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Abstract. We develop a high frequency (HF) trading strategy where the HF trader uses her
superior speed to process information and to post limit sell and buy orders. By introducing a
multifactor mutually exciting process we allow for feedback effects in market buy and sell orders
and the shape of the limit order book (LOB). Our model accounts for arrival of market orders that
influence activity, trigger one-sided and two-sided clustering of trades, and induce temporary changes
in the shape of the LOB. We also model the impact that market orders have on the short-term drift
of the midprice (short-term-alpha). We show that HF traders who do not include predictors of
short-term-alpha in their strategies are driven out of the market because they are adversely selected
by better informed traders and because they are not able to profit from directional strategies.
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1. Introduction. Most of the traditional stock exchanges have converted from
open outcry communications between human traders to electronic markets, where the
activity between participants is handled by computers. In addition to those who have
made the conversion, such as the New York Stock Exchange and the London Stock
Exchange, new electronic trading platforms have entered the market—for example,
NASDAQ in the US and Chi-X in Europe. Along with the exchanges, market partic-
ipants have been increasingly relying on the use of computers to handle their trading
needs. Initially, computers were employed to execute trades, but today computers
manage inventories and make trading decisions; this modern way of trading in the
electronic markets is known as algorithmic trading (AT), see [18][27].

Despite the substantial changes that markets have undergone in the recent past,
some strategies used by investors remain the same. When asked about how to make
money in the stock market, an old adage responds “Buy low and sell high.” Although
in principle this sounds like a good strategy, its success relies on spotting opportunities
to buy and sell at the right time. Surprisingly, more than ever, due to the incredible
growth in computing power, a great deal of the activity in the US and European stock
exchanges is based on trying to profit from short-term price predictions by buying
low and selling high.! The effectiveness of these computerized short-term strategies,
a subset of AT known as high frequency (HF) trading, depends on the ability to
process information and send messages to the electronic markets in microseconds; see
[19]. In this paper we develop an HF strategy that profits from its superior speed
advantage to decide when and how to enter and exit the market over extremely short
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time intervals. A unique characteristic of HF trading is that the strategies are designed
to hold almost no inventories over very short periods of time (seconds, minutes, or
at most one day) to avoid exposure both to markets after close and to post collateral
overnight. Thus, profits are made by turning over positions very quickly to make a
very small margin per roundtrip transaction (buy followed by a sell or vice-versa) but
repeating it as many times as possible during each trading day.

In the past, markets were quote-driven, which means that market makers quoted
buy and sell prices and investors would trade with them. Today, there are limit order
markets, where all participants can post limit buy or sell orders, i.e., behave as market
makers in the old quote-driven market. The limit orders (LOs) show an intention to
buy or sell and must indicate the number of shares and the price at which the agent
is willing to trade. The limit buy (sell) order with the highest (lowest) price tag is
known as the best bid (best offer). During the trading day, all orders are accumulated
in the limit order book (LOB) until they find a counterparty for execution or are
canceled by the agent who posted them. The counterparty is a market order (MO),
which is an order to buy or sell a number of shares, regardless of the price, which is
immediately executed against LOs resting in the LOB at the best execution prices.

There is little evidence on the source of HF market making profits, but the picture
that is emerging is that price anticipation and short-term price deviations from the
fundamental value of the asset are important drivers of profits. On the other hand,
from the classical microstructure literature on adverse selection (see, e.g., [40]), we
also know that strategies that do not include in their LOs a buffer to cover adverse
selection costs, or that strategically post deeper in the book to avoid being picked
off, may see their accumulated profits dwindle as a consequence of trading with other
market participants who possess private or better information. In the long term, HF
traders (HFTs) who are not able to incorporate short-term price predictability in their
optimal HF market making strategies, as well as account for adverse selection costs,
are very likely to be driven out of the market.

The goal of this paper is to develop a particular dynamic HF trading strategy
based on optimal postings and cancellations of LOs to maximize expected terminal
wealth over a fixed horizon T while penalizing inventories, which will be made mathe-
matically precise in section 5.1. The HFT we characterize here can be thought of as an
ultrafast market maker where the trading horizon 7' is at most one trading day, all the
LOs are canceled an instant later if not filled, and inventories are optimally managed
(to maximize expected penalized terminal wealth) and drawn to zero by T.° Early
work on optimal postings by a securities dealer is that of Ho and Stoll [32], and more
recently Avellaneda and Stoikov [3] studied the optimal HF submission strategies of
bid and ask LOs.

Intuitively, our HF dynamic strategy maximizes the expected profits resulting
from roundtrip trades by specifying how deep on the sell and buy sides the LOs
are placed in the LOB. The HF strategy is based on predictable short-term price
deviations and managing adverse selection risks that result from trading with coun-
terparties that may possess private or better information. Clearly, the closer the LOs
are to the best bid and best offer, the higher the probability of being executed, but

2HFTs closely monitor their exposure to inventories for many reasons. For example, HFTs’ own
risk controls or regulation do not allow them to build large (long or short) positions; the HFT is
capital constrained and needs to post collateral against her inventory position. Moreover, we remark
that there is no consensus on characterizing HFTs as market makers because some stakeholders and
regulatory authorities point out that their holding periods are too short to consider them as such;
see, for example, [25].
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the expected profits from a roundtrip are also lower, and adverse selection costs are
higher.

Accumulated inventories play a key role throughout the entire strategy we de-
velop. Optimal postings control for inventory risks by sending quotes to the LOB
which induce mean reversion of inventories to an optimal level and by including a
state dependent buffer to cover or avoid expected adverse selection costs, as will be
discussed in sections 5.2, 5.3, and 6. For example, if the probability of the next MO
being a buy or sell is the same, and inventories are positive, then the limit sell orders
are posted closer to the best ask, and the buy orders are posted further away from the
best bid so that the probability of the offer being lifted is higher than the bid being
hit. Furthermore, as the dynamic trading strategy approaches the terminal date T,
orders are posted nearer to the midquote to induce mean-reversion to zero in invento-
ries, which avoids having to post collateral overnight and bearing inventory risks until
the market opens the following day. Similarly, if the HF trading algorithm detects
that LOs on one side of the LOB are more likely to be adversely selected, then these
LOs are posted deeper into the book in anticipation of the expected adverse selection
costs. An increase in adverse selection risk could be heralded by MOs becoming more
one-sided as a consequence of the activity of traders acting on superior or private
information who are sending one-directional MOs.

Trade initiation may be motivated by many factors which have been extensively
studied in the literature; see, for example, [42]. Some of these include asymmetric
information, differences in opinion or differential information, and increased propor-
tion of impatient (relative to patient) traders. Likewise, trade clustering can be the
result of various market events; see [12]. For instance, increases in market activity
could be due to shocks to the fundamental value of the asset, or the release of public
or private information that generates an increase in trading (two-sided or one-sided)
until all information is impounded in stock prices. However, judging by the sharp rise
of AT over the last ten years and the explosion in the volume of submissions and order
cancellations, it is also plausible to expect that certain AT strategies that generate
trade clustering are not necessarily motivated by the factors mentioned above.

The profitability of these low latency AT strategies depends on how they interact
with the dynamics of the LOB and, more importantly, how these AT strategies coexist.
The recent increase in the number of orders and in the frequency of LOB updates
shows that fast traders are responsible for most of the market activity, and it is very
difficult to link news arrival or other classical ways of explaining motives for trade to
the activity one observes in electronic markets. Superfast algorithms make trading
decisions in split milliseconds. This speed, and how other superfast traders react,
makes it difficult to link trade initiation to private or public information arrival, a
particular type of trader, liquidity shock, or any other market event.

Therefore, as part of the model we develop here, we propose a reduced-form model
for the intensity of the arrival of market sell and buy orders. The novelty we introduce
is to assume that MOs arrive in two types. The first type of orders are influential
orders, which excite the market and induce other traders to increase the number of
MOs they submit. For instance, the arrival of an influential market sell order increases
the probability of observing another market sell order over the next time step and also
increases (to a lesser extent) the probability of a market buy order to arrive over the
next time step. On the other hand, when noninfluential orders arrive, the intensity
of the arrival of MOs does not change. This reflects the existence of trades that the
rest of the market perceives as not conveying any information that would alter their
willingness to submit MOs. In this way, our model for the arrival of MOs is able to
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capture trade clustering which can be one-sided or two-sided and allow for the activity
of trading to show the positive feedback that algorithmic trades seem to have brought
to the market environment. Multivariate Hawkes processes have recently been used in
the financial econometrics literature to model clustering in trade arrival and changes
in the LOB; see, e.g., [38], [9], and [44]. However, this paper is the first to incorporate
such effects into optimal control problems related to AT.

In our model the arrival of trades also affects the midprice and the LOB. The
arrival of MOs is generally regarded as an informative process because it may convey
information about subsequent price moves and adverse selection risks.”> Here we
assume that the dynamics of the midprice of the asset are affected by short-term
imbalances in the number of influential market sell and buy orders; in particular,
these imbalances have a temporary effect on the drift of the midprice.

Moreover, in our model the arrival of influential orders has a transitory effect
on the shape of both sides of the LOB. More specifically, since some market makers
anticipate changes in the intensity of both the sell and buy MOs, the shape of the buy
and sell sides of the book will also undergo a temporary change due to market makers
repositioning their LOs in anticipation of the increased expected market activity and
adverse selection risk.

We test our model using simulations where we assume different types of HFTs
who are mainly characterized by the quality of the information that they are able to
process and incorporate into their optimal postings. We show that those HFTs who
incorporate predictions of short-term price deviations in their strategy will deliver
positive expected profits. At the other extreme we have the HFTs who are driven
out of the market because their LOs are picked off by better informed traders and
because they cannot profit from directional strategies which are also based on short-
lived predictable trends. We also show that in between these two cases, those HFT's
who cannot execute profitable directional strategies (and are systematically being
picked off) can stay in business if they exert tight controls on their inventories. In our
model these controls imply a higher penalty on their inventory position which pushes
the optimal LOs further away from the midprice so the chances of being picked off by
other traders are considerably reduced.

2. Arrival of MOs and price dynamics. Very little is known about the details
of the strategies that are employed by AT desks or the more specialized proprietary
HF trading desks. Algorithms are designed for different purposes and to seek profits
in different ways [8]. For example, there are algorithms that are designed to find the
best execution prices for investors who wish to minimize the price impact of large
buy or sell orders [2], [37], [6], [35], [36], [13], while others are designed to manage
inventory risk [14], [28]. There are HF strategies that specialize in arbitraging across
different trading venues, while others seek to profit from short-term deviations in stock
prices. And finally, there are trading algorithms that seek to profit from providing
liquidity by posting bids and offers simultaneously [30], [17]. In previous works on
algorithmic trading in LOBs, the midprice is assumed to be independent of MOs,
and MOs arrive at Poisson times. Our work differs significantly in that we allow for
dependence between MOs, the LOB dynamics, and midprice moves.

In the LOB, LOs are prioritized first according to price and then according to

3For instance, periods where the number of market buy orders is much higher than the number
of market sell orders could be regarded as times where informed traders have a private signal and
are adversely selecting market makers who are unaware that they are providing liquidity at a loss;
see [24].
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time.? Thus, based on the price/time priority rule the LOB stacks on one side all buy
orders (also referred to as bids) and on the other side all sell orders (also referred to
as offers). The difference between the best offer and best bid is known as the spread,
and their mean is referred to as the midquote price. Another dimension of the book
is the quantities on the sell and buy sides for each price tick which give “shape” to
the LOB.

The HF trading strategy we develop here is designed to profit from the realized
spread where we allow the HFT to build inventories. To this end, before we for-
malize the HFT’s optimization problem, we require a number of building blocks to
capture the most salient features of the market dynamics.® Since the HF T maximizes
expected terminal wealth over a finite horizon 7', while being penalized for holding
large inventories, and she is continuously repositioning buy and sell LOs, the success
of the strategy depends on optimally picking the “best places” in the bid and offer
queue which requires us to model (i) the dynamics of the fundamental value of the
traded stock, (ii) the arrival of market buy and sell orders, and (iii) how MOs cross
the resting orders in the LOB. In this section we focus on (i) and (ii), in section 3 we
discuss (iii), and after that we present the formal optimal control problem that the
HFT solves.

2.1. Price dynamics. We assume that the midprice (or fundamental price) of
the traded asset follows

(1) dSt = (U+O{t)dt+0th,

where W; is a P-standard Brownian motion, and Sy > 0 and ¢ > 0 are constants.®
The drift of the midprice is given by a long-term component v and by a short-term
component «;, which is a predictable zero-mean reverting process. Since we are
interested in HF trading, our predictors are based on order flow information where we
allow for feedback between MO events and short-term-alpha. In the rest of the paper
we assume that v = 0 because the HF strategies we develop are for very short-term
intervals.

Section 4 gives details of the dynamics of the process «y; this element of the
model plays a key role in the determination of the HF' strategies we develop because
it captures different features that we observe in the dynamics of the midprice. For
instance, it captures the price impact that some orders have on the midprice as a
result of a burst of activity on one or both sides of the market, orders that walk the
LOB, etc. Furthermore, we also know that a critical component of HF trading is the
ability that HFTs have to predict short-term deviations in prices so that they make
markets by taking advantage of directional strategies based on short-term predictions
(i.e., they are able to predict short-term-alpha) while at the same time allowing them
to reposition stale quotes or submit new quotes to avoid being picked off by other
market participants trading on short-term-alpha, i.e., avoid being adversely selected.

4This is the case for most exchanges. Some exchanges use pro rata order books, where MOs are
matched with all traders posting at the touch proportional their posted volume (see, e.g., [31]), or
other alternatives such as Broker priority in Scandinavian markets.

5 Although we focus on an HF trading market making algorithm, the framework we develop here
can be adapted for other types of AT strategies.

6Unless otherwise stated, all random variables and stochastic processes are on the completed
filtered probability space (2, Fr,F,P) with filtration F = {F;}o<¢<7 and where P is the real-world
probability measure. What generates the filtration will be defined precisely in section 5. Simply
put, it will be generated by the Brownian motions Wy and By (introduced later), counting processes
corresponding to buy/sell market and filled LOs, news events, and the indicator of whether a trade
is influential or not.
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Fic. 1. INTC market orders. Historical running intensity versus smoothed fitted intensity
(restricted to p = 1) using a 2 second sliding window for INTC' for the period between 9:30am and
9:33am, January 29, 2018.

2.2. Mutually exciting incoming market order dynamics. Order flow
tends to fluctuate throughout the day; indeed, as a motivating example, Figure 1
shows the historical intensity of trade arrival for INTC over a three minute period
(starting at 9:30am, January 29, 2018). The historical intensities are calculated by
counting the number of buy and sell MOs over the last two seconds. The fitted in-
tensities are computed using our model (see (2)) under the specific assumption that
all trades are influential; see Appendix A for more details. From the figures we ob-
serve that MOs may arrive in clusters, that there are times when the markets are
mostly one-sided (for instance, the period around 100 seconds), and that these bursts
of activity die out rather quickly and revert to around two events per second.

Why are there bursts of activity on the buy and sell sides? It is difficult to
link all these short-lived increases in the levels of activity to the arrival of news. One
could argue that trading algorithms, including HF, are also responsible for the sudden
changes in the pace of the market activity, including bursts of activity in the LOB,
and most of the time these algorithms act on information which is difficult to link
to public news. Thus, here we take the view that some MOs generate more trading
activity in addition to the usual effect of news increasing the intensity of MOs.

In our model MOs arrive in two types. The first are influential orders which excite
the state of the market and induce other traders to increase their trading activity. We
denote the total number of arrivals of influential sell/buy MOs up to (and including)
time ¢ by the processes {M, , M:_ }. The second type of orders are noninfluential
orders. These orders do not excite the state of the market. We denote the total
number of arrivals of noninfluential sell/buy MOs up to (and including) time ¢ by the
processes {J\f/ff, ]\ZJF} Note that the type indicator of an order is not an observable.
Rather, all one can observe is whether the market became more active after that trade.
Therefore, we assume that, conditional on the arrival of an MO, the probability that
the trade is influential is a constant p € [0, 1].

Thus, we model the intensity of sell, \;, and buy, A\, MOs by assuming that
they solve the coupled system of stochastic differential equations (SDEs).

Assumption 1. The market sell/buy order arrival rates (\;, A\") solve the coupled
system of SDEs

(2a) A\, = B(0 — A\ )dt +ndM, +vdM,
(2b) AN = B(0 — \P)dt + ndM, + vdM,
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Fic. 2. Sample path of MO activity rates. When influential trades arrive, the activity of both
buy and sell orders increase but by differing amounts. Circles indicate the arrival of an influential
MO, while squares indicate the arrival of noninfluential trades.

where, as previously stated, Mz_ and M, are the total number of influential buy and
sell orders up until time ¢. Moreover, 3,60, n,v are nonnegative constants satisfying
the constraint 3 > p(n + v).

MOs are mutually exciting since their arrival rates A* jump upon the arrival of
influential orders (note that the arrival of noninfluential orders does not affect A\*).
If the influential MO is a buy (so that a sell LO was lifted), the jump activity on the
buy side increases by 1 while the jump activity on the sell side increases by v, and
similarly when the MO is a sell. Typically one would expect ¥ < 1 so that jumps on
the opposite side of the book are smaller than jumps on the same side of the book
(this bears out in the calibration as well as in the moving window activities reported
in Figure 1).

Trading intensity is mean-reverting. Jumps in activity decay back to its long run
level of 6 at an exponential rate 5. Figure 2 illustrates an intensity sample path. The
lower constraint 8 > p(n + v) is required for the intensity processes to be ergodic. To
see this, define the mean future activity rate m(u) = E[\E|F;] for u > t. For the
processes )\it to be ergodic, mti(u) must remain bounded as a function of wu, for each
t, and the following lemma provides a justification for the constraint.

LEMMA 1 (lower bound on mean-reversion rate). The mean future rate mi (u)
remains
bounded for all u >t if and only if B > p(n + v). Furthermore,

. _ — —V
ulggomit(u)ZA ¢, where A= (B_Vzp ,3—5p) and § = 30

The intuition for the constraint is that when an MO arrives the activity will jump
either by 7 or by v and this occurs with probability p. Further, since both sell and buy
influential orders induce mutual excitations, the decay rate 8 must be strong enough
to compensate for both jumps to pull the process toward its long-run level of 6.

News events may also induce increases in trading activity, and incorporating them
into the analysis is straightforward, e.g., by adding an exogenous counting process
which induces jumps in activity at the time of news arrivals. To keep the modeling
to a minimum, however, we opt to exclude them in our analysis.
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3. Limit quote arrival dynamics and fill rates. The LOB can take on a
variety of shapes, and it changes dynamically throughout the day; see [41] and [23].
MOs walk the book until all the volume specified in the order is filled. LOs in the
tails of the LOB are less likely to be filled than those within a couple of ticks from
the midprice S;. The decision on where to post limit buy and sell orders depends on
a number of characteristics of the LOB and on the MOs. Some of the LOB features
are shape of the LOB, resiliency of the LOB, and how the LOB changes in between
the arrival of MOs. These features, combined with the size and rate of the incoming
MOs, determine the fill rates of the LOs. The fill rate is the rate of execution of an
LO. Intuitively, a high (low) fill rate indicates that an LO is more (less) likely to be
filled by an MO.

Here we model the fill rate facing the HFT in a general framework where we allow
the depth and shape of the book to fluctuate. The fill rate depends on where the HFT
posts the limit buy and sell orders, that is, at Sy —J; and S; + J;" respectively, where
6% denotes how far from the midprice the orders are posted. Note that the agent
continuously adjusts their posting relative to the midprice; hence, it is not possible
for the midprice to move through the agent’s posts. Rather, fills occur when MOs
arrive and reach the level at which the agent is posted. This is in line with how a
number of other authors have modeled optimal postings and fill probabilities; see [32],
[3], [6], [14], and [28]. This approach can be viewed as a reduced-form one, in contrast
to models which focus on modeling the dynamics of each level of the LOB, together
with MO arrivals (see, e.g., [41] and [23]). In all of the reduced-form approaches,
when an MO arrives, it walks through the LOB, and the probability that the HFT’s
limit order is filled is a (static) function of the posted depth 6%, and it is also assumed
that filled MOs do not affect the shape of the LOB. In our approach, however, we
allow fill probabilities to be stochastic due to changes in the LOB which result from
the arrival of MOs.

Assumption 2. The fill rates are of the form A £ A\hy (8; k), where the non-
increasing function hy(d;k¢) : R — [0,1] is C? in § (uniformly in ¢ for k, € R,
fixed w € ), and lims_, o, 6 h+(; k¢) = 0 for every k; € R™. Moreover, the functions
h1(9; ke) satisfy hy(0;k) =1 for 6 <0, Kk, € R™.

Assumption 2 allows for very general dynamics on the LOB through the depen-

dence of the fill probabilities (FPs) hi(d; k) on the process k;. The FPs can be
. . . . . kst
viewed as a parametric collection, with the exponential class hy(d; k) = e and

power law class hi(d;6;) = (1 + (kF6%)®)~! being two prime examples. The pro-
cess K¢ introduces dynamics into the collection of FPs reflecting the dynamics in the
LOB itself. The differentiability requirements in Assumption 2 are necessary for the
asymptotic expansions we carry out later on to be correct. The limiting behavior for
large 6% implies that the book (volume) thins out sufficiently slowly such that the
FPs decay sufficiently fast (faster than linear) so that it is not optimal to place orders
infinitely far away from the midprice. Finally, the requirement that hy(J; k) = 1 for
0 <0 and Vk; € R™ is a financial one. A trader wanting to maximize her chances
of being filled the next time an MO arrives must post the LOs at the midprice, i.e.,
6% = 0, or she can also cross the midprice, i.e., 6% < 0. In these cases we suppose that
the fill rate is Alti = )\ti; i.e., it equals the rate of incoming MOs. This assumption
makes crossing the midprice a suboptimal decision because the trader cannot improve
the arrival rate of MOs (since AF is constant when 6+ < 0); thus she will always
post LOs that are 6* > 0 away from the midprice. Furthermore, this condition is
more desirable than explicitly restricting the controls 6+ to be nonnegative, since it
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is not necessary to check the boundary condition at 6* = 0; it will automatically
be satisfied. Finally, we have the added bonus that the optimal control satisfies the
first-order condition.

Observe that if MO volumes are independent and identically distributed (i.i.d.),
then the /-eti processes can be interpreted as parameters directly dictating the shape of
the LOB. In particular, if the MO volumes are i.i.d. and exponentially distributed and
the shape of the LOB is flat, then the probability that an LO at price level Sy £ 5?
is executed (given that an MO arrives) is equal to e Consequently, Ii?: can
be interpreted as depth of the LOB at each price level. In order to satisfy the C!
condition at 6* = 0 and the condition that h (4, Kt) =1 for 0% <0, it is necessary
to smooth the exponential function at § = 0. This is always possible, though, since
there exist C? functions for which the L? distance to the target function is less than
any positive constant.

Assumption 3. The dynamics for k; satisfy

(3a) diy = €0 — k7 ) dt + 0w dM, + v, dM, |
(3b) dif = €0 — k) dt + v dM, +n. dM,

where 7, and v,, are nonnegative constants and ¢ and £ are strictly positive constants.

Assumption 3 is a specific modeling assumption on k; which allows for incoming
influential MOs to have an impact on the FPs. An increase (decrease) in the fill rate
can be due to two main factors: (i) a decrease (increase) in LOB depth and/or (ii)
an increase (decrease) in the distribution of MO volumes (in a stochastic dominance
sense). This is a one-way effect because influential MOs cause jumps in the &; process,
but jumps in the FP do not induce jumps in MO arrivals. While it is possible to
allow such feedback, empirical investigations (such as those in [38]) demonstrate that
the incoming MOs influence the state of the LOB and not the other way around.
The mean-reversion term draws s to the long-run mean of 9 so that the impact of
influential orders on the LOB is only temporary. Typically, we expect the rate of
mean-reversion ¢ for the LOB to be slower than the rate of mean-reversion § of the
MO activity. In other words, the impact of influential orders persists in the LOB on
a longer time scale compared to their effect on MO activity.

Moreover, immediately after an influential market buy /sell order arrives, the prob-
ability that an LO at price level S; + 5} is executed is, for the same 6%, smaller than
the probability of it being filled before the influential order arrives. The intuition is
the following. Immediately after an influential MO arrives, market participants react
in anticipation of the increase of market activity they will face and decide to send LOs
to the book. Since many market participants react in a similar way, the probability
of LOs being filled, conditional on an MO arriving, decreases.”

Figure 3 illustrates the shape of the fill rates at time ¢ describing the rate of
arrival of MOs which fill LOs placed at price levels S; &+ 5ti. Notice that these rates
peak at zero spread at which point they are equal to the arrival rate of MOs. In
the figure these rates are asymmetric and decay at differing speeds because we have

"It is also possible to have markets where, conditional on the arrival of an MO, the probability of
an LO being filled increases immediately after the arrival of an influential order. We can incorporate
this feature into our model. Note also that in our general framework, immediately after the influential
buy/sell MO arrives, the intensities A* increase and the overall effect of an influential order on the
fill rates AT = )\?:hi (6, kt) is ambiguous when A?: and h+ (0, k¢) move in opposite directions after

+
the arrival of an influential order—for example, when hy (8, kt) = et 5.
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is achieved at § = 0.

assumed different parameters for the buy and sell sides, k= 2, xk; = 1, A7 = 0.75,
and A\, = 1. In general, these curves will fluctuate throughout the day.

4. Short-term-alpha dynamics: Directional strategies and adverse se-
lection. The actions of market participants affect the dynamics of the midprice via
activity in the LOB and/or the execution of market buy and sell orders. For instance,
the arrival of public information is impounded in the midprice of the asset as a result
of new MOs and the arrival and cancellation of LOs. Similarly, bursts of activity
in buy and/or sell MOs, which are not necessarily the result of the arrival of public
information, have market impact by producing momentum in the midprice, see also
[16] who show how order-flow affects midprice dynamics.

As discussed above, a great deal of the strategies that HF T's employ are directional
strategies that take advantage of short-term price deviations in two ways. First, the
strategies enable HFTs to exploit their superior knowledge of short-term trends in
prices to execute profitable roundtrip trades, and second, they provide key information
to update or cancel quotes that can be adversely picked off by other traders.

One can specify the dynamics of the predictable drift «; in many ways, and this
depends on the factors that affect the short-term drift which for HF market making
are based on order flow. Here we assume that a; is a zero-mean reverting process
and jumps by a random amount at the arrival times of influential trades. If the
influential trade was buy-initiated, the drift will jump up, and if the influential trade
was sell-initiated, the drift will jump down. As such, we model the predictable drift
as below.

Assumption 4. The dynamics for the predictable component of the midprice’s
drift, oy, satisfy

(4) doy = —Caydt + 00 dBy + " dM, — = dM,
where e are random variables representing the size of the sell/buy influential trade’s
impact on the drift of the midprice. Moreover, B; denotes a Brownian motion inde-
pendent of all other processes, and (, o, are positive constants.

Slower traders will be adversely selected by better informed and quicker traders.
For example, assume that a; = 0 and an HFT “detects” that the incoming buy MO
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is influential. Her optimal directional strategy is to simultaneously send the following
orders to the LOB: cancel her sell LOs, attempt to purchase the asset (from a slower
market participant), and send new sell LOs to unwind the transaction. Of course,
these types of trades do not guarantee a profit, but on average these roundtrips will be
profitable because the HF T trades on short-term-alpha and profits from other traders
who are not able to update their quotes in time or who submit market sell orders
right before prices increase. Finally, even if HFTs who are able to trade on short-
term-alpha miss a fleeting opportunity to execute a directional trade, they still benefit
from updating their stale quotes in the LOB to avoid being adversely selected by other
market participants. Given our chosen dynamics on the fill probability driving process
/Qti in (3), the aforementioned effect can be modeled by taking 1, < v,, which will
induce more arrivals of limit buy (sell) quotes when an influential market buy (sell)
order arrives.

An alternative approach to adverse selection was introduced in [14], whereby MOs
may induce an immediate jump in the midprice. The result of such direct adverse
selection effects was that the agent increases her optimal postings by the expected
jump size. In this work, we will see a similar, but distinct, result whereby the agent
adjusts her posting to protect herself against the potential change in the midprice
drift.

5. The HFT’s optimization problem. So far, we have specified counting
processes for MOs and dynamics of the LOB through the FPs; however, we also
require a counting process for the agent’s filled LOs. To this end, let N, and N,
denote the number of the agent’s limit sell and buy orders, respectively, that were
filled up to and including time ¢, and the process ¢; = N, — N, is the agent’s total
inventory. Note that the arrival rate of these counting processes can be expressed
as Af 2 \Fhi(d;ky), as in Assumption 2. Finally, the agent’s cash process X,
(excluding the shares she currently holds) satisfies the SDE

() dXy = (Sp + 6,7 ) ANy — (S — 6, ) AN, ,

where 6?5 denotes the left-limit of the LO’s distance from the midprice, i.e., if the LO
was filled, the agent receives the quote that was posted an instant prior to the arrival
of the MO.

5.1. Formulation of the HF investment problem. The HFT wishes to place
sell/buy LOs at the prices S; 67 at time ¢ such that the expected terminal wealth is
maximized while penalizing inventories.® The HFT is continuously repositioning her
LOs in the book by canceling stale LOs and submitting new LOs.? Specifically, her
value function is

]:t‘| )

where the supremum is taken over all (bounded) F;-progressively measurable functions
and ¢ penalizes deviations of ¢; from zero along the entire path of the strategy.

(6) (I)(t>Xt7St>qtuat7At7K’t) = sup E

T
X1+ qrSt —qS/ ¢ ds
(62 0 ) e<u<T €A t

8 An alternative specification is to assume that the HFT is risk averse so that she maximizes
expected utility of terminal wealth. The current approach, however, is more akin to [1], where
quadratic variation, rather than variance, is penalized, which acts on the entire path of the strategy.

91n this setup the HFT’s LOs are always of the same size. An interesting extension is to also
allow the HFT to choose the number of shares in each LO.
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F; is the natural (and completed) filtration generated by the collection of processes
{8y, ay, ME = D} +ME, N} and the extended filtration F; = F4Vo{ (M )o<u<t }-
Note that A\; and k; are progressively measurable with respect to this expanded
filtration. We will often suppress the dependence on many of the variables in ®(-)
and recall that we assumed v = 0 in the dynamics of the midprice. Note that [11]
shows that the running penalty term in (6) can be interpreted as arising from the
agent’s ambiguity aversion with respect to the asset’s midprice.

The above control problem can be cast into a discrete-time controlled Markov
chain as carried out in [5]. Classical results from [7] imply that a dynamic program-
ming principle holds and that the value function is the unique viscosity solution of
the HJB equation
(7)

(O + L)+ a®,+ 10?2 Dy,

+A~ s(;l_p{h,(é_;n) [S;Aq)(t,x —s+467)— @} +(1=h_(675K))[Sy @ - <I>]}

+A* sup {h+(6+; K) [S;rﬂ)(t,x +s+61) - qﬂ +(1—he(6%5K)) [STO - @]} =g,
ot ’

with boundary condition ®(T,-) = x + ¢s, and the integro-differential operator L is
the part of the generator of the processes oy, As, K¢, and Zti which do not depend on
the controls (5}. Explicitly,

(8) L =B0-A")0r-+B(0-A")\+ +E(I—£7)0- +E(I—KT) 0+ —C @00 +20200a -

Moreover, we have introduced the following shift operators:

( S;@ = pE[SFe] +(1—p) @, SHE= pE[S;tA@} +(1-p) S0,
( S(?:A = S;tsit ) S(;t¢(t7:177 S7q7 a’ A? ’{/) = ¢(t7 x? S?q :|: 17a7 A’ K) )
(90) S;\F(I)(t7$7 S, 4, Q, A? K/) = q)(t7.’17, S,q, + 6+7 A + (V7 n)la K+ (VH777H)/) )
(gd) S)T(I)(tvxv 5,4, Oé,)\7 K’) = q)(tvxa 4,0 — 67; A+ (77, V)Iv K+ (nlm Vn)/) y

where the expectation operators E[-] in (9a) are over the random variables €.

5.2. The feedback control of the optimal trading strategy. In general,
an exact optimal control is not analytically tractable; two exceptions are the cases
of an exponential and power FPs where the optimal control admits exact analytical
solutions, as presented in section C.1. For the general case, we provide an approximate
optimal control via an asymptotic expansion which is correct to o(s) where ¢ =
max(¢, a, E[e*]). In principle, the expansion can be carried to higher orders if so
desired.

PROPOSITION 2 (optimal trading strategy, feedback control form). The value
function ® admits the decomposition ® = x + qs + g(t,q, a, A\, k) with g(T,-) = 0.
Furthermore, assume that g(-) can be written as an asymptotic expansion as follows:

(10)
g(t7Qa a, A, K,) = gO(t7 q A, K,) + aga(tv 4 A, K’) + 5gs(t7Qﬂ A, H) + ¢g¢(t7 4 A, R) + O(() )

with boundary conditions g.(T,-) = 0. Note that the subscripts on the functions g do
not denote derivatives; rather they are labels, and we have written E[e] = ¢ a® with
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€ constant. Then, the feedback controls of the optimal trading strategy for the HJB
equation (7) admit the expansion

(11) 0" =0y +adt +edF + ¢y +0(s),

where

(12a) 5t = — B(6E ( o — /\ga> ,

(12b) 0F = — B(6F ( nIe — Sfg. + pa* (Sqi)\ga—nga)),
I 1) (SH90 — S0

R (65 i)
20’ (6% k) + 65 R (6E k)

and the coefficient B(6i;k) =

positive solution to

Moreover, 53E s a strictly

(13) 85 W (635 k) + ha (635 k) = 0.

A solution to (13) always exists. Furthermore, the exact optimal controls are nonneg-
ative.

In the next subsection we use the optimal controls derived here to solve the
nonlinear HJB equation and obtain an analytical expression for g, g, and g4 to
obtain explicit expressions for the optimal postings. Before proceeding we discuss
a number of features of the optimal control 6* given by (11). The terms on the
right-hand side of (11) show how the optimal postings are decomposed into different
components: risk-neutral (first term), adverse selection and directional (second and
third), and inventory-management (fourth term).

The risk-neutral component, given by 63[, does not directly depend on the arrival
rate of MOs, short-term-alpha, or inventories. It depends on the FPs. To see the
intuition behind this result, we note that a risk-neutral HF'T, who does not penalize
inventories, seeks to maximize the probability of being filled at every instant in time.
Therefore, the HFT chooses 6% to maximize the expected spread conditional on an
MO hitting or lifting the appropriate side of the book, i.e., maximizes % hy (6%F; K¢).
The first order condition of this optimization problem is given by (13), where we see
that A* plays no role in how the LOs are calculated.'”

The optimal halfspreads are adjusted by the impact that influential orders have
on short-term-alpha through the term oy 6% + 6 to reduce adverse selection costs
and to profit from directional strategies. An HFT that is able to process information
and estimate the parameters of short-term-alpha will adjust the halfspreads to avoid
adverse selection and to profit from short-lived trends in the midprice. For example,
if short-term-alpha is positive, the HFT’s sell halfspread is increased to avoid being
picked off, and at the same time the buy halfspread decreases to take advantage of
the first leg of a directional strategy by increasing the probability of purchasing the
asset in anticipation of a price increase.

Finally, the fourth term is an inventory management component that introduces
asymmetry in the postings so that the HF'T does not build large long or short invento-
ries. This component of the halfspread is proportional to the penalization parameter
¢ > 0 which induces mean reversion to the optimal inventory position.

10Tf there are multiple solutions to (13), the HFT chooses the 6% that yields the maximum of
0F ha (6%; ke).
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5.3. The asymptotic solution of the optimal trading strategy. Armed
with the optimal feedback controls, our remaining task is to solve the resulting non-
linear HJB equation to this order in ¢. The following theorem contains a stochastic
characterization of the asymptotic expansion of the value function. This characteri-
zation can be computed explicitly in certain cases and then plugged into the feedback
control to provide the optimal strategies.

THEOREM 3 (solving the HJB equation). The solutions for ga, ge, and gs can
be written as

(143‘) o = Qq (tv >\7 K’) + q ba (t) )

(14b) ge = ac(t,\,K) + qb(t, \),

(14c) 9o = ag(t, X, &) + qby(t, A, k) + ¢° co(t) ,
where

(152)  ba(t) = £ (1 ¢T0),

(15b)  b.(t,A) = pE /T(a+ AY—am Ay) balu)du

)\t:A‘|,

(15¢)

[ rT
bs(t, A\, k) =2E /{h({u)\j—ha’u)\;}(T—u)du A=A, K,t:K,‘|, and
t
T —1t)

(15d)  co(t) =

In the above, ha—iu = hi((soi,u;ﬁi), and we have written E[e*] = ca®. Finally, the

u
functions go, aq, az, and ay do not affect the optimal strategy.

The asymptotic expansion of the optimal controls now follows as a straightforward
corollary to Theorem 3. Note that the functions b. can be computed explicitly, as
is reported in section C.2. Moreover, under some specific assumptions on the fill
probabilities hy (e.g., if hy are exponential or power functions), the function by can
also be computed explicitly. Proposition 7 in section C.3 provides a general class of
models (which includes the exponential and power cases) for which simple closed form
results are derived, and the implications for the optimal limiting order postings have
a very natural interpretation.

COROLLARY 4 (optimal LOs). The asymptotic expansion of the optimal controls
to first order in < is (dependencies on the arguments have been suppressed for clarity)
(16)

T
6 = 6F + B(0T; k%) {iSf (E l/ oy, du
t

) + ¢ (£S¥bg + (1 F 29)(T — t))}

where 0% satisfies (13), and we have \5int — 8*%| = o(s). Furthermore, the optimal
controls max{d**,0} are also of order o(s).!!
The expression for the optimal control warrants some discussion which goes be-

yond the discussion that followed the general result in Proposition 2. The term 5Oi

HNote that the exact solution of the optimal control is nonnegative, as discussed in Assumption
2, but this is not necessarily the case in the asymptotic solution; thus we write the optimal control
as max{§**, 0}.
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represents the action of a risk-neutral agent who is not aware of or is not able to
estimate the impact that influential MOs have on the stochastic drift of the midprice
(so she sets it to zero). The first term in the braces accounts for the expected change
in midprice due to the potential impact of orders on the midprice’s drift, the expected
change to the arrival of orders, and the Brownian component in the short-term-alpha
dynamics; see (4). This term plays a dual role in the optimal strategy: it corrects for
the adverse selection effect and positions the quotes to execute directional strategies.
If the drift is positive, the agent posts further away from the midprice on the sell side
(adverse selection correction) and closer to the midprice on the buy side in anticipa-
tion of upward price movements (directional strategy). When the drift is negative,
the interpretation is similar. The term proportional to ¢ contains two terms. The
first of these terms accounts for the asymmetry in the arrival rates of MOs on the sell
and buy sides, while the second term controls for inventories. Both terms together
help to induce mean reversion to an optimal inventory level which is not necessarily
ZErO.

There are a number of special cases that are interesting to analyze. For instance,
if E[e*] = & = 0 influential trades do not affect the short-term-alpha dynamics, then
in the optimal control only the fact that «; reverts to zero, at the exponential speed
¢, is taken into account. Clearly, if oy > 0, the HFT’s sell halfspread is increased
to avoid selling an asset which is trending up in price, and for the same reason the
optimal buy halfspread decreases to increase the probability of purchasing the asset
in anticipation of a price increase.

In addition, the expression for optimal control simplifies considerably when (i)
the impact of influential orders on the stochastic drift is symmetric in the sense that
et = Elet] = Ele7] = ¢~ := ¢; (ii) the parametric shape of the LOB FPs are
symmetric in the sense that the class of functions h* and h~ are equal;'? and (iii)
the fill probability at the risk-neutral optimal control is independent of the scale
parameters,'® i.e., hy(6i, k) = const. Under these assumptions, the two important
(nontrivial) quantities which appear in the optimal spreads in (16) simplify to

’ -B - - - _B _
(17&) El/ audu‘| :Ep(A;L—)\t){l_ef(T t)_e ¢(T ti_e B(T t)}
t

¢ B B¢
1 — e C(T-1)
+Oétf,
1 1— —B(T—1)
(17b) bs =20 (N = A7) {Ba”t)egg},

where 3 = 8 — p(n —v) and h = hs (63, k) = const. Both expressions contain terms
proportional to the difference in the MO activity on the buy and sell sides. If there
are no influential orders, these will be equal to their long-run levels and will therefore
be zero. However, when influential orders arrive, the buy and sell activities differ,
and the agent reacts to this order flow imbalance. Finally, it is straightforward to
see in this symmetric case (A = \;") that if ¢ = 0, the short-term-alpha component

12This does not imply that the LOB is symmetric because the scale parameters /{:E will differ. For
+t

example, exponential FPs e~"t 9 satisfy this requirement even though the book may be significantly
deeper on one side than the other.

13This condition is satisfied by (but not limited to) the exponential and power law FPs, as dis-

cussed in Examples 9 and 10.
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affects the optimal posting only via the effect of the last term on the right-hand side
of (17a).

6. HF market making, short-term-alpha, and directional strategies. In
this section we apply a simulation study of the HF strategy where MOs are generated
over a period of five minutes. The HFT is rapidly updating her quotes in the LOB
by submitting and canceling LOs which are filled according to exponential FPs.'*
The optimal postings are calculated using Corollary 4 and the explicit form for b
in Proposition 7. The processes A, k¢, and o are updated appropriately, and the
terminal cash-flows are stored to produce the profit and loss (PnL) generated from
these strategies.

To generate the PnLL we assume that the final inventory is liquidated at the
midprice with different transactions costs per share: 1 basis point (bp) and 10 bps.'?
In practice the HFT will bear some costs when unwinding a large quantity which
could be in the form of a temporary price impact (a consequence of submitting a
large MO) and by paying a fee to the exchange for taking liquidity in the form of
an aggressive MO. Finally, in each simulation the process is repeated 5,000 times to
obtain the PnLs of the various strategies. More details on the simulation procedure
are contained in Appendix D.

We analyze the performance of the HF market making strategy by varying the
quality of the information that the HF'T has when calculating the optimal postings.
The main difference between our scenarios is whether the HFT is able to calculate
the correct p which, conditional on the arrival of an MO, is the probability that the
trade is influential and whether they are able to estimate the correct dynamics of
short-term-alpha; all of the HFT's know the equations that determine A and & but
do not necessarily know the correct parameters. We contemplate six different types
of HFT's:

1. Correct probability of influential event (p). The HFT uses her superior com-
puting power to process information to estimate p and the other parameters
that determine the dynamics of A and xi. Furthermore, we assume that
the HFT may or may not be able to estimate the correct oy dynamics.

(a) Correct midprice drift (o) dynamics. This is our benchmark because we
also assume that the HFT is able to estimate the parameters of the a;
process and adjust her postings accordingly.

(b) Zero midprice drift (o) dynamics. Here we assume that, although the
HFT is able to estimate the correct p, she assumes that short-term-alpha
is zero throughout the entire strategy.

2. High probability of influential event (p). At the other extreme we also have
an HFT who cannot distinguish between the type of MO and assumes that
all orders are influential, p = 1. The jump sizes in A and ki are set so that
the long-run means are A\ = mi (o) and kF = mF(c0).

(a) Incorrect midprice drift (o) dynamics. Because the HFT assumes that
all orders are influential, she is not able to correctly predict short-term-
alpha; she either overestimates or underestimates the effect that MOs
have on short-term-alpha because every time there is an incoming MO,
the HFT will predict a jump in a;. The mean jump size parameter, &,

14The results for power FPs are very similar, and so in the interest of space we do not show them.

15The transaction costs are computed on a percentage basis, and since the starting midprice in
the simulations is $100, these correspond to approximately 1 and 10 cents per share, respectively. In
particular, gr shares are liquidated at a value of ¢7 (ST — ctrans sgn(qr)).
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is also rescaled by the correct p.

(b) Zero midprice drift (a) dynamics. The HFT assumes that short-term-
alpha is always zero.

3. Low probability of influential event (p). At one extreme we have an HFT who
cannot distinguish between order type, assumes that all orders are noninflu-
ential, p = 0, and assumes that )\f, ﬁf are constant and set at their long-run
means, A" = m7(c0), given in Lemma 1, and k = m;5(00), given in Lemma
11.

(a) Incorrect midprice drift (o) dynamics. Because the HFT assumes that
all orders are noninfluential, she is not able to correctly predict short-
term-alpha; she observes only the diffusion components and not the
jumps.

(b) Zero midprice drift (a) dynamics. The HFT assumes that short-term-
alpha is always zero.

In all six cases, the data generating processes (DPGs) are identical and are given
by the full model, where we assume the following values for the parameters (unless
otherwise stated): 8 = 60 and 6 = 1 (speed and level of mean reversion of intensity
of MO arrivals); 7 = 40 and v = 10 (jumps in A; upon the arrival of influential MOs);
& =10 and ¥ = 50 (speed and level of mean reversion for the k; process); 7, = 10
and v, = 25 (jumps in k; upon the arrival of influential MOs); v = 0 (long-term
component of the drift of the midprice); o = 0.01 (volatility of diffusion component
of the midprice); ¢ = 2 and o, = 0.01 (speed of mean reversion and volatility of
diffusion component of «; process); and, finally, p = 0.7 (probability of the MO being
influential). Moreover, et are both exponentially distributed with the same mean,
E [e*] = ¢, for the sell and buy impacts, with ¢ = 0.04.

In Table 1 we show the PnLs that the HFTs face when executing the optimal
strategy. Terminal inventories g are liquidated at the midprice Sy and pick up a
penalty of 1bps and 10bps per share. The tables show the results for different values
of the inventory-management parameter ¢ = {1 x 107°,2 x 107°,4 x 107°}. For
each value of ¢ we show the mean and standard deviation of the six PnLs where the
top row, for each ¢, reports the three PnLs resulting from the benchmark HFT (who
uses the correct p = 0.7) and the other two HFTs (who incorrectly specify the arrival
of influential and noninfluential MOs). For each ¢ the bottom row shows the other
three PnLs that result from assuming that the HFTs set oy = 0 throughout the entire
strategy.

The tables clearly show that market making is more profitable if the HF T's incor-
porate in their optimal strategies predictions of short-term-alpha; this is true even if
the HFTs incorrectly specify the short-term-alpha parameters. Moreover, when the
mean impact of influential orders on a4 is ¢ = 0.04, Table 1 clearly shows that HFT's
who are not able to execute market making strategies based on predictable trends in
the midprice will be driven out of the market because their trades are being adversely
selected and because they are unable to profit from directional strategies; HFTs who
omit short-term-alpha face negative, or at best close to zero, mean PnLs.

The inventory-management parameter ¢ plays an important role in the perfor-
mance of the HFT strategies. Although the HFT's are maximizing expected terminal
wealth (and not expected utility of terminal wealth), they are capital constrained,
and their own internal risk-measures require them to penalize building large posi-
tions. HFTs that wish to, or are required to, exert a tight control on their exposure
to inventories will prefer a high ¢. Table 1 shows an interesting effect of ¢ on the
PnL of the different strategies that we study. If the HFT uses her predictions of
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TABLE 1
The mean and standard deviation of the PnL from the wvarious strategies as the inventory-
management parameter ¢ increases, € = 0.04, and final inventory liquidation costs are 1bps and
10bps per share. Recall that only the benchmark HF T, who uses p = 0.7, is able to correctly specify
the dynamics of short-term-alpha.

Case I: € = 0.04, p = 0.7 and liquidation costs = 1lbp Case II: € = 0.04, p = 0.7 and liquidation costs = 10bp
@ a Bench. p=1 p=0 ¢ a Bench. p=1 p=0
mean 14.09 12.77 -4.34 mean 13.32 12.05 -4.81

Yes Yes
1x 1072 (std) (6.98) (6.44) (3.00) 1x 105 (std) (6.80) (6.29) (3.12)
mean -3.81 -3.88 -4.32 mean -4.28 -4.34 -4.78

No No
(std) (2.83) (2.83) (2.94) (std) (2.98) (2.98) (3.07)
mean 13.52 12.15 -2.80 mean 12.87 11.55 -3.19

Yes Yes

-

2 x 1075 (std) (5.44) (5.01) (2.21) 2 x 1075 (std) (5.30) (4.90) (2.32)
mean -1.57 -1.71 -2.80 mean -1.96 -2.10 -3.19

No No
(std) (2.07) (2.06) (2.17) (std) (2.20) (2.19) (2.28)
mean 12.49 11.08 -1.24 mean 11.94 10.58 -1.56

Yes Yes

5

4x 1075 (std) (4.28) (3.94) (1.60) 4x 1075 (std) (4.17) (3.85) (1.69)
mean 0.24 0.06 -1.25 mean -0.09 -0.27 -1.57

No No
(std) (1.48) (1.48) (1.58) (std) (1.59) (1.59) (1.67)

short-term-alpha to make markets, increasing ¢ reduces both the mean and standard
deviation of the PnL. Thus, in these cases the tradeoff between mean and standard
deviation of profits is clear: those HF Ts who trade on short-term-alpha are able to
trade off mean against standard deviation of the PnL.

On the other hand, the effect of increasing ¢ on the Pnl. of HF T's that do not take
into account short-term-alpha is to increase the mean and to decrease the standard
deviation of the PnL. The intuition behind this result is the following. As we have
shown, HFTs that do not trade using predictions of short-term-alpha suffer from
being picked off by better informed traders and are unable to boost their profits using
directional strategies. However, increasing ¢ makes their postings more conservative
because, everything else being equal, the LOs are posted deeper in the LOB, and this
makes it more difficult for other traders to pick off their quotes. Thus, by increasing ¢,
the HFT reduces her exposure to adverse selection, and this explains why the mean
PnL increases in ¢. Finally, the standard deviation of the PnL decreases because,
when ¢ increases, the strategy induces very quick mean reversion of inventories to
Z€ro.

7. New Developments. Since the original version of this paper, there have
been a number of exciting developments in stochastic control and stochastic game
formulations of algorithmic trading problems. The problem setup here, and in all
other works at the time, ignore the optimization of other agents. While [16] address
how order-flow from other agents modifies the optimal strategy of an individual agent,
the authors do not address the optimisation problem that the other agents are simul-
taneously pursuing. Doing so requires studying large stochastic games. [34] is the
earliest work to address the problem where there are multiple agents trading, some
of whom are also optimizing their trades, while others add noise to the order-flow —
so-called uninformed traders — and there is a large liquidating agent. [10] also ad-
dress a multiple agent setting where all agents are homogeneous. In both cases, the
trading problem becomes a multi-player stochastic game, and in general, such prob-
lems cannot be solved in closed-form. Instead, the authors make use of the theory of
mean-field games (MFGs), developed simultaneously (with different approaches) in
[33] and [39], to obtain Nash equilibria for the infinite player game, and demonstrate
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that the MFG solution leads to e-Nash equilibria'® for the finite player version of the
game.

Trading problems where the agent aims to track a particular price path, such
as volume weighted asset price (VWAP) [29, 26, 15], or tracking a particular trad-
ing rate [4], such as when the trader is hedging an option taking into account the
microstructure impact, have also received attention in the recent literature.

Another important innovation in the field stems from the observation that finan-
cial markets, and in particular intra-day markets, have factors that drive the price and
order-flow dynamics which cannot be observed — so-called latent factors. [20] demon-
strate how to perform statistical arbitrage in the presence of these latent factors,
and derive closed-form optimal strategies under a general class of Markov-modulated
diffusion and counting process models. They utilize tools from optimal control with
partial information, and while the mathematical results are in closed-form, estimation
and implementation of the strategy requires use of machine-learning tools, which the
authors also address. This integration of machine learning and stochastic control is a
very exciting and promising direction of research.

A final, but not exhaustive, innovation is to incorporate both latent factors and
the optimal actions of multiple heterogeneous agents. [21] analyzes a very general
model where asset prices are adapted to a large filtration G = {G;};c[o,r), while
agents have access to a coarser filtration F = {]—'t}te[o’T], s.t. F; C G, and various
sub-populations of agents have differing performance criteria. The authors succeed, by
using methods of convex analysis (rather than using the dynamic programming princi-
ple, or the stochastic Pontryagin maximum principle), in obtaining forward-backward
stochastic differential equations which the latent, heterogeneous, multiple agent trad-
ing problem solves. Moreover, they solve this FBSDE system, and demonstrate that
the MFG leads to a e-Nash equilibria for the finite player game.

8. Conclusions. We develop an HF trading strategy where the HFT uses her
superior speed advantage to process information and to send orders to the LOB to
profit from roundtrip trades over very short time scales. One of our contributions is
to differentiate between influential and noninfluential MOs. The arrival of influential
MOs increases MO activity and also affects the shape and dynamics of the LOB. On
the other hand, when noninfluential MOs arrive, they walk the LOB but have no
effect on the demand or supply of shares in the market.

Another contribution is to model short-term-alpha in the drift of the midprice as
a zero-mean reverting process which jumps by a random amount upon the arrival of
influential MOs and news. Influential buy and sell MOs induce short-lived upward
and downward trends in the midprice of the asset. This specification allows us to
capture the essence of HF trading—to exploit short-lived predictable opportunities
by way of directional strategies, and to supply liquidity to the market, taking into
account adverse selection costs.

The trading strategy that the HFT employs is given by the solution of an optimal
control problem where the trader is constantly submitting and canceling LOs to maxi-
mize expected terminal wealth, while managing inventories, over a short time interval
T. The strategy shows how to optimally post (and cancel) buy and sell orders and is
continuously updated to incorporate information on the arrival of MOs, size and sign
of inventories, and short-term-alpha. The optimal strategy captures many of the key

16 An e-Nash equilibria is one where agents can improve their performance criteria by deviating
from the equilibria, but only by an amount ¢ which tends to zero as the population size tends to
infinity.
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characteristics that differentiate HF T's from other algorithmic traders: profit from
directional strategies based on predicting short-term-alpha; reduced exposure to LOs
being picked off by better informed traders; and strong mean reversion of inventories
to an optimal level throughout the entire strategy and to zero at the terminal date.

Our framework allows us to derive asymptotic solutions of the optimal control
problem under very general assumptions of the dynamics of the LOB. We test our
model using simulations where we assume different types of HFTs who are mainly
characterized by the quality of the information that they are able to process and
incorporate into their optimal postings. We show that only those HFTs who incor-
porate predictions of short-term price deviations in their strategy will deliver positive
expected profits. The other HFTs are driven out of the market because their LOs
are picked off by better informed traders and because they cannot profit from di-
rectional strategies which are also based on short-lived predictable trends. We also
show that those HFTs who cannot execute profitable directional strategies and are
systematically being picked off can stay in business if they exert tight controls on
their inventories. In our model, these controls imply a higher penalty on their inven-
tory position, which pushes the optimal LOs further away from the midprice, so the
chances of being picked off by other traders are considerably reduced.

One aspect that we have left unmodeled is when it is optimal for the HFT to
submit MOs. We know that HFTs submit both aggressive and passive orders. De-
pending on short-term-alpha it might be optimal for the HFT to submit aggressive
orders (for one or both legs of the trade) to complete a directional strategy. In our
stochastic optimal control problem the HFT does not execute MOs; the best she can
do is send LOs at the midprice (zero spread), but this is no guarantee that the LO will
be filled in time for the HF strategy to be profitable. We leave for future research the
optimal control problem where HF Ts can submit both passive and aggressive orders.

Finally, the mutually exciting nature of our model captures other important fea-
tures of strategic behavior which include “market manipulation.” For example, algo-
rithms could be designed to send MOs, in the hope of being perceived as influential, to
trigger other algorithms into action and then profit from anticipating the temporary
changes in the LOB and short-term-alpha. Market manipulation strategies are not
new to the marketplace; they have been used by some market participants for decades.
Perhaps what has changed is the speed at which these techniques are executed, and
the question is whether speed enhances the ability to go undetected. Analyzing such
strategies is beyond the scope of this paper.

Appendix A. Fitting the model. Here we focus on the case when all MOs
are influential. Online calibration and estimation of the current state of activity in the
general model are beyond the scope of this work and will be reported on elsewhere.

When all MOs are influential (i.e., when p = 1), the path of the intensity process
is fully specified (once the times at which the buy and sell trades are specified).
Consequently, the likelihood can be written explicitly, and a straightforward maximum
likelihood estimation (MLE) can be used (albeit it must be maximized numerically).
To be specific, suppose {t1,ta,...,t,} are a set of observed trade times (with ¢, <T
the time of the last trade) and {Bj, Bs, ..., B,} are buy/sell indicators, i.e., 0 if the
trade is a market sell and 1 if the trade is a market buy. Then the hazard rates and
their integral at an arbitrary time ¢ can be found by integrating (2a)—(2b) and are
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explicitly given by

" ¢ n 1 — e—Bl—t:)
(18)  AF :9+ZH;: e—Bl—t) 14 / AE du:9t+ZHf%,
i=1 0 i=1

where H = (B;n+ (1 — B;)v, Biv + (1 — B;) ). Finally, the log-likelihood is

(19) £ =-20T+ zn: {Bi log(A\f) + (1 — Bi)log(A;) — (n +v)

=1

1 — e B(T—t) }
3 .

Maximizing this log-likelihood results in the MLE of the model parameters, and upon
back-substitution into (18) provides the estimated path of activity. Integrating this
activity over the last two seconds, i.e., % ftt_Q AE du, provides us with a smoothed
version of the intensity, shown in Figure 1 as the path labeled “Fitted.” This is directly
comparable to the one second historical intensity in Figure 1 labeled “Historical.”

For the time window 10:00am to 11:00 am on January 29, 2018, for INTC the
estimated parameters are as follows:

-~

B=3,7714, 6=022, 7=2766, and U =54.

Notice that the spikes in the historical intensity are often above the fitted intensi-
ties. The reason for this difference is that, here, the fitted intensities assume that all
trades are influential (i.e., p = 1). Consequently, the size of the jump in intensities
must be smaller than the true jump size to preserve total mean activity of trades.
When a full calibration is carried out, in which p is not necessarily 1 and the influ-
ential /noninfluential nature of the event must be filtered, the jump sizes are indeed
larger.

Appendix B. Proof of results.

B.1. Proof of Lemma 1. Integrating both sides of (2), taking conditional
expectation, applying Fubini’s theorem, and then taking derivative gives the following
coupled system of ODEs for mi (u):

() (o) G- (o) - )
+

with initial conditions m;=(t) = )\ti. This is a standard matrix equation, and, if A
has no zero eigenvalues, it admits the unique solution

o (e [(§) ] eae

Since A is symmetric, it is diagonalizable by an orthonormal matrix U. Furthermore,
its eigenvalues are 8 — (n = v)p. Clearly, in the limit u — oo, m¢(u) converges if and
only if 8 — (n+ v)p > 0, which implies 8 > (n + v)p since n,v, p > 0.

The remaining case is if A has at least one zero eigenvalue. However, it is easy to
see that in this case, the solution to (20) has at least one of mi (u) growing linearly
as a function of u. Furthermore, if one eigenvalue is zero, then either 8 = (n—v)p or
B = (n+v)p, which lie outside the stated the bounds. Finally, if both eigenvalues are
zero, then we must have 8 = v = n = 0, which is, once again, outside of the stated
bounds. None
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B.2. Proof of Proposition 2. Applying the ansatz on the form on &, differen-
tiating inside the supremum in (7) with respect to 6%, expanding ¢ using the specified
ansatz, writing 6% = 53E +adt +edt + ¢5$ +0(¢c), and setting the resulting equation
to 0 gives our first-order optimality condition. To this order, the first-order conditions
imply that
(22)

hae(07) + 0 W (63) + o { B (WE(O) + 20 (67) + W (55 (Shga — Siga) |
e {0 (WLET) + 2 W (07)) + 1 (0F) (SFge — SFg- + 2pa* Shoa) |
6 {00 (WLOF) + 20 (07)) + Wa(63) (Shos —STgs) } = ol<).

Observe that the Taylor expansion of k() about g requires the C? regularity condi-
tion to keep the error of the correct order. The C! regularity condition ensures that
the global maximizer satisfies (22). Setting the constant term in (22) to zero yields
(13). Setting the coefficients of a, €, and ¢ each separately to zero and solving for é,,
e, and Jy results in (11). The finiteness of the optimal control correct to this order
is ensured by the last condition in Assumption 2.

The existence of a solution to (13) is clear by noticing that the solution to (13) is a
critical point of the function dh(J). The critical point exists since 0h(d) is nonpositive
for § < 0, is strictly positive on an open interval of the form (0,d) due to h € C*
(since h > 0 in an open neighborhood of 6 = 0), and goes to 0 in the limit (when
d — o0) by Assumption 2.

To see that the exact values of the optimal controls are nonnegative, observe
that the value function is increasing in x. Therefore, ®(¢t,z + 9§, ) < ®(¢, z,-) for any
0 < 0. Since the shift operators appearing in the argument of the supremum are linear
operators, and h(d; k) is bounded above by 1 and attains this maxima at § = 0, the
0 = 0 strategy dominates all strategies which have § < 0. None

B.3. Proof of Theorem 3. Inserting the expansion for g and the feedback
controls (11) for § into the HJB equation (7), and carrying out tedious but ultimately
straightforward expansions, to order ¢, (7) reduces to

(23)
o(s) = Dgo + (X705 h (6) + A5 h—(d5))

+a{q+ (D= ) gat+ A" hi(60) S5 — 5] 9o+ A" - (680) [S;5 — 87 ] ga }
+e{Dge + X by (60) ([S5 — 8t] 9= + pa* S0 )

3~ h-(60) (S0 = 8] 9: = pa” Spaga) }
+ 6 {=a® +Dgy + X" 1y (60) [S1, — 5] 96 + A~ h-(60) [S; — 53] 9} -

where D = 9; + £ and the boundary conditions go(T,-) = go(T,:) = ¢-(T,-) =
9o(T,-) = 0 apply. Clearly, go is independent of ¢ and, as seen in Proposition 2,
does not affect the optimal strategy. Next, perform the following steps: (i) set the
coefficients of «, €, and ¢ to zero separately; (ii) write go, ge, and g as in (14);
and (iii) collect powers of ¢, and set them individually to zero.!'” Then one finds the

17Note that this step is not an asymptotic expansion in g¢; rather it is exact given the prescribed
expansion in the other parameters.
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following equations for the functions b, (t), b:(t, A), bg(t, A, k), and cy(t):

(24a) 0= Dby — Cbo + AT [ST — 1] by + A7 [S] — 1] b +1,

(24b) 0= Db + A" [S] —1] b + A7 [Sy — 1] be +p (ATa™ —A7a™) ba,
(24c) 0= Dby + AT [ST —1]bs + A7 [Sy — 1] by — 2h(d0) (AT — A7) ¢y,
(24d) 0= Dey+ At [ST—1]cp+ A7 [S] — 1] cp — 1.

These equations, together with the boundary conditions that b, (T,-) = b.(T,:) =
by(T,-) = cy(T,-) = 0, admit, through a Feynman-Kac argument, the solutions
presented in (15). More specifically, we apply the Feynman—Kac formula in Lemma
5 to link the solution of the derived partial integro-differential equation (PIDE) back
to its stochastic representation, as presented in (15).

The functions aq, a., and a4 are independent of ¢ and, since the optimal spreads
given in (12) contain difference operators in ¢ which vanish when the difference oper-
ators act on functions independent of g, do not influence the optimal strategy. None

B.4. Proof of Corollary 4. Applying (14) for g, g-, and g, in Theorem 3 to
(11) and (12) of Proposition 2 and using the fact that the a, b, and ¢ functions are all
independent of ¢, after some tedious computations, §** reduces to

55 = 65 +B (05 k%) {Faba + (ESFb. + patba) + ¢ (£S5 + (1 F2¢)(T — 1)) } .

Next, observing that +a b, + &(£SFb. + pat b,) = £ (E[ftT oy, du)), we find (16).
Finally, let 6=, denote the exact optimal controls. Using Proposition 2 we have that

opt
53; is nonnegative and |§* — (5int| = 0(¢); therefore,
+ +
|max{6i*, 0} — 5Opt| < |5i* — 5Opt| =0(s),
and we are done. None

B.5. Feynman—Kac formula for jump diffusions. Let X; be a jump dif-
fusion on R¥ with P-generator £. Suppose that some function u(t,z) satisfies the
following PIDE with boundary condition:

(25) { (0r + L)u(t, x) +ujzxt:;§

V(t, z)u(t, z),
o().

LEMMA 5 (Feynman-Kac formula). The solution to (25) has the following stochas-
tic representation:

T
(26) w(t,x) = EF / e~ JIVEXDdz £ (g X Yds 4 e STV EXDz o (x

t
Proof. Suppose u(t,z) is a solution to (25), and consider the process

Xt—I].

Y(r, X,) = / e JIVEXDdz p(g X Yds 4 e SV EXDdy (X)),
t

It then follows that

]Et,m [Y(T, XT) - Y(t, Xt)] == Eth
t

T
/ e— Ji Vedz {fr+(ar+£)ur—vruqﬂ}dr‘| =0.
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The first equality is true by Dynkin’s formula. The second equality is due to the
condition in (25). Hence, we have

u(t,x) =Y (t,x) =E, [Y(t, Xy)] =Ei o [Y(T, X7)]

T
_ ]Etx [/ o f: V(Z’Xz)dzf(S7Xs)d$ +e jtT V(z,Xz)dZu(T’ XT)

t

T
_ Et@ [/ o fts V(z,Xz)de(s7Xs)dS e ftT V(Z’Xz)dZW(XT)] ) O
t

Appendix C. Some explicit formulae. This appendix contains several explicit
formulae for the optimal spreads as well as quantities that feed into the optimal
spreads.

C.1. Exact optimal trading strategy. Although an exact optimal control
is not analytically tractable in general, the feedback control form for the cases of
exponential and power-law FPs can be obtained within our modeling framework.

PROPOSITION 6 (exact optimal controls for exponential and power-law).  Sup-
pose that the scale parameter process /@ti is bounded away from zero almost surely.
More specifically, assume that P [infte[O,T] /{ti > O] =1.

1. If Rt (0;k) = P for 6 > 0, then the feedback control of the optimal trading
strategy for the HJIB equation (7) is given by

1
(27a) oF max{mi - {S;tngng}, O}.

2. Ifh*(6;k) = (1 + mié)ai for & >0, then the feedback control of the optimal
trading strategy for the HJB equation (7) is given by

o 1
(27b) oF = rnax{a — (Iii - {S;t)\g - ng}) , O} .

Here, the ansatz ® =+ g s+ g(t,q, o, A, k) with boundary condition g(T,-) =0 has
been applied. Furthermore, the solutions in (27a)—(27b) are unique.

Proof. Applying the first order conditions to the supremum terms and using the
specified ansatz leads, after some simplifications, to the stated result. We show this in
detail for 6~ in (27a) only as the other cases are analogous. The relevant supremum
term in the HJB equation in (7) simplifies to, after applying the ansatz ® =z +¢s+

9(t,q, o, A K),
(28) e 0T [S;g—g—i-(S_} +(1—6_67'€7) [S;g—g] )

Differentiating (28) with respect to §~ and setting the resulting expression equal
to zero yields (27a). Checking the second derivative of (28) verifies that this point is
in fact a local maximum. If this point is negative, then the optimal §~ is 6~ = 0 by
Assumption 2.

Uniqueness is trivial. 0
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C.2. Explicit computation of b.. Rather than computing b. directly, it is
more convenient to compute the expected integrated drift and then identify the ap-
propriate terms. To this end we have the following result.

PROPOSITION 7 (expected integrated drift).  The expected integrated drift is
given by the expression

T
/ g ds
t

where € bz (t, A) = A(t) + X - C(t) and

(29) E

A=A oy = a] =eb(t,\) + aby(t),

(30a) A(t) =¢'-B(1),

~(A = ¢ (ba()T- A7 (T— AT ) e,
(30c) C(t) :g {A7 (1= 2T ) — (A — (! (¢TI T — AT L,

Moreover, a = (—a~, at) and ¢ = (86, 30)".

Proof. Denoting f(t,a,A) = E[ftT asds| A = A, ay = a], we have, through a
Feynman—Kac theorem, that f satisfies the PDE

(31) O+ L) f+XT(STF=N+A (S f—f)+a=0,
where the infinitesimal generator of o and A\ is
L=B0-X)o\-+ B0 — A"+ — Cada + 202000 .

Substituting the affine ansatz f = A(t) + AC(t) + a b, (t) into the PDE, subject to
the boundary conditions A(T) = C(T) = 0, leads to the system of coupled ODEs

(32) { QA +¢ - C(t) =0,

0:C(t) — AC(t) + pba(t)ca =0.
The solution of this coupled system is given by (30a)—(30c). The assertion that
A(t)+ X - C(t) = e b, with b, provided in (15b) can be confirmed by (i) writing down
the PDE which the function b, satisfies, (ii) noting that it admits an affine ansatz
Ac(t) + X - C(t), and (iii) noting that the ODEs that A.(t) and C.(¢) satisfy are the
same ODEs as A(t) and C(t) with the same boundary conditions. Uniqueness then
implies that they are equal. 0

C.3. Computing by when risk-neutral fill probabilities are constants.
Closed form expressions for the function by can only be derived under further as-
sumptions on the FPs hy(d;k). As a motivating factor, note that both exponential
and power-law FPs have the property that hi((%t;n) = const, irrespective of the
dynamics on the shape parameter . This leads us to investigate the larger class
of models for which h(63; k) are constant. Under these assumptions, the following
proposition provides an explicit form for the function by.
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PROPOSITION 8 (explicit solution for by(t,\,k)). If ha(6i;Kk) = hy are con-
stants P-a.s., then the function bs(t, X, k) is independent of k and is explicitly given

by
(33)

bo(t,A) =26/ { (A1 (T 1) = A7 (1= e AT D) A= AT+ H(T - )P AI¢
where I is the 2 x 2 identity matriz and & = (—h_, hy)’.

Proof. Note that E | ft AE(T—u) du| Fy] = ft ME|F) (T—u) du = [, mt £ (u) (T—
u) du. Using the form of mi (u ) provided in (21) and integrating over w implies that

/ i (u) (T — ) s = (AT -t - A2 (1= AT0)) (A - A7I¢) + ATICH(T

This result is valid under the restriction that A is invertible, which is implied by the
arrival rate of MOs (2) and Lemma 1. Moreover, when hi(0F;k) = hs we have

by(t,A) =2 ftT{h+ ~mj (u) — h_ -m; (u)}(T — u) du, and (33) follows immediately.0

As already mentioned, studying the class of models for which A (501; K) = hy are
constant was motivated by the exponential and power-law cases, which we formalize
in the two examples below.

Ezample 9 (exponential fill rate). Take k™ = f*(k), where f* : RF s R are
continuous functions. If h*(5;Kk) = e "0 for § > 0 and Plinf,co,7) ki > 0] =1,
then h4 (50i; k) = e~1 is constant and Proposition 7 applies.

Ezample 10 (power fill rate). Take k* = f*(k), where f* : RF s R* are con-
tinuous functions, and o™ > 1 are fired constants. If h+(6;Kk) = [1 + (mié)“i]_l
for & > 0 and P[inf,c(o 1) ki > 0] = 1, then §f = (a* — 1)_ﬁ(/<;i)’1, and
h+ ((53[; K)= % 1s constant, and Proposition 7 applies.

Notice that the Poisson model of trade arrivals can be recovered by setting p = 0.
Furthermore, if the initial states )\(jf are equal and kT are equal, then by = 0.

C.4. Conditional mean of fill probability process.

LEMMA 11 (conditional mean of k;). Under the dynamics given in (3), the
conditional mean it (u) == E[xE|F] is

+

NemiE (1) + vemF ()] + | kE — 0 = 2 AE + v AT) | e 600,

A SR P
(35) mi (u) =9+ €

el
where miE(u) are given in section B.1.
Proof. Proceeding as in the proof of Lemma 1 in section B.1, m7 (u) satisfies the
(uncoupled) system of ODEs
dmi (u)
du

(36) + &M (u) = &9+ p [nemit (u) + vem{ ()],

where mi (u) is given by (21). Solving (36) with the initial condition mE(t) = xif

gives the stated result. 0

—t)?.
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Appendix D. Simulation procedure. Here we describe in more detail
the approach to simulating the PnL distribution of the HF strategy. Note that this
produces an exact simulation; specifically, there are no discretization errors that would
be associated with approximating a continuous time process by a discrete one (i.e.,
simulated interarrival times are correct up to machine precision).

1. Gienerate the duration until the next MO given the current level of activity
AL -

e In between orders, the total rate of order arrival is A\; = 20 + ()\?; + A =

20)e~P(t=tn) To obtain a random draw of the time of the next trade, draw a

uniform u ~ U(0, 1) and find the root'® of the equation Te” = 55(\;, — 26) e*

where ¢ = )‘t"?;% + % Inu. Then, T,4+1 = %(7‘ —¢) is a sample for the next

duration and t,41 =tn + Thy1.
2. Decide if the trade is a buy or sell MO.

0+ —0) e Tnt1

e The probability that the MO is a buy order is ppuy = 20T +a —20) P T -

Therefore, draw a uniform u ~ U(0,1), and if u < ppyy, the order is a buy
order; otherwise it is a sell order.
e Set the buy/sell indicator B3 = 1 if it is a buy MO and B4, = —1 if
it is a sell MO.

3. Decide whether the MO filled the agent’s posted LO.
e Compute the posted LO at the time of the MO ME
0) e~ B Tnr1
e Draw a uniform u ~ U(0, 1).
e If the MO was a sell (buy) order, then if u < e % (u < e~ 5?), the
agent’s buy (sell) LO was lifted (hit).

4. Update the midprice and drift of the asset.
e Generate two correlated normals Z; and Z, with zero mean and covari-
ances:

=0+ (\F -

trnt1

2 _—CTy _ 2T,
(C(Zl)Zl) = 272 (Tn+l _21 = ¢ + + 1—e 2¢ +1)a

(1 —e 2Ty C(Zy1,22) = 2<2 (1 —2e=¢Tn+1 4 g=XTnt1),

M)

C(Zs, Zs) =

ey

Generate a third independent standard normal Z.

e Update price and drift. S;,  , =S¢, —l—atn%(l —e i)+ 2yt o /Thi1 Z
and oy, ,, = e Ty + Zs.

5. Update the inventory and agent’s cash: X;
and g, , = qt, — Bng1.

6. Decide if the trade is influential, and update activities, FPs, and drift.
e Draw a uniform u ~ (0,1); if u < p, the trade is influential, so set H,,+1 =
1; otherwise set H,,+1 = 0. Finally,

+6;

n+1 tnt1

= Xy, + Bnt1Se

n+1

My =045 —0) e Pt 4 (31 £ Buga)v + (1 F Buga)n) Hoga,

(
ki =04 (kif —0) e s 4+ (3(1 £ Boyi)ve + S(LF Bos1)ne) Hu1,

tnt1

atn+1 = %(1 + B77/+1)6+ - %(1 - Bn+1)€ + atn+1'
7. Repeat from step 1 until ¢,,41 > T.

18This is efficiently computed using the Lambert-W function since Ay is typically small.
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8. Flow the diffusion from the last time prior to maturity until maturity using
step 4 with t,,41 =T.

9. Compute the terminal PnL = X7 +qr St (1 — Ctrans sgn(gr)), where crans is
the liquidation cost (additional fee charged to the trader for taking liquidity
from the market at time T" due to forced liquidation of inventory).

The PnLs for the other types of HFTs employed in the simulation are obtained
similarly.
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