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FRACTIONAL COLORING METHODS WITH APPLICATIONS TO
DEGENERATE GRAPHS AND GRAPHS ON SURFACES∗

JOHN GIMBEL† , ANDRÉ KÜNDGEN‡ , BINLONG LI§ , AND CARSTEN THOMASSEN¶

Abstract. We study methods for finding strict upper bounds on the fractional chromatic number
χf (G) of a graph G. We illustrate these methods by providing short proofs of known inequalities
in connection with Grötzsch’s 3-color theorem and the Five Color Theorem for planar graphs. We
also apply it to d-degenerate graphs and conclude that every Kd+1-free d-degenerate graph with n
vertices has independence number < n/(d+1). We show that for each surface S and every ε > 0, the
fractional chromatic number of any graph embedded on S of sufficiently large width (depending only
on S and ε) is at most 4 + ε. In the same spirit we prove that Eulerian triangulations or triangle-free
graphs of large width have χf ≤ 3 + ε, and quadrangulations of large width have χf ≤ 2 + ε. While
the ε is needed in the latter two results, we conjecture that in the first result 4 + ε can be replaced
by 4. The upper bounds χf ≤ 4 + ε, χf ≤ 3 + ε, χf ≤ 2 + ε, respectively, are already known for
graphs on orientable surfaces, but our results are also valid for graphs on nonorientable surfaces.

Surprisingly, a strict lower bound on the fractional chromatic number may imply an upper bound
on the chromatic number: Grötzsch’s theorem implies that every 4-chromatic planar graph G has
fractional chromatic number χf (G) ≥ 3. We conjecture that this inequality is always strict and
observe that this implies the Four Color Theorem for planar graphs.

Key words. Fractional chromatic number, planar graphs, degeneracy, graphs on surfaces
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1. Introduction. The fractional chromatic number χf (G) for a graph G is a
natural generalization of its chromatic number χ(G) and has the additional advantage
that it can be investigated by linear programming methods, as described for example
in the monograph by Scheinerman and Ullman [21]. Linear programming can provide
lower bounds for χf (G) for specific graphs G, but general lower bounds on χf (G) tend
to be difficult to find, except that χf (G) is bounded below by the clique number ω(G)
and also by |V (G)|/α(G), where α(G) is the independence number. The purpose of
this paper is to offer some conjectures and give some methods for upper bounds by
proving the fractional chromatic number to be strictly smaller than the chromatic
number for graphs satisfying well know upper bounds on the chromatic number. As
the two chromatic numbers coincide for graphs whose chromatic number equals the
clique number, we focus on graphs with no large cliques, in particular triangle-free
graphs and graphs with a large width embedding on a surface.

Let k be a positive real number. A graphG is fractionally k-colorable if χf (G) ≤ k.
A graph G is k-fraction-critical if χf (G) ≥ k, but χf (H) < k for every one of its proper
subgraph H. We say that a family of graphs F is fractionally k-colorable if for every
G ∈ F we have χf (G) ≤ k, and F is fractionally (< k)-colorable if for every G ∈ F
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2 JOHN GIMBEL, ANDRÉ KÜNDGEN, BINLONG LI, AND CARSTEN THOMASSEN

we have χf (G) < k.
King, Lu and Peng [13] strengthened Brooks’ theorem for fractional coloring by

proving that a connected graph of maximum degree d containing no Kd has χf (G) ≤
d − 2

67 unless G is either the square of an 8-cycle C2
8 or the strong product of C5

and K2. As another example, Hilton, Rado and Scott [11] showed that the Five Color
Theorem for planar graphs can be extended to show that planar graphs are fractionally
(< 5)-colorable. The Four Color Theorem shows that planar graphs are fractionally
4-colorable, but we do not know if planar graphs are fractionally (< 4)-colorable with
finitely many minimal exceptions (see also Example 3.9 and Conjecture 3.7).

In this paper we focus on families of k-colorable graphs that are fractionally (< k)-
colorable. To illustrate the usefulness of a sharpened upper bound on the fractional
chromatic number consider a d-degenerate graph G with n vertices. Such a graph has
chromatic number at most d+ 1 and hence independence number at least n/(d+ 1).
For the complete graph with d + 1 vertices these bounds are sharp. However, if the
graph does not contain a complete graph with d+ 1 vertices, then we prove that the
fractional chromatic number is strictly less than d+ 1 and hence it has independence
number α(G) > n/(d + 1), a fact that does not follow from the chromatic number,
which may still be d + 1. In particular, if G is planar 3-degenerate and contains no
K4, then χf (G) < 4 even though possibly χ(G) = 4. Combining this with the result
of Thomassen [28] that every planar graph has an independent set A so that G−A is
3-degerate gives a new proof (without using the Four Color Theorem) of the result of
Hilton, Rado and Scott [11] that planar graphs are fractionally (< 5)-colorable. (As
it suffices to prove this result for planar triangulations with no separating triangle,
we may assume that G−A above contains no K4.)

We give a simple proof of a fractional version of Grötzsch’s 3-color theorem
by showing that planar triangle-free graphs are fractionally (< 3)-colorable, as first
proved by Dvořák, Sereni and Volec [5]. In [5] it is conjectured that planar graphs of
girth 5 are fractionally (3 − ε)-colorable for some fixed positive constant ε, whereas
examples by Pirnazar and Ulman [19] (attributed by them to Fraughnaugh) show
that this is not the case for planar graphs of girth 4. Those examples also imply that
d-degenerate graphs are generally not fractionally (d + 1− ε)-colorable for any fixed
positive ε. We do not know if 3-degenerate planar graphs are fractionally (4 − ε)-
colorable (with finitely many minimal exceptions) for some fixed positive ε.

For surfaces of higher genus we prove that the fractional chromatic number of
a graph of large width on a surface is at most 4 + ε. In the same spirit we prove
that Eulerian triangulations of large width and triangle-free graphs of large width are
fractionally (3+ε)-colorable, and that quadrangulations of large width are fractionally
(2+ε)-colorable. While the ε is needed in the latter two results, we conjecture that in
the first result 4 + ε can be replaced by 4. The upper bounds χf ≤ 4 + ε, χf ≤ 3 + ε,
χf ≤ 2 + ε, respectively, are already proved, even for the circular chromatic number
(which is greater than or equal to the fractional chromatic number), for graphs on
orientable surfaces by DeVos, Goddyn, Mohar, Vertigan, and Zhu [4]. But, those
inequalities do no hold for the circular chromatic number of graphs on nonorientable
surfaces, whereas our results for the fractional chromatic number do.

Finally, we prove that graphs of girth at least 5 and large width are fractionally
(< 3)-colorable. Perhaps 3 can be replaced by (3− ε) with a fixed positive ε for each
surface. For planar graphs of girth 5 it is not possible to replace 3 by any number less
than 11/4, as shown by Pirnazar and Ulman [19].
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2. Basic notation and the chromatic gap. For an introduction to fractional
coloring see the book of Scheinerman and Ullman [21].

If I is the collection of independent sets of a graph G, then a function f : I →
[0,∞) is called a fractional coloring of G if for each vertex v the weight wf (v) =∑
I∈I,v∈I f(I) satisfies wf (v) ≥ 1. The (total) weight of a fractional coloring f is

w(f) =
∑
I∈I f(I), and the minimum such weight over all possible fractional colorings

of G is the fractional chromatic number χf (G). If instead we minimize over all {0, 1}-
valued fractional colorings we obtain the usual chromatic number χ(G), and thus
χf (G) ≤ χ(G).

The Kneser graph Ka:b has as its vertices the b-element subsets of an a-element
set, where two vertices are adjacent if the sets are disjoint. For a ≥ 2b it is well-known
that χf (Ka:b) = a/b (see [21]), and Lovász [15] proved that χ(Ka:b) = a− 2b+ 2.

A basic result is that for any n-vertex graph G with independence number α(G),
χf (G) ≥ n/α(G), and equality is achieved for example when G is vertex-transitive,
see [21]. We also have that χf (G) ≥ ω(G) and equality is achieved for all graphs
G with χ(G) = ω(G) such as bipartite graphs and other perfect graphs. Finally, we
observe that, if H1, H2 are graphs such that H1 ∩H2 is a clique, then χf (H1 ∪H2) =
max{χf (H1), χf (H2)}. Thus a fraction-critical graph has no separating set that is a
clique.

The fractional gap of a graph G is the quantity gap(G) = χ(G) − χf (G). For
some families of graphs this gap can be linear in terms of the number of vertices, and

in that case it is interesting to study the relative fractional gap, gap(G) =
χ(G)−χf (G)
|V (G)| .

We give a few small examples to illustrate this concept.

Example 2.1. Since C2k+1 is vertex-transitive we obtain χf (C2k+1) = 2k+1
k , and

thus gap(C2k+1) = k−1
k and gap(C2k+1) = k−1

2k2+k . Hence the odd cycle with the
largest relative gap is C5, namely gap(C5) = 1/10.

Perfect graphs have a gap of 0. Recall that the Strong Perfect Graph Theorem [3]
says that a graph G is perfect if and only if both G and its complement Gc do not
contain an odd cycle on at least 5 vertices as an induced subgraph.

Example 2.2. The only graph on n ≤ 5 vertices that has a positive gap is C5 and
gap(C5) = 1/2.

A 6-vertex graph with a positive gap must contain an induced C5 (otherwise it is a
perfect graph) and either be 4-chromatic (that is a wheel K1∨C5) or be triangle-free.
In either case the gap is 1/2.

Example 2.3. Larsen, Propp and Ullman [14] showed that if M(G) is the graph
obtained by applying Mycielski’s construction to a graph G, then χf (M(G)) =
χf (G)+ 1

χf (G) . Thus for the triangle-free Grötzsch graph M(C5) we get χf (M(C5)) =
5
2 + 2

5 = 2.9 and χ(M(C5)) = 4, so gap(M(C5)) = 1/10.

Example 2.4. Let G be the graph on n = 7 vertices obtained from two copies of
the graph K4 − uv by identifying the two copies of u and joining the two copies of v
by an edge. G is a 4-critical graph known as the Moser spindle. It can be seen that
χf (G) = 3.5 = n/α(G), so that gap(G) = 1/14.

Example 2.5. Consider G with V (G) = {1, 2, . . . , 7} whose edges form a 6-cycle
on 1, 2, . . . , 6 plus a triangle 246 and a K1,3 with center 7, and leaves 1, 3, 5. Observe
that G is 4-critical with α(G) = 3, which implies χf (G) ≥ 7/3. It can be seen that
χf (G) = 10/3, and thus gap(G) = 2/21.
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Example 2.6. Let M+
8 be the nonplanar graph obtained from the Wagner graph/

Möbius ladder M8 (that is the cycle on 1, 2, · · · , 8 with added edges 15, 26, 37, 48) by
adding vertex 9 adjacent to 1, 3, 5, 7. χf (G) = 3, since G contains triangles, and has
a cover with the independent sets 928, 946, 136, 358, 572, 714 of weight 1/2. M+

8 is
4-critical, and gap(M+

8 ) = 1/9.

These examples and the fact that gap(G) < 1 for all graphs G motivate the
following problem:

Problem 2.7. Determine g = sup{gap(G) : G a graph}.
Example 2.6 implies that 1/9 ≤ g ≤ 1, and this is the best lower bound construction
we have. Corollary 2.13 below shows that g ≤ 1/3.

Observe that if G is obtained as the join H1 ∨ H2 of two graphs H1 and H2

on n1, n2 vertices respectively, then χ(G) = χ(H1) + χ(H2) and χf (G) = χf (H1) +

χf (H2). Thus gap(G) = gap(H1) + gap(H2) and gap(G) = n1gap(H1)+n2gap(H2)
n1+n2

. We
immediately obtain

Lemma 2.8. If H1, H2 are graphs with gap(H1) ≤ gap(H2), then gap(H1) ≤
gap(H1 ∨H2) ≤ gap(H2).

Lemma 2.8 shows that every gap(H) ∈ {gap(G) : G a graph} is achieved by
infinitely many graphs, namely arbitrary joins of copies of H. The observation above
also implies that this set is dense in [0, g].

Conjecture 2.9. There are graphs G with gap(G) = g.

More generally, we can define the maximum relative gap of a family of graphs F
as sup{gap(G) : G ∈ F}. The maximum relative gap need not be achieved by some
G ∈ F , but Conjecture 2.9 states that it is achieved when F is the family of all graphs.
It would be interesting to find the maximum relative gap for vertex-transitive graphs,
as this would tie the independence number of such graphs to their chromatic number.
The following simple observation implies that the maximum relative gap for a family
of graphs closed under taking subgraphs is determined by its color-critical graphs.

Lemma 2.10. If G has a nonempty vertex-set S such that χ(G−S) = χ(G), then
gap(G− S) > gap(G) unless gap(G) = gap(G− S) = 0.

Combining Lemma 2.10 with Example 2.1 and the fact that every 2-colorable
graph has gap zero we immediately obtain

Proposition 2.11. If G is a 3-colorable graph, then gap(G) ≤ 1/10 with equality
only for C5.

For more dense graphs we similarly get

Proposition 2.12. If G is an n-vertex graph with α(G) ≤ 2, then gap(G) ≤ n/10
with equality only for a join of some copies of C5.

Proof. Let G be a smallest counterexample. By Example 2.2 we may assume
that n > 5 and by Lemma 2.8 we may also assume that the complement Gc of G is
connected.

Let m be the size of a maximum matching in Gc. Observe that χ(G) = n −m,
since α(G) ≤ 2 implies that an optimal coloring uses m color classes of size two
and n − 2m of size one. If Gc has a perfect matching, then m = n/2 and thus
χ(G) = n/2 = n/α(G). It follows that χf (G) = χ(G) and the gap is zero. So we
may assume that Gc has no perfect matching. Thus by Tutte’s 1-factor theorem there
must be a vertex set S such that in Gc − S there are more than |S| odd components,
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call this number o(Gc − S). In fact the Tutte-Berge formula says that we can choose
S such that 2m = n+ |S| − o(Gc−S). Now in Gc−S a largest matching is of size at
most (n−|S|−o(Gc−S))/2 = m−|S|, so that χ(G−S) ≥ (n−|S|)−(m−|S|) = χ(G).
Thus the result follows from Lemma 2.10 by induction unless S = ∅. In that case
because Gc is connected it follows that o(Gc) = 1 and 2m = n− 1. Since n > 5 and
n+1

2 = χ(G) ≥ χf (G) ≥ n
2 we get that gap(G) ≤ 1/2 < n/10.

This now allows us to prove that g ≤ 1/3, to improve on the trivial g ≤ 1:

Corollary 2.13. If G is an n-vertex graph with n ≥ 3, then gap(G) ≤ n
3 − 1.

Proof. For n ≤ 5 the result follows from Example 2.2. For n ≥ 6 proceed by
induction. If α(G) ≤ 2, then the result follows from Proposition 2.12. Otherwise G
has an independent set S of size 3, and gap(G−S) ≤ (n−|S|)/3−1 = n/3−2. However
χ(G) ≤ χ(G − S) + 1 and χf (G) ≥ χf (G − S), so that gap(G) ≤ gap(G − S) + 1 ≤
n/3− 1, as desired.

3. Fractional coloring conjectures for planar graphs . We start this section
by determining the maximum relative gap for planar graphs.

Proposition 3.1. If G is a planar graph on n vertices, then gap(G) ≤ n/10.

Proof. By Proposition 2.11 and Lemma 2.10 a minimal counterexample G to this
proposition must be a 4-critical planar graph. By Grötzsch’s theorem this implies that
G contains a triangle, and thus χf (G) ≥ ω(G) ≥ 3. (In fact ω(G) = 3 since otherwise
G has gap zero.) It follows that gap(G) ≤ 1 ≤ n/10 unless n ≤ 9. By Example 2.2 it
follows that n ≥ 7. Toft [30] lists all 4-critical planar graphs on at most 9 vertices, and
it can be verified that for every such G on n = 7, 8, 9 vertices we have χf (G) > 4− n

10 :
By Lemma 2.8 it follows that Gc is connected which means we don’t have to check
odd wheels, and Examples 2.4 and 2.5 are the remaining graphs on 7 vertices. Toft’s
list contains one more planar graph on 8 vertices (with relative gap 1/12), as well as
14 planar (and 7 nonplanar) graphs on 9 vertices. If G is a graph on 9 vertices with
independence number 3 which contains some vertex not in an independent set of size
3, then χf (G) ≥ 10/3 and thus gap(G) ≤ 2/27 < 1/10. This proves the result for
the planar graphs 1, 6, 16, 17, 19 and 20 from Toft’s list. For the remaining 8 planar
graphs on 9 vertices (4, 5, 7, and 11 - 15) it can be checked by computer that the
largest relative gap is 4/45, achieved by graphs 12 and 13. To do so determine all
maximal independent sets, and then the fractional chromatic number can be found
by linear programming. We used the command linprog in MATLAB.

We believe that C5 is the only graph with equality in Proposition 3.1. To prove
this it suffices to check that for every planar 4-critical graph on 10 vertices χf (G) > 3.
The following general conjecture would imply this.

Conjecture 3.2. If G is a planar 4-chromatic graph, then χf (G) > 3.

Observe that the non-planar Kneser graphs K2b+2:b are 4-chromatic but have
χf (K2b+2:b) = 2 + 2

b . Perhaps somewhat surprisingly Conjecture 3.2 implies an old
conjecture of Grötzsch that is stronger than the Four Color Theorem. To see this let
L(G) denote the line graph of a graph G and recall that Tait proved that the Four
Color Theorem is equivalent to the case k = 0 in the following more general conjecture
due to Grötzsch (see [12, 23]).

Conjecture 3.3. If G is a planar 2-edge-connected graph of maximum degree 3
with exactly k vertices of degree 2, then χ(L(G)) = 3 unless k = 1.

This conjecture follows immediately from Conjecture 3.2 by the next lemma.
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Lemma 3.4. If G is a planar 2-edge-connected graph of maximum degree 3, then
χf (L(G)) = 3 unless G has a unique vertex of degree 2.

Proof. Observe that χf (L(G)) is simply the fractional edge-chromatic number of
G. The fractional edge-chromatic number (fractional index) is very well understood:
By Theorem 4.2.1 in [21], it follows that χf (L(G)) = max{∆(G),Λ(G)}, where Λ(G)

is the maximum value 2e(H)
n(H)−1 taken over all subgraphs H of G on an odd number

of vertices. (This formula can be derived from Edmonds matching polytope [6], as
shown by Lovász and Plummer [16]. This formula was perhaps formulated first by
Seymour [22] who gave a different proof.) If H has more than one vertex of degree
at most 2, then 2e(H) ≤ 3n(H)− 3. If H has a unique vertex v of degree at most 2,
then to avoid v being incident to a cut-edge of G it must have degree exactly 2, and
G = H. Thus Λ(G) ≤ 3 = ∆(G), unless G has a unique vertex of degree 2, in which
case Λ(G) = 3n−1

n−1 > 3.

Next we state a few more interconnected conjectures, some of which may be
hazardous.

Conjecture 3.5. A planar graph has fractional chromatic number 4 if and only
if it contains a subgraph H with independence number α(H) = |V (H)|/4.

Conjecture 3.6. There are only finitely many minimal planar graphs G with
independence number α(G) = |V (G)|/4.

Conjecture 3.7. There are only finitely many planar 4-fraction-critical graphs.

Remark 3.8. If Conjecture 3.5 holds, then ?? 3.6?? 3.7 are equivalent. One im-
plication is immediate as every 4-fraction-critical graph G would need to be minimal
with the property that α(G) = |V (G)|/4. Conversely, every minimal graph G with
α(G) = |V (G)|/4 contains a 4-fraction-critical subgraph H which in turn contains a
subgraph H ′ with α(H ′) = |V (H ′)|/4, so that G = H = H ′ by minimality.

The only planar 4-fraction-critical graphs we know are listed in the following
example.

Example 3.9. It can be checked that K4 is the only 4-fraction-critical graph on
fewer than 8 vertices.

The vertex-transitive planar graph C2
8 has independence number 2, and therefore

χf (C2
8 ) = 8/2 = 4.

The icosahedron G12 is a vertex-transitive graph with α(G12) = 3, and therefore
χf (G12) = 12/3 = 4.

Consider these two 16-vertex planar graphs G16 with α(G16) = 4, and therefore
χf (G16) ≥ 16/4 = 4:

The first example is obtained from C2
14 by inserting a vertex into each of the two

faces of length 7 and making it adjacent to all the other vertices on this face. A
second example is the 5-regular graph obtained from an 8-cycle C = v1v2 . . . v8v1, a
4-cycle u1u2u3u4 inside C and a 4-cycle w1w2w3w4 outside C by joining each vertex
of the 4-cycles to three consecutive vertices of the 8-cycles. (Here u1 has neighbors
v1, v2, v3, and w1 neighbors v2, v3, v4.)

It can be verified that each of these 5 examples is 4-fraction-critical.

The next observation shows that one way to prove Conjecture 3.7 would be to
show that there is no sequence of planar graphs Hn such that χf (Hn) is a strictly
increasing sequence converging to 4. (We call a graph family hereditary if it is closed
under taking induced subgraphs.)
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Proposition 3.10. If a hereditary family of graphs F contains infinitely many
k-fraction-critical graphs, then k is an accumulation of fractional chromatic numbers
of F .

Proof. Let G be a k-fraction-critical graph on n vertices in F . For each v ∈ V (G)
let fv be an optimal fractional coloring of G− v. By criticality w(fv) < k. Moreover,

1
n−1

∑
v∈V (G) fv is a fractional coloring of G. Hence it has total weight at least k. It

follows that some fv must satisfy k − k
n ≤ w(fv) < k.

4. A general method and accumulation points for fractional chromatic
numbers. We start with a simple observation.

Lemma 4.1. Let G be a graph and A1, A2, . . . , At be vertex-sets so that every
v ∈ V (G) is contained in at most s of these sets. If χf (G − Ai) ≤ k for every
1 ≤ i ≤ t, then χf (G) ≤ t

t−sk.

Proof. If fi is a fractional k-coloring of G − Ai, then 1
t−s

∑t
i=1 fi is a fractional

coloring of G.

This simple observation will be the key ingredient of the proofs in this section, as
well as Theorem 5.2 in the next section. More immediately it also yields the following
result.

Corollary 4.2. If G is a (k + 1)-vertex-critical graph on n vertices, then
χf (G) ≤ k + k

n−1 . Thus χf (G) ≤ k + 1
2 unless G = Kk+1.

Proof. For each vertex vi, let Ai = {vi}. Applying Lemma 4.1 to G with t = n
and s = 1, we obtain a fractional coloring of size n

n−1k.
Gallai [8, 24] proved that if the complement Gc of G is connected, then n ≥

2(k + 1) − 1, and thus χf (G) ≤ k + 1
2 . Otherwise we may assume that Gc has a

component Gc1 such that G1 is not complete and is (k1 + 1)-critical for some k1 < k.
Then χf (G) = χf (G−G1) + χf (G1) ≤ (k − k1) + (k1 + 1

2 ).

From Example 2.1 we see that the (k+ 1)-critical graph G = C5 ∨Kk−2 on k+ 3
vertices has χf (G) = k + 1/2. Combining Corollary 4.2 with Grötzsch’s theorem we
get the following.

Corollary 4.3. If G is a planar 4-critical graph, then 3 ≤ χf (G) ≤ 3 + 3
n−1 ,

where the lower bound is always strict if and only if Conjecture 3.2 holds.

We now apply Lemma 4.1 to find some accumulation points of fractional chromatic
numbers of planar graphs.

For context, observe that every rational number greater than 2 is the fractional
chromatic number of some graph. Indeed, the Kneser graph Ka:b (where a > 2b) has
χf (Ka:b) = a/b. However, for graphs on a fixed surface we do not know any interval
in which the fractional chromatic numbers are dense. The odd cycles (respectively
the odd wheels) show that there are sequences of fractional chromatic numbers of
planar graphs converging to 2 (respectively 3) from above. Remark 6.6 in section 6
and Corollary 7.3 in section 7 show that there are planar triangle-free graphs with
fractional chromatic numbers converging to 3 from below. The next result gives
infinitely many more accumulation points.

Proposition 4.4. For every integer m ≥ 2 the numbers 2 + 1
m and 3 + 1

m are
accumulation points of fractional chromatic numbers of planar graphs.

Proof. Let Wn,m be the graph obtained from a wheel on n+ 1 vertices by subdi-
viding each spoke m − 1 times. The graph Wn,m has n faces bounded by (2m + 1)-
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cycles, and we let W+
n,m be the graph obtained by inserting a vertex into each

of these faces and making it adjacent to every vertex on the face. Observe that
χf (W+

n,m) ≤ χf (Wn,m) + 1, so that it suffices to prove that χf (Wn,m) ≤ (2 + 1
m ) n

n−1

and χf (W+
n,m) > 3 + 1

m when n is odd. (If n is even then Wn,m is homomorphic to

C2m+1 and W+
n,m to the odd wheel W2m+1,1. Thus χf (W+

n,m) = χf (Wn,m)+1 = 3+ 1
m

so we restrict our attention to the case when n is odd.)
Removing any of the n vertices vi from the rim of Wn,m we obtain a graph that

is homomorphic to C2m+1, and thus χf (Wn,m − vi) = 2 + 1
m . Applying Lemma 4.1

to Wn,m where Ai = {vi} are the t = n sets of rim vertices and s = 1, we obtain
χf (Wn,m) ≤ n

n−1 (2 + 1
m ) as desired.

Now suppose that f is an optimal fractional coloring of W+
n,m when n is odd.

Then f has weight sum at least χf (W2m+1,1) = 3 + 1
m . If it is precisely 3 + 1

m ,
then f induces an optimal coloring of each odd wheel W2m+1,1 in W+

n,m and thus of
each (2m + 1)-cycle in Wn,m. It follows that each independent set I with f(I) > 0
that meets one of the (2m + 1)-cycles must meet this (2m + 1)-cycle in exactly m
vertices. Since m ≥ 2 it now follows that I must meet every (2m+ 1)-cycle in exactly
m vertices. Consider such an independent set I containing the center c of the wheel.
Since n is odd, then there must be a (2m + 1)-cycle C such that I does not contain
the two vertices of C at maximum distance from c. If m is even, then I cannot meet
C in m vertices, a contradiction. If m is odd, then we can argue similarly with an
independent set I not containing c. Thus for all odd n we have χf (W+

n,m) > 3 + 1
m .

Still the question if there is an interval for which the fractional chromatic numbers
of graphs on some fixed surface is dense remains wide open. The graphs in Figures
6 and 7 in [19] suggest that there is an accumulation point that is between 11/4
and 4, but not much else is known about accumulation points of fractional chromatic
numbers of graphs on a fixed surface, even the plane. As a starting point we offer the
following extension of Conjecture 3.7.

Conjecture 4.5. There is a constant k such that for each fixed surface Σ, there
are only finitely many fraction-critical graphs G on Σ with χf (G) ≥ k.

In [27] it was shown that for every surface Σ there are only finitely many χ-critical
graphsG with χ(G) ≥ 6 that embed on Σ. Perhaps k = 4 will suffice in Conjecture 4.5.
The only 4-fraction-critical graphs we know on the sphere are those in Example 3.9.
Conjecture 4.5 (with k = 4) implies the following 4-fractional-chromatic-conjecture:

Conjecture 4.6. For each surface Σ there is a number wΣ such that any graph
G on Σ with no noncontractible cycles of length at most wΣ has χf (G) ≤ 4.

The length of a shortest noncontractible cycle of a graph on a surface is called
the edge-width of the embedding. The face-width is the smallest intersection the
graph can have with some noncontractible curve on the surface. In [26] it was shown
that large edge-width implies chromatic number at most 5, and that was extended
by [27]. Thus possible counterexamples to Conjecture 4.6 must have large width and
chromatic number precisely 5. Two such classes of graphs are known, and below we
verify Conjecture 4.6 for one of the classes.

The most general class are the Fisk triangulations, that is, triangulations with
precisely two odd-degree vertices, and these vertices are neighbors. A Fisk triangula-
tion can be realized on each surface, except the sphere, and such a triangulation has
chromatic number at least 5, see [18].

For the projective plane another class has been described by Mohar [17]. Youngs
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[31] made the surprising discovery that a nonbipartite quadrangulation of the pro-
jective plane has chromatic number precisely 4. Gimbel and Thomassen [9] proved
that a triangle-free graph in the projective plane is 3-colorable unless it contains a
nonbipartite quadrangulation. Mohar [17] added a vertex of degree 4 in each face of
a quadrangulation Q in the projective plane and proved that the chromatic number
of the resulting graph Q′ is either 3 (if Q is bipartite) or 5 (if Q is nonbipartite).
Consider now the case where Q′ (and hence also Q) has large edge-width. By Mo-
har’s result, Q′ has chromatic number 5. By Theorem 5.2 d below, Q has fractional
chromatic number 2 + ε, and hence Q′ has χf (Q′) ≤ 3 + ε. In particular, Q′ satisfies
Conjecture 4.6.

We now comment on Fisk triangulations. There are Fisk triangulations G of large
width containing C2

8 , so that χf (G) ≥ χf (C2
8 ) = 4. Therefore we cannot use the proof

of Theorem 5.2 below to prove that every Fisk triangulation G has χf (G) ≤ 4. To
see that a Fisk triangulation may contain C2

8 , let F denote any Fisk triangulation,
and let e = xy denote the edge joining the two vertices of odd degree. Then F − e
has a facial 4-cycle C1. Identify the outer face of C2

8 with C1 to obtain a graph in
which every vertex has even degree and there is a unique 4-face in the inside of C2

8 .
Add any edge uv to non-adjacent vertices on this 4-face to get a triangulation with
u, v the only vertices of odd degree.

5. Graphs on surfaces. In this section we will use Lemma 4.1 to prove some
bounds for graphs of large width on a general surface. Theorem 5.2 below is already
known for orientable surfaces. Indeed, DeVos, Goddyn, Mohar, Vertigan, and Zhu [4]
established the same inequalities even for the circular chromatic number (which is
greater than or equal to the fractional chromatic number) of graphs on orientable
surfaces. But, those inequalities do no hold for the circular chromatic number of
graphs on nonorientable surfaces, whereas Theorem 5.2 below holds for nonorientable
surfaces as well.

The following result of Robertson and Seymour [20] (see also Theorem 5.9.2
in [18]) will be crucial.

Theorem 5.1. For every graph H embedded on a surface Σ there is an integer
f(H,Σ) such that every graph on Σ with face-width at least f(H,Σ) contains H as a
surface minor.

The main result in this section is

Theorem 5.2. For every surface Σ and ε > 0, there is an integer g(Σ, ε) so that
if every noncontractible cycle of a graph G on Σ has length at least g(Σ, ε), then each
of the following holds:
(a) χf (G) < 4 + ε.
(b) If G is an Eulerian triangulation, then χf (G) < 3 + ε.
(c) If G is triangle-free, then χf (G) < 3 + ε.
(d) If every face of G is even, then χf (G) < 2 + ε.

Before we give the proof we would like to mention that these results are in some
sense best possible. For (d) it suffices to observe that a sufficiently long noncon-
tractible odd cycle can be extended to a graph in which each face is even in many
ways. Theorem 5.3 below shows that (b) is best possible. For (a) we observe that
any graph that contains K4 will have χf (G) ≥ 4, but Conjecture 4.6 proposes that
we can replace χf (G) < 4 + ε by χf (G) ≤ 4. We observe in Remark 6.6 in the next
section that there are triangle-free planar graphs G with χf (G) ≥ 3− 3

n−1 . Thus the
3 + ε in (c) cannot be replaced by 3 − ε (with some fixed positive ε), but it may be
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possible to replace it by 3.

Proof. We will apply Lemma 4.1 with s = 2 and t = 2+d8/εe, so that t
t−sk < k+ε

for k = 2, 3, 4 as appropriate for the three cases.
For every surface Σ of Euler genus eg > 0 we can find simple closed curves

C1, C2, . . . , Ceg such that Σ−C1∪C2∪· · ·∪Ceg is homeomorphic to a disc. We may
assume that these curves are chosen so that there is no point contained in more than
two of them. Let H1 be the 4-regular graph on Σ whose vertices are the intersection
points of the Cp and whose edges are the segments on these curves that connect them.
(See Figure 5.1.) For t ≥ 2 replace each Cp by t parallel copies Cp1 , C

p
2 , . . . , C

p
t near

enough to Cp so that Cpi and Cqj only intersect if Cp and Cq intersect nearby. Finally
let H ′t be the graph obtained from Ht by replacing each degree 4 vertex by two degree
3 vertices as shown in Figure 5.1.

•

C1

C2
• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

Fig. 5.1. H1, H4 and H′4 on the torus

Now we let g(Σ, ε) = f(H ′t,Σ). Thus if G is a graph of face-width at least least
g(Σ, ε), then it contains H ′t as a surface minor and thus as a subdivision since H ′t
is cubic. (Note that Theorem 5.2 assumes large edge-width whereas Theorem 5.1
requires large face-width. But, every graph G of large edge-width can be extended
to a graph G′ of the same face-width. Moreover, if G is triangle-free or has all face-
boundaries of even size, then the extension can be made so that G′ also has that
property.) Let Api be the set of vertices in G contained in the subdivision of H ′t that
correspond to vertices on the curve Cpi in Ht. Thus Ai = A1

i ∪A2
i ∪ · · · ∪A

eg
i has the

properties that every vertex in G is in at most two sets Ai, and the components of
G−Ai are planar.

Now (a) follows directly from the Four Color Theorem, and (c) from Grötzsch’s
theorem stating that planar triangle-free graphs are 3-colorable. For (d) observe that
all faces of the components of G − Ai must be even, except possibly the outer face,
but it now follows easily that G − Ai is bipartite. For (b) we observe that every
Eulerian triangulation of the plane is 3-colorable. Every component H of G−Ai has
the property that every face is a triangle (except possibly the exterior face) and that
every vertex has even degree (except possibly some of those on the exterior face). It
suffices thus to extend H to an Eulerian planar triangulation, and we can do so by
using two copies H1, H2 of H and identifying each vertex in the exterior face of H1

with its twin in H2.

It would be interesting to find a proof of (a), even for planar graphs, that does not
require the Four Color Theorem. We now prove that the ε in (b) cannot be omitted.

Theorem 5.3. If G is a triangulation of a surface, then χf (G) = 3 if and only
if χ(G) = 3.

Proof. The backward implication is obvious, so suppose χf (G) = 3. Let f be a
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fractional coloring such that w(f) = 3. We call f(I) the weight of I. It is easy to see
that

(1) each independent set I with positive weight contains precisely one vertex from
each triangle T .

Let v be a vertex and I an independent set not containing v. Then (1) implies
(2) I contains every second vertex in the neighborhood of v. In particular, v has

even degree.
Now let I1, I2 be two independent sets of positive weight containing v. Then I1, I2

contains no vertex in the neighborhood of v. Let u be a neighbor of v. Applying (2)
to u and each of I1, I2 we conclude that I1, I2 agree in the neighborhood of u. In
particular, I1, I2 agree on the second neighborhood of v. Repeating the argument, we
conclude that I1 = I2. So,

(3) there is only one independent set with positive weight containing v.
Let T be a triangle. For each vertex of T , there is only one independent set

with positive weight containing that vertex, by (3). Since every independent set with
positive weight intersects T , we conclude that there are only 3 independent sets with
positive weight. Those 3 independent sets give a proper 3-coloring.

6. A method for degenerate graphs. Degeneracy arguments often yield fast
coloring procedures. The fact that Kk is a (k−1)-degenerate graph with χf (Kk) = k
shows that the following result is in some sense best-possible. Remark 6.6 below will
show that it is best possible in an even stronger sense.

Theorem 6.1. For k ≥ 2, every (k−1)-degenerate Kk-free graph G has χf (G) <
k.

The following lemma will be a key idea in the proof of Theorem 6.1.

Lemma 6.2. For k ∈ [2,∞), every graph G with χf (G) < k has a fractional
coloring f such that

(i) w(f) < k;
(ii) every independent (possibly empty) set I has positive weight f(I) > 0; and

(iii) every vertex v has total weight wf (v) = 1.

Proof. We proceed by induction on n = |V (G)|.
Let I denote the collection of independent sets of G, and let i : I → [0,∞) be

the constant function with i(I) = 1 for every I ∈ I. If g is any optimal fractional
coloring, then we can find a small ε > 0 such that w(g+ ε · i) < k. Thus f0 = g+ ε · i
is a fractional coloring of G that satisfies (i), (ii).

Now let V (G) = {vi : 1 ≤ i ≤ n}. If n = 1 we define f({v1}) = 1 and f(∅) = 1/2
to obtain the desired f . So assume that n ≥ 2. By the induction hypothesis, let ci
be a fractional coloring of G− vi satisfying (i),(ii),(iii) for each i with 1 ≤ i ≤ n. For
each i with 1 ≤ i ≤ n, let fi be the fractional coloring defined by

fi =
1

wfi−1
(vi)
· fi−1 +

(
1− 1

wfi−1
(vi)

)
· ci.

Each fi satisfies (i), (ii) and wfi(v) ≥ 1 for all v ∈ V (G). Moreover wfi(vi) = 1 and
it follows that wfi−1

(v) = 1 implies wfi(v) = 1 for any v 6= vi. Thus we conclude that
wfn(v) = 1 for all v ∈ V (G). So f = fn satisfies (i)-(iii).

We will now prove Theorem 6.1.

Proof. We proceed by induction on n = |V (G)|, where the base case n = 1 is
obvious. So suppose that n ≥ 2 and let x ∈ V (G) with d(x) ≤ k − 1. By hypothesis,
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χf (G− x) < k, so that by Lemma 6.2 G− x has a fractional coloring f1 that satisfies
Lemma 6.2 (i)-(iii).

Let I be the collection of independent sets of G − x and I0 be the collection of
those independent sets of G− x (and thus G) that contain a neighbor of x in G. By
Lemma 6.2 (iii) and by the fact d(x) ≤ k − 1, we obtain∑

J∈I0

f1(J) ≤
∑

y∈N(x)

wf1(y) ≤ k − 1.

By Lemma 6.2 (ii), the first inequality is strict unless N(x) is a clique of G; and the
second inequality is strict unless d(x) = k − 1. Since G is Kk-free, one of the two
inequalities must be strict, that is∑

J∈I0

f1(J) < k − 1.

Now we define a fractional coloring f2 of G as follows: If
∑
J∈I\I0 f1(J) ≥ 1, then

f2(I) =

 f1(I), I ∈ I0;
f1(I\{x}), x ∈ I;
0, otherwise.

If
∑
J∈I\I0 f1(J) < 1, then

f2(I) =


f1(I), I ∈ I0;
f1(I\{x}), x ∈ I 6= {x};
f1(∅) + 1−

∑
J∈I\I0 f1(J), I = {x};

0, otherwise.

It is easy to verify that wf2(v) ≥ 1 for every v ∈ V (G). Furthermore w(f2) =
w(f1) < k for the first case; and w(f2) = 1 +

∑
J∈I0 f1(J) < k for the second case.

In any case we have w(f2) < k.

The following simple corollary of Theorem 6.1 can also be derived from Lemma 7.1
below.

Corollary 6.3. Every K4-free 3-degenerate planar graph G has χf (G) < 4.

Combining this with the result of Thomassen [28] that the vertex-set of every
planar graph can be decomposed into an independent set and a 3-degenerate graph,
we get an easy proof of the following weakening of the Four Color Theorem due to
Hilton, Rado and Scott [11].

Corollary 6.4. Every planar graph G has χf (G) < 5.

Theorem 6.1 combined with the fact that χf (G) ≥ n/α(G) immediately applies
the following result.

Corollary 6.5. For k ≥ 2, every (k−1)-degenerate Kk-free graph G has α(G) >
n/k.

Remark 6.6. To see that Theorem 6.1 and Corollary 6.5 are in some sense best
possible, observe that the graphs given in Figure 5 of Pirnazar and Ullman [19] give
a sequence of triangle-free planar graphs Gm on 5 + 3m vertices with independence
number 2+m. These graphs are easily seen to be 2-degenerate and satisfy χf (Gm) ≥
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3− 1
m+2 . For k ≥ 3 the graph Gm∨Kk−3 is (k−1)-degenerate Kk-free on n = 3m+k+2

vertices with χf (G) ≥ k− 3
n−k+4 so that Theorem 6.1 is essentially best possible. For

k = 3p ≥ 3 in Corollary 6.5 observe that the graph Hm,p obtained by replacing every
vertex of Gm with a Kp (where two vertices of Hm,p are adjacent if the corresponding
vertices in Gm are) has n = (3m + 5)p vertices and α(Hm,p) = m + 2 = n

k + 1
3 .

Recalling that k = 3p it is easy to see that Hm,p is (k− 1)-degenerate and Kk-free (in
fact, its clique number is only 2p = 2k/3), and α(Hm,p) = n

k + 1
3 .

Observe thatGm∨K1 is not planar, and so it is an open question if in Corollary 6.3
we can replace χf (G) < 4 by χf (G) < 4− ε for some fixed positive ε.

We do not know if the approach in this section can be applied to other graph
families, but in the next section we give a more flexible method.

7. A method for planar graphs with few triangles. As mentioned earlier,
Hilton, Rado and Scott [11] showed that the Five Color Theorem for planar graphs
can be extended to show that planar graphs are fractionally (< 5)-colorable. Also,
Dvořák, Sereni, and Volec [5] showed that Grötzsch’s theorem 3-color theorem for
planar triangle-free graphs can be extended to show that planar triangle-free graphs
are fractionally (< 3)-colorable. The proof in [11] is based on the fact that, for every
vertex v in a planar graph G, G has a 5-coloring such that the neighbors of v have
only three colors. The proof in [5] is based on the fact that, for every vertex v of
degree at most 4 in a planar triangle-free graph G, G has a 3-coloring such that the
neighbors of v have only one color. The purpose of this section is to point that we
do not need many colorings of this type. (In fact, only one such coloring suffices.)
This approach can potentially apply more broadly, even though our upper bounds on
the fractional chromatic number are not as strong as those in [11], [5]. (In fact, for
triangle-free planar graphs of maximum degree 4, the bound in [5] is sharp.)

We call a graph k-ambiguous if it has two k-colorings that differ in exactly one
vertex. All (k − 1)-colorable graphs are k-ambiguous. Uniquely k-colorable graphs
such as Kk are not k-ambiguous. Recall that a graph family is hereditary if it is closed
under taking induced subgraphs.

Lemma 7.1. If F is a hereditary family of graphs such that every G ∈ F without
a separating clique is k-ambiguous, then χf (G) < k for all G ∈ F .

Moreover, if for some fixed integer c every graph in F on c vertices is (k − 1)-
colorable, then χf (G) ≤ k − 2−(n−c) for every G ∈ F on n ≥ c vertices.

Proof. The first statement will follow from the second by choosing c = 1. So
suppose G is a counterexample to the second statement with smallest order n. Clearly
n > c, and G can have no separating clique, or we can proceed by induction. Let
u be a vertex of G so that G − u has a k-coloring that can be extended to G in at
least two ways. Thus we can cover V (G) with independent sets I1, I2, . . . , Ik, where
we can assume that u ∈ I1 and u ∈ I2. Let f1 be the fractional coloring of G such
that f1(I) = 1 for I = Ij with 1 ≤ j ≤ k and f1(I) = 0 otherwise.

Let f2 be a fractional coloring of G − u with weight k − 2−(n−1−c). Now f =
1
2f1 + 1

2f2 is a fractional coloring of G of weight 1
2k+ 1

2 (k−2−(n−1−c)) = k−2−(n−c).

We give three applications of this method. Since it follows from Euler’s formula
that every triangle-free planar graph has a vertex of degree at most 3, Theorem 7.2
below proves that planar triangle-free graphs are 3-ambiguous. Theorem 7.2 can be
derived from the result of Grünbaum [10] (see also Aksenov [1] and Borodin [2]) that
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every planar graph with at most three triangles is 3-colorable. This is implicitly
contained in the proof of Theorem 1 of Steinberg and Tovey [25] and is extended to
vertices of degree 4 by Dvořák, Sereni and Volec [5].

Theorem 7.2. Let G be a triangle-free planar graph and u be a vertex of G of
degree at most 3. Then G has a 3-coloring such that all neighbors of u receive the
same color.

Since the smallest 3-chromatic triangle-free graph is C5 we can let c = 4 in
Lemma 7.1.

Corollary 7.3. Every triangle-free planar graph G on n ≥ 4 vertices has
χf (G) ≤ 3− 2−(n−4) < 3.

Observe that Example 3.9 shows that a planar graph without K4 as a subgraph
need not have fractional chromatic number strictly less than 4, so this result does not
extend in that direction. On the other hand Dvořák, Sereni, and Volec [5] proved that
in fact χf (G) ≤ 3− 3

3n+1 when G is planar triangle-free, which is essentially achieved
by the construction mentioned in Remark 6.6. Using Theorem 6.2 in [29] instead of
Theorem 7.2 we get:

Theorem 7.4. For each surface S, there exists a natural number kS such that
the following holds: If G is a graph on n ≥ 4 vertices with girth at least 5 that is
embedded on the surface S without noncontractible cycles of length at most kS, then
χf (G) ≤ 3− 2−(n−4) < 3.

Proof. By Euler’s formula it follows that every girth 5 graph on a surface of Euler
genus g has a vertex u of degree at most 3, say with neighbors v1, v2, v3. (The proof
when u has degree 2 is similar.) For each vi create a new vertex ui and consider
the graph H obtained from G − u by adding edges to create a new facial cycle C1 :
u1, v1, u2, v2, u3, v3. Consider the pre-coloring of C1 given by L(ui) = 1 and L(vi) = 2
for all 1 ≤ i ≤ 3, and observe that this coloring can be extended to a 3-coloring of H
if and only if G has a 3-coloring in which all neighbors of u receive the same color.

We now put kS = f(g, s, q, r, k) where f(g, s, q, r, k) is defined in connection with
Theorem 6.2 from [29], and where q = 1, k = 6, r = 0 and s = 3g + 3q. Assume
now that G (and thus H) has no noncontractible cycle of length at most kS . We
claim that the coloring can be extended from C1 to all of H. For suppose that
otherwise. Then Theorem 6.2 from [29] implies that H has a subgraph H ′ with at
most f(g, s, q, r, k) vertices such that the coloring of C cannot be extended to H ′. As
H ′ has no noncontractible cycle, H ′ is planar, but this contradicts Theorem 7.2.

Our third application of Lemma 7.1 is in the following degeneracy setting: We
call a graph triangle-degenerate if every one of its subgraphs has fewer triangles than
vertices. Observe that for any even n, the planar graph C2

n has exactly as many
triangles as vertices, but any of its proper subgraphs is triangle-degenerate. Thus the
next theorem implies that C2

8 and K4 = C2
4 are 4-fraction-critical.

Theorem 7.5. If G is a triangle-degenerate planar graph, then χf (G) < 4.

Proof. It suffices to show that every graph G in this family without a separating
clique is 4-ambiguous.

Suppose u is a vertex of G such that N(u) contains at most 2 edges. Since G
has no separating triangles it follows that each of these edges connects consecutive
neighbors of u and we can partition N(u) into two consecutive sets of neighbors N1, N2

such that each of them is an independent set. Let G′ be the graph obtained from
G − u by contracting N1 to a vertex u1 and N2 to a vertex u2 which is adjacent to



FRACTIONAL COLORING METHODS 15

u1. Since G′ is planar it is 4-colorable, which yields the desired 4-coloring of G − u
that only uses two colors in N(u).

So we may assume that every vertex u has at least 3 edges in its neighborhood,
and thus is in at least 3 triangles. Hence G must have at least 1

3 (3n) = n triangles,
contradicting the assumption that G has fewer triangles than vertices.

Theorem 7.5 and Corollary 6.3 are of independent interest: The 3-degenerate
K4-free planar graph Pn−2 ∨ Kc

2 has 2n − 6 triangles and is therefore not triangle-
degenerate for n > 6. Similarly triangle-degenerate planar graphs need not be 3-
degenerate: If vi denotes the i-th vertex on Cn, then for even n ≥ 14, the planar
graph C2

n − v1v3 + v1v9 + v3v9 has minimum degree 4, but is triangle-degenerate.

Corollary 7.6. If G is a planar graph that is K4-free and (K1 ∨ P4)-free, then
χf (G) < 4.

Proof. By Theorem 7.5 it suffices to show that if G has t triangles (none of which
are separating) and n vertices, then t < n.

Suppose that there are e edges, s triangles that do not share an edge with any
other triangle, and d edges that are in two triangles. Since G is planar K4-free,
(K1 ∨ P4)-free and has no separating triangle it follows that no triangle shares an
edge with more than one other triangle. Thus the total number of triangles t = s+2d
and e ≥ 3s+ 5d, so that 5t ≤ 2e. Since a triangulation on n vertices has 3n− 6 edges
and 2n− 4 triangular faces (by Euler’s formula), we can turn G into a triangulation
by adding 3n − 6 − e edges, where each edge adds at most 2 triangular faces. Thus
2n− 4 ≤ t+ 2(3n− 6− e), or equivalently t ≥ 2e− 4n+ 8.

Suppose now (reductio ad absurdum) that t ≥ n and hence 4t ≥ 4n. Combining
this with t ≥ 2e− 4n+ 8, we get 5t ≥ 2e+ 8, a contradiction to the earlier inequality
5t ≤ 2e.

Remark 7.7. The planarity requirement in Theorem 7.5 and Corollary 7.6 is nec-
essary, as we can obtain triangle-free graphs of arbitrarily high fractional chromatic
number by repeatedly applying Mycielski’s construction to C5. (See also Example 2.3.
In fact, the graphs of large girth and large chromatic number constructed by Erdős [7]
also have large fractional chromatic number.) In C2

8 every vertex has P4 as a neigh-
borhood, justifying the condition K1 ∨ P4 in Corollary 7.6.
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