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1. Introduction. Several physical systems concerning propagation phenomena16

are modeled by quasilinear hyperbolic systems of conservation laws. Such systems17

have been widely studied, both for the enormous relevance in the applications and for18

the mathematical challenges they lead to. As known, even if smooth initial conditions19

are imposed, the solution of a quasilinear hyperbolic system will in general develop20

singularities in finite times. After such a time, classical solutions cease to exist, and21

one has to deal with weak solutions which, for smooth initial data, are composed by22

piecewise smooth regions separated by jump discontinuities satisfying suitable jump23

conditions. In general, uniqueness of the weak solution is not guaranteed. It can be24

restored by adopting some regularization technique, the most common one being the25

addition of a parabolic term with a small viscosity which produces a unique solution26

with sharp gradients that become jump discontinuities in the limit as the viscosity27

parameter vanishes, yielding the so called viscosity solution.28

The mathematical theory of quasilinear systems of conservation laws is a very29

active field of research, and existence and uniqueness of the solution for several classes30

of systems have been proven [8].31

The most common schemes to produce numerical solutions of quasilinear hyper-32

bolic systems of conservation laws are the so called shock-capturing schemes: for-33

mation and propagation of shocks is automatically “captured” by the scheme, that34

produces a small region with sharp gradients where the shock forms and propagates.35

The construction and analysis of shock-capturing schemes has been a very active36

field of research in recent decades. Such schemes, based on Eulerian approach, are37

designed to discretize the system on a fixed grid, by finite volume, finite difference or38

finite element methods.39

In this paper we will make for the finite volume and finite difference schemes,40

which, together with discontinuous Galerkin schemes, are the most commonly used41

methods in this context. An account of finite volume schemes for conservation laws42

can be found in the book by Le Veque [18], whereas a more mathematical oriented43
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book is the one by Godlewski and Raviart [11].44

In finite volume schemes, the conservation laws are integrated in space over each45

grid cell of the domain, obtaining in such a way evolution equations for the cell46

averages of variables. The unknowns are now the cell average values, which are47

modified in each time step by the flux through the edges of each cell, and then the48

choice of the proper numerical flux functions which correctly approximate the flux is a49

crucial point of the scheme. This flux can be obtained by the computation of numerical50

flux functions, for example Godunov, Engquist-Osher, Rusanov, at the edge of each51

cell, extracting information on point values from the knowledge of the cell averages.52

This is obtained through an appropriate non linear reconstruction algorithm, such as53

ENO or WENO [31], or the more recent CWENO, [6]. In this way we get, from the54

original system of PDE’s, a large system of ODE’s for the cell averages. This procedure55

is called method of lines, and it yields a semidiscrete system. Once a system of ODE’s56

is derived, suitable integrators, such as Strongly Stability Preserving (SSP) Runge-57

Kutta can be used [12], providing high order accuracy in time, without any spurious58

oscillations due to time discretization. A conservative discrete form is mandatory in59

those regions containing discontinuities, because otherwise their speed propagation60

might be computed inexactly.61

In the above approach, and in most finite volume schemes, the basic unknowns62

are the conservative variables and the equations are always treated in conservative63

form. However, in many cases there are more convenient ways to write the system64

of equations. Harabetian and Pego [14] proposed a hybrid approach, whereby the65

system is solved by a non conservative scheme in smooth regions, and switches to a66

conservative form in regions with discontinuities. This approach allowed considerable67

savings in computational time.68

An alternative to the semidiscrete finite volume schemes described before is offered69

by central schemes on staggered grids. After the first second order shock capturing70

central scheme on staggered grid in one space dimension by Nessyahu and Tadmor [24],71

several extensions appeared, increasing the order of accuracy [2, 19], and the spatial72

dimensions [16] or both [21].73

In such schemes, a piecewise smooth solution is reconstructed in each cell starting74

from the cell averages at a given time level tn. At variance with semidiscrete schemes,75

in central schemes the fluxes are evaluated at the cell center, along time, enjoying76

the smoothness of the solution for short times, provided a suitable restriction of CFL77

type on the time step is satisfied. An advantage that has been attributed to central78

schemes lies in their construction. They do not require to use exact or approximate79

Riemann solvers, which are needed for schemes based on the solution of Riemann80

problems. Such advantage, however, is not the main feature. Actually, the choice of81

the numerical flux function implies a choice of a particular Riemann solver: a great82

flexibility of such functions is available, ranging from the Godunov flux, based on the83

exact solution of the Riemann problem, to the Rusanov flux (also called local Lax-84

Friedrichs), which only needs an estimation of the Jacobian’s spectral radius of the85

system. Staggered central schemes do not have this choice, and are less effective. For86

instance, the treatment of contact discontinuities in gas dynamics, that are smeared87

much more than in the case of sharper Riemann solvers. In practice, the choice of the88

numerical flux function is actually a weakness of staggered central schemes, and not89

an advantage!90

There is, however, a great advantage of high order staggered central schemes over91

classical non staggered schemes. Since the fluxes are evaluated from a preliminary92

computation of the solution at the center of each cell, where the solution is (locally)93
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smooth, a large flexibility is provided in the evaluation of such preliminary solution.94

This feature was already pointed out by Nessyahu and Tadmor in their original paper,95

where they noticed that the so called predictor value, at cell center and half time step,96

could be computed by the equation written in conservative form (discretizing the flux)97

or in non conservative form (written using the product of the Jacobian matrix times98

the space derivative of the solution).99

That feature was further exploited in [25]. In such a paper, a method was pre-100

sented, whereby the numerical solution on a staggered grid is computed by a conser-101

vative scheme. In this scheme the stage values, needed for the computation of the102

fluxes at the Runge-Kutta stages, may be computed by discretizing the equation in103

non conservative form. This procedure allows to get a large flexibility in choosing the104

dependent variables. However, in spite of this large flexibility, Central Runge-Kutta105

(CRK) methods suffered the lack of flexibility in choosing the numerical flux function,106

typical of staggered central schemes. Furthermore, the formulation of the boundary107

conditions might be a little bit more complicated.108

In the present paper we propose a new class of schemes, which enjoy the flex-109

ibility of CRK in the choice of the possibly non conservative form of the equation110

to be discretized in time, while, at the same time, permitting the usage of arbitrary111

numerical flux functions at the cell edges, thus delivering sharp treatment of contacts112

and linear discontinuities. The stage values are computed at the cell center, where113

the solution is locally smooth, by writing the system in a not necessarily conservative114

form. Once the (non conservative) stage values are computed, a preliminary solu-115

tion is reconstructed at both cell edges, by some suitable non oscillatory technique.116

The reconstructed values are used to compute the fluxes at the cell edges, by some117

numerical flux function. Once the fluxes are known, the cell averages are updated118

by the conservative Runge-Kutta step for the computation of the numerical solution.119

Therefore, the final scheme is in conservative form, though most calculations can be120

performed using a convenient non conservative form of the equation.121

The larger flexibility of the new approach allows the construction of more efficient122

schemes, in all those cases in which the system has a simpler form when expressed123

in non conservative variables. A typical example is given by the Euler equations of124

relativistic gas dynamics, in which the computation of the pressure by the conservative125

variables requires the solution of a non linear equation. The new approach allows126

to compute pressure just once per time step in each cell, as opposed to s times127

for a classical s-stage Runge-Kutta scheme applied to a semidiscrete finite volume128

discretization.129

The plan of the paper is the following. In the next section we describe the130

construction of finite volume schemes based on non conservative evolution of the fields131

at the cell center, in one spatial dimension. Then we present a series of numerical132

tests both for classical gasdynamics and for the relativistic case. The purpose of the133

tests is to asses the high resolution capability and the computational efficiency of the134

new approach. Finally in the last section we draw conclusions and mention future135

perspectives of the new approach.136

2. Semi-conservative finite volume schemes. The evolution of conserved137

quantities, such as mass, momentum and energy, is given by equations of the form138

(2.1) ∂t

∫
V

udv +

∫
∂V

f(u) · ndS = 0, ∀V ∈ Rd,139
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where u : Rd × R+ → Ω ⊂ Rm are the conserved quantities, f = [f1, . . . , fd] : Rm →140

Rm is the flux function, and V is any control volume in Rd. Here Ω denotes the141

set where the variable u is defined: for instance, the density must be positive. If u142

is smooth, (2.1) can be rewritten as a system of partial differential equations of the143

form144

(2.2) ut +∇ · f = 0.145

It is well known that the solution u can develop singularities in a finite time, even146

from smooth initial data. In this case, (2.2) must be interpreted in a weak sense,147

while (2.1) continues to hold, see [8] for more details.148

Piecewise smooth solutions of eq. (2.1) are allowed, in which jump discontinuities149

propagate satisfying the co-called Rankine-Hugoniot conditions, which are derived150

from (2.1). Since (2.2) descends from the conservative principle (2.1), the equations151

(2.2) are called in conservative form. They are the only equations consistent with152

(2.1) which permit to derive the correct Rankine Hugoniot conditions, and thus the153

correct shock speeds.154

Here, for simplicity, we consider initial value problems for one dimensional, quasi-155

linear hyperbolic systems of conservation laws of the form156

(2.3)

{
ut + fx(u) = 0 t > 0
u(x, 0) = u0(x). x ∈ R157

Since the system is hyperbolic, the Jacobian A(u) = ∇uf is diagonalizable with158

real eigenvalues. As long as the solution is differentiable, system (2.3) can be rewritten159

in the non conservative form160

(2.4) ut +A(u)ux = 0,161

completed by the same initial conditions. For generic quasilinear systems, the Jaco-162

bian matrix A depends explicitly on the solution u.163

The key point of this work is that other non conservative forms of system (2.3) can164

be formulated, as long as the solution is smooth, which can be more convenient from165

a computational point of view, and it is possible to exploit these simpler formulations,166

without loosing exact conservation at the discrete level.167

Let v denote a new set of variables, related to u by a one to one smooth mapping168

M(v):169

(2.5) u =M(v), J =
∂M
∂v

, det(J) 6= 0, ∀ v ∈M−1(Ω).170

Rewriting system (2.3) in terms of the new set of variables, we get171

(2.6)

{
vt +B(v)vx = 0 t > 0
v(x, 0) = v0(x) =M−1(u0(x)) x ∈ R172

where v : R× R+ →M−1(Ω) ⊂ Rm, B = J−1AJ .173

We will solve (2.3) with the method of lines. To this end, we cover the compu-174

tational domain with cells centered on the points xj ∈ R, j ∈ Z. For simplicity, we175

consider a uniform grid, such that xj+1 − xj ≡ ∆x, ∀j. Let Ij =
[
xj−1/2, xj+1/2

]
be176

the generic cell, enclosed by the interfaces xj−1/2 = xj − ∆x
2 , xj+1/2 = xj + ∆x

2 .177
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Let us introduce the cell averages178

(2.7) ūj(t) =
1

∆x

∫ xj+1/2

xj−1/2

u(x, t) dx, j ∈ Z.179

Integrating system (2.3) over the cells Ij , one obtains the finite volume formulation180

dūj
dt

= − 1

∆x

(
f(u(xj+1/2, t))− f(u(xj−1/2, t))

)
,(2.8)181

ūj(0) =
1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, j ∈ Z.182

The numerical solution of system (2.3) in finite volume form (2.8) is based on three183

key points184

1. a reconstruction algorithm R, which gives an estimate of the numerical solu-185

tion at the interfaces, starting from the cell averages, with the desired accu-186

racy;187

2. a numerical flux function F
j+1/2

, approximating f(u(x
j+1/2

, t)) at each cell188

interface;189

3. a time advancing scheme to compute the solution at time tn + ∆t, starting190

from time tn.191

The purpose of the reconstruction algorithm R is to obtain estimates of the point192

values of the solution at the cell interfaces, starting from the cell averages. Typically,193

one works with piecewise polynomial reconstructions,194

R(x, ū) =
∑
j

Pj(x)χIj (x),195

where Pj(x) are polynomials of degree d, which match d+ 1 contiguous cell averages,196

including ūj , and where ū denotes the vector containing all cell averages of the numer-197

ical solution. Note that the reconstruction is discontinuous across cells. In particular,198

let199

u+
j+1/2 = Pj+1(x

j+1/2
) u−

j+1/2
= Pj(xj+1/2

)200

be the boundary extrapolated data at the cell interfaces. If the solution is smooth, and201

the data are reconstructed with accuracy p, then the jump at the interface u+
j+1/2

−202

u−
j+1/2

= O(∆x)p.203

The numerical flux Fj+1/2 is a function of the two estimates of the solution at204

the interface, namely Fj+1/2 = F (u+
j+1/2, u

−
j+1/2) and it is a numerical approximation205

of the flux f(u) at the cell interface, obtained solving numerically (or exactly) the206

Riemann problem at the interface defined by the data u+
j+1/2 and u−

j+1/2
. Many207

popular numerical fluxes can be written in viscous form as208

(2.9) F (u+, u−) =
1

2

(
f(u+) + f(u−)

)
− 1

2
Q(u+, u−)

(
u+ − u−

)
,209

where Q(u+, u−) is the viscosity matrix. For instance, for local Lax-Friedrichs (called210

also Rusanov flux) one has211

Q(u+, u−) = α(u+, u−)I,212
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where, if f is convex, α = max(ρ(A(u+), ρ(A(u−))) = max(ρ(B(v+), ρ(B(v−))).213

Other choices lead to less dissipative numerical monotone fluxes1. For example, if214

a Roe matrix A(u+, u−) [28] is available one could use215

Q(u+, u−) = |A(u+, u−)|216

or some approximation of the absolute value of the matrix which is cheaper to compute217

and does not require full characteristic decomposition of the matrix. Approaches based218

on the approximation of the matrix absolute value have been introduced in [9], and219

has been then generalized in various contexts (see, for example, the recent paper [5]).220

The reconstruction R and the numerical flux F provide the space discretization221

of the scheme. With these ingredients, the semidiscrete form of system (2.8) is given222

by the system of ODE’s223

(2.10)
dūj
dt

= − 1

∆x

[
F (u+

j+1/2
(t), u−

j+1/2
(t))− F (u+

j−1/2
(t), u−

j−1/2
(t))
]
, j ∈ Z.224

Any numerical method for the integration of systems of ODE’s can be used as225

time advancing scheme to solve (2.10). In this work, we will use explicit Runge-Kutta226

methods, [13]. For a generic initial value problem (IVP) of the form227

dy
dt = g(t, y(t)), y(t) : R→ Rd, d ∈ N,
y(t0) = y0

228

an explicit ν-stage Runge Kutta scheme can be written as229

yn+1 = yn + ∆t

ν∑
l=1

bl g(tn + cl∆t, Y
(l)), (corrector step)(2.11)230

Y (l) = yn + ∆t

l−1∑
k=1

alk g(tn + ck∆t, Y (k)), (predictor step)(2.12)231

l = 1, . . . , ν232

where {Y (l)}l=1,...,ν are the internal stages of the Runge Kutta step (also known as233

stage values).234

The coefficients {cl}l=1,...,ν , {bl}l=1,...,ν , {aij}i,j=1,...,ν univocally identify the235

numerical scheme. In standad finite volume (FV) schemes with Runge Kutta time236

advancement, the evolution of the numerical solution (2.11) is obtained applying the237

Runge-Kutta scheme to the semidiscrete form (2.10):238

ūn+1
j = ūnj −

∆t

∆x

ν∑
l=1

bl∆F
(l)
j ,(2.13)239

ū
(l)
j = ūnj −

∆t

∆x

l−1∑
k=1

alk ∆F
(k)
j , l = 1, . . . , ν,240

∆F
(l)
j = F (u

(l)+
j+1/2, u

(l)−
j+1/2)− F (u

(l)+
j−1/2, u

(l)−
j−1/2),241

where the values u
(l)±
j+1/2, at each cell interface are computed with a reconstruction step242

from the cell averages ū(l). Thus, the conservative form of the equation is used for the243

1A numerical flux F (u+, u−) is said to be monotone if the first order scheme produced by the
flux is a monotone scheme, i.e. if un

j ≥ wn
j ∀j, then un+1

j ≥ wn+1
j ∀j. For more details consult [17].
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Fig. 2.1. Diagram for semi-conservative finite-volume schemes. At time tn the cell averages
are known. Pointwise values un

j are computed at cell centers, and then converted to the non-
conservative variables vnj . Such variables are evolved in time and the corresponding stage values

v
(k)
j are computed at position xj and time tn + ck∆t. The stage values are reconstructed at each

cell edge, obtaining v
(k)

j± 1
2

. From such values the numerical flux at the quadrature nodes in time is

computed, and adopted in order to obtain the conservative approximation of cell average at the new
time tn+1.

final update (corrector step), and also for each of the ν stage values. This is precisely244

the point where our new SC (semiconservative) schemes differ from traditional finite245

volume FC (fully conservative) schemes.246

In the semiconservative SC approach we propose, we first seek for an alternative247

simple formulation of the equations in the form (2.6), for a new set of variables v,248

defined by the smooth one to one mapping (2.5). We then use the conservative form249

of the equation for the final update, but each of the stage values is computed using250

the simpler system vt +B(v)vx = 0. Clearly, the convenience of the method depends251

on how much simpler system (2.6) is with respect to the conservative formulation,252

and on the number of stages ν. Thus, this approach is particularly interesting for253

high order schemes.254

More precisely, from the initial cell averages ūn, we apply a reconstruction step255

which yields the point values unj at the cell centers. From these, we compute vnj =256

M−1(unj ), ∀j. Next, the stages are computed from (2.6) as257

(2.14) v
(l)
j = vnj −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , l = 1, . . . , ν.258

Here (Dxv
(k))j denotes the numerical discretization of the space derivative of the data259

v(k), obtained with a suitable reconstruction. After all stages have been computed260

using the simple system (2.14), the boundary extrapolated data at the l-th stage are261

obtained with a reconstruction step on the point values v
(l)
j , and the conservative262

variables u are recovered from u
(l)+
j+1/2 =M(v

(l)+
j+1/2) and u

(l)−
j+1/2 =M(v

(l)−
j+1/2). These263

quantities are used to close the time step with equation (2.13).264

The algorithm is illustrated in Fig. 2.1 and in the box appearing in Fig. 2.2. Note265

that different reconstructions are needed: Ra is the reconstruction which computes266
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Algorithm: SC schemes
• From ūn find the pointvalues unj = Ra(xj , ū

n), ∀j.
• Compute vnj =M−1(unj ), ∀j.
• Compute all stage values v

(l)
j from eq. (2.14) ∀j.

• Compute the values at interfaces v
(l)±
j+1/2 = Rp(xj+1/2,v

(l)), ∀j.
• Go back to conservative variables u

(l)±
j+1/2 =M(v

(l)±
j+1/2), ∀j.

• Close the time step on conservative variables with equation (2.13).

Fig. 2.2. Algorithm for the semi-conservative finite-volume schemes

point values from cell averages, while Rp yields boundary extrapolated data from267

point values, and Dx is a discrete derivative.268

2.1. Constructing high order SC schemes. Semiconservative schemes can269

be constructed with any order of accuracy. To obtain a scheme of order p, the re-270

constructions and the time advancement Runge-Kutta scheme must be of matching271

order. Here we will consider second, third and fourth order schemes.272

Second order. Since, for a smooth function w(x), w(xj) = wj + O(∆x)2, at273

second order accuracy the reconstruction Ra is the identity. From the point values274

w, the approximate slopes σj are computed with a piecewise linear reconstruction275

and a limiter such as MinMod, see [17] and references therein. Thus, ∀j we have:276

unj = ūnj ,277

vnj =M(unj )278

σj = Dxv|j279

v+
j+1/2 = vnj+1 − 1

2∆xσj+1, v−j+1/2 = vnj + 1
2∆xσj280

281

where the slopes σ are computed from the data v. Then the scheme proceeds as in282

Fig. 2.2. Note that the same reconstruction is used to compute the point values, the283

discrete derivative σ = Dxv in (2.14) and the boundary extrapolated data.284

The SSP second order Heun scheme is used for the time advancement.285

Fourth order. All reconstructions are obtained with WENO type interpolations,286

see [32], [3] and the review [31]. For a fourth order scheme, the reconstruction is based287

on three parabolas, combined in order to maximize accuracy on smooth solutions, but,288

at the same time, preventing spurious oscillations on non smooth data. The generic289

WENO reconstruction can be written as290

R(x, ū) =

1∑
`=−1

ω`j Pj+`(x).291

When reconstructing point values from cell averages (Ra), the parabolas Pj+` inter-292

polate the data ūj+` in the sense of averages:293

1
∆x

∫
Ij+`

Pj(x) = ūj+`, ` = −1, 0, 1,294

8
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while the reconstruction from point values Rp has Pj(xj+l) = uj+l, l = −1, 0, 1. In295

both cases, the generic parabola Pj(x) = P (x;wj−1, wj , wj+1) is given by296

(2.15)

Pj(x) = wj−
C

24
(wj+1−2wj+wj−1)+

wj+1 − wj−1

2∆x
(x−xj)+

wj+1 − 2wj + wj−1

2∆x2
(x−xj)2,297

with C = 1, w` = ū`, ` = j − 1, j, j + 1 for Ra and C = 0, w` = u`, ` = j − 1, j, j + 1298

for Rp. The nonlinear weights {ω`j} are299

(2.16) ω`j =
α`j∑1

k=−1 α
k
j

, α`j =
d`

(ε+ β`j)
2
, ` = −1, 0, 1.300

The smoothness indicators β`j prevent the selection of stencils with non smooth data,301

thus controlling spurious oscillations. In the case of parabolas they are given by, see302

[31],303

β−1
j =

13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2,304

β0
j =

13

12
(ūj−1 − 2ūj + ūj+1)2 +

1

4
(ūj−1 − ūj+1)2,305

β1
j =

13

12
(ūj − 2ūj+1 + ūj+2)2 +

1

4
(3ūj − 4ūj+1 + ūj+2)2.306

The parameter ε prevents division by zero, but it is also involved in the accuracy of307

the scheme, see [1] or [7]. Here we choose simply ε = 10−6, as in [31].308

A key point is the choice of the constants d`. When the data derive from a smooth309

function, all smoothness indicators are approximately equal, and the weights ω`j ' d`.310

Then the constants d` are determined maximizing the accuracy that can be obtained311

with a convex combination of the three parabolas involved. The problem is that a312

convex combination of three parabolas can provide uniform accuracy within the cell313

only up to third order, even though the stencil contains 5 cells. To increase accuracy,314

the constants are determined maximizing the accuracy of the reconstruction at one315

particular point. Note that each quantity being reconstructed needs a specific set of316

constants, and thus a different reconstruction.317

A fourth order reconstruction of point values from cell centers can be obtained318

by any symmetric choice of the constants d`, ` = −1, 0, 1, as illustrated in [19]. We319

use d−1 = 3/16, d0 = 5/8, d1 = 3/16. Higher order accuracy is possible (indeed320

sixth order can be obtained), however it requires the use of negative weights. This321

problem can be tackled with the technique described in [30], but we will not consider322

this case here. For reconstructing the boundary extrapolated data, the constants are323

d−1 = 5/16, d0 = 5/8, d1 = 1/16 for the left value v+
j−1/2

, and d−1 = 1/16, d0 =324

5/8, d1 = 5/16 for the right value v−
j+1/2

. The accuracy of the reconstructed data is325

5, for smooth functions.326

Finally, a reconstruction is needed also to compute the numerical derivative Dx.327

Now, the reconstruction is given by328

Dxv|xj
= RD(xj ,v) =

1∑
`=−1

ω`j
d

dx
Pj+`(xj).329

The accuracy constants in this case are d−1 = 1/6, d0 = 2/3, d1 = 1/6, and the330

accuracy of Dxv|xj
is 4.331
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A class of WENO type reconstructions with uniform accuracy within the whole332

cell can be found in [6]: in this case a single reconstruction step can yield all needed333

quantities. We will illustrate this technique for constructing a third order scheme in334

the next paragraph.335

The time advancement scheme is the standard fourth order Runge-Kutta scheme.336

In all cases, the numerical flux used is the Lax-Friedrichs flux.337

Third order. The reconstruction used here is taken from [20], and can be viewed338

as a particular case of [6], leading to a third order scheme.339

Consider a set of data (point values or cell averages) and a polynomial Popt of340

degree G, which interpolates in some sense all the given data (optimal polynomial).341

The CWENO operator computes a reconstruction polynomial342

Prec = CWENO(Popt, P1, . . . , Pm) ∈ PG343

using Popt ∈ PG and a set of lower order alternative polynomials P1, . . . , Pm ∈ Pg,344

where g < G and m ≥ 1. The definition of Prec depends on the choice of a set of345

positive real coefficients d0, . . . , dm ∈ [0, 1] such that
∑m
`=0 d` = 1, d0 6= 0 (called346

linear coefficients) as follows:347

1. first, introduce the polynomial P0 defined as348

(2.17) P0(x) =
1

d0

(
Popt(x)−

m∑
`=1

d`P`(x)

)
∈ PG349

2. then the nonlinear coefficients ω` are computed from the linear ones as in350

(2.16) where β` denotes suitable regularity indicators, which can be chosen351

following [15] as352

(2.18) β` =
∑
k≥1

∆x2k−1

∫ xj+1/2

xj−1/2

(
dl

dxl
P`(x)

)2

∆x, ` = 0, . . . ,m353

3. and finally354

(2.19) Prec(x) =

m∑
`=0

ω`P`(x) ∈ PG.355

In the case of a third order scheme, the degree of Popt and P0 is G = 2, while the356

m = 2 lower degree polynomials are just linear functions. The interesting point is that357

since Prec is defined everywhere in the cell one can use it to compute the extrapolated358

data and the discrete derivative. The constants d` can be chosen quite freely. Here359

we have d0 = 1
2 , d1 = d2 = 1

4 .360

As time integrator, we employ the third order Runge Kutta scheme used in [15].361

3. SC schemes and Lax Wendroff’s Theorem. A crucial issue in the in-362

tegration of systems of conservation laws is the enforcement of exact conservation.363

If shock waves appear, exact conservation ensures that the correct wave speeds are364

captured also at the numerical level. This result is guaranteed by Lax Wendroff’s The-365

orem which contains sufficient conditions for the convergence of a numerical scheme366

to a weak solution of conservation laws.367

The key fact is that Lax Wendroff’s Theorem (see for instance [10, pag. 100]) re-368

quires the scheme to be conservative, and this is the main reason why one discretizes369
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directly the conservative form of the equations, thus working in conservative vari-370

ables. However, recalling the definition of conservative scheme, we can easily prove371

that SC schemes are indeed conservative, and therefore satisfy the hypotheses of Lax372

Wendroff’s Theorem.373

Definition 3.1. Conservative scheme The numerical scheme374

ūn+1
j = ūnj − ∆t

∆x

(
F

j+1/2
− F

j−1/2

)
375

is conservative if the numerical flux F
j+1/2

= F (ūnj−p, ..., ū
n
j+m), (p and m positive376

integers) satisfies the following conditions377

1. F (u, ..., u) = f(u) (consistency)378

2. F (ūj−p, ..., ūj+m) is at least Lipschitz continuous in all of its arguments.379

Consistency380

First note that the scheme is clearly built on a stencil with a finite number of381

cells. Let then xj−p, ..., xj+m be the cell centers in the stencil containing the data382

needed to compute the numerical flux at the interface xj+1/2, with p and m positive383

integers.384

If ūnj−p = ... = ūnj+m = U , then, since any piecewise polynomial reconstruction385

interpolates constants exactly, also the reconstructed point values satisfy unj−p = ... =386

unj+m = U . Then the transformed variables are vnj−p = ... = vnj+m = V = M−1(U).387

Again, the piecewise polynomial reconstruction preserves constants, thus the nu-388

merical derivative is zero, and all stage values in (2.14) reduce to v
(l)
k = vnk =389

V, ∀k in the stencil of the cell j. Reconstructing these data, all boundary ex-390

trapolated data result in v
(l),±
j+1/2 = V . Mapping back to conservative variables,391

u
(l),±
j+1/2 = M(V ) = U . Since we are using a conservative and consistent numerical392

flux, F
(l)
j+1/2 = F (u

(l),+
j+1/2, u

(l),−
j+1/2) = F (U,U) = f(U). Finally, the numerical flux of393

the scheme is Fj+1/2 =
∑
l blF

(l)
j+1/2 = f(U)

∑
l bl. So, the consistency of the numer-394

ical flux relies ultimately on the consistency of the RK scheme, which ensures that395 ∑
bl = 1.396

Lipschitz regularity397

All ingredients used in the construction of the numerical fluxes are at least Lip-398

schitz continuous. More precisely, for the second order scheme, the piecewise linear399

reconstruction using MinMod has just Lipschitz regularity, while WENO reconstruc-400

tions are C∞. The Lax Friedrichs numerical flux is also C∞. The final numerical flux401

is just a composition of these functions, and thus it has the required smoothness.402

4. Applications and numerical results. We illustrate the performance and403

the field of applicability of the scheme with examples and numerical tests. We start404

from scalar conservation laws, where it is easy to appreciate the differences between405

standard conservative finite volume schemes and the new semiconservative schemes.406

Next we continue with classical Euler equations, to end with the equations of rela-407

tivistic gas dynamics, where the new scheme permits to obtain considerable savings408

in computational complexity.409

4.1. Burgers’ equation. The computation of the correct shock speeds is as-410

sured by the Lax Wendroff theorem, which uses only the consistency of the numerical411

fluxes, appearing in the conservative form of the finite volume formulation.412
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As an example, consider the following two initial value problems,413

∂tu+ ∂x

(
1

2
u2

)
= 0, u(x, t = 0) = u0(x) > 0(4.1)414

∂tz + ∂x

(
1

3

√
(2z)3

)
= 0, z(x, t = 0) = 1

2u
2
0(x).(4.2)415

416

If, in the second equation, we take the change of variables z = M(v) = 1
2v

2, we417

find that in the v variables, (4.2) coincides with the characteristic form of (4.1),418

namely vt + vvx = 0, with the same initial data. Thus the two equations have the419

same solution, as long as the solution is smooth. However, an initial step u0(x) =420

uL + (uR − uL)H(x), where H is the Heavyside function, yields two different shock421

speeds in the two initial value problems, namely422

su =
1

2
(uL + uR)423

sz =
2

3

u2
L + uLuR + u2

R

uL + uR
424
425

In fact, (4.1) prescribes the conservation of the quantity u, while the second equation426

prescribes the conservation of the quantity z, and this fact yields two different results427

for the shock speed, when one applies the Rankine Hugoniot condition.428

In the standard Fully Conservative scheme, the final update and all stage values429

are computed directly from the two conservation laws. In the Semi-Conservative430

approach, for (4.1) we choose the auxiliary variables v = M−1(u) = I(u). Then the431

algorithm is the following (here λ = ∆t
∆x ).432

• Reconstruct the point values Unj from cell averages, and set V nj = Unj .433

• Compute the stage values using the characteristic form vt + vvx = 0,434

V
(l)
j = V nj −∆t

l−1∑
k=1

V
(k)
j Dx(V (k))(xj), l = 1, . . . , ν.435

• Use the point values of the stages to reconstruct the boundary extrapolated436

data, (V
(l)
j+1/2)±, and obtain (U

(l)
j+1/2)± = (V

(l)
j+1/2)±.437

• Apply the conservative corrector step, evaluating the numerical flux F (l) =438

F
(
U

(l)+
j+1/2, U

(l)−
j+1/2

)
, consistent with f(u) = 1

2u
2, obtaining the new cell aver-439

ages440

Ūn+1
j = Ūnj − λ

ν∑
l=1

bi(F
(l)
j+1/2 − F

(l)
j−1/2).441

For (4.2), we choose v = M−1(z) =
√

2z. Then, the semiconservative SC ap-442

proach results in the following algorithm.443

• Reconstruct the point values Znj from cell averages. Set V nj =
√

2Znj .444

• Compute the stage values using the characteristic form vt + vvx = 0445

V
(l)
j = V nj −∆t

l−1∑
k=1

V
(k)
j Dx(V (k))(xj), l = 1, . . . , ν.446

• Use the point values of the stages to reconstruct the boundary extrapolated447

data, (V
(i)
j+1/2)±, and obtain (Z

(l)
j+1/2)± = 1

2 [(V
(l)
j+1/2)±]2.448
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• Apply the conservative corrector step, evaluating the numerical flux F (l) =449

F
(
Z

(l)+
j+1/2, Z

(l)−
j+1/2

)
, consistent with f(z) = 1

3 (2z)(3/2), obtaining the new cell450

averages451

Z̄n+1
j = Z̄nj − λ

ν∑
l=1

bi(F
(l)
j+1/2 − F

(l)
j−1/2).452
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Fig. 4.1. Shock propagation (left) and shock formation (right). Red continuous line: fully
conservative 4th order (FC4) scheme, blue circles: semiconservative 4th order (SC4) scheme.

The results are shown in Fig. 4.1. The plot on the left is obtained with an453

initial jump, located in x = −0.8 with uL = 3 and uR = 1, at time T = 1. The454

Burgers’ solution is a shock travelling with speed s1 = 2; the modified Burgers’ (4.2)455

solution is a shock with speed s2 = 13
6 . The plot contains the solution of both456

problems obtained with the fully conservative fourth order scheme (FC4) and the457

semiconservative fourth order scheme (SC4). The plot on the right has as initial data458

u0(x) = sin(π(x− 1
2 ))+1. For both equations the shock appears at the same time, but459

it will have different speeds. Note that the FC and SC solutions coincide in all cases,460

with the correct shock speeds. All numerical solutions were obtained with N = 100461

grid points, and a CFL number CFL = 0.9.462

4.2. Accuracy. We carry out accuracy tests on linear advection, using low and463

high frequency solutions, for schemes of order 2, 3 and 4. The equation is ut+ux = 0.464

The low frequency initial datum is465

u0(x) = sin (πx− sin(πx)/π) ,466

while for high frequency, we consider467

u0(x) = sin(πx) + 1
4 sin(15πx) e−20x2

.468

The first test can be found in [1], while the second test is due to [29].469

Figure 4.2 contains the convergence history for the low frequency (left panel)470

and the high frequency test (right panel). The final time is T = 2, with periodic471

boundary conditions on [−1, 1], so that each solution completes a whole period. The472

black dashed lines are the expected rates (2, 3 and 4), the green, red and blue curves473

refer to the second, third and fourth order scheme respectively. The results of the474

fully conservative schemes are labelled with circles, while the results of the new SC475
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Fig. 4.2. Accuracy plots. Low frequency (left) and high frequency tests (right). From top to
bottom, and green, red and blue, respectively: second, third and fourth order schemes. Semiconser-
vative: +, and fully conservative: •.

schemes are marked with plus signs. The SC schemes have slightly smaller errors476

than the traditional FC schemes, except than in the case of the fourth order scheme.477

This is due to the fact that the WENO reconstruction is fifth order on the boundary478

extrapolated data (which are the only data needed by the fourth order FC4), but only479

fourth order on the reconstruction of point values at the cell center, which is needed480

by SC4.481

For the data on the high frequency test, we note that the expected accuracy482

is obtained only after a transient, when the grid is fine enough to detect the high483

frequency features of the solution.484

4.3. Euler equations. We consider the standard Euler equations of compress-485

ible gas dynamics in 1D. In the notation of (2.3) U = [ρ,m,E], where ρ is the density,486

m = ρv is the momentum, v is the velocity and E is the total energy per unit volume.487

The pressure p is linked to the other quantities by the equation of state. Here we take488

E = 1
2ρv

2 + 1
γ−1p, with γ = 1.4 the polytropic constant for air.489

(4.3) ∂t

 ρ
ρv
E

+ ∂x

 ρv
ρv2 + p
v(E + p)

 = 0.490

When the solution is smooth, system (4.3) can be written in terms of primitive491

variables, obtaining a system of the form (2.6) with V = [ρ, v, p], namely492

(4.4) ∂t

 ρ
v
p

+

 u ρ 0
0 v 1/ρ
0 γp v

 ∂x

 ρ
v
p

 = 0.493

As an example, we consider Lax’ Riemann Problem, which is a standard bench-494

mark in computational gas dynamics. The left and right states are495  ρL
vL
pL

 =

 0.445
0.6989
3.5277

  ρR
vR
pR

 =

 0.5
0

0.5710

496
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Fig. 4.3. Lax’ test, density profile with the second order FC2 (left) and SC2 (right) schemes,
with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is the exact
solution.

In this test, a high-pressure gas on the left is impinging against a stationary low497

pressure gas. Fig. 4.3 contains the density profiles obtained with the second order FC498

scheme (on the left) and the SC scheme on the right, for several values of the number499

of grid points: N = 100, 200, 400, 800. As expected, the solution converges to the500

exact profile (shown with the dashed line) under grid refinement, but it is noteworthy501

that the SC scheme and the FC one provide undistinguishable solutions.502

N FC2 SC2 FC4 SC4 FC4 CP SC4 CP
100 0.148 0.131 0.295 0.403 9.153 9.244
200 0.213 0.224 0.745 1.002 35.44 33.42
400 0.536 0.559 2.158 2.859 143.4 130.3
800 1.493 1.557 6.940 9.037 559.6 516.4

Table 4.1
Computational costs for Lax’ test, in seconds of CPU. The two columns on the right refer to

the scheme with characteristic projection (CP)

We do not expect gains in efficiency in Euler equations, using the semi conservative503

approach, because the inverse of the map u =M(v), needed by the fully conservative504

scheme to compute the flux, can be written explicitly, and it is fast to compute. On505

the other hand, the SC approach requires one more reconstruction per step (from cell506

averages to point values), and one application of the direct map per stage, to compute507

the artificial diffusion correction. It is not surprising therefore that the computational508

times of the SC schemes are slightly higher than those obtained by the corresponding509

FC, see the first four columns of Table 4.1. The CPU times were obtained running510

the code in Matlab on a 2,9 GHz Intel Core i5 machine. The code is vectorized,511

except for the runs with the reconstruction on characteristic variables, as in the last512

two columns of the table.513

Fig. 4.4 contains a detail of the density peak obtained with the fourth order FC4514

(on the left) and SC4 (on the right). It is well known that high order WENO schemes515

develop spurious oscillations in Riemann problems, with amplitude decreasing under516

grid refinement. In fact, this is precisely the meaning of essentially non oscillatory517

reconstructions. This essentially non oscillatory behaviour is quite apparent in the fig-518
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Fig. 4.4. Lax’ test, detail of the density profile with the fourth order FC4 (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The dashed profile is
the exact solution.

ure, but note that the SC solution is less oscillatory than its FC counterpart, although519

in both cases the amplitude of the oscillations decreases under grid refinement.520

These oscillations arise in the first steps of the computation, when the waves521

originated by the Riemannn problem are so close that it is impossible to find a stencil522

containing only one discontinuity. This problem can be cured projecting the unknown523

along characteristic directions, before performing the reconstruction, and computing524

the reconstruction along the direction of the eigenvectors. This procedure was outlined525

in [27] and it is very effective. The drawback is that it is computationally expensive.526

Fig. 4.5 shows the peak in the density of Lax’ Riemann problem when this device527

is applied. The computational cost is reported in the last two columns of Table528

4.1. Now, the SC computation is slightly faster, because one variable is already a529

characteristic variable.530
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Fig. 4.5. Lax’ test, detail of the density profile with the fourth order FC4 (left) and SC4 (right)
schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). Reconstruction along
characteristic directions. The dashed profile is the exact solution.

4.4. Relativistic gas dynamics. As we have seen in the past section, the531

semi-conservative approach reproduces the correct shock speeds, even though the532

stage values are computed in non conservative form. Since the mapping between533
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conservative and non conservative variables u = M(v) is easily invertible in Euler534

equations, the semi-conservative approach is not computationally faster than standard535

finite volume schemes. We expect to gain in efficiency when the semi-conservative536

approach is applied to equations for which the mapping M is not easily invertible.537

As an example of this type, we consider the relativistic gas dynamic equations,538

[22], see also [23] for a review, which can be written as539

(4.5) ∂t

 D
S
τ

+ ∂x

 Dv
Sv + p
S −Dv

 = 0.540

where the conservative variables are mass density D, momentum density S and energy541

density τ in the laboratory frame of reference. These quantities are linked to the542

density ρ, the velocity v and the pressure p through the relations543

D = ρW(4.6)544

S = ρhW 2v(4.7)545

τ = ρhW 2 − p−D,(4.8)546547

where W = (1−v2)−1/2 is the Lorentz factor in which v has been nondimensionalized548

with the speed of light, thus v ∈ [−1, 1]; h is the enthalpy per unit mass, h = 1+e+ p
ρ ,549

and e is the internal energy per unit mass. The pressure p is given by the equation of550

state, p = ρe(γ − 1). To compute the flux on the right hand side of (4.5), one must551

compute v and p from the conservative variables.552

The velocity v can be easily written in terms of the pressure and of conservative553

variables using (4.7) and (4.8),554

v =
S

τ +D + p
.555

The internal energy is ρe = ρh− ρ− p, and the enthalpy can be written as a function556

of the pressure and of conservative variables as557

ρh =
τ +D + p

W 2
.558

Substituting these quantities in the equation of state p = (γ−1)ρe, one obtains a non559

linear equation for the pressure, namely560

(4.9) 0 = =(p(D,S, τ)) =
(
γW 2 − (γ − 1)

)
p− (γ − 1) (τ +D(1−W )) .561

The conservative variables (D,S, τ), clearly must satisfy D > 0, τ > 0. As already562

noted, the velocity v cannot surpass the speed of light, i.e. −1 ≤ v ≤ 1. This condition563

implies that τ + D ≥ |S|. Finally, the root of F(p) = 0 must be positive, and this564

request brings in a further restriction. In fact, F(p) is a monotone increasing function565

(see [22]). Thus the pressure is positive if F(p = 0) < 0, which is satisfied provided566

(4.10) (τ +D)2 > D2 + S2.567

In this case, the function F(p) has a single, positive root. To compute the flux, the568

non linear equation (4.9) must be solved at each grid point. In our tests, (4.9) is solved569

with Newton’s method, using, as starting guess for the pressure, the local value from570
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the previous time step. Note however that condition (4.10) may be violated when571

spurious oscillations occur, especially when the flow is characterized by a total energy572

which is almost completely kinetic. In this case, (4.9) may yield a negative value573

for the pressure or no solution at all, and the integration breaks down. Thus, it is574

crucial to use non oscillatory schemes when dealing with low pressure, relativistic gas575

dynamics.576

Clearly, if v � 1, classical mechanics holds, and one recovers standard compress-577

ible gas dynamics.578

The equations of relativistic gas dynamics in primitive variables, are [22]579

(4.11) ∂t

 ρ
v
p

+



v
ρ

1− v2c2
−v

hW 2(1− v2c2)

0 v
1− c2

1− v2c2
1

ρhW 4(1− v2c2)

0
ρhc2

1− v2c2
v(1− c2)

1− v2c2


∂x

 ρ
v
p

 = 0,580

where c2 = γp/(ρh). These are the equations which will be used in the computa-581

tion of the stage values.582

Now, for the standard finite volume scheme FC, given the cell averages D̄n, S̄n, τ̄n583

one needs to compute the ν stage values, and each stage value requires the evaluation584

of the inverse of the map U = M(V ) defined by (4.6-4.8), which needs the solution585

of F(p;D(i), S(i), τ (i)) = 0. In the semiconservative schemes SC, instead, given the586

cell averages D̄n, S̄n, τ̄n, we compute the point values Dn, Sn, τn, and the primitive587

variables ρ, v, p inverting again the map U = M(V ), but this is done only once588

per time step. Next, the ν stages are computed from equation (4.11), which does589

not require the inversion of M(V ). Once the stage values ρ(i), v(i), p(i) are known,590

the stage values for the conservative variables D(i), S(i), τ (i) are easily found. This591

explains why the new SC schemes are faster with respect to the fully conservative592

schemes in the relativistic case.593

We illustrate the behavior of the schemes with three shock tube problems. The594

first two tests can be found in [22]. The left and right states for the first test are given595

by596

Test 1

 ρ
v
p


L

=

 10
0

13.3

 ,

 ρ
v
p


R

=

 1
0

0.6 10−6

 .597

In this case, a gas expands into an extremely low pressure gas. The polytropic pa-598

rameter is γ = 5
3 , the final time is T = 0.36, and the Courant number is CFL= 0.45599

for all schemes. The profiles for density, velocity and pressure for the second order600

FC2 and SC2 can be seen in Fig. 4.6. The exact solution was computed thanks to601

the Riemann solver described in [23].602

It is apparent that all features of the solution are correctly reproduced by the semi-603

conservative SC scheme. For the fourth order schemes, we show a peak of the density604

profiles in Fig. 4.7. Again, we note that the semidiscrete SC schemes are less oscilla-605

tory than the standard finite volume method of the same order. The computational606

times of the four schemes tested are listed in Table 4.2. Now, the semiconservative607

schemes are faster than their fully conservative counterpart, because the costly in-608
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Fig. 4.6. Mart́ı Müller Test 1, density, velocity and pressure profiles with the second order FC2
(left) and SC2 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

verse of the map u =M(v) has to be computed only once per time step. Clearly, the609

difference is much more apparent in the fourth order case.610

N FC2 SC2 FC4 SC4
100 0.155 0.288 0.668 0.409
200 0.341 0.260 1.390 0.788
400 0.798 0.577 3.763 1.922
800 1.973 1.506 10.783 5.611

Table 4.2
Computational costs for Relativistic gas dynamics, in seconds of CPU. Test 1 from Mart́ı Müller.

The second test is again from [22], but an analogous set up can also be found in611

[26]. [33]612

Test 2

 ρ
v
p


L

=

 1
0

1000

 ,

 ρ
v
p


R

=

 1
0

0.01

 .613
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Fig. 4.7. Mart́ı Müller Test 1, zoom on the density profiles with the fourth order FC4 (left)
and SC4 (right) schemes, with N = 100, 200, 400, 800 (blue, green, red, black, respectively). The
dashed profile is the exact solution.

This shock tube problem results in a rarefaction moving towards the left and a contact614

and shock travelling right. The difficulty of this test is due to the fact that the615

contact and the shock travel with almost equal speeds, so that high order schemes616

have difficulties in selecting a non oscillatory stencil.617

The results obtained with the fourth order semiconservative scheme appear in Fig.618

4.8. The fully conservative, fourth order scheme fails on this test, because condition619

(4.10) is violated across the contact wave, after the computation of the first stage620

values.621
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Fig. 4.8. Mart́ı Müller Test 2. At the top: density profile with a zoom on the contact wave. Bot-
tom, velocity and pressure, SC4 with N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

A further test, Test 3, is drawn from [33]. The initial left and right states are622
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given by623

Test 3

 ρ
v
p


L

=

 1
0.9
1

 ,

 ρ
v
p


R

=

 1
0
10

 .624

It describes a low pressure gas impinging against a high pressure gas. Fig. 4.9 contains625

the resulting density profiles, for the fourth order schemes, with a zoom on the contact626

wave on the bottom of the figure. In this case, the semiconsenservative scheme is more627

oscillatory than the fully conservative finite volume scheme.628
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Fig. 4.9. Zhao Tang, Test 3. At the top: density profiles for SC4 (left) and FC4(right).
Bottom: zoom on the contact wave. N = 100, 200, 400, 800 (blue, green, red, black, respectively).
The dashed profile is the exact solution.

For this test, we also show the error versus the CPU time of first (green), second (blue)629

and fourth (red) order schemes. The results obtained with the fully conservative FC630

schemes are represented with a dot, while the results yielded by the semiconservative631

schemes appear with a + marker. It is clear that the SC schemes in all cases (except632

on a very coarse grid) yield consistently smaller CPU times for the same error. This633

is not a test in which high order schemes work at their best, because the solution of634

a Riemann problem is not full of structure. However, in this case the exact solution635

is known and quantitative results can be carried out. The most interesting point, is636

that SC is indeed faster than fully conservative schemes.637

638

4.4.1. Two dimensional tests. Finally, we consider two dimensional tests.639

The equations for relativistic gas dynamics in primitive variables are640

641

(4.12) ∂tV +Ax∂xV +Ay∂yV = 0,642
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Fig. 4.10. Error versus CPU time of first (green), second (blue) and fourth (red) order schemes.
FC schemes are represented with a dot, SC schemes appear with a + marker
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Fig. 4.11. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,
second order FC (top) and SC (bottom, with N = 100 (left), and N = 400 (right) points per
direction.

where the Jacobians of the flux are given by643

(4.13) Ax =



u ρG 0 − uG
hW 2

0 uG(1− c2) 0 G
ρhW 2 (1− u2 − c2v2)

0 − c
2G
W 2 v u −G(1−c2)

ρhW 2 uv

0 ρhc2G 0 G(1− c2)u


644
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and645

(4.14) Ay =



v 0 ρG − uG
hW 2

0 v − c
2G
W 2 u −G(1−c2)

ρhW 2 uv

0 0 −G(1− c2)v G
ρhW 2 (1− c2u2 − v2)

0 0 ρhc2G G(1− c2)v


.646

Here, (u, v) are the components of the velocity in the x and y directions, respectively,647

W 2 = 1/(1 − (u2 + v2)) and G = 1/(1 − c2(u2 + v2)). As a test, we propose a648

two-dimensional Riemann problem, in which the four states are given by649

VNW =


2
0
0
1

 VNE =


2
−0.5
0.5
1

 VSW =


2
0

0.5
1

 VSE =


2
0

0.5
10

 ,650

with NW labelling the North West corner of the computational domain, and similarly651

for the other labels.652
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Fig. 4.12. Two-dimensional Riemann problem for relativistic gas dynamics, density contours,
third order FC (top) and SC (bottom, with N = 100 (left), and N = 400 (right) points per direction.

The computational domain is the square Q = (0, 1)2, with free-flow boundary con-653

ditions. The final time is tf = 0.36 and the origin of the Riemann Problem is in the654

middle of Q.655

We show results obtained with a dimension by dimension piecewise linear reconstruc-656

tion for second order, and the truly 2D third order CWENO reconstruction of [4],657
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to which we added the computation of the slopes. The results can be seen in Fig.658

4.11 for the second order scheme and 4.12 for the third order scheme. Each figure659

contains 40 contour lines for the density ρ for the FC scheme (top plots) and for the660

SC scheme at the bottom. The figure shows also the effect of grid refinement: the661

number of grid points along each side is N = 100 for the left plots and N = 400 for662

the plots on the right. SC provides in all cases a slight improvement in the resolution663

of the discontinuities. Further, in this solution with a rich structure, the third order664

solution exhibits more details than the second order case.665

The corresponding computational times can be found in Table 4.3. As in the 1D666

case, the SC scheme is faster than its corresponding FC, and the computational gain667

increases with the order.668

N FC2 SC2 FC3 SC3
100 1.78 1.82 12.85 9.55
200 13.45 11.54 165.25 121.19
400 138.09 113.88 1875.12 1400.89

Table 4.3
Computational costs for the 2D relativistic Riemann problem, in seconds of CPU.

5. Conclusions. In this paper we have presented a novel approach to construct669

conservative finite volume methods for conservation laws. Although the final scheme670

is conservative, and is able to capture shocks with the correct propagation speed,671

most of the computational work is performed using a non conservative formulation,672

in non conservative variables. This adds a tremendous flexibility in the choice of the673

unknown variables and on the form of the equations on which most of the compu-674

tational effort is carried out. We explore in some details two applications, namely675

classic and relativistic gas dynamics. In both cases, the non conservative form of the676

equations based on primitive variables is chosen. In classical gas dynamics, it is ob-677

served that in many cases this choice provides much less oscillatory solutions than in678

standard WENO schemes based on conservative variables. In relativistic gas dynam-679

ics, high order schemes greatly benefit from the non-conservative formulation, which680

allows to compute the evolution of the fields without solving the nonlinear equation681

to determine the pressure from the conservative variables. Such equation has to be682

solved only once per cell per time step, as opposed to what happens in standard finite683

volume schemes based on ν stages Runge-Kutta schemes, for which such equation has684

to be solved ν times per cell per time step.685

The method can be easily extended to the construction of conservative finite-686

difference schemes, which may be very convenient for efficient computation in several687

space dimensions.688

We believe there are several other contexts in which the flexibility introduced by689

the semi conservative approach can be successfully exploited for producing more effec-690

tive codes, which are either more efficient or more accurate for the same discretization691

parameters. The use of the new approach in other contexts as well as in several space692

dimensions in currently under investigation.693
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