
DERIVATIVE-FREE OPTIMIZATION OF NOISY FUNCTIONS VIA
QUASI-NEWTON METHODS∗

ALBERT S. BERAHAS† , RICHARD H. BYRD‡ , AND JORGE NOCEDAL§

Abstract. This paper presents a finite difference quasi-Newton method for the minimization of
noisy functions. The method takes advantage of the scalability and power of BFGS updating, and
employs an adaptive procedure for choosing the differencing interval h based on the noise estimation
techniques of Hamming [18] and Moré and Wild [34]. This noise estimation procedure and the selec-
tion of h are inexpensive but not always accurate, and to prevent failures the algorithm incorporates
a recovery mechanism that takes appropriate action in the case when the line search procedure is
unable to produce an acceptable point. A novel convergence analysis is presented that considers the
effect of a noisy line search procedure. Numerical experiments comparing the method to a function
interpolating trust region method are presented.

Key words. derivative-free optimization, nonlinear optimization, stochastic optimization

AMS subject classifications. 90C56, 90C53, 90C30

1. Introduction. The BFGS method has proved to be a very successful tech-
nique for nonlinear continuous optimization, and recent work has shown that it is also
very effective for nonsmooth optimization [24, 28, 29]—a class of problems for which
it was not designed for and for which few would have predicted its success. Moreover,
as we argue in this paper, the BFGS method with finite difference approximations
to the gradient can be the basis of a very effective algorithm for the derivative-free
optimization of noisy objective functions.

It has long been recognized in some quarters [16] that one of the best methods
for (non-noisy) derivative-free optimization is the standard BFGS method with finite
difference gradients. However, its application in the noisy case has been considered
problematic. The fact that finite differences can be unstable in the presence of noise
has motivated the development of alternative methods, such as direct search methods
[2, 13, 21, 22, 26, 30, 47] and function interpolating trust region methods [9, 10,
12, 31, 32, 41, 42, 46], which use function evaluations at well spread out points—
an indispensable feature when minimizing noisy functions. These algorithms do not,
however, scale well with the number of variables.

In contrast, the L-BFGS method for deterministic optimization is able to build
useful quadratic models of the objective function at a cost that is linear in the dimen-
sion n of the problem. Motivated by this observation, we propose a finite difference
quasi-Newton approach for minimizing functions that contain noise. To ensure the
reliability of finite difference gradients, we determine the differencing interval h based
on an estimate of the noise level (i.e., the standard deviation of the noise). For this
purpose, we follow the difference-table technique pioneered by Hamming [18], as im-
proved and extended by Moré and Wild [34]. This technique samples the objective

∗Submitted to the editors 3/27/2018.
Funding: The first author was supported by National Science Foundation grant DMS-0810213.

The second author was supported by National Science Foundation grant DMS-1620070. The third
author was supported by Department of Energy grant DE-FG02-87ER25047.
†Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, IL (albertberahas@u.northwestern.edu).
‡Department of Computer Science, University of Colorado, Boulder, CO (richard@boulder.edu).
§Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, IL (j-nocedal@northwestern.edu).

1

ar
X

iv
:1

80
3.

10
17

3v
2

 [
m

at
h.

O
C

]
 8

 J
an

 2
01

9

mailto:albertberahas@u.northwestern.edu
mailto:richard@boulder.edu
mailto:j-nocedal@northwestern.edu

2 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

function f at a small number of equally spaced points along a random direction, and
estimates the noise level from the columns of the difference table. Our optimization
algorithm is adaptive, as it re-estimates the noise level and differencing interval h
during the course of the optimization, as necessary.

An important ingredient in the method is the line search, which in our approach
serves the dual purpose of computing the length of the step (when the interval h is
adequate) and determining when the differencing interval h is not appropriate and
should be re-estimated. When the line search is unable to find an acceptable point,
the method triggers a recovery procedure that chooses between several courses of
action. The method must, in general, be able to distinguish between the case when
an unsuccessful step is due to a poor gradient approximation (in which case h may
need to be increased), due to nonlinearity (in which case h should be maintained and
the steplength αk shortened), or due to the confusing effects of noise.

We establish two sets of convergence results for strongly convex objective func-
tions; one for a fixed steplength strategy and one in which the steplength is computed
by an Armijo backtracking line search procedure. The latter is novel in the way it is
able to account for noisy function evaluations during the line search. In both cases,
we prove linear convergence to a neighborhood of the solution, where the size of the
neighborhood is determined by the level of noise.

The results of our numerical experiments suggest that the proposed algorithm is
competitive, in terms of function evaluations, with a well-known function interpolating
trust region method, and that it scales better with the dimension of the problem and
parallelizes easily. Although the reliability of the noise estimation techniques can be
guaranteed only when the noise in the objective function is i.i.d., we have observed
that the algorithm is often effective on problems in which this assumption is violated.

Returning to the first paragraph in this section, we note that it is the power of
quasi-Newton methods, in general, rather than the specific properties of BFGS that
have proven to be so effective in a surprising number of settings, including the subject
of this paper. Other quasi-Newton methods could also prove to be useful. The BFGS
method is appealing because it is simple, admits a straightforward extension to the
large-scale setting, and is supported by a compact and elegant convergence theory.

The paper is organized into 6 sections. We conclude this section with some
background and motivation for this work. In Section 2 we compare the performance of
finite difference L-BFGS and a function interpolating trust region method on smooth
objective functions that do not contain noise. Section 3 presents the algorithm for
the minimization of noisy functions, which is analyzed in Section 4. Section 5 reports
the results of numerical experiments, and Section 6 summarizes the main findings of
the paper.

1.1. Background. Although not a mainstream view, the finite difference BFGS
method is regarded by some researchers as one of the most effective methods for
derivative-free optimization of smooth functions that do not contain noise, and count-
less users have employed it knowingly or unknowingly in that setting. To cite just
one example, if a user supplies only function values, the fminunc matlab function
automatically invokes a standard finite difference BFGS method.

Nevertheless, much research has been performed in the last two decades to design
other approaches for derivative-free optimization [12, 43], most prominently direct
search methods [2, 13, 21, 22, 26, 30, 47] and function interpolating trust region
methods [9, 10, 12, 31, 32, 41, 42, 46]. Earlier approaches include the Nelder-Mead
method [37], simulated annealing [25] and genetic algorithms [6, 20].

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 3

Function interpolating trust region methods are more robust in the presence of
noise than other techniques for derivative-free optimization. This was demonstrated
by Moré and Wild [33] who report that the newuoa [42] implementation of the
function interpolation approach was more reliable and efficient in the minimization
of both smooth and noisy functions than the direct search method implemented in
appspack [17] and the Nelder-Mead method nmsmax [19]. Their experiments show
that direct search methods are slow and unable to scale well with the dimension of the
problem; their main appeal is that they are robust due to their expansive exploration
of Rn, and are easy to analyze and implement. In spite of its efficiency, the function
interpolation approach is limited by the high linear algebra cost of the iteration;
straightforward implementations require O(n6) operations, and although this can be
reduced to O(n4) operations by updating factorizations, this cost is still high for large
dimensional problems [12, 42].

An established finite difference BFGS algorithm is the Implicit Filtering method
of Kelley [8, 23], which is designed for the case when noise decays as the iterates
approach the solution. That method enjoys deterministic convergence guarantees to
the solution, which are possible due to the assumption that noise can be diminished at
any iteration, as needed. In this paper we assume that noise in the objective function
does not decay to zero, and establish convergence to a neighborhood of the solution,
which is the best we can hope for in this setting.

Barton [3] describes a procedure for updating the finite difference interval h in the
case when the noise is multiplicative (as is the case of roundoff errors). He assumes
that a bound on the noise is known, and notes that the optimal choice of h depends
(in the one dimensional case) on |f(x)|/|f ′′(x)|. Since estimating this ratio can be
expensive, he updates h by observing how many digits change between f(xk +h) and
f(xk), beyond the noise level. If this change is too large, h is decreased at the next
iteration; if it is too small h is increased. He tested this technique successfully in
conjunction with finite difference quasi-Newton methods. In this paper, we assume
that the noise level is not known and must be estimated, and discuss how to safeguard
against inaccurate estimates of the noise level.

2. Optimization of Smooth Functions. Before embarking on our investiga-
tion of noisy objective functions we consider the case when noise is not present, and
compare the performance of an L-BFGS method that uses finite differences to ap-
proximate the gradient (FDLM) and a function interpolating trust region method,
abbreviated from now on as function interpolating (FI) method. This will allow us to
highlight the strengths of each approach, and help set the stage for the investigation
of the noisy case.

We write the deterministic optimization problem as

(2.1) min
x∈Rn

f(x),

where f : Rn → R is twice continuously differentiable. In our numerical investigation,
we employ the FI method of Conn, Scheinberg and Vicente [12]. It begins by evaluat-
ing the function at 2n+ 1 points along the coordinate directions, and as the iteration
progresses, builds a simple quadratic model with minimum norm Hessian. At every
iteration a new function value is computed and stored. Once (n + 1)(n + 2)/2 func-
tion values are available, a fully quadratic model m(x) is constructed by interpolation.
Every new iterate xk+1 is given by

xk+1 = arg min
x
{m(x)| ‖x− xk‖2 ≤ ∆k},

4 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

where the trust region radius ∆k is updated using standard rules from derivative-free
optimization [12]. We chose the method and software described in [12] because it
embodies the state-of-the-art of FI methods and yet is simple enough to allow us to
evaluate all its algorithmic components.

The finite difference L-BFGS (FDLM) method is given by

xk+1 = xk − αkHk∇hf(xk),(2.2)

where Hk is an approximation to the inverse Hessian, ∇hf(xk) is a finite difference
approximation to the gradient of f , and the steplength αk is computed by an Armijo-
Wolfe line search; see [39]. We test both forward differences (FD)

[∇h,FDf(x)]i =
f(x+ hFDei)− f(x)

hFD

, where hFD = max{1, |x|} (εm)1/2,(2.3)

and central differences (CD)

[∇h,CDf(x)]i =
f(x+ hCDei)− f(x− hCDei)

2hCD

, where hCD = max{1, |x|} (εm)1/3.

(2.4)

Here εm is machine precision and ei ∈ Rn is the i-th canonical vector. (We note in
passing that by employing complex arithmetic [45], highly accurate derivatives can be
obtained through finite differences using a very small h. The use of complex arithmetic
is, however, not always possible in practice.)

A sample of results is given in Figure 2.1, which plots the optimality gap (f(xk)−
f?) versus number of function evaluations. These 4 problems are from the Hock-
Schittkowski collection; see [44] where their description and optimal function value
f? are given. For the FDLM method, the number of function evaluations at the
k-th iteration is n + tkls (FD) or 2n + tkls (CD), where tkls is the number of function
evaluations performed by the Armijo-Wolfe line search at the k-th iteration. The FI
method is described in [12], and we refer to as DFOtr; it normally computes only one
new function value per iteration. As a benchmark, we also report the results of NOMAD
[1, 2], a well known direct-search method. It is clear that NOMAD is by far the slowest
code.

20 40 60 80 100 120 140 160 180

Number of function evaluations

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

F
(
x
)
-
F
*

s271

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

50 100 150 200 250 300

Number of function evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

F
(
x
)
-
F
*

s334

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
-15

10
-10

10
-5

10
0

10
5

10
10

F
(
x
)
-
F
*

s293

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000

Number of function evaluations

10
-15

10
-10

10
-5

10
0

F
(
x
)
-
F
*

s289

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

Fig. 2.1. (Problems without Noise) Performance of the function interpolating trust re-
gion method (DFOtr) described in [12], NOMAD [1, 2], and the finite difference L-BFGS method
(FDLM) using forward or central differences, on 4 problems from the Hock-Schittkowski col-
lection [44].

The first problem in Figure 2.1 is quadratic; the FI method will generally have
better performance in this case because it has finite termination while the FDLM
does not. The rest of the plots in Figure 2.1 illustrate other behavior of the methods
observed in our tests. Performance and data profiles are reported in Appendix A.1.

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 5

We do not report cpu times because the FI code of Conn, Scheinberg and Vicente
[12] is not designed to be efficient in this respect, requiring O(n6) flops per iteration,
and is thus much slower than the FDLM method as n increases. There exist, much
faster FI codes (albeit much more complex) such as that of Powell [42], whose linear
algebra cost is only O(n4). Regardless of the implementation, scalability remains one
of the main limitations of FI methods. To show that the FDLM approach can deal
with problems that are out of reach for FI methods, we report in Table 2.1 results
on the extended Rosenbrock function of various dimensions (as a reference, DFOtr

requires more than 1,800 seconds for n = 100).

Table 2.1
cpu time (in seconds) required by the finite difference L-BFGS method (FDLM), using

forward and central differences, to reach the accuracy f − f? < 10−6, on the Extended
Rosenbrock function of various dimensions (n). The results were obtained on a workstation
with 32GB of RAM and 16 Intel Xeon X5560 cores running at 2.80GH.

n 10 50 100 1000 2000 5000

FD 1.8× 10−1 3.1× 10−1 7.6× 10−1 3.3× 102 2.9× 103 5.5× 104

CD 2.0× 10−1 4.0× 10−1 1.2 5.6× 102 5.9× 103 1.0× 105

Overall, our numerical results suggest that FDLM is a very competitive method
for (non-noisy) derivative-free optimization, particularly for large problems. Conclu-
sive remarks about the relative performance of the FI and FDLM approaches are,
however, difficult to make because there are a variety of FI methods that follow sig-
nificantly different approaches than the method tested here. For example, the codes
by Powell [41, 42] include two trust region radii and employ a different procedure
for placing the interpolation points. Some implementations of FI methods start with
O(n2) function values in order to build a quadratic model; other implementations
only require O(n) function values to start.

2.1. Discussion. One of the appealing features of the function interpolating
method is that it can move after only 1 function evaluation, as opposed to the O(n)
function evaluations required per iteration by the FDLM approach. However, if the
model is not accurate (or the trust region is too large) and results in an unsuccessful
step, the FI approach may require many function evaluations before the model is
corrected (or the trust region is properly adjusted); this can be seen in the second,
third, and fourth plots in Figure 2.1. On the other hand, finite difference approxima-
tions to the gradients (2.3)-(2.4) carry some risks, as discussed in Section 3.4. We did
not encounter difficulties in our tests on smooth functions, but this is an issue that
requires careful consideration in general.

The FI and FDLM methods both construct quadratic models of the objective
function, and compute a step as the minimizer of the model, which distinguishes
them from most direct and pattern search methods. But the two methods differ
significantly in nature. FI methods define the quadratic model by interpolating previ-
ously evaluated function values and (in some variants) by imposing a minimum-norm
change with respect to the previous model. The estimation of the gradient and Hes-
sian is done simultaneously, and the gradient approximation becomes accurate only
when the trust region is small; typically near the solution [11]. In FI methods it is
the overall quality of the model that matters. The location of the sampling points is
determined by the movement of the FI algorithm. These points tend to lie along a
subspace of Rn, which can be harmful to the interpolation process. To guard against

6 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

this, many FI methods include a procedure (a geometry phase) for spreading the
sample points in Rn so that the interpolation problem is not badly conditioned.

In contrast to FI methods, the finite difference BFGS method invests significant
computation in the estimation of the gradient (n or 2n function evaluations) and del-
egates the construction of the model to BFGS updating. The function evaluations
used in the estimation of the gradient parallelize easily, and the linear algebra costs
are quite modest, as updating the model and computing a step can be performed in a
small multiple of n using the limited memory BFGS approach [39]. Practical experi-
ence indicates that BFGS and L-BFGS give rise to well-scaled search directions that
typically require little or no extra cost during the line search. Placement of the sample
points is along a linearly independent set of directions (during finite differencing) and
in this sense the method has some resemblance with pattern search methods – but
their similarities stop there.

It is rare to find in the derivative-free optimization (DFO) literature comparisons
between the finite difference BFGS method and direct search or function interpolating
trust region methods, even when testing smooth objective functions without noise.
One reason for this omission may be the perception that finite difference based meth-
ods are inefficient as they require at least n function evaluations per iteration, whereas
other methods for DFO are more frugal in this respect. In an early paper, Powell [40]
wrote in regards to derivative-free optimization: “I believe that eventually the better
methods will not use derivative approximations.” In this paper, we argue that a finite
difference L-BFGS method is, indeed, an effective technique for the minimization of
certain classes of noisy functions.

These observations are a good starting point for our discussion of stochastic op-
timization problems.

3. Optimization of Noisy Functions. We study problems of the form

min
x∈Rn

f(x) = φ(x) + ε(x).(3.1)

We assume that φ : Rn → R is a smooth twice continuously differentiable function and
ε(x) is a random variable whose distribution is independent of x. (The notation ε(x)
simply means that at any x we compute the realization of a random variable.) The
model (3.1) covers the case of multiplicative noise, i.e., when f(x) = φ(x)(1 + ε̂(x))
and ε̂(x) is a random variable. To establish convergence results, we will assume that
ε(x) is i.i.d and bounded, but our algorithm and presentation apply to the general
model (3.1). Specifically, we are also interested in the case when the noise ε(x) is
deterministic, as is the case of roundoff errors or when adaptive algorithms are part
of the function evaluation.

3.1. The Finite Difference Interval. Our method relies crucially on the com-
putation of an appropriate finite difference parameter h. It has been shown by Moré
and Wild [35] that if one can estimate the level of noise in f , which we denote by σf ,
one can compute a nearly optimal h for which the error in approximating ∇f(x) is

O(σ
1/2
f) and O(σ

2/3
f) for forward differences and central differences, respectively.

The noise level σf of the function f given in (3.1) is defined as the standard
deviation of ε(x), i.e.,

(3.2) σf = (Var{ε(x)})1/2.

This quantity can be estimated using the difference table technique proposed by Ham-
ming [18], as extended and refined by Moré and Wild [34]. We denote our estimate
of the noise level of f by εf .

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 7

With εf in hand, we define the finite differencing interval as suggested in [35].
The i-th component of the forward difference approximation of the gradient of f at
x is given by

[∇h,FDf(x)]i =
f(x+ hFDei)− f(x)

hFD

, where hFD = 81/4

(
εf
ν2

)1/2

,(3.3)

and ν2 is an estimate of maxx∈[x,x+hFDei] |∇2f(x)T ei|. The central difference approx-
imation is given by

[∇h,CDf(x)]i =
f(x+ hCDei)− f(x− hCDei)

2hCD

, where hCD = 31/3

(
εf
ν3

)1/3

,(3.4)

and ν3 is an estimate of the third derivative along ei, in an interval of length 2hCD

around x. Since estimating 2nd or 3rd derivatives along each coordinate direction is
expensive, in our implementation we perform this estimation once along a random
direction, as discussed in Section 3.4. In the sequel, we let ∇hf(x) denote (3.3) or
(3.4) when the distinction is not important.

3.2. Noise Estimation. The noise level σf of a function measures the uncer-
tainty in the computed function values, and can be estimated using Hamming’s table
of function differences [18]. To generate this table, Moré and Wild [34] first choose a
random direction v ∈ Rn of unit norm, evaluate the function at q + 1 equally spaced
points (with spacing δ) along that ray, and compute the function differences

∆0f(x) = f(x),(3.5a)

∆j+1f(x) = ∆j [∆f(x)] = ∆j [f(x+ δv)]−∆j [f(x)], j ≥ 0.(3.5b)

Let xi = x + uiδv, where ui = −q/2 + i, for i = 0, . . . , q, denote the sample points
centered around x. Using the computed function differences one can build a table
whose entries are

Ti,j = ∆jf(xi), 1 ≤ j ≤ q and 0 ≤ i ≤ q − j.(3.6)

Hamming’s approach relies on the fact that differences in φ tend to zero rapidly, while
the differences in ε(x) are bounded away from zero [18]. As a result, the noise level
σf can be estimated from the mean of the squares of the columns of this difference
table [34]. Specifically, for each j (where j indexes a column of the difference table
and also represents the order of differencing) one defines

s2
j

def
=

γj
q + 1− j

q−j∑
i=0

T 2
i,j , where γj =

(j!)2

(2j)!
.(3.7)

Once an appropriate value of j is identified, the noise estimate εf is defined as

(3.8) εf ← sj .

Moré and Wild [34] propose an efficient and reliable procedure, referred to as
ECnoise, for determining the free parameters in this procedure, namely: (i) the order
of differencing j; (ii) the number of points q where the function is evaluated; and (iii)
the spacing δ between the sample points; see Section 3.4. ECnoise is inexpensive as

8 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

it typically requires only between 4 − 10 function evaluations to estimate the noise
level. It is available at: http://www.mcs.anl.gov/∼wild/cnoise/.

We should note that if the noise is stochastic one can make use of the Central
Limit theorem and estimate the variance by sampling the function a few times (10-20)
at a given point. This approach will, however, not work if the noise is deterministic
and in that case we need to resort to the technique proposed by Hamming [18]. In
our code we assume that the nature of the noise is not known and therefore estimate
the noise using the Hamming table since it is applicable in both cases.

3.3. Specification of the Finite Difference L-BFGS Method. We are now
ready to present the algorithm for the minimization of the function (3.1). It invokes
two procedures, LineSearch and Recovery, that together produce a new iterate and,
if necessary, recompute the estimate of the noise. These two procedures are described
in detail after the presentation of the algorithm.

The algorithm stores the smallest function value obtained during the finite dif-
ference gradient computation, (3.3) or (3.4). Specifically, for forward differences we
define

(3.9) fs = min
xi∈S

f(xi), where S = {xi : xi = x+ hFDei, i = 1, . . . , n},

and let xs denote a point where the minimum is achieved. Since S is a stencil, we
refer to xs as the best point on the stencil.

We now discuss the four main components of the algorithm.

3.3.1. Line Search. The LineSearch function (Line 9 of Algorithm 3.1) aims
to find a steplength αk that satisfies the Armijo-Wolfe conditions,

f(xk + αkdk) ≤ f(xk) + c1αk∇hf(xk)T dk, (Armijo condition)(3.10a)

∇hf(xk + αkdk)T dk ≥ c2∇hf(xk)T dk, (Wolfe condition)(3.10b)

for some constants 0 < c1 < c2 < 1. In the deterministic setting, when the gradi-
ent is exact and the objective function f is bounded below, there exist intervals of
steplengths αk that satisfy the Armijo-Wolfe conditions [39, Lemma 3.1]. However,
when f is noisy, satisfying (3.10a)-(3.10b) can be problematic. To start, dk may not
be a descent direction for the smooth underlying function φ in (3.1), and even if it is,
the noise in the objective may cause the line search routine to make incorrect deci-
sions. Therefore, we allow only a small number (amax) of line search iterations while
attempting to satisfy (3.10a)-(3.10b). We also introduce the following relaxation: if
(3.10a)-(3.10b) is not satisfied at the first trial point of the line search (αk = 1), we
relax the Armijo condition (3.10a) for subsequent trial values as follows:

f(xk + αkdk) ≤ f(xk) + c1αk∇hf(xk)T dk + 2εf .(3.11)

There are three possible outcomes of the LineSearch function: (i) a steplength
αk is found that satisfies the Armijo-Wolfe conditions, where the Armijo condition
may have been relaxed as in (3.11); (ii) after amax line search iterations, the line search
is able to find a steplength αk that only satisfies the relaxed Armijo condition (3.11)
but not the Wolfe condition; (iii) after amax line search iterations the previous two
outcomes are not achieved; we regard this as a line search failure, set LSflag = 1, and
call the Recovery function to determine the cause of the failure and take corrective
action.

http://www.mcs.anl.gov/~wild/cnoise/

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 9

Algorithm 3.1 Adaptive Finite Difference L-BFGS (FDLM)

Inputs: f (objective function), x0 (initial iterate), amax (max number of backtracks),
k ← 0 (iteration counter), tcount ← 0 (function evaluation counter), tls ← 0 (function
evaluation counter during LineSearch routine), trec ← 0 (function evaluation counter
during Recovery procedure), ζ ∈ (0, 1) (curvature threshold)

1: Compute f0 = f(x0); set tcount = 1
2: Compute an estimate εf of the noise using ECnoise [34], at the cost of tecn function

evaluations
3: Update the function evaluation counter: tcount = tcount + tecn

4: Compute h via (3.3) (FD) or (3.4) (CD)
5: Compute ∇hf(x0) using (3.3) or (3.4), and store (xs, fs)
6: tcount = tcount + n (FD) or tcount = tcount + 2n (CD)
7: while a convergence test is not satisfied do
8: Compute dk = −Hk∇hf(xk) using the L-BFGS approach [39]
9: (x+, f+, αk, tls, LSflag) = LineSearch(xk, fk,∇hf(xk), dk, amax)

10: tcount = tcount + tls
11: if LSflag = 1 then . Line search failed
12: (x+, f+, h, trec) = Recovery(fk, xk, dk, h, xs, fs)
13: tcount = tcount + trec

14: end if
15: xk+1 = x+ and fk+1 = f+

16: Compute ∇hf(xk+1) using (3.3) or (3.4), and store (xs, fs)
17: Compute curvature pair: sk = xk+1 − xk and yk = ∇hf(xk+1)−∇hf(xk)
18: Store (sk, yk) if sTk yk ≥ ζ‖sk‖‖yk‖
19: tcount = tcount + n (FD) or tcount = tcount + 2n (CD)
20: k = k + 1
21: end while

3.3.2. Recovery Mechanism. As mentioned above, the Recovery subroutine
is the mechanism by which action is taken when the line search fails to return an
acceptable point. This can occur due to the confusing effect of noisy function evalu-
ations, a poor gradient approximation, or high nonlinearity of the objective function
(the least likely case). The procedure is described in Algorithm 3.2.

The input to the Recovery subroutine is the current iterate xk and function value
fk, the search direction dk, the current finite difference interval h, and the best point
xs in the finite difference stencil together with the corresponding function value fs.

The Recovery routine can take three actions:
1. Return a new estimate of the differencing interval h and leave the current

iterate xk unchanged. In this case, a new noise estimate is computed along
the current search direction dk.

2. Generate a new iterate xk+1 without changing the differencing interval h.
The new iterate is given by a small perturbation of xk or by the best point
in the stencil xs.

3. Leave the current iterate unchanged and compute a new estimate of the noise
level, along a random direction, and a new finite difference interval h.

To start, the Recovery routine invokes the ECnoise procedure to compute a
new noise estimate εdkf along the current search direction dk, and the corresponding

differencing interval h̄ using formula (3.3) or (3.4). We estimate the noise along dk

10 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

Algorithm 3.2 Recovery Routine

Inputs: xk (current iterate), fk = f(xk) (current function value), h (current finite
difference interval), γ1 ∈ (0, 1), γ2 > 1 (finite difference interval acceptance/rejection
parameters), dk (search direction), (xs, fs = f(xs)) (best point on the stencil,) trec ←
0 (function evaluation counter for this routine)

1: Compute new noise estimate εdkf in direction dk, and new h̄ via (3.3) or (3.4).
2: Update function evaluation counter: trec = trec + fecn

3: if h̄ < γ1h OR h̄ > γ2h then
4: h = h̄ and x+ = xk, f+ = fk . Case 1
5: else
6: xh = xk + h dk

‖dk‖ . Compute small perturbation of xk
7: Compute fh = f(xh)
8: trec = trec + 1
9: if xh satisfies the Armijo condition (3.10a) then

10: x+ = xh, f+ = fh, h = h . Case 2
11: else
12: if fh ≤ fs AND fh ≤ fk then
13: x+ = xh, f+ = fh, h = h . Case 3
14: else if fk > fs AND fh > fs then
15: x+ = xs, f+ = fs , h = h . Case 4
16: else
17: x+ = xk, f+ = fk . Case 5
18: Compute new noise estimate εvkf along random direction vk and new h̄

19: h = h̄
20: trec = trec + fecn

21: end if
22: end if
23: end if

Output: x+, f+, h, trec

because the Recovery procedure may compute a new iterate along dk, and it thus
seem natural to explore the function in that direction. If the current differencing
interval h differs significantly from the new estimate h̄, then we suspect that our
current noise estimate is not reliable, and return h̄ without changing the current
iterate (Case 1). This feature is especially important when the noise is multiplicative
since in this case the noise level changes over the course of optimization, and the finite
difference interval may need to be updated frequently.

On the other hand (Line 5), if the two differencing intervals, h and h̄, are similar,
we regard them as reliable and assume that the line search procedure failed due to the
confusing effects of noise. We must therefore generate a new iterate by other means.
We compute a small perturbation of xk, of size h, along the current search direction
dk (Line 6); if this point xh satisfies the Armijo condition (3.10a), it is accepted,
and the procedure terminates on Line 10 (Case 2). Otherwise we make use of the
best point xs on the stencil. If the function value fh at the trial point is less than
both the current function value fk and fs, then xh is accepted and the procedure
ends on Line 13 (Case 3). Else, if fs is smaller than both fk and fh, we let xs be
the new iterate and terminate on Line 15 (Case 4). These two cases are inspired
by the global convergence properties of pattern search methods, and do not require

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 11

additional function evaluations.
If none of the conditions above are satisfied, then the noise is re-estimated along

a random direction (vk ∈ Rn) using ECnoise, a new differencing interval is computed,
and the Recovery procedure terminates without changing the iterate (Case 5). An
additional action that could be taken in this last case is to switch to higher-order
differences if this point of the algorithm is ever reached, as discussed in Section 5.

3.3.3. Hessian approximation. Step 8 of Algorithm 3.1 computes the L-BFGS
search direction. The inverse Hessian approximation Hk is updated using standard
rules [39] based on the pairs {sj , yj}, where

sk = xk+1 − xk, yk = ∇hf(xk+1)−∇hf(xk).(3.12)

When the line search is able to satisfy the Armijo condition but not the Wolfe con-
dition, there is no guarantee that the product sTk yk is positive. In this case the pair
(sk, yk) is discarded if the curvature condition sTk yk ≥ ζ‖sk‖‖yk‖ is not satisfied for
some ζ ∈ (0, 1).

3.3.4. Stopping Tests. A variety of stopping tests have been proposed in the
derivative-free optimization literature; see e.g., [12, 21, 23, 26, 27, 42]. Here we discuss
two approaches that can be employed in isolation or in combination, as no single test
is best suited for all situations.

Gradient Based Stopping Test. One could terminate the algorithm as soon as

(3.13) ‖∇hf(xk)‖∞ ≤ tol,

where tol is a user-specified parameter. When using forward differences, the best
one can hope is for the norm of the gradient approximation to be τ(εf)1/2, where
τ depends on the norm of the second derivative. For central differences, the best
accuracy is τ̄(εf)2/3, where τ̄ depends on the norm of the third derivative.

Function Value Based Stopping Test. One could also terminate the algorithm
when

(3.14) |f(xk)− f(xk−1)| ≤ τ̂ εf ,

for τ̂ > 1. This test is reasonable because the ECnoise procedure that estimates εf is
scale invariant. However, there is a risk that (3.14) will trigger termination too early,
and to address this one could employ a moving average. The test can have the form

|fMA(xk)− f(xk)|
|fMA(xk)|

≤ tol or
|fMA(xk)− f(xk)|
max{1, |fMA(xk)|}

≤ tol,

where fMA(xk) is a moving average of function values, of length M , calculated as
follows. Let fk = f(xk) and let F k = [fk−j+1, ..., fk−1, fk] be the vector formed by
the most recent function values, where j = min{k + 1,M}. We define

fMA(xk) =
1

j

j∑
i=1

F ki .(3.15)

An alternative, is to formulate the stop test as

|fMA(xk)− f(xk)| ≤ τ(εf)1/2 for FD, or |fMA(xk)− f(xk)| ≤ τ(εf)2/3 for CD.

12 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

3.4. Implementation of the Noise Estimation Procedure. ECnoise has
three parameters that if not appropriately chosen can cause ECnoise to fail to return
a reliable estimate of the noise level: (i) the order of differencing j; see (3.8); (ii) the
number of points q used in the noise estimation, and (iii) the spacing δ between the
points.

We have found the strategy proposed by Moré and Wild [34] to be effective in
deciding the order of differencing j. It determines that j is appropriate if the values
of σi surrounding σj are close to each other and if there are changes in sign among
elements of the j-th column of the difference table Ti,j ; the latter is a clear indication
that the entries of the j-th column are due to noise.

Concerning the number q of sample points, we found that the values employed by
ECnoise [34] are reliable, namely 4 − 8 function evaluations for stochastic noise and
6 − 10 for deterministic noise. However, our experience suggests that those settings
may be conservative, and in our implementation use only 4 function evaluations for
stochastic noise and 6 function evaluations for deterministic noise.

The finite difference approximations (3.3) and (3.4) require a coarse estimate
of the second or third derivatives (ν2, ν3), and are often fairly insensitive to these
estimates. However, in some difficult cases poor estimates may prevent the algorithm
from reaching the desired accuracy. In our implementation we estimate ν2 using the
heuristic proposed in [35, Section 5, Algorithm 5.1] at the cost of 2 − 4 function
evaluations. If this heuristic fails to provide a reasonable estimate of ν2, we employ
the finite difference table (3.6) as a back-up to construct a rough approximation of
the norm of the second derivative. In our experiments this back-up mechanism has
proved to be adequate. When computing central difference approximations to the
gradient, we simply set ν3 ← ν2, for simplicity.

4. Convergence Analysis. In this section, we present two sets of convergence
results for the minimization of the noisy function (3.1) under the assumption that
φ is strongly convex. First, we analyze a method that uses a fixed steplength, and
then consider a more sophisticated version that employs a line search to compute the
steplength. The main contribution of our analysis is the inclusion of this line search
and the fact that we do not assume that the errors in objective function or gradient
go to zero, in any deterministic or probabilistic sense; we only assume a bound on
these errors. To focus on these issues, we assume that Hk = I, because the proof for a
general positive definite matrix Hk with bounded eigenvalues is essentially the same,
but is longer and more cluttered as it involves additional constants. Convergence
and complexity results for other derivative-free optimization methods can be found
in [4, 15, 38].

4.1. Fixed Steplength Analysis. We consider the method

xk+1 = xk − αgk,(4.1)

where gk stands for a finite difference approximation to the gradient, gk = ∇hf(xk),
or some other approximation; our treatment is general. We define e(x) to be the error
in the gradient approximation, i.e.,

gk = ∇φ(xk) + e(xk).(4.2)

We should note the distinction between e(x) and ε(x); the latter denotes the noise in
the objective function (3.1).

We introduce the following assumptions to establish the first convergence result.

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 13

A.1 (Strong Convexity of φ) The function φ (see (3.1)) is twice continuously
differentiable and there exist positive constants µ and L such that µI �
∇2φ(x) � LI for all x ∈ Rn. (We write φ? = φ(x?), where x? is the minimizer
of φ.)

A.2 (Boundedness of Noise in the Gradient) There is a constant ε̄g > 0 such
that

‖e(x)‖ ≤ ε̄g for all x ∈ Rn.(4.3)

Assumption A.2 is satisfied if the approximate gradient is given by forward or
central differences with the value of h given in (3.3) or (3.4), provided that the error
ε(x) in the evaluation of the objection function value is bounded; see (4.30).

We now establish linear convergence to a neighborhood of the solution. After-
wards, we comment on the extension of this result to the case when a quasi-Newton
iteration of the form xk+1 = xk − αHkgk is used.

Theorem 4.1. Suppose that Assumptions A.1-A.2 hold. Let {xk} be the iterates
generated by iteration (4.1), where gk is given by (4.2), and the steplength satisfies

α ≤ 1/L.(4.4)

Then for all k,

φ(xk+1)−

[
φ? +

ε̄2g
2µ

]
≤ (1− αµ)

(
φ(xk)−

[
φ? +

ε̄2g
2µ

])
,(4.5)

where ε̄g is defined in (4.3).

Proof. Since φ satisfies Assumption A.1, we have by (4.2),

φ(xk+1) ≤ φ(xk)− α∇φ(xk)T gk +
α2L

2
‖gk‖2

= φ(xk)− α∇φ(xk)T (∇φ(xk) + e(xk)) +
α2L

2
‖∇φ(xk) + e(xk)‖2

= φ(xk)− α
(

1− αL

2

)
‖∇φ(xk)‖2 − α(1− αL)∇φ(xk)T e(xk) +

α2L

2
‖e(xk)‖2

≤ φ(xk)− α
(

1− αL

2

)
‖∇φ(xk)‖2 + α(1− αL)‖∇φ(xk)‖‖e(xk)‖+

α2L

2
‖e(xk)‖2.

≤ φ(xk)− α
(

1− αL

2

)
‖∇φ(xk)‖2 + α(1− αL)

[
1

2
‖∇φ(xk)‖2 +

1

2
‖e(xk)‖2

]
+
α2L

2
‖e(xk)‖2,

where the last inequality follows from the fact that (1√
2
‖∇φ(xk)‖ − 1√

2
‖e(xk)‖)2 ≥ 0

and the assumption αL < 1. Simplifying this expression, we have, for all k,

φ(xk+1) ≤ φ(xk)− α

2
‖∇φ(xk)‖2 +

α

2
‖e(xk)‖2.(4.6)

Since φ is µ-strongly convex, we can use the following relationship between the
norm of the gradient squared, and the distance of the k-th iterate from the optimal
solution,

‖∇φ(xk)‖2 ≥ 2µ(φ(xk)− φ?),(4.7)

14 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

which together with (4.6) yields

φ(xk+1) ≤ φ(xk)− αµ(φ(xk)− φ?) +
α

2
‖e(xk)‖2,

and by (4.3),

φ(xk+1)− φ? ≤ (1− αµ)(φ(xk)− φ?) +
α

2
ε̄2g.

Hence,

φ(xk+1)− φ? −
ε̄2g
2µ
≤ (1− αµ)(φ(xk)− φ?) +

α

2
ε̄2g −

ε̄2g
2µ

= (1− αµ)(φ(xk)− φ?) + (αµ− 1)
ε̄2g
2µ

= (1− αµ)

(
φ(xk)− φ? −

ε̄2g
2µ

)
.

We interpret the term
[
φ? +

ε̄2g
2µ

]
in (4.5) as the best value of the objective that

can be achieved in the presence of noise. Theorem 4.1 therefore establishes a Q-linear
rate of convergence of {φ(xk)} to that value.

Another way of stating the convergence result embodied in Theorem 4.1 is by
applying the recursion to (4.5), i.e.,

φ(xk)−

[
φ? +

ε̄2g
2µ

]
≤ (1− αµ)k

(
φ(x0)−

[
φ? +

ε̄2g
2µ

])
,

so that

φ(xk)− φ? ≤ (1− αµ)k

(
φ(x0)−

[
φ? +

ε̄2g
2µ

])
+
ε̄2g
2µ
.(4.8)

This convergence result has a similar flavor to that presented in [36] for the incremental
gradient method using a fixed steplength; see also [7, Section 4]. Note that (4.8) is
an R-linear convergence result and as such is weaker than (4.5).

It is possible to prove a similar result to Theorem 4.1 for a general positive
definite Hk, assuming bounds on ‖Hk‖ and ‖H−1

k ‖, as would be the case with a
limited memory BFGS update. However, the provable convergence rate in this case
would be closer to 1, and the provable asymptotic objective value would be no smaller
than the value in (4.5). This is similar to the situation in optimization without noise,
where the provable convergence rate for L-BFGS is no better than for steepest descent,
even though L-BFGS is superior in practice. Since this more general analysis does
not provide additional insights on the main topic of this paper, we have not included
them here.

4.2. Line Search Analysis. In the literature of optimization of noisy functions,
a number of convergence results have been established for algorithms that employ a
fixed steplength strategy [5, 7, 36], but there has been little analysis of methods that
use a line search.

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 15

In this section, we present a convergence result for the iteration

xk+1 = xk − αkgk,(4.9)

where the steplength αk is computed by a backtracking line search governed by the
relaxed Armijo condition

f(xk − αkgk) ≤ f(xk)− c1αkgTk gk + 2εA.(4.10)

Here c1 ∈ (0, 1) and εA > 0 is a user specified parameter whose choice is discussed
later on. If a trial value αk does not satisfy (4.10), the new value is set to a (fixed)
fraction τ < 1 of the previous value, i.e., αk ← ταk.

Our analysis relies on the following additional assumption on the error in the
objective function.

A.3 (Boundedness of Noise in the Function) There is a constant ε̄f > 0 such
that

|f(x)− φ(x)| = |ε(x)| ≤ ε̄f for all x ∈ Rn.(4.11)

The following result establishes linear convergence to a neighborhood of the solution.

Theorem 4.2. Suppose that Assumptions A.1-A.3 hold. Let {xk} be the iterates
generated by iteration (4.9), where gk is given by (4.2) and the step length αk is the
maximum value in {τ−j ; j = 0, 1, . . . } satisfying the relaxed Armijo condition (4.10)

with εA > ε̄f and 0 < c1 < 1/2. Then, for any β ∈
(

0, 1−2c1
1+2c1

]
, we have that

φ(xk+1)− [φ? + η̄] ≤ ρ (φ(xk)− [φ? + η̄]) , k = 0, 1, . . . ,(4.12)

where

ρ = 1− 2µc1τ(1− β)2

L
, η̄ =

1

2µβ2
ε̄2g +

L

µc1τ(1− β)2
(εA + ε̄f) ,(4.13)

and ε̄g and ε̄f are defined in (4.3) and (4.11). Additionally, if c1 < 1/4, we can
choose β = 1− 4c1, in which case,

ρ = 1− 32µτc31
L

, η̄ =
1

2µ(1− 4c1)2
ε̄2g +

L

16µτc31
(εA + ε̄f) .(4.14)

Proof. By equation (4.6) in the proof of Theorem 4.1, if α ≤ 1/L, we have

(4.15) φ(xk − αgk) ≤ φ(xk)− α

2
‖∇φ(xk)‖2 +

α

2
‖e(xk)‖2,

which given assumption A.3 implies

(4.16) f(xk − αgk) ≤ f(xk)− α

2

(
‖∇φ(xk)‖2 − ‖e(xk)‖2

)
+ 2ε̄f .

Since we assume εA > ε̄f , it is clear from comparing (4.10) and (4.16) that (4.10) will
be satisfied for sufficiently small α. Thus, we have shown that the line search always
finds a value of αk such that (4.10) is satisfied.

In addition, we need to ensure that αk is not too small when the iterates are far
from x?. To this end we define

(4.17) βk =
‖e(xk)‖
‖∇φ(xk)‖

,

16 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

which together with (4.2) gives

(4.18) (1− βk)‖∇φ(xk)‖ ≤ ‖gk‖ ≤ (1 + βk)‖∇φ(xk)‖.

Now, using (4.17) and (4.18) in (4.16) we have

f(xk − αgk) ≤ f(xk)− α

2
(1− β2

k)‖∇φ(xk)‖2 + 2ε̄f

≤ f(xk)− α(1− β2
k)

2(1 + βk)2
‖gk‖2 + 2ε̄f

= f(xk)− α(1− βk)

2(1 + βk)
‖gk‖2 + 2ε̄f .

Since we assume that εA > ε̄f and c1 < 1/2, it is then clear that the Armijo condition
(4.10) is satisfied for any α ≤ 1/L if (1 − βk)/(1 + βk) ≥ 2c1. This is equivalent to
requiring that

(4.19) βk ≤ β ≤
1− 2c1
1 + 2c1

< 1,

where β is an arbitrary positive constant satisfying (4.19).

Case 1. We now select such a value β and refer to iterates such that βk ≤ β as Case
1 iterates. Thus, for these iterates any α ≤ 1/L satisfies the relaxed Armijo condition
(4.10), and since we find αk using a constant backtracking factor of τ < 1, we have
that αk > τ/L. Therefore, using Assumption A.3 and (4.18) we have

φ(xk − αkgk) ≤ φ(xk)− c1αk‖gk‖2 + 2εA + 2ε̄f

≤ φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 + 2εA + 2ε̄f .(4.20)

Expression (4.20) measures the reduction in φ at iterates belonging to Case 1.

Case 2. We now consider iterates that do not satisfy the conditions of Case 1, namely,
iterates for which βk > β, or equivalently,

‖e(xk)‖ > β‖∇φ(xk)‖.(4.21)

We have shown that the relaxed Armijo condition (4.10) is satisfied at every
iteration of the algorithm. Using as before Assumption A.3, we deduce from (4.10)
that

φ(xk − αkgk) ≤ φ(xk)− c1αk‖gk‖2 + 2εA + 2ε̄f

≤ φ(xk) + 2εA + 2ε̄f .(4.22)

We now add and subtract c1(τ/L)(1− β)2‖∇φ(xk)‖2 from the right hand side of this
relation and recall (4.21), to obtain

φ(xk − αkgk) ≤ φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 +

c1τ(1− β)2

L
‖∇φ(xk)‖2 + 2εA + 2ε̄f

≤ φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 +

c1τ(1− β)2

Lβ2
‖e(xk)‖2 + 2εA + 2ε̄f

≤ φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 +

c1τ(1− β)2

Lβ2
ε̄2g + 2εA + 2ε̄f

= φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 + η,(4.23)

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 17

where

η =
c1τ(1− β)2

Lβ2
ε̄2g + 2εA + 2ε̄f .(4.24)

Equation (4.23) establishes a recursion in φ for the iterates in Case 2.

Now we combine the results from the two cases: (4.20) and (4.23). Since the term
multiplying ‖∇φ(xk)‖2 is the same in the two cases, and since η ≥ 2εA + 2ε̄f , we have
that for all k

φ(xk+1) ≤ φ(xk)− c1τ(1− β)2

L
‖∇φ(xk)‖2 + η.(4.25)

Subtracting φ? from both sides of (4.25), and using the strong convexity condition
(4.7), gives

φ(xk+1)− φ? ≤
(

1− 2µc1τ(1− β)2

L

)
︸ ︷︷ ︸

ρ

(φ(xk)− φ?) + η.(4.26)

Clearly 0 < ρ < 1, since the quantities 2c1, µ/L, τ and 1− β are all less than one. We
have thus shown that for all k

φ(xk+1)− φ? ≤ ρ(φ(xk)− φ?) + η.(4.27)

Subtracting η/(1− ρ) from both sides, it follows that

φ(xk+1)− φ? − η

1− ρ
≤ ρ(φ(xk)− φ?) + η − η

1− ρ
= ρ(φ(xk)− φ?)− ρη

1− ρ

= ρ

(
φ(xk)− φ? − η

1− ρ

)
,

and thus

(4.28) φ(xk+1)− φ? − η̄ ≤ ρ (φ(xk)− φ? − η̄) , k = 0, 1, . . . ,

where η̄ = η/(1− ρ). From (4.24), (4.26), we have that

η̄ =
L

2µc1τ(1− β)2

(
c1τ(1− β)2

Lβ2
ε̄2g + 2εA + 2ε̄f

)
=

1

2µβ2
ε̄2g +

L

µc1τ(1− β)2
(εA + ε̄f) .(4.29)

This establishes (4.12) and (4.13).
We can obtain simpler expressions for ρ and η̄ by making a particular selection

of β. Recall that this parameter is required to satisfy (4.19) so that (4.28) holds for
all k. In the case when c1 ∈ (0, 1/4], the choice β = 1− 4c1 will satisfy (4.19) since

1− 4c1 −
1− 2c1
1 + 2c1

=
1− 4c1 + 2c1 − 8c21 − (1− 2c1)

1 + 2c1
< 0.

18 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

Substituting this value of β in the definition of ρ (see (4.26)) and in (4.29) gives

ρ = 1− 2µc1τ(1− β)2

L
= 1− 32µτc31

L
,

and

η̄ =
1

2µβ2
ε̄2g +

L

µc1τ(1− β)2
(εA + ε̄f) =

1

2µ(1− 4c1)2
ε̄2g +

L

µτ16c31
(εA + ε̄f) ,

which gives (4.14).

As with (4.8) there is a different way of stating the convergence result. Applying
(4.28) recursively and then moving the constant term to the right-hand-side of the
expression yields

φ(xk)− φ? ≤ ρk (φ(x0)− [φ? + η̄]) + η̄.

Application of Theorem 4.2 requires a choice of the parameter β that affects
the convergence constant ρ and the level of accuracy η̄. One of the most intuitive
expressions we could find was (4.14), which was obtained by assuming that c1 < 1/4
and choosing β = 1−4c1. This value is reasonable provided c1 is not too small. There
are other ways of choosing β when c1 is very small; in general the theorem is stronger
if β is not chosen close to zero.

In the case where ∇φ(x) is estimated by a forward difference approximation we
can further distill our error estimate, since ε̄f is the source of all noise. Using A.3, it
is easy to show that

‖e(xk)‖ = ‖gk −∇φ(xk)‖ ≤ Lh/2 + 2ε̄f/h

= 2
√
Lε̄f ,(4.30)

where the equality follows by substituting h = 2
√
ε̄f/L, which is the value that

minimizes the right hand side of the inequality. Therefore, by (4.3) we can assume
that ε̄g = 2

√
Lε̄f , and the asymptotic accuracy can be estimated as

η̄ =
1

2µβ2
ε̄2g +

L

µc1τ(1− β)2
(εA + ε̄f)(4.31)

=
2L

µβ2
ε̄f +

L

µc1τ(1− β)2
(εA + ε̄f)

=
Lε̄f
µ

(
2

β2
+

1 + θ

c1τ(1− β)2

)
,(4.32)

where in the last line we have written εA = θε̄f , for some θ > 1. If we choose
β = 1− 4c1 when c1 < 1/4, then

η̄ =
Lε̄f
µ

(
2

(1− 4c1)2
+

1 + θ

16τc31

)
.(4.33)

Equations (4.32) and (4.33) show that the asymptotic accuracy level η̄ is propor-
tional to the bound in the error in the objective function (4.11) times the condition
number. Note also that (4.31) is comparable (but larger) than the accuracy level
ε̄2g/2µ in Theorem 4.1. This is not surprising as it reflects the fact that, although the

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 19

line search method can take steps that are much larger than 1/L, the theory only uses
the fact that α cannot be much smaller than 1/L.

In the analysis presented in this section, we have chosen to analyze a backtracking
line search rather than one satisfying the Armijo-Wolfe conditions (3.10a)-(3.10b)
because in the strongly convex case, the curvature condition (3.10b) is less critical,
and because this simplifies the analysis. It would, however, be possible to do a similar
analysis for the Armijo-Wolfe conditions, but the algorithm and analysis would be
more complex. (We should also mention that we could remove the parameter εA from
the relaxed Armijo condition (4.10) at the cost of making the analysis more complex.)

An extension of Theorem 4.2 to a quasi-Newton iteration with positive definite
Hk could be proved, but for the reasons discussed above, we have limited our analysis
to the case Hk = I.

5. Numerical Experiments on Noisy Functions. In this section we present
numerical results comparing the performance of the finite difference L-BFGS method
(FDLM, Algorithm 3.1), the function interpolating trust region method (FI) described
in [12], which we denote by DFOtr, and the direct search method NOMAD [1, 2]. We
selected 49 nonlinear optimization test problems from the Hock and Schittkowski
collection [44]. The distribution of problems, in terms of their dimension n, is given
in Table 5.1.

Table 5.1
Dimensions of Hock-Schittkowski problems tested

n 2 3 4 5 6 9 10 20 30 50 100

Number of Problems 15 6 5 2 5 1 4 3 3 3 2

A limit of 100×n function evaluations and 30 minutes of cpu time is given to each
method. The FDLM method also terminates if one of the following two conditions
holds: i) |fMA(xk) − f(xk)| ≤ 10−8 max{1, |fMA(xk)|}, where fMA(xk) is defined in
(3.15); or ii) ‖∇hf(xk)‖ ≤ 10−8. The FI method terminates if the trust region radius
satisfies ∆k ≤ 10−8. The very small tolerance 10−8 was chosen to display the complete
evolution of the runs. We ran NOMAD with default parameters [1].

We experimented with 4 different types of noise: (i) stochastic additive, (ii)
stochastic multiplicative, (iii) deterministic additive, and (iv) deterministic multi-
plicative, and for each type of noise we consider 4 different noise levels. Below, we
show a small sample of results for the first two types of noise.

Stochastic Additive Noise. The objective function has the form f(x) = φ(x)+ε(x),
where φ is a smooth function and ε(x) is a uniform random variable, i.e.,

(5.1) ε(x) ∼ U(−ξ, ξ).

We investigate the behavior of the methods for noise levels corresponding to ξ ∈
{10−8, 10−6, 10−4, 10−2}. In Figure 5.1 we report results for the 4 problems studied
in Section 2, namely s271, s334, s293 and s289, for 2 different noise levels (10−8 and
10−2). The figure plots the optimality gap (f(xk)−φ?) versus the number of function
evaluations. (For all test problems, φ? is known.) We note that φ? = 0 for problems
s271, s293, s289. The first problem, s271 is quadratic, which is benign for DFOtr,
which terminates as soon as a fully quadratic model is constructed.

Stochastic Multiplicative Noise. The objective has the form f(x) = φ(x)(1+ε̂(x)),
where φ is smooth and ε̂(x) is the stochastic noise defined as in (5.1). We can write

20 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

100 200 300 400 500 600

Number of function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

F
(
x
)
-
φ
*

s271

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

50 100 150 200 250 300

Number of function evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

F
(
x
)
-
φ
*

s334

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
-10

10
-5

10
0

10
5

10
10

F
(
x
)
-
φ
*

s293

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000

Number of function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

F
(
x
)
-
φ
*

s289

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

100 200 300 400 500 600

Number of function evaluations

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

F
(
x
)
-
φ
*

s271

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

50 100 150 200 250 300

Number of function evaluations

10
-3

10
-2

10
-1

10
0

10
1

10
2

F
(
x
)
-
φ
*

s334

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

F
(
x
)
-
φ
*

s293

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000

Number of function evaluations

10
-3

10
-2

10
-1

10
0

F
(
x
)
-
φ
*

s289

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

Fig. 5.1. Stochastic Additive Noise. Performance of the function interpolating trust
region method (DFOtr) described in [12], NOMAD[1, 2] and the finite difference L-BFGS method
(FDLM) using forward or central differences. The figure plots results for 4 problems from
the Hock-Schittkowki collection [44], for 2 different noise levels. Each column represents a
different problem and each row a different noise level.

100 200 300 400 500 600

Number of function evaluations

10
-20

10
-15

10
-10

10
-5

10
0

10
5

F
(
x
)
-
φ
*

s271

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

50 100 150 200 250 300

Number of function evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

F
(
x
)
-
φ
*

s334

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
-15

10
-10

10
-5

10
0

10
5

10
10

F
(
x
)
-
φ
*

s293

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000

Number of function evaluations

10
-15

10
-10

10
-5

10
0

F
(
x
)
-
φ
*

s289

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

100 200 300 400 500 600

Number of function evaluations

10
-15

10
-10

10
-5

10
0

10
5

F
(
x
)
-
φ
*

s271

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

50 100 150 200 250 300

Number of function evaluations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

F
(
x
)
-
φ
*

s334

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
(
x
)
-
φ
*

s293

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

500 1000 1500 2000 2500 3000

Number of function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

F
(
x
)
-
φ
*

s289

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

NOMAD

Fig. 5.2. Stochastic Multiplicative Noise. Performance of the function interpo-
lating trust region method (DFOtr) described in [12], NOMAD [1, 2] and the finite difference
L-BFGS method (FDLM) using forward or central differences. The figure plots results for 4
problems from the Hock-Schittkowki collection [44], for 2 different noise levels. Each column
represents a different problem and each row a different noise level.

the objective in the additive form f(x) = φ(x) + ε(x), where ε(x) = φ(x)ε̂(x) varies
with x, and since φ? = 0 for problems s271, s293 and s289, the noise term ε(x)
decays to zero as xk approaches the solution; this is not the case for problem s334.
The results are given in Figure 5.2.

Performance Profiles. Figure 5.3 shows performance profiles [14] for all 49 prob-
lems, for the 4 different types of noise mentioned above, and for 2 different noise levels
(10−8 and 10−2), giving a total of 392 problems; see Appendix A.2.2 for data profiles.
Since we observe from the previous results that NOMAD is the slowest of the methods,
we do not report for it in the sequel. Deterministic noise was generated using the
procedure proposed by Moré and Wild [33], which is described in Appendix A.2.1.
For these tests, we follow [33] and use the following convergence test that measures
the decrease in function value

f(x0)− f(xk) ≤ (1− τ) (f(x0)− fL) ,(5.2)

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 21

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8 16

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

Fig. 5.3. Performance Profiles (τ = 10−5) [14]. Each column represents a different noise
type and each row different noise level. Row 1: Noise level 10−8; Row 2: Noise level 10−2.
Column 1: Stochastic Additive Noise; Column 2: Stochastic Multiplicative Noise; Column 3:
Deterministic Additive Noise; Column 4: Deterministic Multiplicative Noise.

where τ = 10−5, x0 is the starting point, and fL is the smallest value of f obtained
by any solver within a given budget of 100×n function evaluations. This convergence
test is well suited for derivative-free optimization because it is invariant to affine
transformations and measures the function value reduction achieved relative to the
best possible reduction [33].

Observations. Even though there is some variability, our tests indicate that overall
the performance of the FI and FDLM methods is roughly comparable in terms of
function evaluations. Contrary to conventional wisdom, the high per-iteration cost
of finite differences is offset by the faster convergence of the FDLM method, and
the potential instability of finite differences is generally not harmful in our tests. As
expected, forward differences are more efficient for low levels of noise, and central
differences give rise to a more robust algorithm for high noise levels (e.g., 10−2); this
suggests that using even higher order gradient approximations would be useful for
more difficult problems.

5.1. The Recovery Mechanism. We now investigate if the Recovery mech-
anism improves the robustness of our approach. We ran the FDLM method with
and without the Recovery procedure; the latter amounts to terminating as soon as
the LineSearch procedure fails (Line 11, Algorithm 3.1). In Figure 5.4 we present
performance profiles for problems with stochastic additive and multiplicative noise for
two noise levels (10−8 and 10−2); see Appendix A.2.3 for data profiles. As shown, the
performance of the method deteriorates substantially when the Recovery procedure
is not used.

Our complete set of experiments show that the Recovery procedure is invoked
more often when the noise level is high or when forward differences are employed, as
expected. It plays an important role for problems with multiplicative noise where the
noise level changes during the course of the iteration and our approach relies on the
Recovery mechanism to adjust the finite difference interval. For some problems, the
Recovery procedure is never invoked, but in the most difficult cases it plays a crucial
role.

22 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

1 2

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-08

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-02

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

1 2

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-08

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-02

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

Fig. 5.4. Performance of the FDLM method using forward and central differences with
and without the Recovery procedure. The figure plots performance profiles for stochastic
additive and stochastic multiplicative noise (noise levels 10−8, 10−2). The first two plots
show results for stochastic additive noise, and the last two plots show results for stochastic
multiplicative noise.

We also observe (see e.g., Figures 5.1-5.2) that the FDLM method with forward
differences is more efficient than the central difference variant in the initial stages of
the optimization, but the latter is able to achieve more accurate solutions within the
given budget. It is therefore natural to consider a method that starts with forward
differences and switches to central differences. How to do this in an algorithmically
sound way remains a topic of investigation.

6. Final Remarks. We presented a finite difference quasi-Newton method for
the optimization of noisy black-box functions. It relies on the observation that when
the level of noise (i.e., its standard deviation) can be estimated, it is possible to choose
finite difference intervals that yield reliable forward or central difference approxima-
tions to the gradient. To estimate the noise level, we employ the ECnoise procedure
of Moré and Wild [34]. Since this procedure may not always be reliable, or since the
noise level may change during the course of the minimization, our algorithm includes
a Recovery procedure that adjusts the finite difference interval, as needed. This
procedure operates in conjunction with a backtracking Armijo line search.

Our numerical experiments indicate that our approach is robust and efficient.
Therefore, performing O(n) function evaluations at every iteration to estimate the
gradient is not prohibitively expensive and has the advantage that the construction of
the model of the objective can be delegated to the highly scalable L-BFGS updating
technique. We present a convergence analysis of our method using an Armijo-type
backtracking line search that does not assume that the error in the function evalua-
tions tends to zero.

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 23

Appendix A. Extended Numerical Results.
In this appendix, we present additional numerical results.

A.1. Smooth Functions. Figure A.1 shows performance profiles for different
values of τ (see equation (5.2)) and Figure A.2 shows data profiles [33] for different
values of τ .

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-1

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-5

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-9

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

Fig. A.1. Performance profiles – Smooth Deterministic Functions. Left: τ = 10−1;
Center: τ = 10−5; Right: τ = 10−9.

0 200 400 600 800 1000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-1

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-5

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 10
-9

Smooth Deterministic

DFOtr

FDLM (FD)

FDLM (CD)

Fig. A.2. Data profiles – Smooth Deterministic Functions. Left: τ = 10−1; Center:
τ = 10−5; Right: τ = 10−9.

A.2. Noisy Problems.

A.2.1. Generation of Deterministic Noise. Deterministic noise was gener-
ated using the procedure described by Moré and Wild [33]. Namely,

ε(x) = ξψ(x),

where ξ ∈ {10−8, 10−6, 10−4, 10−2}, and ψ : Rn → [−1, 1] is defined in terms of the
cubic Chebyshev polynomial T3(α) = α(4α2 − 3), as follows:

ψ(x) = T3(ψ0(x)), where ψ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2).

A.2.2. Data Profiles. We present data profiles for the problems described in
Section 5.

A.2.3. Performance of the Recovery Mechanism. We present data profiles
to illustrate the performance of the FDLM method with and without the Recovery

mechanism.

24 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Multiplicative Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

0 500 1000 1500 2000 2500 3000 3500 4000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

0 500 1000 1500 2000 2500 3000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Deterministic Multiplicative Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

Fig. A.3. Data Profiles (τ = 10−5) [14]. Each column represents a different noise type
and each row different noise level. Row 1: Noise level 10−8; Row 2: Noise level 10−2.
Column 1: Stochastic Additive Noise; Column 2: Stochastic Multiplicative Noise; Column 3:
Deterministic Additive Noise; Column 4: Deterministic Multiplicative Noise.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-08

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

0 500 1000 1500 2000 2500 3000 3500 4000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Additive Noise:1e-02

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-08

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Function Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ = 1e-05

Stochastic Multiplicative Noise:1e-02

FDLM (FD)

FDLM (CD)

FDLM (FD) - No Rec

FDLM (CD) - No Rec

Fig. A.4. Performance of the FDLM method using forward and central differences with
and without the Recovery procedure. The figure plots data profiles for stochastic additive
and stochastic multiplicative noise (noise levels 10−8, 10−2). The first two plots show results
for stochastic additive noise, and the last two plots show results for stochastic multiplicative
noise.

Acknowledgments. We are grateful to Jorge Moré and Stefan Wild for many
useful suggestions and insights on noise estimation and derivative-free optimization.

References.
[1] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr, S. Le Diga-

bel, and C. Tribes, The NOMAD project, 2011.
[2] C. Audet and J. E. Dennis Jr, Mesh adaptive direct search algorithms for

constrained optimization, SIAM Journal on optimization, 17 (2006), pp. 188–217.
[3] R. R. Barton, Computing forward difference derivatives in engineering opti-

mization, Engineering optimization, 20 (1992), pp. 205–224.
[4] H. H. Bauschke, W. L. Hare, and W. M. Moursi, A derivative-free comir-

ror algorithm for convex optimization, Optimization Methods and Software, 30
(2015), pp. 706–726.

[5] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.
[6] A. D. Bethke, Genetic algorithms as function optimizers, (1978).
[7] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-

scale machine learning, stat, 1050 (2017), p. 2.
[8] T. Choi and C. T. Kelley, Superlinear convergence and implicit filtering,

DFO OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS 25

SIAM Journal on Optimization, 10 (2000), pp. 1149–1162.
[9] A. R. Conn, K. Scheinberg, and P. L. Toint, On the convergence of

derivative-free methods for unconstrained optimization, Approximation theory
and optimization: tributes to MJD Powell, (1997), pp. 83–108.

[10] A. R. Conn, K. Scheinberg, and P. L. Toint, A derivative free optimization
algorithm in practice, in Proceedings of 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization, St. Louis, MO, vol. 48,
1998, p. 3.

[11] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of sample sets
in derivative-free optimization: polynomial regression and underdetermined in-
terpolation, IMA journal of numerical analysis, 28 (2008), pp. 721–748.

[12] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-
free optimization, vol. 8, SIAM, 2009.

[13] J. E. Dennis and V. Torczon, Direct search methods on parallel machines,
SIAM Journal on Optimization, 1 (1991), pp. 448–474.

[14] E. D. Dolan and J. J. Moré, Benchmarking optimization software with per-
formance profiles, Mathematical Programming, Series A, 91 (2002), pp. 201–213.

[15] R. Garmanjani and L. N. Vicente, Smoothing and worst-case complexity
for direct-search methods in nonsmooth optimization, IMA Journal of Numerical
Analysis, 33 (2013), pp. 1008–1028.

[16] N. I. M. Gould. (private communication), September 2016.
[17] G. A. Gray and T. G. Kolda, Algorithm 856: Appspack 4.0: Asynchronous

parallel pattern search for derivative-free optimization, ACM Transactions on
Mathematical Software (TOMS), 32 (2006), pp. 485–507.

[18] R. W. Hamming, Introduction to applied numerical analysis, Courier Corpora-
tion, 2012.

[19] N. J. Higham, The Matrix Computation Toolbox, http://www.ma.man.ac.uk/
∼higham/mctoolbox.

[20] J. H. Holland, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence., U Michi-
gan Press, 1975.

[21] R. Hooke and T. A. Jeeves, “Direct search”solution of numerical and statis-
tical problems, Journal of the ACM (JACM), 8 (1961), pp. 212–229.

[22] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, Lipschitzian op-
timization without the lipschitz constant, Journal of Optimization Theory and
Applications, 79 (1993), pp. 157–181.

[23] C. T. Kelley, Implicit filtering, vol. 23, SIAM, 2011.
[24] N. S. Keskar and A. Wächter, A limited-memory quasi-newton algorithm

for bound-constrained non-smooth optimization, Optimization Methods and Soft-
ware, (2017), pp. 1–22.

[25] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al., Optimization by
simmulated annealing, science, 220 (1983), pp. 671–680.

[26] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by Direct Search:
new perspectives on some classical and modern methods, SIAM Review, 45 (2003),
pp. 385–482.

[27] J. Larson and S. M. Wild, Non-intrusive termination of noisy optimization,
Optimization Methods and Software, 28 (2013), pp. 993–1011.

[28] A. S. Lewis and M. L. Overton, Nonsmooth optimization via bfgs, Submitted
to SIAM J. Optimiz, (2009), pp. 1–35.

[29] A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-newton

http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.ma.man.ac.uk/~higham/mctoolbox

26 A. S. BERAHAS, R. H. BYRD AND J. NOCEDAL

methods, Mathematical Programming, 141 (2013), pp. 135–163.
[30] R. M. Lewis, V. Torczon, and M. W. Trosset, Direct search methods:

then and now, Journal of computational and Applied Mathematics, 124 (2000),
pp. 191–207.

[31] A. Maggiar, A. Wächter, I. S. Dolinskaya, and J. Staum, A derivative-
free trust-region algorithm for the optimization of functions smoothed via gaussian
convolution using adaptive multiple importance sampling, tech. report, Technical
Report IEMS Department, Northwestern University, 2015.

[32] M. Marazzi and J. Nocedal, Wedge trust region methods for derivative free
optimization, Mathematical Programming, Series A, 91 (2002), pp. 289–305.

[33] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algo-
rithms, SIAM Journal on Optimization, 20 (2009), pp. 172–191.

[34] J. J. Moré and S. M. Wild, Estimating computational noise, SIAM Journal
on Scientific Computing, 33 (2011), pp. 1292–1314.

[35] J. J. Moré and S. M. Wild, Estimating derivatives of noisy simulations, ACM
Transactions on Mathematical Software (TOMS), 38 (2012), p. 19.

[36] A. Nedić and D. Bertsekas, Convergence rate of incremental subgradient
algorithms, in Stochastic optimization: algorithms and applications, Springer,
2001, pp. 223–264.

[37] J. A. Nelder and R. Mead, A simplex method for function minimization,
Computer Journal, 7 (1965), pp. 308–313.

[38] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex
functions, Foundations of Computational Mathematics, 17 (2017), pp. 527–566.

[39] J. Nocedal and S. Wright, Numerical Optimization, Springer New York,
2 ed., 1999.

[40] M. J. Powell, Unconstrained minimization algorithms without computation of
derivatives, tech. report, 1972.

[41] M. J. Powell, UOBYQA: unconstrained optimization by quadratic approxima-
tion, Mathematical Programming, 92 (2002), pp. 555–582.

[42] M. J. Powell, The NEWUOA software for unconstrained optimization without
derivatives, in Large-scale nonlinear optimization, Springer, 2006, pp. 255–297.

[43] L. M. Rios and N. V. Sahinidis, Derivative-free optimization: a review of
algorithms and comparison of software implementations, Journal of Global Op-
timization, 56 (2013), pp. 1247–1293.

[44] K. Schttfkowski, More test examples for nonlinear programming codes, Lec-
ture Notes in Econom. and Math. Systems, 282 (1987).

[45] W. Squire and G. Trapp, Using complex variables to estimate derivatives of
real functions, SIAM review, 40 (1998), pp. 110–112.

[46] S. M. Wild, R. G. Regis, and C. A. Shoemaker, ORBIT: Optimization by
radial basis function interpolation in trust-regions, SIAM Journal on Scientific
Computing, 30 (2008), pp. 3197–3219.

[47] M. H. Wright, Direct search methods: Once scorned, now respectable, in Nu-
merical Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference in
Numerical Analysis), Addison Wesley Longman, 1996, pp. 191–208.

	1 Introduction
	1.1 Background

	2 Optimization of Smooth Functions
	2.1 Discussion

	3 Optimization of Noisy Functions
	3.1 The Finite Difference Interval
	3.2 Noise Estimation
	3.3 Specification of the Finite Difference L-BFGS Method
	3.3.1 Line Search
	3.3.2 Recovery Mechanism
	3.3.3 Hessian approximation
	3.3.4 Stopping Tests

	3.4 Implementation of the Noise Estimation Procedure

	4 Convergence Analysis
	4.1 Fixed Steplength Analysis
	4.2 Line Search Analysis

	5 Numerical Experiments on Noisy Functions
	5.1 The Recovery Mechanism

	6 Final Remarks
	Appendix A. Extended Numerical Results
	A.1 Smooth Functions
	A.2 Noisy Problems
	A.2.1 Generation of Deterministic Noise
	A.2.2 Data Profiles
	A.2.3 Performance of the Recovery Mechanism

	Acknowledgments
	References

