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SEMI-CONSERVATIVE FINITE VOLUME SCHEMES FOR
CONSERVATION LAWS

ROSA MARIA PIDATELLA*, GABRIELLA PUPPO', GIOVANNI RUSSOf, AND PIETRO
SANTAGATIS

Abstract. This paper aims to introduce a new class of high order conservative schemes to solve
systems of conservation laws. The idea is to couple the conservation form of the system with, possibly
simpler, alternative formulations, which can be used to speed up the time update. In this work, we
illustrate the procedure for a Runge Kutta time advancement, but other choices are possible. We
show that, as long as the last update is carried out in conservative form, all internal stages can
be computed using any consistent non conservative formulation, still ensuring the propagation of
shock waves with the correct speeds. The same procedure can be easily extended to finite difference
schemes. Tests from classical and relativistic gas dynamics are carried out to study convergence,
numerical robustness and performance.

Key words. high order schemes, hyperbolic systems, method of lines, non conservative variables,
relativistic gas dynamics

1. Introduction. Several physical systems concerning propagation phenomena
are modeled by quasilinear hyperbolic systems of conservation laws. Such systems
have been widely studied, both for the enormous relevance in the applications and for
the mathematical challenges they lead to. As known, even if smooth initial conditions
are imposed, the solution of a quasilinear hyperbolic system will in general develop
singularities in finite times. After such a time, classical solutions cease to exist, and
one has to deal with weak solutions which, for smooth initial data, are composed by
piecewise smooth regions separated by jump discontinuities satisfying suitable jump
conditions. In general, uniqueness of the weak solution is not guaranteed. It can be
restored by adopting some regularization technique, the most common one being the
addition of a parabolic term with a small viscosity which produces a unique solution
with sharp gradients that become jump discontinuities in the limit as the viscosity
parameter vanishes, yielding the so called wiscosity solution.

The mathematical theory of quasilinear systems of conservation laws is a very
active field of research, and existence and uniqueness of the solution for several classes
of systems have been proven [8].

The most common schemes to produce numerical solutions of quasilinear hyper-
bolic systems of conservation laws are the so called shock-capturing schemes: for-
mation and propagation of shocks is automatically “captured” by the scheme, that
produces a small region with sharp gradients where the shock forms and propagates.

The construction and analysis of shock-capturing schemes has been a very active
field of research in recent decades. Such schemes, based on Eulerian approach, are
designed to discretize the system on a fixed grid, by finite volume, finite difference or
finite element methods.

In this paper we will make for the finite volume and finite difference schemes,
which, together with discontinuous Galerkin schemes, are the most commonly used
methods in this context. An account of finite volume schemes for conservation laws
can be found in the book by Le Veque [18], whereas a more mathematical oriented
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book is the one by Godlewski and Raviart [11].

In finite volume schemes, the conservation laws are integrated in space over each
grid cell of the domain, obtaining in such a way evolution equations for the cell
averages of variables. The unknowns are now the cell average values, which are
modified in each time step by the flux through the edges of each cell, and then the
choice of the proper numerical flux functions which correctly approximate the flux is a
crucial point of the scheme. This flux can be obtained by the computation of numerical
flux functions, for example Godunov, Engquist-Osher, Rusanov, at the edge of each
cell, extracting information on point values from the knowledge of the cell averages.
This is obtained through an appropriate non linear reconstruction algorithm, such as
ENO or WENO [31], or the more recent CWENO, [6]. In this way we get, from the
original system of PDE’s, a large system of ODE’s for the cell averages. This procedure
is called method of lines, and it yields a semidiscrete system. Once a system of ODE’s
is derived, suitable integrators, such as Strongly Stability Preserving (SSP) Runge-
Kutta can be used [12], providing high order accuracy in time, without any spurious
oscillations due to time discretization. A conservative discrete form is mandatory in
those regions containing discontinuities, because otherwise their speed propagation
might be computed inexactly.

In the above approach, and in most finite volume schemes, the basic unknowns
are the conservative variables and the equations are always treated in conservative
form. However, in many cases there are more convenient ways to write the system
of equations. Harabetian and Pego [14] proposed a hybrid approach, whereby the
system is solved by a non conservative scheme in smooth regions, and switches to a
conservative form in regions with discontinuities. This approach allowed considerable
savings in computational time.

An alternative to the semidiscrete finite volume schemes described before is offered
by central schemes on staggered grids. After the first second order shock capturing
central scheme on staggered grid in one space dimension by Nessyahu and Tadmor [24],
several extensions appeared, increasing the order of accuracy [2, 19], and the spatial
dimensions [16] or both [21].

In such schemes, a piecewise smooth solution is reconstructed in each cell starting
from the cell averages at a given time level ¢"". At variance with semidiscrete schemes,
in central schemes the fluxes are evaluated at the cell center, along time, enjoying
the smoothness of the solution for short times, provided a suitable restriction of CFL
type on the time step is satisfied. An advantage that has been attributed to central
schemes lies in their construction. They do not require to use exact or approximate
Riemann solvers, which are needed for schemes based on the solution of Riemann
problems. Such advantage, however, is not the main feature. Actually, the choice of
the numerical flux function implies a choice of a particular Riemann solver: a great
flexibility of such functions is available, ranging from the Godunov flux, based on the
exact solution of the Riemann problem, to the Rusanov flux (also called local Lax-
Friedrichs), which only needs an estimation of the Jacobian’s spectral radius of the
system. Staggered central schemes do not have this choice, and are less effective. For
instance, the treatment of contact discontinuities in gas dynamics, that are smeared
much more than in the case of sharper Riemann solvers. In practice, the choice of the
numerical flux function is actually a weakness of staggered central schemes, and not
an advantage!

There is, however, a great advantage of high order staggered central schemes over
classical non staggered schemes. Since the fluxes are evaluated from a preliminary
computation of the solution at the center of each cell, where the solution is (locally)
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smooth, a large flexibility is provided in the evaluation of such preliminary solution.
This feature was already pointed out by Nessyahu and Tadmor in their original paper,
where they noticed that the so called predictor value, at cell center and half time step,
could be computed by the equation written in conservative form (discretizing the flux)
or in non conservative form (written using the product of the Jacobian matrix times
the space derivative of the solution).

That feature was further exploited in [25]. In such a paper, a method was pre-
sented, whereby the numerical solution on a staggered grid is computed by a conser-
vative scheme. In this scheme the stage values, needed for the computation of the
fluxes at the Runge-Kutta stages, may be computed by discretizing the equation in
non conservative form. This procedure allows to get a large flexibility in choosing the
dependent variables. However, in spite of this large flexibility, Central Runge-Kutta
(CRK) methods suffered the lack of flexibility in choosing the numerical flux function,
typical of staggered central schemes. Furthermore, the formulation of the boundary
conditions might be a little bit more complicated.

In the present paper we propose a new class of schemes, which enjoy the flex-
ibility of CRK in the choice of the possibly non conservative form of the equation
to be discretized in time, while, at the same time, permitting the usage of arbitrary
numerical flux functions at the cell edges, thus delivering sharp treatment of contacts
and linear discontinuities. The stage values are computed at the cell center, where
the solution is locally smooth, by writing the system in a not necessarily conservative
form. Once the (non conservative) stage values are computed, a preliminary solu-
tion is reconstructed at both cell edges, by some suitable non oscillatory technique.
The reconstructed values are used to compute the fluxes at the cell edges, by some
numerical flux function. Once the fluxes are known, the cell averages are updated
by the conservative Runge-Kutta step for the computation of the numerical solution.
Therefore, the final scheme is in conservative form, though most calculations can be
performed using a convenient non conservative form of the equation.

The larger flexibility of the new approach allows the construction of more efficient
schemes, in all those cases in which the system has a simpler form when expressed
in non conservative variables. A typical example is given by the Euler equations of
relativistic gas dynamics, in which the computation of the pressure by the conservative
variables requires the solution of a non linear equation. The new approach allows
to compute pressure just once per time step in each cell, as opposed to s times
for a classical s-stage Runge-Kutta scheme applied to a semidiscrete finite volume
discretization.

The plan of the paper is the following. In the next section we describe the
construction of finite volume schemes based on non conservative evolution of the fields
at the cell center, in one spatial dimension. Then we present a series of numerical
tests both for classical gasdynamics and for the relativistic case. The purpose of the
tests is to asses the high resolution capability and the computational efficiency of the
new approach. Finally in the last section we draw conclusions and mention future
perspectives of the new approach.

2. Semi-conservative finite volume schemes. The evolution of conserved
quantities, such as mass, momentum and energy, is given by equations of the form

(2.1) at/ udv + (u)-ndS =0, VWV eR?
14 ov

3

This manuscript is for review purposes only.



140
141
142
143
144

146
147
148
149
150

152
153
154
155
156

158
159

160

161

162
163
164
165
166
167
168
169

where u : R? x Rt — Q C R™ are the conserved quantities, f = [f1,..., f4] : R™ —
R™ is the flux function, and V is any control volume in R%. Here © denotes the
set where the variable u is defined: for instance, the density must be positive. If u
is smooth, (2.1) can be rewritten as a system of partial differential equations of the
form

(2.2) w+V-f=0.

It is well known that the solution u can develop singularities in a finite time, even
from smooth initial data. In this case, (2.2) must be interpreted in a weak sense,
while (2.1) continues to hold, see [8] for more details.

Piecewise smooth solutions of eq. (2.1) are allowed, in which jump discontinuities
propagate satisfying the co-called Rankine-Hugoniot conditions, which are derived
from (2.1). Since (2.2) descends from the conservative principle (2.1), the equations
(2.2) are called in conservative form. They are the only equations consistent with
(2.1) which permit to derive the correct Rankine Hugoniot conditions, and thus the
correct shock speeds.

Here, for simplicity, we consider initial value problems for one dimensional, quasi-
linear hyperbolic systems of conservation laws of the form

(2.3) u(z, 0) = ug(x). reR

{ut“!‘fa:(u) =0 t>0

Since the system is hyperbolic, the Jacobian A(u) = V, f is diagonalizable with
real eigenvalues. As long as the solution is differentiable, system (2.3) can be rewritten
in the non conservative form

(2.4) u + A(u)u, =0,

completed by the same initial conditions. For generic quasilinear systems, the Jaco-
bian matrix A depends explicitly on the solution w.

The key point of this work is that other non conservative forms of system (2.3) can
be formulated, as long as the solution is smooth, which can be more convenient from
a computational point of view, and it is possible to exploit these simpler formulations,
without loosing exact conservation at the discrete level.

Let v denote a new set of variables, related to u by a one to one smooth mapping

M(v):

_om

(2.5) u= M), J 5y

det(J) #0, Yve M Q).
Rewriting system (2.3) in terms of the new set of variables, we get

Ut+B(U)Ux - 0 t>0
(2.6) { v(z,0) = vo(z) = M up(z)) rzeR

where v : R x Rt - M~1(Q) cR™, B=J1AJ.

We will solve (2.3) with the method of lines. To this end, we cover the compu-
tational domain with cells centered on the points z; € R, j € Z. For simplicity, we
consider a uniform grid, such that x4 — z; = Az,Vj. Let I; = l:xj_l/Q,x]’_;’_l/Q] be
the generic cell, enclosed by the interfaces z;_1/2 = z; — %, Tjy1/2 =T + %.

4

This manuscript is for review purposes only.



178

179

180

183
184
185
186
187
188
189
190
191
192
193
194

195

209

210

212

Let us introduce the cell averages

B 1 Tj+1/2 )
(2.7 a;(t) = E/;r u(z,t) de, j €.

i—=1/2

Integrating system (2.3) over the cells I;, one obtains the finite volume formulation

d
(28) =~ Rz U lenant) = fulasoaz ).
u;(0) = Aix/ Y uo(z) dz, jEZ.

j—1/2

The numerical solution of system (2.3) in finite volume form (2.8) is based on three
key points

1. a reconstruction algorithm R, which gives an estimate of the numerical solu-

tion at the interfaces, starting from the cell averages, with the desired accu-

racy;
2. a numerical flux function F_, ,, approximating f(u(z,,, ,,t)) at each cell
interface;

3. a time advancing scheme to compute the solution at time t"™ 4+ At, starting
from time t".
The purpose of the reconstruction algorithm R is to obtain estimates of the point
values of the solution at the cell interfaces, starting from the cell averages. Typically,
one works with piecewise polynomial reconstructions,

R(a. ) = 3 Py (), (o),

where Pj(x) are polynomials of degree d, which match d + 1 contiguous cell averages,
including ;, and where @i denotes the vector containing all cell averages of the numer-
ical solution. Note that the reconstruction is discontinuous across cells. In particular,
let

+ _ - _
U’j+1/2 - j+1(xj+1/2) u]'+1/2 - Pj($j+1/2)

be the boundary extrapolated data at the cell interfaces. If the solution is smooth, and
the data are reconstructed with accuracy p, then the jump at the interface ujtl P
— = 0(Ax)P.
J+1/2 . . . . .
The numerical flux Fj /5 is a function of the two estimates of the solution at
the interface, namely Fj /o = F(u;LJrl /2 u;H /2) and it is a numerical approximation

u

of the flux f(u) at the cell interface, obtained solving numerically (or exactly) the
Riemann problem at the interface defined by the data u;_l /2 and u Many
popular numerical fluxes can be written in viscous form as

it+1/2°

(29)  Flrtu) = 3 (F) + f0) — 5Qutu) (ut ),

N =

where Q(u™,u™) is the viscosity matrix. For instance, for local Lax-Friedrichs (called
also Rusanov flux) one has
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where, if f is convex, a = max(p(A(u™), p(A(u7))) = max(p(Bv™), p(B(v7))).
Other choices lead to less dissipative numerical monotone fluxes'. For example, if
a Roe matrix A(u™,u™) [28] is available one could use

Q(U+, U_) = ‘A(u+7 u_)|

or some approximation of the absolute value of the matrix which is cheaper to compute
and does not require full characteristic decomposition of the matrix. Approaches based
on the approximation of the matrix absolute value have been introduced in [9], and
has been then generalized in various contexts (see, for example, the recent paper [5]).
The reconstruction R and the numerical flux F' provide the space discretization
of the scheme. With these ingredients, the semidiscrete form of system (2.8) is given
by the system of ODE’s
10) Do = LR, 0, 0) - Pt 0.0, ,0)]. ez
: dt Ax G172 Ti41/2 j=1/2\7 Ti—1/2 ’ ’
Any numerical method for the integration of systems of ODE’s can be used as

time advancing scheme to solve (2.10). In this work, we will use explicit Runge-Kutta
methods, [13]. For a generic initial value problem (IVP) of the form

i~ g(ty(1), y(t):R—RY deN,
y(to) = o

an explicit v-stage Runge Kutta scheme can be written as

(2.11) Yyt =y + At Z b g(t™ + At YD), (corrector step)
=1
-1
(2.12) Yy =y 4 Atz aig g(t" + cpAt, Y(k)), (predictor step)
k=1
l=1,...,v

where {Y(l)}l:L,,_,y are the internal stages of the Runge Kutta step (also known as
stage values).

The coefficients {¢;}i=1,..v, {bi}i=1,...., {@ij}ij=1,., univocally identify the
numerical scheme. In standad finite volume (FV) schemes with Runge Kutta time
advancement, the evolution of the numerical solution (2.11) is obtained applying the
Runge-Kutta scheme to the semidiscrete form (2.10):

_ L At 1
(2.13) aptt =y - =y AR,
=1
Ap 122
ﬂ§l):ﬂ?—ﬂzalkAFjgk), lzl,...,l/,
k=1

o _ O+ Oks 0+ -
AFTT = B0t p) = B 0041 ),
(OFS
J+1/2)
from the cell averages @". Thus, the conservative form of the equation is used for the

where the values u at each cell interface are computed with a reconstruction step

LA numerical flux F(ut,u™) is said to be monotone if the first order scheme produced by the
flux is a monotone scheme, i.e. if u;’ > w? Vj, then u;“Ll > w}”l Vj. For more details consult [17].

6
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Fic. 2.1. Diagram for semi-conservative finite-volume schemes. At time t™ the cell averages
are known. Pointwise values u" are computed at cell centers, and then converted to the non-
conservative variables UJT-L. Such variables are evolved in time and the corresponding stage values
vs-k) are computed at position x; and time t"™ + cy At. The stage values are reconstructed at each
(k)
its’
computedl, and adopted in order to obtain the conservative approximation of cell average at the new
time t™+1,

cell edge, obtaining v From such values the numerical fluz at the quadrature nodes in time is

final update (corrector step), and also for each of the v stage values. This is precisely
the point where our new SC (semiconservative) schemes differ from traditional finite
volume FC (fully conservative) schemes.

In the semiconservative SC approach we propose, we first seek for an alternative
simple formulation of the equations in the form (2.6), for a new set of variables v,
defined by the smooth one to one mapping (2.5). We then use the conservative form
of the equation for the final update, but each of the stage values is computed using
the simpler system v; + B(v)v, = 0. Clearly, the convenience of the method depends
on how much simpler system (2.6) is with respect to the conservative formulation,
and on the number of stages v. Thus, this approach is particularly interesting for
high order schemes.

More precisely, from the initial cell averages 4™, we apply a reconstruction step
which yields the point values uj at the cell centers. From these, we compute v} =

J
M~ (u}), Vj. Next, the stages are computed from (2.6) as

-1
(2.14) v](.l) =vj — Atz alkB(v](»k))(Dzv(k))j, l=1,...,v.
k=1

Here (D,v®)); denotes the numerical discretization of the space derivative of the data
v®) | obtained with a suitable reconstruction. After all stages have been computed

using the simple system (2.14), the boundary extrapolated data at the I-th stage are
O]
J
variables u are recovered from uglrlr/z = M(UJ(QY/Q) and uyl; /2= M(UJ(‘ZJZIQ)' These
quantities are used to close the time step with equation (2.13).

The algorithm is illustrated in Fig. 2.1 and in the box appearing in Fig. 2.2. Note

that different reconstructions are needed: R, is the reconstruction which computes
7

obtained with a reconstruction step on the point values v;’, and the conservative
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Algorithm: SC schemes
e From @" find the pointvalues u} = R,(z;,W"), Vj.
e Compute v} = M~ (u?), Vj.

e Compute all stage values vj(l) from eq. (2.14) Vj.

e Compute the values at interfaces vj(.lffm = Rp(Tj41/2, v, vj.
e Go back to conservative variables ug,l}rjfﬂ = M(vﬁfm), Vj.

e Close the time step on conservative variables with equation (2.13).

F1a. 2.2. Algorithm for the semi-conservative finite-volume schemes

point values from cell averages, while R, yields boundary extrapolated data from
point values, and D, is a discrete derivative.

2.1. Constructing high order SC schemes. Semiconservative schemes can
be constructed with any order of accuracy. To obtain a scheme of order p, the re-
constructions and the time advancement Runge-Kutta scheme must be of matching
order. Here we will consider second, third and fourth order schemes.

Second order. Since, for a smooth function w(z), w(z;) = w; + O(Ax)?, at
second order accuracy the reconstruction R, is the identity. From the point values
w, the approximate slopes o; are computed with a piecewise linear reconstruction
and a limiter such as MinMod, see [17] and references therein. Thus, Vj we have:

n

n_
n __ n
v = M(uj)
CTj :DmU|j
vl =", — iAzo; v ="+ 1iAz0;
j+1/2 — Yi+1 T 2 J+1s j+1/2 — Y5 2 J

where the slopes o are computed from the data v. Then the scheme proceeds as in
Fig. 2.2. Note that the same reconstruction is used to compute the point values, the
discrete derivative o = D,v in (2.14) and the boundary extrapolated data.

The SSP second order Heun scheme is used for the time advancement.

Fourth order. All reconstructions are obtained with WENO type interpolations,
see [32], [3] and the review [31]. For a fourth order scheme, the reconstruction is based
on three parabolas, combined in order to maximize accuracy on smooth solutions, but,
at the same time, preventing spurious oscillations on non smooth data. The generic
WENO reconstruction can be written as

1
R(.Q?,l_l) = Z wf Pj+g(£).
l=—1

When reconstructing point values from cell averages (R,), the parabolas P; . inter-
polate the data ;. in the sense of averages:

ﬁ/ P](.’lﬁ) = Ujte, ¢{=-1,0,1,
Ijte

8
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while the reconstruction from point values R, has Pj(z;4i) = ujq,l = —1,0,1. In
both cases, the generic parabola P;(z) = P(z;wj_1,w;, wj+1) is given by
(2.15)

Pj(z) = w;

(w1 —2w;+w;j 1)+

R A (.’E—"E ')+wj+1 — 2wj ki Lt ((p—fE -)2 I
J 7/ )

21 2Ax 2Az2
withC =1, wy=up,=j—1,5,j+1for Ry and C =0, wg =up, £ =35—1,5,5+1
for R,. The nonlinear weights {w!} are

¢ 0‘? ¢ d
(2.16) e RN L S N
! lec:—1 0‘? ! (5—'_65)2

The smoothness indicators ﬁf prevent the selection of stencils with non smooth data,
thus controlling spurious oscillations. In the case of parabolas they are given by, see
[31],

_ 13 _ _ _ 1, _ _
Bj t— E(Uj_g — QUj_l + Uj)2 + Z(uj_Q — 4Uj_1 + SUJ')Q,
13 _ o _ _
B} = 1o (@i-1 = 25 + wji1)? + 7 @1~ jy1)?,
13, _ _ _ 1. _ _
ﬁ]l = E(’LL] —2u41 + Uj+2)2 + Z(3uj — 4+ ’Lbj+2)2.

The parameter € prevents division by zero, but it is also involved in the accuracy of
the scheme, see [1] or [7]. Here we choose simply € = 1075, as in [31].

A key point is the choice of the constants dy. When the data derive from a smooth
function, all smoothness indicators are approximately equal, and the weights wf ~ dt.
Then the constants d; are determined maximizing the accuracy that can be obtained
with a convex combination of the three parabolas involved. The problem is that a
convex combination of three parabolas can provide uniform accuracy within the cell
only up to third order, even though the stencil contains 5 cells. To increase accuracy,
the constants are determined maximizing the accuracy of the reconstruction at one
particular point. Note that each quantity being reconstructed needs a specific set of
constants, and thus a different reconstruction.

A fourth order reconstruction of point values from cell centers can be obtained
by any symmetric choice of the constants dg, £ = —1,0,1, as illustrated in [19]. We
use d~! =3/16, d° =5/8, d' = 3/16. Higher order accuracy is possible (indeed
sixth order can be obtained), however it requires the use of negative weights. This
problem can be tackled with the technique described in [30], but we will not consider
this case here. For reconstructing the boundary extrapolated data, the constants are
d=! = 5/16,d° = 5/8, d* = 1/16 for the left value v’ . and d~! = 1/16,d° =
5/8, d* = 5/16 for the right value VL The accuracy of the reconstructed data is
5, for smooth functions.

Finally, a reconstruction is needed also to compute the numerical derivative D,.
Now, the reconstruction is given by

1
d
Dmv\xj = ’RD(:z:j,v) = Z wf @Pj+g(l’j).
(=—1

The accuracy constants in this case are d~* = 1/6, d° = 2/3, d* = 1/6, and the
accuracy of Dyvl,, is 4.
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A class of WENO type reconstructions with uniform accuracy within the whole
cell can be found in [6]: in this case a single reconstruction step can yield all needed
quantities. We will illustrate this technique for constructing a third order scheme in
the next paragraph.

The time advancement scheme is the standard fourth order Runge-Kutta scheme.
In all cases, the numerical flux used is the Lax-Friedrichs flux.

Third order. The reconstruction used here is taken from [20], and can be viewed
as a particular case of [6], leading to a third order scheme.

Consider a set of data (point values or cell averages) and a polynomial P,y of
degree G, which interpolates in some sense all the given data (optimal polynomial).
The CWENO operator computes a reconstruction polynomial

P,ec = CWENO(Popt, P, ..., Py,) € PY

using Popt € PS¢ and a set of lower order alternative polynomials P, ..., P, € P9,
where ¢ < G and m > 1. The definition of P, depends on the choice of a set of
positive real coefficients dy, ... ,dn, € [0,1] such that Y_;" jd¢ = 1, dy # 0 (called
linear coefficients) as follows:

1. first, introduce the polynomial P, defined as

(2.17) Py(z) = dio (Popt(ac) - i nge(l‘)) e P¢
=1

2. then the nonlinear coefficients w, are computed from the linear ones as in
(2.16) where 8, denotes suitable regularity indicators, which can be chosen
following [15] as

z;+1/2 /g 2
(2.18) By = Zsz’“—l/ (dleg(x)) Az, (=0,....m

E>1 x;—1/2

3. and finally
(2.19) Pec(z) =Y _wiPy(x) € P
£=0

In the case of a third order scheme, the degree of P, and Fy is G = 2, while the
m = 2 lower degree polynomials are just linear functions. The interesting point is that
since P is defined everywhere in the cell one can use it to compute the extrapolated
data and the discrete derivative. The constants d‘ can be chosen quite freely. Here
we have dy = %,dl =dy = i.

As time integrator, we employ the third order Runge Kutta scheme used in [15].

3. SC schemes and Lax Wendroff’s Theorem. A crucial issue in the in-
tegration of systems of conservation laws is the enforcement of exact conservation.
If shock waves appear, exact conservation ensures that the correct wave speeds are
captured also at the numerical level. This result is guaranteed by Lax Wendroff’s The-
orem which contains sufficient conditions for the convergence of a numerical scheme
to a weak solution of conservation laws.

The key fact is that Lax Wendroff’s Theorem (see for instance [10, pag. 100]) re-
quires the scheme to be conservative, and this is the main reason why one discretizes
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377
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379

directly the conservative form of the equations, thus working in conservative vari-
ables. However, recalling the definition of conservative scheme, we can easily prove
that SC schemes are indeed conservative, and therefore satisfy the hypotheses of Lax
Wendroff’s Theorem.

DEFINITION 3.1. Conservative scheme The numerical scheme

gttt — g — At _

Uj =Y T Ag (Fj+1/2 Fj—1/2)
. L : _ em n L
is conservatwe if the numerical fluz F, , , = F(uj_p7...7uj+m), (p and m positive

integers) satisfies the following conditions
1. F(u,...,u) = f(u) (consistency)
2. F(tj_p, ..., Ujtm) 1s at least Lipschitz continuous in all of its arguments.

Consistency

First note that the scheme is clearly built on a stencil with a finite number of
cells. Let then x;_,, ..., ;4 be the cell centers in the stencil containing the data
needed to compute the numerical flux at the interface z;, /2, with p and m positive
integers.

Ituy_, =..=uj.,, = U, then, since any piecewise polynomial reconstruction
interpolates constants exactly, also the reconstructed point values satisty uj_, = ... =
uf,,, = U. Then the transformed variables are v} , = ... = v}, =V = M~} (U).
Again, the piecewise polynomial reconstruction preserves constants, thus the nu-
merical derivative is zero, and all stage values in (2.14) reduce to v,(cl) = vy =
V, Vk in the stencil of the cell j. Reconstructing these data, all boundary ex-

;252 = V. Mapping back to conservative variables,

= M(V) = U. Since we are using a conservative and consistent numerical
l 0, 0),— . .
flux, Fj(+)1/2 = F(uélf}z,uiilﬂ) = F(U,U) = f(U). Finally, the numerical flux of

the scheme is Fj 1/ = >, ble(fr)l/2 = f(U)>_, bi. So, the consistency of the numer-

ical flux relies ultimately on the consistency of the RK scheme, which ensures that

S = 1.

trapolated data result in v
0),=
Uit1/2

Lipschitz regularity

All ingredients used in the construction of the numerical fluxes are at least Lip-
schitz continuous. More precisely, for the second order scheme, the piecewise linear
reconstruction using MinMod has just Lipschitz regularity, while WENO reconstruc-
tions are C*°. The Lax Friedrichs numerical flux is also C"*°. The final numerical flux
is just a composition of these functions, and thus it has the required smoothness.

4. Applications and numerical results. We illustrate the performance and
the field of applicability of the scheme with examples and numerical tests. We start
from scalar conservation laws, where it is easy to appreciate the differences between
standard conservative finite volume schemes and the new semiconservative schemes.
Next we continue with classical Euler equations, to end with the equations of rela-
tivistic gas dynamics, where the new scheme permits to obtain considerable savings
in computational complexity.

4.1. Burgers’ equation. The computation of the correct shock speeds is as-
sured by the Lax Wendroff theorem, which uses only the consistency of the numerical
fluxes, appearing in the conservative form of the finite volume formulation.

11
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As an example, consider the following two initial value problems,

1
(41) 8tu + am <2u2> = O, u(x,t = 0) = ’LL()(iE) >0
1
If, in the second equation, we take the change of variables z = M(v) = %1)2, we

find that in the v variables, (4.2) coincides with the characteristic form of (4.1),
namely vy + vv, = 0, with the same initial data. Thus the two equations have the
same solution, as long as the solution is smooth. However, an initial step ug(z) =
ur, + (ugr — ur)H(z), where H is the Heavyside function, yields two different shock
speeds in the two initial value problems, namely

Sy = =(ur + uR)

5
quL +urur + u%
3 ur, +ugr

Sy, =

In fact, (4.1) prescribes the conservation of the quantity w, while the second equation
prescribes the conservation of the quantity z, and this fact yields two different results
for the shock speed, when one applies the Rankine Hugoniot condition.

In the standard Fully Conservative scheme, the final update and all stage values
are computed directly from the two conservation laws. In the Semi-Conservative
approach, for (4.1) we choose the auxiliary variables v = M~!(u) = I(u). Then the
algorithm is the following (here A = %).

e Reconstruct the point values U from cell averages, and set V" = U}
e Compute the stage values using the characteristic form v; + vv, = 0,

v =vr AtZV(k)D V®Y (),  1=1,...,n
k=1

e Use the point values of the stages to reconstruct the boundary extrapolated
O \+ @ (ONERT>
data, (V+1/2) and obtain (U +1/2) (VJ+1/2) .
e Apply the conservative corrector step, evaluating the numerical flux F) =
(U(l)+ U(l)
Jj+1/20 7 j+1/2
ages

) consistent with f(u) = Fu?, obtaining the new cell aver-

Un+l Un )‘Zb F(l) F(l)

j+1/2 1 /2)
For (4.2), we choose v = M™!(z) = v/2z. Then, the semiconservative SC ap-
proach results in the following algorithm.
e Reconstruct the point values Z7' from cell averages. Set V" = 277
e Compute the stage values using the characteristic form v; 4+ vv, =0

vl = AtZV(k N(z;), I=1,...,v.

e Use the point values of the stages to reconstruct the boundary extrapolated
(@) : O] _ (ONR=
data, (1/j+1/2)i, and obtain (Zj+1/2)j: = %[(Vj+1/2) %
12
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e Apply the conservative corrector step, evaluating the numerical flux F) =

F (Z](Q'f/z, Z3(21/2) consistent with f(z) = £(22)®/?), obtaining the new cell

averages

7n+1 n ) (l)
=73 /\Zb (F 1 s = 2 )

Fia. 4.1. Shock propagation (left) and shock formation (right). Red continuous line: fully
conservative 4th order (FCJ) scheme, blue circles: semiconservative 4th order (SC4) scheme.

The results are shown in Fig. 4.1. The plot on the left is obtained with an
initial jump, located in x = —0.8 with uy, = 3 and ur = 1, at time T' = 1. The
Burgers’ solution is a shock travelling with speed s; = 2; the modified Burgers’ (4.2)
solution is a shock with speed so = % The plot contains the solution of both
problems obtained with the fully conservative fourth order scheme (FC4) and the
semiconservative fourth order scheme (SC4). The plot on the right has as initial data
ug(z) = sin(m(z— 1)) +1. For both equations the shock appears at the same time, but
it will have different speeds. Note that the FC and SC solutions coincide in all cases,
with the correct shock speeds. All numerical solutions were obtained with N = 100
grid points, and a CFL number CFL = 0.9.

2. Accuracy. We carry out accuracy tests on linear advection, using low and
high frequency solutions, for schemes of order 2, 3 and 4. The equation is u; +u, = 0.
The low frequency initial datum is

uo(x) = sin (mrz — sin(wz) /7),
while for high frequency, we consider

ug(x) = sin(rz) + + sin(157x) e 2027,
The first test can be found in [1], while the second test is due to [29].

Figure 4.2 contains the convergence history for the low frequency (left panel)
and the high frequency test (right panel). The final time is 7' = 2, with periodic
boundary conditions on [—1, 1], so that each solution completes a whole period. The
black dashed lines are the expected rates (2, 3 and 4), the green, red and blue curves
refer to the second, third and fourth order scheme respectively. The results of the
fully conservative schemes are labelled with circles, while the results of the new SC

13
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Fi1G. 4.2. Accuracy plots. Low frequency (left) and high frequency tests (right). From top to
bottom, and green, red and blue, respectively: second, third and fourth order schemes. Semiconser-
vative: +, and fully conservative: eo.

schemes are marked with plus signs. The SC schemes have slightly smaller errors
than the traditional FC schemes, except than in the case of the fourth order scheme.
This is due to the fact that the WENO reconstruction is fifth order on the boundary
extrapolated data (which are the only data needed by the fourth order FC4), but only
fourth order on the reconstruction of point values at the cell center, which is needed
by SC4.

For the data on the high frequency test, we note that the expected accuracy
is obtained only after a transient, when the grid is fine enough to detect the high
frequency features of the solution.

4.3. Euler equations. We consider the standard Euler equations of compress-
ible gas dynamics in 1D. In the notation of (2.3) U = [p, m, E], where p is the density,
m = pv is the momentum, v is the velocity and F is the total energy per unit volume.
The pressure p is linked to the other quantities by the equation of state. Here we take

1

E= %pvQ + =3P with v = 1.4 the polytropic constant for air.

p pv
(4.3) | pv | +0.| p?+p | =0.
E v(E +p)

When the solution is smooth, system (4.3) can be written in terms of primitive
variables, obtaining a system of the form (2.6) with V' = [p, v, p|, namely

p u p 0 p
(4.4) Ol v |+ 0 v 1/p || v | =0.
D 0O vw v P

As an example, we consider Lax’ Riemann Problem, which is a standard bench-
mark in computational gas dynamics. The left and right states are

oL 0.445 oR 0.5
v, | = 0.6989 v | = 0
P 3.5277 PR 0.5710
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Density

F1G. 4.3. Laz’ test, density profile with the second order FC2 (left) and SC2 (right) schemes,
with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is the exact
solution.

In this test, a high-pressure gas on the left is impinging against a stationary low
pressure gas. Fig. 4.3 contains the density profiles obtained with the second order FC
scheme (on the left) and the SC scheme on the right, for several values of the number
of grid points: N = 100, 200, 400, 800. As expected, the solution converges to the
exact profile (shown with the dashed line) under grid refinement, but it is noteworthy
that the SC scheme and the FC one provide undistinguishable solutions.

N | FC2| SC2| FC4| SC4 | FC4 CP | SC4 CP
100 | 0.148 | 0.131 | 0.295 | 0.403 9.153 9.244
200 | 0.213 | 0.224 | 0.745 | 1.002 35.44 33.42
400 | 0.536 | 0.559 | 2.158 | 2.859 143.4 130.3

800 | 1.493 | 1.557 | 6.940 | 9.037 559.6 516.4
TABLE 4.1
Computational costs for Lax’ test, in seconds of CPU. The two columns on the right refer to
the scheme with characteristic projection (CP)

We do not expect gains in efficiency in Euler equations, using the semi conservative
approach, because the inverse of the map u = M(v), needed by the fully conservative
scheme to compute the flux, can be written explicitly, and it is fast to compute. On
the other hand, the SC approach requires one more reconstruction per step (from cell
averages to point values), and one application of the direct map per stage, to compute
the artificial diffusion correction. It is not surprising therefore that the computational
times of the SC schemes are slightly higher than those obtained by the corresponding
FC, see the first four columns of Table 4.1. The CPU times were obtained running
the code in Matlab on a 2,9 GHz Intel Core i5 machine. The code is vectorized,
except for the runs with the reconstruction on characteristic variables, as in the last
two columns of the table.

Fig. 4.4 contains a detail of the density peak obtained with the fourth order FC4
(on the left) and SC4 (on the right). It is well known that high order WENO schemes
develop spurious oscillations in Riemann problems, with amplitude decreasing under
grid refinement. In fact, this is precisely the meaning of essentially non oscillatory
reconstructions. This essentially non oscillatory behaviour is quite apparent in the fig-
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F1G. 4.4. Laz’ test, detail of the density profile with the fourth order FCY (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is
the exact solution.

ure, but note that the SC solution is less oscillatory than its FC counterpart, although
in both cases the amplitude of the oscillations decreases under grid refinement.

These oscillations arise in the first steps of the computation, when the waves
originated by the Riemannn problem are so close that it is impossible to find a stencil
containing only one discontinuity. This problem can be cured projecting the unknown
along characteristic directions, before performing the reconstruction, and computing
the reconstruction along the direction of the eigenvectors. This procedure was outlined
in [27] and it is very effective. The drawback is that it is computationally expensive.
Fig. 4.5 shows the peak in the density of Lax’ Riemann problem when this device
is applied. The computational cost is reported in the last two columns of Table
4.1. Now, the SC computation is slightly faster, because one variable is already a
characteristic variable.

1.4 T 1.4
1.35| 1.35|
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Fic. 4.5. Lax’ test, detail of the density profile with the fourth order FC4 (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). Reconstruction along
characteristic directions. The dashed profile is the exact solution.

4.4. Relativistic gas dynamics. As we have seen in the past section, the
semi-conservative approach reproduces the correct shock speeds, even though the
stage values are computed in non conservative form. Since the mapping between
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conservative and non conservative variables u = M(v) is easily invertible in Euler
equations, the semi-conservative approach is not computationally faster than standard
finite volume schemes. We expect to gain in efficiency when the semi-conservative
approach is applied to equations for which the mapping M is not easily invertible.

As an example of this type, we consider the relativistic gas dynamic equations,
[22], see also [23] for a review, which can be written as

D Dv
(4.5) Oy S + Oy Sv+p =0.
T S — Dv

where the conservative variables are mass density D, momentum density S and energy
density 7 in the laboratory frame of reference. These quantities are linked to the
density p, the velocity v and the pressure p through the relations

(4.6) D = pW
S = phW?v
T =phW? —p—D,

where W = (1 —v2)~'/2 is the Lorentz factor in which v has been nondimensionalized
with the speed of light, thus v € [—1,1]; h is the enthalpy per unit mass, h = 1+e+ %,
and e is the internal energy per unit mass. The pressure p is given by the equation of
state, p = pe(y — 1). To compute the flux on the right hand side of (4.5), one must
compute v and p from the conservative variables.

The velocity v can be easily written in terms of the pressure and of conservative
variables using (4.7) and (4.8),

_ S
T+ D+p

The internal energy is pe = ph — p — p, and the enthalpy can be written as a function
of the pressure and of conservative variables as

T+D+p

ph=—7

Substituting these quantities in the equation of state p = (7 — 1)pe, one obtains a non
linear equation for the pressure, namely

(49)  0=S(p(D,5.7) = (W= (y=1)p—(y 1) (r+ D(1 - W)).

The conservative variables (D, S, 7), clearly must satisfy D > 0,7 > 0. As already
noted, the velocity v cannot surpass the speed of light, i.e. —1 < v < 1. This condition
implies that 7 + D > |S|. Finally, the root of F(p) = 0 must be positive, and this
request brings in a further restriction. In fact, F(p) is a monotone increasing function
(see [22]). Thus the pressure is positive if F(p = 0) < 0, which is satisfied provided

(4.10) (t+ D)*> > D* + S,

In this case, the function F(p) has a single, positive root. To compute the flux, the
non linear equation (4.9) must be solved at each grid point. In our tests, (4.9) is solved
with Newton’s method, using, as starting guess for the pressure, the local value from
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the previous time step. Note however that condition (4.10) may be violated when
spurious oscillations occur, especially when the flow is characterized by a total energy
which is almost completely kinetic. In this case, (4.9) may yield a negative value
for the pressure or no solution at all, and the integration breaks down. Thus, it is
crucial to use non oscillatory schemes when dealing with low pressure, relativistic gas
dynamics.

Clearly, if v < 1, classical mechanics holds, and one recovers standard compress-
ible gas dynamics.

The equations of relativistic gas dynamics in primitive variables, are [22]

p —v
YT e hMW2(1 —v2c?)
P 1—¢2 1 P
(4.11) O ; i 1—0v2c?2  phW4(1 —v3c?) 0 Z =0
0 phc? v(l—c?)
1 —v2¢? 1 —v2¢?

where ¢? = yp/(ph). These are the equations which will be used in the computa-
tion of the stage values.

Now, for the standard finite volume scheme FC, given the cell averages D", S™, 7"
one needs to compute the v stage values, and each stage value requires the evaluation
of the inverse of the map U = M(V) defined by (4.6-4.8), which needs the solution
of F(p; D, 8@ (1)) = 0. In the semiconservative schemes SC, instead, given the
cell averages D™, S™, 7", we compute the point values D", S, 7, and the primitive
variables p,v,p inverting again the map U = M(V), but this is done only once
per time step. Next, the v stages are computed from equation (4.11), which does
not require the inversion of M(V). Once the stage values p, v p() are known,
the stage values for the conservative variables D) S 7() are easily found. This
explains why the new SC schemes are faster with respect to the fully conservative
schemes in the relativistic case.

We illustrate the behavior of the schemes with three shock tube problems. The
first two tests can be found in [22]. The left and right states for the first test are given
by

p 10 p 1
Test 1 v = 0 , v = 0
/), 13.3 » /)R 0.610°6

In this case, a gas expands into an extremely low pressure gas. The polytropic pa-
rameter is v = % the final time is T' = 0.36, and the Courant number is CFL= 0.45
for all schemes. The profiles for density, velocity and pressure for the second order
FC2 and SC2 can be seen in Fig. 4.6. The exact solution was computed thanks to
the Riemann solver described in [23].

It is apparent that all features of the solution are correctly reproduced by the semi-
conservative SC scheme. For the fourth order schemes, we show a peak of the density
profiles in Fig. 4.7. Again, we note that the semidiscrete SC schemes are less oscilla-
tory than the standard finite volume method of the same order. The computational
times of the four schemes tested are listed in Table 4.2. Now, the semiconservative
schemes are faster than their fully conservative counterpart, because the costly in-
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Fi1G. 4.6. Marti Miiller Test 1, density, velocity and pressure profiles with the second order FC2
(left) and SC2 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

609  verse of the map u = M(v) has to be computed only once per time step. Clearly, the
610 difference is much more apparent in the fourth order case.

N | FC2 | SC2 FC4 | SC4
100 | 0.155 | 0.288 | 0.668 | 0.409
200 | 0.341 | 0.260 | 1.390 | 0.788
400 | 0.798 | 0.577 | 3.763 | 1.922

800 | 1.973 | 1.506 | 10.783 | 5.611
TABLE 4.2
Computational costs for Relativistic gas dynamics, in seconds of CPU. Test 1 from Marti Miiller.

611 The second test is again from [22], but an analogous set up can also be found in
612 [26]. [33]

0 1 p 1
613 Test 2 v = 0 , v = 0
P/ 1000 P /g 0.01
19
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Density
Densiy.

Fic. 4.7. Marti Miller Test 1, zoom on the density profiles with the fourth order FC4 (left)
and SC4 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The
dashed profile is the exact solution.

This shock tube problem results in a rarefaction moving towards the left and a contact
and shock travelling right. The difficulty of this test is due to the fact that the
contact and the shock travel with almost equal speeds, so that high order schemes
have difficulties in selecting a non oscillatory stencil.

The results obtained with the fourth order semiconservative scheme appear in Fig.
4.8. The fully conservative, fourth order scheme fails on this test, because condition
(4.10) is violated across the contact wave, after the computation of the first stage
values.

Pressure

F1G. 4.8. Marti Miiller Test 2. At the top: density profile with a zoom on the contact wave. Bot-
tom, wvelocity and pressure, SC4 with N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

A further test, Test 3, is drawn from [33]. The initial left and right states are
20
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given by

0 1 p 1
Test 3 v = 09 |, v = 0
P/ 1 P /)R 10

It describes a low pressure gas impinging against a high pressure gas. Fig. 4.9 contains
the resulting density profiles, for the fourth order schemes, with a zoom on the contact
wave on the bottom of the figure. In this case, the semiconsenservative scheme is more
oscillatory than the fully conservative finite volume scheme.

Fic. 4.9. Zhao Tang, Test 3. At the top: density profiles for SC4 (left) and FC4(right).
Bottom: zoom on the contact wave. N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

For this test, we also show the error versus the CPU time of first (green), second (blue)
and fourth (red) order schemes. The results obtained with the fully conservative FC
schemes are represented with a dot, while the results yielded by the semiconservative
schemes appear with a + marker. It is clear that the SC schemes in all cases (except
on a very coarse grid) yield consistently smaller CPU times for the same error. This
is not a test in which high order schemes work at their best, because the solution of
a Riemann problem is not full of structure. However, in this case the exact solution
is known and quantitative results can be carried out. The most interesting point, is
that SC is indeed faster than fully conservative schemes.

4.4.1. Two dimensional tests. Finally, we consider two dimensional tests.
The equations for relativistic gas dynamics in primitive variables are

(4.12) OV + A0,V + A0,V =0,
21
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Fic. 4.10. Error versus CPU time of first (green), second (blue) and fourth (red) order schemes.
FC schemes are represented with a dot, SC schemes appear with a + marker

FC, N=400

SC. N=400

F1c. 4.11. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,

second order FC (top) and SC (bottom, with N = 100 (left), and N = 400 (right) points per
direction.

643 where the Jacobians of the flux are given by

U pG 0 —%

0 uG(1—c?) 0 =%5(1 —u? - c0?)
644 (4.13) A, = P

0 —?j,—cjv u —Glf;;vc;)uv

0 phc*G (32 G(1 —cA)u
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647
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and

uG

v 0 oG — e
2a G(1-c?)

0 v —fzu T ToRwz WU

(4.14) A, =

0 0-G(1-c*w ph%w(l — cu? —v?)

0 0 phc*G G(1 -2

Here, (u,v) are the components of the velocity in the z and y directions, respectively,
W2 =1/(1 — (u? +v?)) and G = 1/(1 — (u® + v?)). As a test, we propose a
two-dimensional Riemann problem, in which the four states are given by

2 2 2 2
0 0.5 0 0
Vaw =1 Vwe=1 (5 Vsw = o5 Vse=1 o5 |
1 1 1 10

with NW labelling the North West corner of the computational domain, and similarly
for the other labels.

FC. N=100 FC. N=400

Fic. 4.12. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,
third order FC' (top) and SC (bottom, with N = 100 (left), and N = 400 (right) points per direction.

The computational domain is the square @ = (0,1)?, with free-flow boundary con-
ditions. The final time is ¢y = 0.36 and the origin of the Riemann Problem is in the
middle of Q.

We show results obtained with a dimension by dimension piecewise linear reconstruc-
tion for second order, and the truly 2D third order CWENO reconstruction of [4],
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658 to which we added the computation of the slopes. The results can be seen in Fig.
659 4.11 for the second order scheme and 4.12 for the third order scheme. Each figure
660 contains 40 contour lines for the density p for the FC scheme (top plots) and for the
661  SC scheme at the bottom. The figure shows also the effect of grid refinement: the
662 number of grid points along each side is N = 100 for the left plots and N = 400 for
663  the plots on the right. SC provides in all cases a slight improvement in the resolution
664 of the discontinuities. Further, in this solution with a rich structure, the third order
665 solution exhibits more details than the second order case.

666 The corresponding computational times can be found in Table 4.3. As in the 1D
667 case, the SC scheme is faster than its corresponding FC, and the computational gain
668 increases with the order.

N FC2 SC2 FC3 SC3
100 1.78 1.82 12.85 9.55
200 | 13.45 | 11.54 | 165.25 | 121.19

400 | 138.09 | 113.88 | 1875.12 | 1400.89
TABLE 4.3
Computational costs for the 2D relativistic Riemann problem, in seconds of CPU.

669 5. Conclusions. In this paper we have presented a novel approach to construct
670 conservative finite volume methods for conservation laws. Although the final scheme
671 is conservative, and is able to capture shocks with the correct propagation speed,
672 most of the computational work is performed using a non conservative formulation,
673 in non conservative variables. This adds a tremendous flexibility in the choice of the
674 unknown variables and on the form of the equations on which most of the compu-
675 tational effort is carried out. We explore in some details two applications, namely
676 classic and relativistic gas dynamics. In both cases, the non conservative form of the
677 equations based on primitive variables is chosen. In classical gas dynamics, it is ob-
678 served that in many cases this choice provides much less oscillatory solutions than in
679  standard WENO schemes based on conservative variables. In relativistic gas dynam-
680 ics, high order schemes greatly benefit from the non-conservative formulation, which
681 allows to compute the evolution of the fields without solving the nonlinear equation
682 to determine the pressure from the conservative variables. Such equation has to be
683 solved only once per cell per time step, as opposed to what happens in standard finite
684 volume schemes based on v stages Runge-Kutta schemes, for which such equation has
685 to be solved v times per cell per time step.

686 The method can be easily extended to the construction of conservative finite-
687 difference schemes, which may be very convenient for efficient computation in several
688 space dimensions.

689 We believe there are several other contexts in which the flexibility introduced by
690 the semi conservative approach can be successfully exploited for producing more effec-
691 tive codes, which are either more efficient or more accurate for the same discretization
692 parameters. The use of the new approach in other contexts as well as in several space
693 dimensions in currently under investigation.
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