, x
∗,λ) are to be determined. Using the continuity

across x∗,λ, i.e. (6.24)-(6.25), the smooth pasting across x∗,λ, i.e. (6.26), and the
boundary condition at s = s̄λ, i.e. (6.23), we obtain that x∗,λ ∈

(
0, s̄λ

]
is the (unique)

solution to the following algebraic equation

(6.29) C1x
β+−β−+1 + C2x

β+−β−
+ C3x+ C4 = 0,
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with

(6.30)



C1 =
(
α− λ

q+λ − q
q+λβ

+
)
γ;

C2 = −
(
α c

r − c
r+λβ

+
)
;

C3 = −
(
α− λ

q+λ − q
q+λβ

−
)
(s̄λ)β

+−β−
γ;

C4 =
(
α c

r − c
r+λβ

−
)
(s̄λ)β

+−β−
,

and the coefficients are determined by

(6.31)


A3,λ =

(
x∗,λ)−α (

γx∗,λ − c
r

)
;

B+ =
q

q+λγx∗,λ− c
r+λ

(x∗,λ)β
+−(s̄λ)β

+−β−
(x∗,λ)β

− ;

B− =
q

q+λγx∗,λ− c
r+λ

(x∗,λ)β
−−(s̄λ)β

−−β+
(x∗,λ)β

+ .

It remains to verify the condition v3,λ ≤ γs for s ∈ (x∗,λ, s̄λ]. Indeed, since
A3,λ > 0, α > 1, B+ < 0, β+ > 1 and B− > 0, β− < 0, it is clear that v3,λ

is convex in the interval (0, x∗,λ) and concave in the interval (x∗,λ, s̄λ]. Moreover,(
v3,λ

)′
(x∗,λ) < γ. This verifies the condition.

The optimal conversion time for the investor is therefore given as

τ∗,λ = inf{TN : Ss
TN

≥ x∗,λ} ∧ TM .

In Figure 5, the top bold horizontal line s̄λ represents the calling boundary for
the firm, and the bottom bold horizontal line x∗,λ represents the conversion boundary
for the investor. Once again, we simulate three Poisson times T1 = 0.3, T2 = 0.5,
T3 = 0.8, and two stock price paths. For the stock price path 1, both the investor
and the firm will terminate the contract at T1; and for the stock path 2, the investor
will continue at T1 and convert at T2, while the firm will not call the bond back at
neither T1 nor T2.

In Figure 6, we further plot the value function v3,λ, which crosses the payoff
function γs in the region (0, s̄λ], so the crossing point x∗,λ is the optimal conversion
boundary for the investor. Furthermore, the value function v3,λ is strictly dominated
by K for s ∈ (0, s̄λ), so the firm never calls the bond back in this region.

7. Asymptotics as λ → ∞. We study the asymptotic behavior of the convert-
ible bond price and its associated free boundaries when the Poisson intensity λ → ∞.
Intuitively, they will converge to their continuous time counterparts. We prove this
intuition in this section.

7.1. Review of standard convertible bonds. The setting is the same as in
section 6 except that both the investor and the firm choose their respective optimal
stopping strategies as F-stopping times taking values in [0,∞]. Then, the upper and
lower values of the standard convertible bond are given by

(7.1) v = inf
σ∈R̃0

sup
τ∈R̃0

E [P (s;σ, τ)] ,

(7.2) v = sup
τ∈R̃0

inf
σ∈R̃0

E [P (s;σ, τ)] ,



Dynkin games with Poisson random intervention times 25

and the control set R̃0 is defined as

R̃0 = {F-stopping time τ for τ ≥ 0}.

We say this game has value v if v = v = v, and has a saddle point (σ∗, τ∗) ∈
R̃0×R̃0 ifE [P (s;σ∗, τ)] ≤ E [P (s;σ∗, τ∗)] ≤ E [P (s;σ, τ∗)] for every (σ, τ) ∈ R̃0×R̃0.

The proof of the following result follows along the similar arguments in [35] and
is thus omitted. We refer to [35] for its further details.

Proposition 7.1. Suppose that Assumption 6.1 holds. Let s̄ := K
γ , and define an

F-stopping time θ = inf{u ≥ 0 : Ss
u ≥ s̄}. Then, the value of the standard convertible

bond v(s) is given as follows:
(i) The Case I: qK < c < rK,

(7.3) v1(s) =

{
A1sα + c

r , if s ∈ (0, s̄);
γs, if s ∈ [s̄,∞),

with α = α+ as in (6.15) and A1 = rK−c
r (s̄)−α. The optimal stopping strategy is given

by

(7.4) σ∗ = τ∗ = θ.

(ii) The Case II: c ≥ rK,

(7.5) v2(s) =

{
K, if s ∈ (0, s̄);
γs, if s ∈ [s̄,∞).

The optimal stopping strategy is given by

(7.6) σ∗ = 0; τ∗ = θ.

(iii) The Case III: c ≤ qK,

(7.7) v3(s) =

{
A3sα + c

r , if s ∈ (0, x3);
γs, if s ∈ [x3,∞),

with α = α+ and A3 =
(
γx3 − c

r

)
(x3)−α. The optimal stopping strategy is given by

(7.8) σ∗ = θ, τ∗ = inf{t ≥ 0 : Ss
t ≥ x3},

where

x3 =

{
x∗ := α

α−1
c
γr , if c ≤ α−1

α rK;

s̄, if c > α−1
α rK.

7.2. Asymptotics. We conclude the paper by studying, when λ → ∞, (i) the
convergence of the constrained convertible bond price vλ to its continuous-time coun-
terpart v; (ii) the convergence of the optimal conversion/calling boundaries for the
constrained convertible bond to its continuous-time counterparts.

It is easy to check that s̄λ → s̄, A1,λ → A1, Lλ(s) → γs and Uλ → K with the
convergence rate 1/λ by using their explicit forms. As a consequence, we have

v1,λ(s) → v1(s); v2,λ(s) → v2(s),
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with the convergence rate 1/λ. Hence, we only need to establish the convergence
results for Case III when c ≤ qK. To this end, we first establish the monotonic
property of x∗,λ, as defined in (6.19), with respect to λ in the following lemma.

Proposition 7.2. Suppose that Assumption 6.1 holds and that c ≤ qK. Then,
x∗,λ is non-decreasing with respect to λ.

Proof. By the definition of x∗,λ in (6.19), it is sufficient to prove v3,λ is non-
decreasing in λ. Recall that v3,λ is the solution to the ODE (6.18) in the domain
s ∈ (0, s̄λ), and v3,λ = Lλ in the domain s ∈ [s̄λ,∞).

Let us suppose λ1 < λ2 and it is easy to check that s̄λ1 < s̄λ2 . For s ≥ s̄λ1 , we
have v3,λ1 = Lλ1 . Then,

v3,λ1(s)− v3,λ2(s) ≤ Lλ1(s)− Lλ2(s)

=
c(λ2 − λ1)

(r + λ1)(r + λ2)
− q(λ2 − λ1)

(q + λ1)(q + λ2)
γs

≤ (q − r)qK(λ2 − λ1)

(r + λ1)(q + λ2)(r + λ2)
< 0.

On the other hand, for s < s̄λ1 , note that v3,λ1(0+) = v3,λ2(0+) = c
r and

v3,λ1(s̄λ1) < v3,λ2(s̄λ1). Define the set N =
{
s ∈

(
0, s̄λ1

)
: v3,λ1(s) > v3,λ2(s)

}
, and

suppose that N ̸= ∅. Then on N , we have{
−L0v

3,λ1 = c+ λ1(γs− v3,λ1)+;
−L0v

3,λ2 = c+ λ2(γs− v3,λ2)+,

which implies

−L0(v
3,λ1 − v3,λ2) = λ1(γs− v3,λ1)+ − λ2(γs− v3,λ2)+

≤ λ2

[
(γs− v3,λ1)+ − (γs− v3,λ2)+

]
≤ 0.

Hence, we have v3,λ1 ≤ v3,λ2 on N , which is in contradiction with the definition of
N .

Since x∗,λ is bounded by s̄λ(≤ s̄), Proposition 7.2 then implies that limλ→∞ x∗,λ

exists, denoted by x∞. Moreover, by Proposition 7.1, we have x∞ ≤ x∗ if c ≤ α−1
α rK,

and x∞ ≤ s̄ if c > α−1
α rK.

On the other hand, by (6.29), x∗,λ is the solution to the following allergic equation[( x

s̄λ

)β+−β−

− 1

] [(
α− λ

q + λ

)
γx− α

c

r
− β+

(
q

q + λ
γx− c

r + λ

)]
(7.9)

= (β+ − β−)

(
q

q + λ
γx− c

r + λ

)
.

Sending λ → ∞ in (7.9), since the right hand side of (7.9) has the limit 0, we obtain

lim
λ→∞

[(
x∗,λ

s̄λ

)β+−β−

− 1

]
︸ ︷︷ ︸

Iλ

[(
α− λ

q + λ

)
γx∗,λ − α

c

r
− β+

(
q

q + λ
γx∗,λ − c

r + λ

)]
︸ ︷︷ ︸

IIλ

= 0.

This implies at least one of Iλ and IIλ has the limit 0.
If c < α−1

α rK, we have limλ→∞ Iλ = −1, since

lim
λ→∞

x∗,λ

s̄λ
=

x∞

s̄
≤ x∗

s̄
=

α

α− 1

c

rK
< 1.
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This implies limλ→∞ IIλ = 0, i.e. x∞ = x∗.
If c > α−1

α rK, we have

lim
λ→∞

IIλ = (α− 1)γx∞ − α
c

r
< (α− 1)(γx∞ −K) ≤ 0,

which implies limλ→∞ Iλ = 0, i.e. x∞ = s̄.
If c = α−1

α rK, it is easy to check that x∞ = x∗ = s̄.
Hence, we have established the convergence of x∗,λ → x3 as λ → ∞. As a con-

sequence, it also follows that v3,λ(s) → v3(s). However, due to the lack of explicit
solutions for Case III, it is unclear what is the corresponding convergence rate.
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Fig. 7.1. Scenario Simulation for Case I. The figure shows two simulated stock price paths in
the case of qK < c < rK. Parameter values are K = 1, r=0.05, q=0.03, σ=0.2, γ=1 and λ=1.
The initial stock price is set to s=1.2. The bold horizontal line describes the conversion and calling
boundary s̄λ. Given the Poisson times T1=0.3, T2=0.5 and T3=0.8, the investor will convert and
the firm will call the bond both at T1 (for path 1) and T3 (for path 2).
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Fig. 7.2. The value function v1,λ for Case I.
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Fig. 7.3. Scenario Simulation for Case II. The figure shows two simulated stock price paths in
the case of c ≥ rK. The parameters are the same as those in Figure 7.1.The bold horizontal line
describes the conversion boundary s̄λ. Given the Poisson times T1=0.25, T2=0.5 and T3=0.8, the
firm will call the bond at T1 (marked square) for the stock price path 1; and both the firm and the
investor will terminate the contract at T1 (marked square) for the stock price path 2.
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Fig. 7.4. The value function v2,λ for Case II.



Dynkin games with Poisson random intervention times 31

Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
to

c
k
 P

ri
c
e

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

s̄
λ

x
λ

Stock Path 1

Stock Path 2

Optimal Conversion Time

Optimal Conversion and Calling Time

Fig. 7.5. Scenario Simulation for Case III. The figure shows two simulated stock price paths
in the case of c ≤ qK. The parameters are the same as those in Figure 7.1. The top bold horizontal
line is the calling boundary s̄λ, and the bottom bold horizontal line is the conversion boundary x∗,λ.
Given the Poisson times T1=0.3, T2=0.5 and T3=0.8, both the investor and the firm will terminate
the contract at T1 (marked square) for the stock price path 1; and the invertor will convert her bond
T2 (marked square) for the stock price path 2.
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Fig. 7.6. The value function v3,λ for Case III.


