
ar
X

iv
:1

71
1.

07
44

2v
2 

 [
m

at
h.

C
O

] 
 1

1 
D

ec
 2

01
7

On tight cycles in hypergraphs

Hao Huang ∗ Jie Ma†

Abstract

A tight k-uniform ℓ-cycle, denoted by TCk
ℓ , is a k-uniform hypergraph whose vertex set is

v0, · · · , vℓ−1, and the edges are all the k-tuples {vi, vi+1, · · · , vi+k−1}, with subscripts modulo ℓ.

Motivated by a classic result in graph theory that every n-vertex cycle-free graph has at most

n− 1 edges, Sós and, independently, Verstraëte asked whether for every integer k, a k-uniform

n-vertex hypergraph without any tight k-uniform cycles has at most
(

n−1
k−1

)

edges. In this paper,

we answer this question in negative.

1 Introduction

A classic result in graph theory says that if an n-vertex graph G contains no cycle, then G

has at most n − 1 edges. This upper bound is tight by the n-vertex trees. It is natural to ask

whether such extremal result can be generalized to k-uniform hypergraphs. There are many

different notions of cycles in k-uniform hypergraphs, most notably Berge cycles, loose cycles,

and tight cycles (see [22] for the definitions). They all coincide with the usual definitions of

cycles when k = 2. For the Turán numbers on Berge cycles and loose cycles, there has been

extensive research in the literature (see [2, 3, 7, 9, 10, 12, 13, 14, 15]).

In this paper, we consider Turán-type problems of the tight k-uniform ℓ-cycle, denoted by

TCk
ℓ (for ℓ ≥ k + 1), which is the k-uniform hypergraph whose vertex set is v0, · · · , vℓ−1, and

the edges are all the consecutive k-tuples {vi, vi+1, · · · , vi+k−1}, with subscripts modulo ℓ. It

seems that the Turán-type problems for tight cycles are more difficult, perhaps because of its

interlocking structure. When the desired tight cycle has length linear in n, Allen et al. [1]

showed that for any δ > 0, there exists n0 such that for any 0 ≤ α ≤ 1, every k-uniform

hypergraph on n ≥ n0 vertices with at least (α+ δ)
(

n
k

)

edges contains a tight cycle of length at

least αn. For α = 1 (i.e. Hamiltonian cycles), Rödl, Ruciński and Szemerédi [20, 21] established

an approximate extension of Dirac’s Theorem for k-uniform hypergraphs: for all γ > 0, every

sufficiently large k-uniform hypergraph such that every (k − 1)-set of vertices lies in at least

(1/2 + γ)n edges has a tight Hamilton cycle. Both results uses the regularity lemma which

is powerful when the extremal hypergraph is dense. Nevertheless, for shorter tight cycles, in

particular cycles of constant lengths divisible by k, the extremal hypergraph is sparse and much

less has been known.

Back to our initial question, we call a k-uniform hypergraph tight-cycle-free if it does not

contain any TCk
ℓ for ℓ ≥ k+1. Throughout this paper we denote by fk(n) the maximum number
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of edges in a k-uniform n-vertex tight-cycle-free hypergraph. In this notation, f2(n) = n − 1.

Indeed it is not hard to see that for every integer k ≥ 2, fk(n) ≥
(

n−1
k−1

)

. A k-uniform hypergraph

is called a full-k-star if it consists of all the k-subsets of [n] containing a given element called

the center. When the uniformity is clear from the context, we will simply call it a full-star.

One can easily verify that a full-k-star has
(

n−1
k−1

)

edges and contains no tight cycles, since any

tight cycle must have length at least k+1 and thus at least one of its edges cannot contain the

center. Sós and Verstraete (see [22]) independently asked whether fk(n) always equals
(

n−1
k−1

)

.

This conjecture is still wide open. In particular it is not even clear if fk(n) = Θ(nk−1). One easy

upper bound follows from an observation that TCk
2k is actually a sub-hypergraph of the complete

k-partite k-uniform hypergraph Kk
2,··· ,2, whose Turán number was shown to be O(nk−(1/2)k−1

)

by Erdős [4]. This gives fk(n) = O(nk−(1/2)k−1

). For k = 3, currently the best known upper

bound is f3(n) = O(n5/2) proved by Verstraëte [23], by showing that the Turán number of TC3
24

is O(n5/2).

In this paper, we prove the following theorem, giving a negative answer to the Sós-Verstraëte

Conjecture.

Theorem 1.1. For every integer k ≥ 3, there exits a constant c = c(k) > 0 such that for

sufficiently large n,

fk(n) ≥ (1 + c)

(

n− 1

k − 1

)

.

The rest of the paper is organized as follows. In the next section, we first present an explicit

construction showing that f3(n) is strictly greater than
(

n−1
2

)

, but only better by a linear

function in n. In Section 3, we generalize this idea to construct denser hypergraphs without

tight cycles and prove our main result Theorem 1.1. The final section contains some concluding

remarks and open problems. Throughout this paper, we write [n] for the set {1, 2, · · · , n}.

2 Warm-up

As a warm-up, we construct a 3-uniform n-vertex hypergraph H with
(

n−1
2

)

+ n−1
2 edges, so that

H does not contain any tight cycle. The key idea is that one can slightly modify the full-3-star

by removing some edges containing its center, and adding twice as many edges, while preserving

the tight-cycle-freeness.

Proposition 2.1. For odd integers n ≥ 7,

f3(n) ≥

(

n− 1

2

)

+
n− 1

2
.

Proof. Let H be the 3-uniform hypergraph on the vertex set [n] consisting of the following two

types of edges. Type-I edges include all the triples containing 1, except for those in the form

{1, 2i, 2i+ 1} for i = 1, · · · , (n − 1)/2. Type-II edges are those in the form {2i, 2i+ 1, 2i + 2}

or {2i, 2i+ 1, 2i+ 3}, for i = 1, · · · n−3
2 , or the two triples {n− 1, n, 2} and {n− 1, n, 3}. There

are
(

n−1
2

)

− (n− 1)/2 edges of Type I, and n− 1 edges of Type II. So e(H) =
(

n−1
2

)

+(n− 1)/2.

Notice that the only two edges in H containing some x ∈ {2i, 2i+ 1} and y ∈ {2i + 2, 2i + 3}

are {1, x, y} and {2i, 2i+ 1, y}.

Suppose H contains a tight cycle. Such cycle must have length at least 4. In particular, it

contains at least one Type-II edge. Without loss of generality, we assume it is the triple {2, 3, 4}.

Modulo symmetry, there are two possibilities of the relative order of these three vertices on the

cycle: (i) they are in the order 2, 3, 4; (ii) they are in the order 2, 4, 3.
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In the first case, since the only edges containing both 2 and 3 are the Type-II edges {2, 3, 4}

and {2, 3, 5}, and the only edges containing both 3 and 4 are {2, 3, 4} and a Type-I edge {1, 3, 4},

it is not hard to see that the cycle must contain consecutive vertices 5, 2, 3, 4, 1. Now the only

edge (except {2, 3, 5}) containing 2 and 5 is {1, 2, 5}. This shows that the cycle consists of

vertices 5, 2, 3, 4, 1. However {1, 4, 5} 6∈ E(H), therefore Case (i) is impossible.

Similarly, for the second case, the cycle must consist of (consecutive) vertices 2, 4, 3, 1 but

{1, 2, 3} 6∈ E(H). Therefore both cases are not possible, and H does not contain a tight cycle.

This shows that f3(n) ≥
(

n−1
2

)

+ n−1
2 .

We remark that the above construction remains tight-cycle-free, if the range of the index i

is changed from 1 ≤ i ≤ (n− 1)/2 to any integer set of size at least three.

3 Proof of Theorem 1.1

In this section, we prove our main theorem, showing that for every integer k ≥ 3, there exist

tight-cycle-free k-uniform hypergraphs having c-fractional more edges than the full-k-star for

some constant c > 0.

3.1 The key lemma

The following lemma will be critical for the proof of Theorem 1.1. Loosely speaking, it can

be used to reduce Theorem 1.1 to the problem of just finding any tight-cycle-free k-uniform

hypergraphs with more edges than the full-k-star.

The t-shadow of a hypergraph H , denoted by ∂t(H), is defined as the following:

∂t(H) = {S : |S| = t, S ⊂ e for some e ∈ E(H)}.

If H consists of a single edge e, then we will write it as ∂t(e).

Lemma 3.1. Let H be a full-k-star with the vertex set {0}∪[n] and the center 0. Let G1, · · · , Gt

be subhypergraphs of H, and F1, · · · , Ft be k-uniform hypergraphs on [n]. Suppose they satisfy

the following properties:

(i) The hypergraph Hi := (H \Gi) ∪ Fi is tight-cycle-free for all i = 1, · · · , t, and

(ii) ∂k−1(Fi) ∩ ∂k−1(Fj) = ∅ for all 1 ≤ i < j ≤ t.

Then

H ′ :=

(

H \
t
⋃

i=1

Gi

)

∪

(

t
⋃

i=1

Fi

)

is also tight-cycle-free.

Proof. We prove by contradiction. Suppose that H ′ contains a tight cycle C = v1v2 · · · vℓ. If

0 6∈ V (C), then all the edges of C must come from F1 ∪ · · · ∪Ft. Note that the (k− 1)-shadows

of distinct Fi’s are disjoint, therefore all the edges of C must come from the same Fi (as,

otherwise, there exist two consecutive edges of C from distinct Fi’s which would share k − 1

common vertices). However, from (i), each Hi and in particular each Fi is tight-cycle-free, which

is impossible.

Now suppose 0 ∈ V (C). Using similar arguments, we can show that the l − k edges of C

not containing 0 are from the same Fi. From the definition of H ′, we see that the k edges of

C containing 0 must be in Hi. Therefore C is completely contained in Hi, again contradicting

that Hi has no tight cycle.
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3.2 The 3-uniform case

We start with the case k = 3. We will use the previous lemma to prove the following theorem.

Theorem 3.2. For sufficiently large n,

f3(n) ≥

(

1 +
1

5

)(

n− 1

2

)

+O(n).

Proof. It suffices to show that if n is sufficiently large and n− 7 is divisible by 30, then f3(n) ≥

(1 + 1/5)
(

n−1
2

)

. Consider the full-3-star with the vertex set {0, 1, · · · , n − 1} and the center 0.

Let F = {123, 124, 345, 346, 561, 562} and G = {012, 034, 056}. We call G as the accompanying

set of F .

By the remark in the end of Section 2, the 3-uniform hypergraph obtained from the full-star

by adding edges in F and deleting edges in G is tight-cycle-free. This together with Lemma 3.1

show that if one can find many copies of F (say F1, · · · , Ft) on the vertex set {1, · · · , n−1} whose

2-shadows are pairwise disjoint, then the hypergraph obtained from the full-3-star by adding

F1∪· · ·∪Ft and deleting their accompanying sets is also tight-cycle-free. And e(H) =
(

n−1
2

)

+3t.

Let L be the 2-shadow of F , which is a 5-regular graph on 6 vertices, i.e. K6. To find

such F -copies, it is enough to find many edge-disjoint L-copies in the complete graph Kn−1 on

{1, · · · , n − 1}. By a famous theorem of Wilson [24, 25, 26, 27], if n is sufficiently large and

satisfies 6|(n− 1) and 5|(n− 2), then one can partition the edge set of Kn−1 into edge-disjoint

copies of L. Since n− 7 is divisible by 30, indeed we can apply this result to get

t =
1

e(L)

(

n− 1

2

)

=
1

15

(

n− 1

2

)

copies of sub-hypergraphs isomorphic to F , whose 2-shadows are pairwise disjoint. Therefore,

by Lemma 3.1 we can find a tight-cycle-free 3-graph H with

e(H) =

(

n− 1

2

)

+ 3t = (1 +
1

5
)

(

n− 1

2

)

,

completing the proof of Theorem 3.2.

It is not clear how to generalize the cyclic-type construction in Section 2 to k-uniform hy-

pergraphs for k ≥ 4. For that, we will show a different construction beating the conjectured
(

n−1
k−1

)

bound for the general case in the next subsection; then applying Lemma 3.1 again would

imply a construction with (1 + c)
(

n−1
k−1

)

edges for some c > 0.

3.3 The general case: k-uniform

Lemma 3.3. Let H be a full-k-star with center 0. If we

• add new edges e1, · · · , et ⊆ V (H) \ {0} such that ∂k−1(ei)∩∂k−1(ej) = ∅ for all i 6= j, and

• delete edges {0} ∪ fi for all 1 ≤ i ≤ t, where fi is any (k − 1)-subset of ei,

then the resulting k-uniform hypergraph H ′ remains tight-cycle-free and has the same number

of edges with the full-k-star.

Proof. Suppose for contradiction that H ′ contains a tight cycle C. Then C has to contain a

new edge, say e1 = {1, · · · , k}. Since the (k−1)-shadows of ei’s are disjoint, it is not hard to see

that the only possibility to have a tight cycle C is that V (C) = {0, 1, · · · , k}. This also means

that C is a complete k-uniform hypergraph on k+1 vertices. But this is impossible as we have

deleted an edge {0} ∪ f1 for some (k − 1)-subset f1 ⊆ e1. This proves the lemma.
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Lemma 3.4. For every integer k ≥ 3, there exists a positive integer m = m(k) such that the

following holds for any n ≥ m. Let H be a full-k-star with the vertex set {0}∪ [n] and the center

0. Then there exist two k-uniform hypergraphs F and G such that

• V (F ) is a subset of size at most m in [n],

• G is a subhypergraph of H,

• H ′ := (H \G) ∪ F is tight-cycle-free with e(H) + 1 edges.

Proof. Let e0 = [k]. For all 1 ≤ i ≤ k, let fi := [k]\{i} be a (k−1)-subset and ei := fi∪{k+ i}.

We will construct F = {e0, e1, · · · , ek+M} for some positive M = O(k3) and

G = {{0} ∪ fi : fi ⊆ ei and |fi| = k − 1 for every 1 ≤ i ≤ k +M}

such that ∂k−1(ei) ∩ ∂k−1(ej) = ∅ for all 1 ≤ i < j ≤ k + M . Let H ′ = (H \ G) ∪ F . Then

e(H ′) = e(H)− e(G) + e(F ) = e(H) + 1.

Suppose we have such F and G. By Lemma 3.3, (H \ G) ∪ (F \ {e0}) is tight-cycle-free.

So all potential tight cycles C in H ′ must contain the edge e0. We will discuss all possibilities

for such C as follows. First since the full k-star is tight-cycle-free, C must contain at least one

edge from {e0, e1, · · · , ek+M}. If only e0 appears in C, then V (C) = {0, 1, · · · , k}, however this

is impossible since all the edges {0} ∪ fi (1 ≤ i ≤ k) are deleted in H ′. Recall that we would

choose ei’s so that their (k−1)-shadows are pairwise disjoint. Therefore C has at least one edge

in {e1, · · · , ek}; and it is also not hard to see that the tight cycle C can use at most two edges

in {e1, · · · , ek}.

Consider the case that C contains exactly one edge in {e1, · · · , ek}, say eℓ for some ℓ ∈ [k].

Then the cycle C must have consecutive vertices π(1), π(2), · · · , π(k), k + ℓ, where π : [k] → [k]

is a permutation, π(1) = ℓ and eℓ = {π(2), · · · , π(k), k + ℓ}. These vertices alone do not form a

tight cycle, otherwise it would violate that ∂k−1(ei) ∩ ∂k−1(ej) = ∅ for all 1 ≤ i < j ≤ k +M .

Consider the vertex immediate before π(1). For the same reason, this vertex can only be 0,

however this is also not possible since for all (k − 1)-subset fj ⊂ [k], {0} ∪ fj 6∈ E(H ′).

Now we may assume that C contains two edges in {e1, · · · , ek}, say ei and ej for some

1 ≤ i < j ≤ k. By similar analysis as above, the only possible tight cycle C that may appear in

H ′ is on the vertex set in the order k + i, π(1), · · · , π(k), k + j, 0 for some permutation π of [k]

with π(1) = j and π(k) = i. For all 1 ≤ i < j ≤ k and all sets {π(4), · · · , π(k)} (there are at

most
(

k
3

)

such (k − 3)-sets), we let

fk+α = {π(4), · · · , π(k), k + j, k + i}

be all such (k − 1)-subsets (say M of them in total), where M ≤ 3
(

k
3

)

= O(k3), and we may

label them by 1 ≤ α ≤ M .

By removing the edges {0}∪ fk+α, we destroy all the tight cycle mentioned above. One can

find k-subsets ek+1, · · · , ek+M with pairwise distinct (k− 1)-shadows such that fk+α ⊂ ek+α for

all α = 1, · · · ,M . For example, let ek+α = fk+α ∪ {2k+α}. It remains to check that these new

ek+α’s have distinct (k − 1)-shadows from e1, · · · , ek. This follows from the observation that

2k + j 6∈ el for 1 ≤ l ≤ k, and at least one of {k + j, k + i} is also not in el. We conclude this

proof by noting that the value of m can be O(k3).

We are ready to prove our main result – Theorem 1.1. It is a combination of the construction

in Lemma 3.4 and some classic hypergraph packing results.
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Proof of Theorem 1.1. Let n be sufficiently large and H be the full-k-star with center 0 on

{0, · · · , n − 1}. By Lemma 3.4, there exists a k-uniform tight-cycle-free hypergraph H ′ =

(H \G) ∪ F with
(

n−1
k−1

)

+ 1 edges, where F is a k-uniform hypergraph on at most m = O(k3)

vertices with V (F ) ⊆ [n− 1] and G is a subhypergraph of H . Let us call G the accompanying

hypergraph of F . By Lemma 3.1, if one can find copies of sub-hypergraphs on [n−1] isomorphic

to F , denoted by F1, · · · , Ft, such that ∂k−1(Fi)’s are pairwise disjoint, then

H ′′ =

(

H \
t
⋃

i=1

Gi

)

∪

(

t
⋃

i=1

Fi

)

is also tight-cycle-free, where Gi is the accompanying hypergraph of Fi, and e(H ′′) ≥ e(H) + t.

Note that F is contained in a complete k-uniform hypergraph on m = O(k3) vertices. By

the result of Rödl [19] on the Erdős-Hanani Conjecture [6], when n is sufficiently large, one can

pack at least

t ≥ (1− o(1))

(

n−1
k−1

)

(

m
k−1

)

copies of F in [n − 1] so that their (k − 1)-shadows are disjoint. Therefore in H ′′, the number

of edges is equal to

e(H ′′) ≥ e(H) + t ≥

(

n− 1

k − 1

)

+ (1− o(1))

(

n−1
k−1

)

(

m
k−1

) ≥ (1 + c)

(

n− 1

k − 1

)

,

for sufficiently large n. Here c is a positive constant which only depends on k (but not n).

4 Concluding remarks

In this paper, we construct k-uniform n-uniform hypergraphs that are tight-cycle-free and con-

tains more edges than the full-k-star, disproving a conjecture of Sós and Verstraëte. Below are

some observations and related problems.

• To better understand the asymptotic behavior of fk(n), it naturally leads to the question of

determining the Turán number ex(n, TCk
ℓ ), i.e., the maximum number of edges in a TCk

ℓ -free

k-uniform n-vertex hypergraph. If ℓ is not divisible by k, TCk
ℓ is not k-partite. There-

fore the complete k-partite k-uniform hypergraph does not contain a copy of TCk
ℓ and thus

ex(n, TCk
ℓ ) = Θ(nk). If ℓ is divisible by k, it is likely that ex(n, TCk

ℓ ) = Θ(nck,ℓ) for some

constant ck,ℓ ∈ (k − 1, k), and ck,ℓ → k − 1 when ℓ → ∞. A problem of Conlon (see [17])

asks for 3-uniform hypergraphs if there is a constant c > 0 such that ex(n, TC3
ℓ ) = O(n2+c/ℓ)

for all ℓ which are divisible by 3. If this answer is affirmative, then it implies that f3(n) =

O(n2+o(1)). One can easily show ex(n, TCk
ks) = Ω(nk−2 ·ex(n,C2s)). So the C4-free projective

plane construction immediately gives ex(n, TC3
6) = Ω(n5/2), while the best upper bound is

ex(n, TC3
6 ) = O(n11/4) by Erdős [4].

• Let H be a 3-uniform hypergraph with vertex set [n]. One can define a 3-unform hypergraph

H∗ with the vertex set being the 2-shadow ∂2(H) of H . And every edge e = {i, j, k} ∈ H

defines an edge e∗ = {ij, ik, jk} in H∗. It is easy to see that H∗ is a linear 3-graph with

e(H∗) = e(H) and v(H∗) = O(n2). We say a loose cycle (e∗1, e
∗

2, · · · , e
∗

k) in H∗ is feasible, if

|Ai∩Ai+1| = 1 and for other i, j, |Ai∩Aj | = 0, where Ai := e∗i ∩e
∗

i+1 is a vertex in H∗ and also

a 2-subset in [n]. It is not hard to show that H is TC3
ℓ -free if and only if H∗ does not contain a

feasible loose cycle of length ℓ. Let G be an n-vertex linear 3-uniform hypergraph. It is known

6



[3] that if G has no loose cycles of length 2k, then e(G) = O(n1+1/k); and it is also known that

if G has no loose cycles of any length, then e(G) = O(n). If these proofs could be adapted for

feasible loose cycles as well, then it immediately gives ex(n, TC3
6 ) = O((n2)1+1/3) = O(n8/3)

confirming a conjecture in [22], and also f3(n) = Θ(n2).

• The following conjecture on tight paths was asked by Kalai, as an attempt to generalize the

Erdős-Sós Conjecture [5]:

Conjecture 4.1. For any integer k and ℓ, suppose H is a k-uniform n-vertex hypergraph not

containing a tight k-uniform path of length ℓ, then

e(H) ≤
ℓ− 1

k

(

n

k − 1

)

.

Recently, Füredi et al. [8] prove an upper bound upper bound e(H) ≤ (ℓ−1)(k−1)
k

(

n
k−1

)

for

this problem, improving the trivial upper bound e(H) ≤ (ℓ − 1)
(

n
k−1

)

. An earlier result of

Patkós [18] gives an upper bound e(H) ≤
∑ℓ

j=2
j−1

k−j+2

(

n
k−1

)

= Oℓ(
1
k

(

n
k−1

)

) for k ≥ 2ℓ, which

is better than the previous bound if k is somewhat larger than ℓ. It would be very interesting

to further improve bounds for Kalai’s Conjecture. As a side note, in [11], Győri et al. proved

that any k-uniform n-vertex hypergraph with more than (αn−k)
(

n
k−1

)

edges contains a tight

path on αn vertices.
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